blob: fe61e9836c1aabe54efc797ed09d5a6d9a84b9e0 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_X64.
#if defined(TARGET_ARCH_X64)
#include "vm/intermediate_language.h"
#include "lib/error.h"
#include "vm/flow_graph_compiler.h"
#include "vm/locations.h"
#include "vm/object_store.h"
#include "vm/parser.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
#define __ compiler->assembler()->
namespace dart {
DECLARE_FLAG(int, optimization_counter_threshold);
DECLARE_FLAG(bool, trace_functions);
// Generic summary for call instructions that have all arguments pushed
// on the stack and return the result in a fixed register RAX.
LocationSummary* Instruction::MakeCallSummary() {
LocationSummary* result = new LocationSummary(0, 0, LocationSummary::kCall);
result->set_out(Location::RegisterLocation(RAX));
return result;
}
LocationSummary* ReturnInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterLocation(RAX));
locs->set_temp(0, Location::RequiresRegister());
return locs;
}
void ReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register result = locs()->in(0).reg();
Register temp = locs()->temp(0).reg();
ASSERT(result == RAX);
if (!compiler->is_optimizing()) {
__ Comment("Check function counter");
// Count only in unoptimized code.
// TODO(srdjan): Replace the counting code with a type feedback
// collection and counting stub.
const Function& function =
Function::ZoneHandle(compiler->parsed_function().function().raw());
__ LoadObject(temp, function);
__ incq(FieldAddress(temp, Function::usage_counter_offset()));
if (FlowGraphCompiler::CanOptimize() &&
compiler->parsed_function().function().is_optimizable()) {
// Do not optimize if usage count must be reported.
__ cmpq(FieldAddress(temp, Function::usage_counter_offset()),
Immediate(FLAG_optimization_counter_threshold));
Label not_yet_hot, already_optimized;
__ j(LESS, &not_yet_hot, Assembler::kNearJump);
__ j(GREATER, &already_optimized, Assembler::kNearJump);
__ pushq(result); // Preserve result.
__ pushq(temp); // Argument for runtime: function to optimize.
__ CallRuntime(kOptimizeInvokedFunctionRuntimeEntry);
__ popq(temp); // Remove argument.
__ popq(result); // Restore result.
__ Bind(&not_yet_hot);
__ Bind(&already_optimized);
}
}
if (FLAG_trace_functions) {
const Function& function =
Function::ZoneHandle(compiler->parsed_function().function().raw());
__ LoadObject(temp, function);
__ pushq(result); // Preserve result.
__ pushq(temp);
compiler->GenerateCallRuntime(0,
kTraceFunctionExitRuntimeEntry,
NULL);
__ popq(temp); // Remove argument.
__ popq(result); // Restore result.
}
#if defined(DEBUG)
// TODO(srdjan): Fix for functions with finally clause.
// A finally clause may leave a previously pushed return value if it
// has its own return instruction. Method that have finally are currently
// not optimized.
if (!compiler->HasFinally()) {
Label done;
__ movq(RDI, RBP);
__ subq(RDI, RSP);
// + 1 for Pc marker.
__ cmpq(RDI, Immediate((compiler->StackSize() + 1) * kWordSize));
__ j(EQUAL, &done, Assembler::kNearJump);
__ int3();
__ Bind(&done);
}
#endif
__ LeaveFrame();
__ ret();
// Generate 8 bytes of NOPs so that the debugger can patch the
// return pattern with a call to the debug stub.
// Note that the nop(8) byte pattern is not recognized by the debugger.
__ nop(1);
__ nop(1);
__ nop(1);
__ nop(1);
__ nop(1);
__ nop(1);
__ nop(1);
__ nop(1);
compiler->AddCurrentDescriptor(PcDescriptors::kReturn,
Isolate::kNoDeoptId,
token_pos());
}
LocationSummary* ClosureCallInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 1;
LocationSummary* result =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
result->set_out(Location::RegisterLocation(RAX));
result->set_temp(0, Location::RegisterLocation(R10)); // Arg. descriptor.
return result;
}
LocationSummary* LoadLocalInstr::MakeLocationSummary() const {
return LocationSummary::Make(0,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register result = locs()->out().reg();
__ movq(result, Address(RBP, local().index() * kWordSize));
}
LocationSummary* StoreLocalInstr::MakeLocationSummary() const {
return LocationSummary::Make(1,
Location::SameAsFirstInput(),
LocationSummary::kNoCall);
}
void StoreLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register result = locs()->out().reg();
ASSERT(result == value); // Assert that register assignment is correct.
__ movq(Address(RBP, local().index() * kWordSize), value);
}
LocationSummary* ConstantInstr::MakeLocationSummary() const {
return LocationSummary::Make(0,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void ConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The register allocator drops constant definitions that have no uses.
if (!locs()->out().IsInvalid()) {
Register result = locs()->out().reg();
__ LoadObject(result, value());
}
}
LocationSummary* AssertAssignableInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(RAX)); // Value.
summary->set_in(1, Location::RegisterLocation(RCX)); // Instantiator.
summary->set_in(2, Location::RegisterLocation(RDX)); // Type arguments.
summary->set_out(Location::RegisterLocation(RAX));
return summary;
}
LocationSummary* AssertBooleanInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RAX));
locs->set_out(Location::RegisterLocation(RAX));
return locs;
}
void AssertBooleanInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register obj = locs()->in(0).reg();
Register result = locs()->out().reg();
if (!is_eliminated()) {
// Check that the type of the value is allowed in conditional context.
// Call the runtime if the object is not bool::true or bool::false.
Label done;
__ CompareObject(obj, compiler->bool_true());
__ j(EQUAL, &done, Assembler::kNearJump);
__ CompareObject(obj, compiler->bool_false());
__ j(EQUAL, &done, Assembler::kNearJump);
__ pushq(obj); // Push the source object.
compiler->GenerateCallRuntime(token_pos(),
kConditionTypeErrorRuntimeEntry,
locs());
// We should never return here.
__ int3();
__ Bind(&done);
}
ASSERT(obj == result);
}
LocationSummary* ArgumentDefinitionTestInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RAX));
locs->set_out(Location::RegisterLocation(RAX));
return locs;
}
void ArgumentDefinitionTestInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register saved_args_desc = locs()->in(0).reg();
Register result = locs()->out().reg();
// Push the result place holder initialized to NULL.
__ PushObject(Object::ZoneHandle());
__ pushq(Immediate(Smi::RawValue(formal_parameter_index())));
__ PushObject(formal_parameter_name());
__ pushq(saved_args_desc);
compiler->GenerateCallRuntime(token_pos(),
kArgumentDefinitionTestRuntimeEntry,
locs());
__ Drop(3);
__ popq(result); // Pop bool result.
}
static Condition TokenKindToSmiCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ: return EQUAL;
case Token::kNE: return NOT_EQUAL;
case Token::kLT: return LESS;
case Token::kGT: return GREATER;
case Token::kLTE: return LESS_EQUAL;
case Token::kGTE: return GREATER_EQUAL;
default:
UNREACHABLE();
return OVERFLOW;
}
}
LocationSummary* EqualityCompareInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const bool is_checked_strict_equal =
HasICData() && ic_data()->AllTargetsHaveSameOwner(kInstanceCid);
if (receiver_class_id() == kDoubleCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresXmmRegister());
locs->set_in(1, Location::RequiresXmmRegister());
locs->set_out(Location::RequiresRegister());
return locs;
}
if (receiver_class_id() == kSmiCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterOrConstant(left()));
locs->set_in(1, Location::RegisterOrConstant(right()));
locs->set_out(Location::RequiresRegister());
return locs;
}
if (is_checked_strict_equal) {
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_in(1, Location::RequiresRegister());
locs->set_temp(0, Location::RequiresRegister());
locs->set_out(Location::RequiresRegister());
return locs;
}
if (HasICData() && (ic_data()->NumberOfChecks() > 0)) {
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RCX));
locs->set_in(1, Location::RegisterLocation(RDX));
locs->set_temp(0, Location::RegisterLocation(RBX));
locs->set_out(Location::RegisterLocation(RAX));
return locs;
}
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RCX));
locs->set_in(1, Location::RegisterLocation(RDX));
locs->set_temp(0, Location::RegisterLocation(RBX));
locs->set_out(Location::RegisterLocation(RAX));
return locs;
}
static void EmitEqualityAsInstanceCall(FlowGraphCompiler* compiler,
intptr_t deopt_id,
intptr_t token_pos,
Token::Kind kind,
LocationSummary* locs) {
if (!compiler->is_optimizing()) {
compiler->AddCurrentDescriptor(PcDescriptors::kDeoptBefore,
deopt_id,
token_pos);
}
const String& operator_name = String::ZoneHandle(Symbols::New("=="));
const int kNumberOfArguments = 2;
const Array& kNoArgumentNames = Array::Handle();
const int kNumArgumentsChecked = 2;
const Immediate raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
Label check_identity;
__ cmpq(Address(RSP, 0 * kWordSize), raw_null);
__ j(EQUAL, &check_identity, Assembler::kNearJump);
__ cmpq(Address(RSP, 1 * kWordSize), raw_null);
__ j(EQUAL, &check_identity, Assembler::kNearJump);
const ICData& ic_data = compiler->GenerateInstanceCall(deopt_id,
token_pos,
operator_name,
kNumberOfArguments,
kNoArgumentNames,
kNumArgumentsChecked,
locs);
Label check_ne;
__ jmp(&check_ne);
__ Bind(&check_identity);
// Call stub, load IC data in register. The stub will update ICData if
// necessary.
Register ic_data_reg = locs->temp(0).reg();
ASSERT(ic_data_reg == RBX); // Stub depends on it.
__ LoadObject(ic_data_reg, ic_data);
compiler->GenerateCall(token_pos,
&StubCode::EqualityWithNullArgLabel(),
PcDescriptors::kOther,
locs);
__ Drop(2);
__ Bind(&check_ne);
if (kind == Token::kNE) {
Label false_label, true_label, done;
// Negate the condition: true label returns false and vice versa.
__ CompareObject(RAX, compiler->bool_true());
__ j(EQUAL, &true_label, Assembler::kNearJump);
__ Bind(&false_label);
__ LoadObject(RAX, compiler->bool_true());
__ jmp(&done, Assembler::kNearJump);
__ Bind(&true_label);
__ LoadObject(RAX, compiler->bool_false());
__ Bind(&done);
}
}
static void EmitEqualityAsPolymorphicCall(FlowGraphCompiler* compiler,
const ICData& orig_ic_data,
LocationSummary* locs,
BranchInstr* branch,
Token::Kind kind,
intptr_t deopt_id,
intptr_t token_pos) {
ASSERT((kind == Token::kEQ) || (kind == Token::kNE));
const ICData& ic_data = ICData::Handle(orig_ic_data.AsUnaryClassChecks());
ASSERT(ic_data.NumberOfChecks() > 0);
ASSERT(ic_data.num_args_tested() == 1);
Label* deopt = compiler->AddDeoptStub(deopt_id, kDeoptEquality);
Register left = locs->in(0).reg();
Register right = locs->in(1).reg();
__ testq(left, Immediate(kSmiTagMask));
Register temp = locs->temp(0).reg();
if (ic_data.GetReceiverClassIdAt(0) == kSmiCid) {
Label done, load_class_id;
__ j(NOT_ZERO, &load_class_id, Assembler::kNearJump);
__ movq(temp, Immediate(kSmiCid));
__ jmp(&done, Assembler::kNearJump);
__ Bind(&load_class_id);
__ LoadClassId(temp, left);
__ Bind(&done);
} else {
__ j(ZERO, deopt); // Smi deopts.
__ LoadClassId(temp, left);
}
// 'temp' contains class-id of the left argument.
ObjectStore* object_store = Isolate::Current()->object_store();
Condition cond = TokenKindToSmiCondition(kind);
Label done;
for (intptr_t i = 0; i < ic_data.NumberOfChecks(); i++) {
// Assert that the Smi is at position 0, if at all.
ASSERT((ic_data.GetReceiverClassIdAt(i) != kSmiCid) || (i == 0));
Label next_test;
__ cmpq(temp, Immediate(ic_data.GetReceiverClassIdAt(i)));
__ j(NOT_EQUAL, &next_test);
const Function& target = Function::ZoneHandle(ic_data.GetTargetAt(i));
if (target.Owner() == object_store->object_class()) {
// Object.== is same as ===.
__ Drop(2);
__ cmpq(left, right);
if (branch != NULL) {
branch->EmitBranchOnCondition(compiler, cond);
} else {
// This case should be rare.
Register result = locs->out().reg();
Label load_true;
__ j(cond, &load_true, Assembler::kNearJump);
__ LoadObject(result, compiler->bool_false());
__ jmp(&done);
__ Bind(&load_true);
__ LoadObject(result, compiler->bool_true());
}
} else {
const int kNumberOfArguments = 2;
const Array& kNoArgumentNames = Array::Handle();
compiler->GenerateStaticCall(deopt_id,
token_pos,
target,
kNumberOfArguments,
kNoArgumentNames,
locs);
if (branch == NULL) {
if (kind == Token::kNE) {
Label false_label;
__ CompareObject(RAX, compiler->bool_true());
__ j(EQUAL, &false_label, Assembler::kNearJump);
__ LoadObject(RAX, compiler->bool_true());
__ jmp(&done);
__ Bind(&false_label);
__ LoadObject(RAX, compiler->bool_false());
__ jmp(&done);
}
} else {
__ CompareObject(RAX, compiler->bool_true());
branch->EmitBranchOnCondition(compiler, cond);
}
}
__ jmp(&done);
__ Bind(&next_test);
}
// Fall through leads to deoptimization
__ jmp(deopt);
__ Bind(&done);
}
// Emit code when ICData's targets are all Object == (which is ===).
static void EmitCheckedStrictEqual(FlowGraphCompiler* compiler,
const ICData& ic_data,
const LocationSummary& locs,
Token::Kind kind,
BranchInstr* branch,
intptr_t deopt_id) {
ASSERT((kind == Token::kEQ) || (kind == Token::kNE));
Register left = locs.in(0).reg();
Register right = locs.in(1).reg();
Register temp = locs.temp(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id, kDeoptEquality);
__ testq(left, Immediate(kSmiTagMask));
__ j(ZERO, deopt);
// 'left' is not Smi.
const Immediate raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
Label identity_compare;
__ cmpq(right, raw_null);
__ j(EQUAL, &identity_compare);
__ cmpq(left, raw_null);
__ j(EQUAL, &identity_compare);
__ LoadClassId(temp, left);
for (intptr_t i = 0; i < ic_data.NumberOfChecks(); i++) {
__ cmpq(temp, Immediate(ic_data.GetReceiverClassIdAt(i)));
if (i == (ic_data.NumberOfChecks() - 1)) {
__ j(NOT_EQUAL, deopt);
} else {
__ j(EQUAL, &identity_compare);
}
}
__ Bind(&identity_compare);
__ cmpq(left, right);
if (branch == NULL) {
Label done, is_equal;
Register result = locs.out().reg();
__ j(EQUAL, &is_equal, Assembler::kNearJump);
// Not equal.
__ LoadObject(result, (kind == Token::kEQ) ? compiler->bool_false()
: compiler->bool_true());
__ jmp(&done, Assembler::kNearJump);
__ Bind(&is_equal);
__ LoadObject(result, (kind == Token::kEQ) ? compiler->bool_true()
: compiler->bool_false());
__ Bind(&done);
} else {
Condition cond = TokenKindToSmiCondition(kind);
branch->EmitBranchOnCondition(compiler, cond);
}
}
// First test if receiver is NULL, in which case === is applied.
// If type feedback was provided (lists of <class-id, target>), do a
// type by type check (either === or static call to the operator.
static void EmitGenericEqualityCompare(FlowGraphCompiler* compiler,
LocationSummary* locs,
Token::Kind kind,
BranchInstr* branch,
const ICData& ic_data,
intptr_t deopt_id,
intptr_t token_pos) {
ASSERT((kind == Token::kEQ) || (kind == Token::kNE));
ASSERT(!ic_data.IsNull() && (ic_data.NumberOfChecks() > 0));
Register left = locs->in(0).reg();
Register right = locs->in(1).reg();
const Immediate raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
Label done, identity_compare, non_null_compare;
__ cmpq(right, raw_null);
__ j(EQUAL, &identity_compare, Assembler::kNearJump);
__ cmpq(left, raw_null);
__ j(NOT_EQUAL, &non_null_compare, Assembler::kNearJump);
// Comparison with NULL is "===".
__ Bind(&identity_compare);
__ cmpq(left, right);
Condition cond = TokenKindToSmiCondition(kind);
if (branch != NULL) {
branch->EmitBranchOnCondition(compiler, cond);
} else {
Register result = locs->out().reg();
Label load_true;
__ j(cond, &load_true, Assembler::kNearJump);
__ LoadObject(result, compiler->bool_false());
__ jmp(&done);
__ Bind(&load_true);
__ LoadObject(result, compiler->bool_true());
}
__ jmp(&done);
__ Bind(&non_null_compare); // Receiver is not null.
__ pushq(left);
__ pushq(right);
EmitEqualityAsPolymorphicCall(compiler, ic_data, locs, branch, kind,
deopt_id, token_pos);
__ Bind(&done);
}
static void EmitSmiComparisonOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind,
BranchInstr* branch) {
Location left = locs.in(0);
Location right = locs.in(1);
Condition true_condition = TokenKindToSmiCondition(kind);
if (left.IsConstant() && right.IsConstant()) {
bool result = false;
// One of them could be NULL (for equality only).
if (left.constant().IsNull() || right.constant().IsNull()) {
ASSERT((kind == Token::kEQ) || (kind == Token::kNE));
result = left.constant().IsNull() && right.constant().IsNull();
if (kind == Token::kNE) {
result = !result;
}
} else {
// TODO(vegorov): should be eliminated earlier by constant propagation.
result = FlowGraphCompiler::EvaluateCondition(
true_condition,
Smi::Cast(left.constant()).Value(),
Smi::Cast(right.constant()).Value());
}
if (branch != NULL) {
branch->EmitBranchOnValue(compiler, result);
} else {
__ LoadObject(locs.out().reg(), result ? compiler->bool_true()
: compiler->bool_false());
}
return;
}
if (left.IsConstant()) {
__ CompareObject(right.reg(), left.constant());
true_condition = FlowGraphCompiler::FlipCondition(true_condition);
} else if (right.IsConstant()) {
__ CompareObject(left.reg(), right.constant());
} else {
__ cmpq(left.reg(), right.reg());
}
if (branch != NULL) {
branch->EmitBranchOnCondition(compiler, true_condition);
} else {
Register result = locs.out().reg();
Label done, is_true;
__ j(true_condition, &is_true);
__ LoadObject(result, compiler->bool_false());
__ jmp(&done);
__ Bind(&is_true);
__ LoadObject(result, compiler->bool_true());
__ Bind(&done);
}
}
static Condition TokenKindToDoubleCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ: return EQUAL;
case Token::kNE: return NOT_EQUAL;
case Token::kLT: return BELOW;
case Token::kGT: return ABOVE;
case Token::kLTE: return BELOW_EQUAL;
case Token::kGTE: return ABOVE_EQUAL;
default:
UNREACHABLE();
return OVERFLOW;
}
}
static void EmitDoubleComparisonOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind,
BranchInstr* branch) {
XmmRegister left = locs.in(0).xmm_reg();
XmmRegister right = locs.in(1).xmm_reg();
Condition true_condition = TokenKindToDoubleCondition(kind);
if (branch != NULL) {
compiler->EmitDoubleCompareBranch(
true_condition, left, right, branch);
} else {
compiler->EmitDoubleCompareBool(
true_condition, left, right, locs.out().reg());
}
}
void EqualityCompareInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT((kind() == Token::kEQ) || (kind() == Token::kNE));
BranchInstr* kNoBranch = NULL;
if (receiver_class_id() == kSmiCid) {
// Deoptimizes if both arguments not Smi.
EmitSmiComparisonOp(compiler, *locs(), kind(), kNoBranch);
return;
}
if (receiver_class_id() == kDoubleCid) {
// Deoptimizes if both arguments are Smi, or if none is Double or Smi.
EmitDoubleComparisonOp(compiler, *locs(), kind(), kNoBranch);
return;
}
const bool is_checked_strict_equal =
HasICData() && ic_data()->AllTargetsHaveSameOwner(kInstanceCid);
if (is_checked_strict_equal) {
EmitCheckedStrictEqual(compiler, *ic_data(), *locs(), kind(), kNoBranch,
deopt_id());
return;
}
if (HasICData() && (ic_data()->NumberOfChecks() > 0)) {
EmitGenericEqualityCompare(compiler, locs(), kind(), kNoBranch, *ic_data(),
deopt_id(), token_pos());
return;
}
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
__ pushq(left);
__ pushq(right);
EmitEqualityAsInstanceCall(compiler,
deopt_id(),
token_pos(),
kind(),
locs());
ASSERT(locs()->out().reg() == RAX);
}
void EqualityCompareInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
ASSERT((kind() == Token::kNE) || (kind() == Token::kEQ));
if (receiver_class_id() == kSmiCid) {
// Deoptimizes if both arguments not Smi.
EmitSmiComparisonOp(compiler, *locs(), kind(), branch);
return;
}
if (receiver_class_id() == kDoubleCid) {
// Deoptimizes if both arguments are Smi, or if none is Double or Smi.
EmitDoubleComparisonOp(compiler, *locs(), kind(), branch);
return;
}
const bool is_checked_strict_equal =
HasICData() && ic_data()->AllTargetsHaveSameOwner(kInstanceCid);
if (is_checked_strict_equal) {
EmitCheckedStrictEqual(compiler, *ic_data(), *locs(), kind(), branch,
deopt_id());
return;
}
if (HasICData() && (ic_data()->NumberOfChecks() > 0)) {
EmitGenericEqualityCompare(compiler, locs(), kind(), branch, *ic_data(),
deopt_id(), token_pos());
return;
}
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
__ pushq(left);
__ pushq(right);
EmitEqualityAsInstanceCall(compiler,
deopt_id(),
token_pos(),
Token::kEQ, // kNE reverse occurs at branch.
locs());
Condition branch_condition = (kind() == Token::kNE) ? NOT_EQUAL : EQUAL;
__ CompareObject(RAX, compiler->bool_true());
branch->EmitBranchOnCondition(compiler, branch_condition);
}
LocationSummary* RelationalOpInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
if (operands_class_id() == kDoubleCid) {
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresXmmRegister());
summary->set_in(1, Location::RequiresXmmRegister());
summary->set_out(Location::RequiresRegister());
return summary;
} else if (operands_class_id() == kSmiCid) {
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RegisterOrConstant(left()));
summary->set_in(1, Location::RegisterOrConstant(right()));
summary->set_out(Location::RequiresRegister());
return summary;
}
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
// Pick arbitrary fixed input registers because this is a call.
locs->set_in(0, Location::RegisterLocation(RAX));
locs->set_in(1, Location::RegisterLocation(RCX));
locs->set_out(Location::RegisterLocation(RAX));
return locs;
}
void RelationalOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (operands_class_id() == kSmiCid) {
EmitSmiComparisonOp(compiler, *locs(), kind(), NULL);
return;
}
if (operands_class_id() == kDoubleCid) {
EmitDoubleComparisonOp(compiler, *locs(), kind(), NULL);
return;
}
// Push arguments for the call.
// TODO(fschneider): Split this instruction into different types to avoid
// explicitly pushing arguments to the call here.
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
__ pushq(left);
__ pushq(right);
if (HasICData() && (ic_data()->NumberOfChecks() > 0)) {
Label* deopt = compiler->AddDeoptStub(deopt_id(), kDeoptRelationalOp);
// Load class into RDI. Since this is a call, any register except
// the fixed input registers would be ok.
ASSERT((left != RDI) && (right != RDI));
Label done;
__ movq(RDI, Immediate(kSmiCid));
__ testq(left, Immediate(kSmiTagMask));
__ j(ZERO, &done);
__ LoadClassId(RDI, left);
__ Bind(&done);
const intptr_t kNumArguments = 2;
compiler->EmitTestAndCall(ICData::Handle(ic_data()->AsUnaryClassChecks()),
RDI, // Class id register.
kNumArguments,
Array::Handle(), // No named arguments.
deopt, // Deoptimize target.
deopt_id(),
token_pos(),
locs());
return;
}
const String& function_name =
String::ZoneHandle(Symbols::New(Token::Str(kind())));
if (!compiler->is_optimizing()) {
compiler->AddCurrentDescriptor(PcDescriptors::kDeoptBefore,
deopt_id(),
token_pos());
}
const intptr_t kNumArguments = 2;
const intptr_t kNumArgsChecked = 2; // Type-feedback.
compiler->GenerateInstanceCall(deopt_id(),
token_pos(),
function_name,
kNumArguments,
Array::ZoneHandle(), // No optional arguments.
kNumArgsChecked,
locs());
}
void RelationalOpInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
if (operands_class_id() == kSmiCid) {
EmitSmiComparisonOp(compiler, *locs(), kind(), branch);
return;
}
if (operands_class_id() == kDoubleCid) {
EmitDoubleComparisonOp(compiler, *locs(), kind(), branch);
return;
}
EmitNativeCode(compiler);
__ CompareObject(RAX, compiler->bool_true());
branch->EmitBranchOnCondition(compiler, EQUAL);
}
LocationSummary* NativeCallInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 3;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_temp(0, Location::RegisterLocation(RAX));
locs->set_temp(1, Location::RegisterLocation(RBX));
locs->set_temp(2, Location::RegisterLocation(R10));
locs->set_out(Location::RegisterLocation(RAX));
return locs;
}
void NativeCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->temp(0).reg() == RAX);
ASSERT(locs()->temp(1).reg() == RBX);
ASSERT(locs()->temp(2).reg() == R10);
Register result = locs()->out().reg();
// Push the result place holder initialized to NULL.
__ PushObject(Object::ZoneHandle());
// Pass a pointer to the first argument in RAX.
intptr_t arg_count = argument_count();
if (is_native_instance_closure()) {
arg_count += 1;
}
if (!has_optional_parameters() && !is_native_instance_closure()) {
__ leaq(RAX, Address(RBP, (1 + arg_count) * kWordSize));
} else {
__ leaq(RAX,
Address(RBP, ParsedFunction::kFirstLocalSlotIndex * kWordSize));
}
__ movq(RBX, Immediate(reinterpret_cast<uword>(native_c_function())));
__ movq(R10, Immediate(arg_count));
compiler->GenerateCall(token_pos(),
&StubCode::CallNativeCFunctionLabel(),
PcDescriptors::kOther,
locs());
__ popq(result);
}
static bool CanBeImmediateIndex(Value* index) {
if (!index->definition()->IsConstant()) return false;
const Object& constant = index->definition()->AsConstant()->value();
const Smi& smi_const = Smi::Cast(constant);
int64_t disp = smi_const.AsInt64Value() * kWordSize + sizeof(RawArray);
return Utils::IsInt(32, disp);
}
LocationSummary* LoadIndexedInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_in(1, CanBeImmediateIndex(index())
? Location::RegisterOrConstant(index())
: Location::RequiresRegister());
locs->set_out(Location::RequiresRegister());
return locs;
}
void LoadIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register array = locs()->in(0).reg();
Register result = locs()->out().reg();
Location index = locs()->in(1);
if (index.IsRegister()) {
// Note that index is Smi, i.e, times 4.
ASSERT(kSmiTagShift == 1);
__ movq(result,
FieldAddress(array, index.reg(), TIMES_4, sizeof(RawArray)));
} else {
const int64_t disp =
Smi::Cast(index.constant()).Value() * kWordSize + sizeof(RawArray);
ASSERT(Utils::IsInt(32, disp));
__ movq(result, FieldAddress(array, static_cast<int32_t>(disp)));
}
}
LocationSummary* StoreIndexedInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_in(1, CanBeImmediateIndex(index())
? Location::RegisterOrConstant(index())
: Location::RequiresRegister());
locs->set_in(2, ShouldEmitStoreBarrier()
? Location::WritableRegister()
: Location::RegisterOrConstant(value()));
return locs;
}
void StoreIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register array = locs()->in(0).reg();
// Note that index is Smi, i.e, times 4.
ASSERT(kSmiTagShift == 1);
Location index = locs()->in(1);
FieldAddress field_address = index.IsConstant()
? FieldAddress(
array,
static_cast<int32_t>(
Smi::Cast(index.constant()).Value() * kWordSize + sizeof(RawArray)))
: FieldAddress(array, index.reg(), TIMES_4, sizeof(RawArray));
if (ShouldEmitStoreBarrier()) {
Register value = locs()->in(2).reg();
__ StoreIntoObject(array, field_address, value);
} else {
if (locs()->in(2).IsConstant()) {
const Object& constant = locs()->in(2).constant();
__ StoreObject(field_address, constant);
} else {
Register value = locs()->in(2).reg();
__ StoreIntoObjectNoBarrier(array, field_address, value);
}
}
}
LocationSummary* StoreInstanceFieldInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t num_temps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, num_temps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, ShouldEmitStoreBarrier()
? Location::WritableRegister()
: Location::RegisterOrConstant(value()));
return summary;
}
void StoreInstanceFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register instance_reg = locs()->in(0).reg();
if (ShouldEmitStoreBarrier()) {
Register value_reg = locs()->in(1).reg();
__ StoreIntoObject(instance_reg,
FieldAddress(instance_reg, field().Offset()), value_reg);
} else {
if (locs()->in(1).IsConstant()) {
__ StoreObject(FieldAddress(instance_reg, field().Offset()),
locs()->in(1).constant());
} else {
Register value_reg = locs()->in(1).reg();
__ StoreIntoObjectNoBarrier(instance_reg,
FieldAddress(instance_reg, field().Offset()), value_reg);
}
}
}
LocationSummary* LoadStaticFieldInstr::MakeLocationSummary() const {
return LocationSummary::Make(0,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register result = locs()->out().reg();
__ LoadObject(result, field());
__ movq(result, FieldAddress(result, Field::value_offset()));
}
LocationSummary* StoreStaticFieldInstr::MakeLocationSummary() const {
LocationSummary* locs = new LocationSummary(1, 1, LocationSummary::kNoCall);
locs->set_in(0, value()->NeedsStoreBuffer() ? Location::WritableRegister()
: Location::RequiresRegister());
locs->set_temp(0, Location::RequiresRegister());
return locs;
}
void StoreStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register temp = locs()->temp(0).reg();
__ LoadObject(temp, field());
if (this->value()->NeedsStoreBuffer()) {
__ StoreIntoObject(temp, FieldAddress(temp, Field::value_offset()), value);
} else {
__ StoreIntoObjectNoBarrier(
temp, FieldAddress(temp, Field::value_offset()), value);
}
}
LocationSummary* InstanceOfInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(RAX));
summary->set_in(1, Location::RegisterLocation(RCX));
summary->set_in(2, Location::RegisterLocation(RDX));
summary->set_out(Location::RegisterLocation(RAX));
return summary;
}
void InstanceOfInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->in(0).reg() == RAX); // Value.
ASSERT(locs()->in(1).reg() == RCX); // Instantiator.
ASSERT(locs()->in(2).reg() == RDX); // Instantiator type arguments.
compiler->GenerateInstanceOf(token_pos(),
type(),
negate_result(),
locs());
ASSERT(locs()->out().reg() == RAX);
}
LocationSummary* CreateArrayInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RBX));
locs->set_out(Location::RegisterLocation(RAX));
return locs;
}
void CreateArrayInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Allocate the array. R10 = length, RBX = element type.
ASSERT(locs()->in(0).reg() == RBX);
__ movq(R10, Immediate(Smi::RawValue(ArgumentCount())));
compiler->GenerateCall(token_pos(),
&StubCode::AllocateArrayLabel(),
PcDescriptors::kOther,
locs());
ASSERT(locs()->out().reg() == RAX);
// Pop the element values from the stack into the array.
__ leaq(R10, FieldAddress(RAX, Array::data_offset()));
for (int i = ArgumentCount() - 1; i >= 0; --i) {
__ popq(Address(R10, i * kWordSize));
}
}
LocationSummary*
AllocateObjectWithBoundsCheckInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RAX));
locs->set_in(1, Location::RegisterLocation(RCX));
locs->set_out(Location::RegisterLocation(RAX));
return locs;
}
void AllocateObjectWithBoundsCheckInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
const Class& cls = Class::ZoneHandle(constructor().Owner());
Register type_arguments = locs()->in(0).reg();
Register instantiator_type_arguments = locs()->in(1).reg();
Register result = locs()->out().reg();
// Push the result place holder initialized to NULL.
__ PushObject(Object::ZoneHandle());
__ PushObject(cls);
__ pushq(type_arguments);
__ pushq(instantiator_type_arguments);
compiler->GenerateCallRuntime(token_pos(),
kAllocateObjectWithBoundsCheckRuntimeEntry,
locs());
// Pop instantiator type arguments, type arguments, and class.
__ Drop(3);
__ popq(result); // Pop new instance.
}
LocationSummary* LoadFieldInstr::MakeLocationSummary() const {
return LocationSummary::Make(1,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register instance_reg = locs()->in(0).reg();
Register result_reg = locs()->out().reg();
__ movq(result_reg, FieldAddress(instance_reg, offset_in_bytes()));
}
LocationSummary* InstantiateTypeArgumentsInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RAX));
locs->set_out(Location::RegisterLocation(RAX));
return locs;
}
void InstantiateTypeArgumentsInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
Register instantiator_reg = locs()->in(0).reg();
Register result_reg = locs()->out().reg();
// 'instantiator_reg' is the instantiator AbstractTypeArguments object
// (or null).
// If the instantiator is null and if the type argument vector
// instantiated from null becomes a vector of dynamic, then use null as
// the type arguments.
Label type_arguments_instantiated;
const intptr_t len = type_arguments().Length();
if (type_arguments().IsRawInstantiatedRaw(len)) {
const Immediate raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
__ cmpq(instantiator_reg, raw_null);
__ j(EQUAL, &type_arguments_instantiated, Assembler::kNearJump);
}
// Instantiate non-null type arguments.
if (type_arguments().IsUninstantiatedIdentity()) {
// Check if the instantiator type argument vector is a TypeArguments of a
// matching length and, if so, use it as the instantiated type_arguments.
// No need to check the instantiator ('instantiator_reg') for null here,
// because a null instantiator will have the wrong class (Null instead of
// TypeArguments).
Label type_arguments_uninstantiated;
__ CompareClassId(instantiator_reg, kTypeArgumentsCid);
__ j(NOT_EQUAL, &type_arguments_uninstantiated, Assembler::kNearJump);
__ cmpq(FieldAddress(instantiator_reg, TypeArguments::length_offset()),
Immediate(Smi::RawValue(len)));
__ j(EQUAL, &type_arguments_instantiated, Assembler::kNearJump);
__ Bind(&type_arguments_uninstantiated);
}
// A runtime call to instantiate the type arguments is required.
__ PushObject(Object::ZoneHandle()); // Make room for the result.
__ PushObject(type_arguments());
__ pushq(instantiator_reg); // Push instantiator type arguments.
compiler->GenerateCallRuntime(token_pos(),
kInstantiateTypeArgumentsRuntimeEntry,
locs());
__ Drop(2); // Drop instantiator and uninstantiated type arguments.
__ popq(result_reg); // Pop instantiated type arguments.
__ Bind(&type_arguments_instantiated);
ASSERT(instantiator_reg == result_reg);
// 'result_reg': Instantiated type arguments.
}
LocationSummary*
ExtractConstructorTypeArgumentsInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_out(Location::SameAsFirstInput());
return locs;
}
void ExtractConstructorTypeArgumentsInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
Register instantiator_reg = locs()->in(0).reg();
Register result_reg = locs()->out().reg();
ASSERT(instantiator_reg == result_reg);
// instantiator_reg is the instantiator type argument vector, i.e. an
// AbstractTypeArguments object (or null).
// If the instantiator is null and if the type argument vector
// instantiated from null becomes a vector of dynamic, then use null as
// the type arguments.
Label type_arguments_instantiated;
const intptr_t len = type_arguments().Length();
if (type_arguments().IsRawInstantiatedRaw(len)) {
const Immediate raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
__ cmpq(instantiator_reg, raw_null);
__ j(EQUAL, &type_arguments_instantiated, Assembler::kNearJump);
}
// Instantiate non-null type arguments.
if (type_arguments().IsUninstantiatedIdentity()) {
// Check if the instantiator type argument vector is a TypeArguments of a
// matching length and, if so, use it as the instantiated type_arguments.
// No need to check instantiator_reg for null here, because a null
// instantiator will have the wrong class (Null instead of TypeArguments).
Label type_arguments_uninstantiated;
__ CompareClassId(instantiator_reg, kTypeArgumentsCid);
__ j(NOT_EQUAL, &type_arguments_uninstantiated, Assembler::kNearJump);
Immediate arguments_length =
Immediate(Smi::RawValue(type_arguments().Length()));
__ cmpq(FieldAddress(instantiator_reg, TypeArguments::length_offset()),
arguments_length);
__ j(EQUAL, &type_arguments_instantiated, Assembler::kNearJump);
__ Bind(&type_arguments_uninstantiated);
}
// In the non-factory case, we rely on the allocation stub to
// instantiate the type arguments.
__ LoadObject(result_reg, type_arguments());
// result_reg: uninstantiated type arguments.
__ Bind(&type_arguments_instantiated);
// result_reg: uninstantiated or instantiated type arguments.
}
LocationSummary*
ExtractConstructorInstantiatorInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_out(Location::SameAsFirstInput());
return locs;
}
void ExtractConstructorInstantiatorInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
Register instantiator_reg = locs()->in(0).reg();
ASSERT(locs()->out().reg() == instantiator_reg);
// instantiator_reg is the instantiator AbstractTypeArguments object
// (or null). If the instantiator is null and if the type argument vector
// instantiated from null becomes a vector of dynamic, then use null as
// the type arguments and do not pass the instantiator.
Label done;
const intptr_t len = type_arguments().Length();
if (type_arguments().IsRawInstantiatedRaw(len)) {
const Immediate raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
Label instantiator_not_null;
__ cmpq(instantiator_reg, raw_null);
__ j(NOT_EQUAL, &instantiator_not_null, Assembler::kNearJump);
// Null was used in VisitExtractConstructorTypeArguments as the
// instantiated type arguments, no proper instantiator needed.
__ movq(instantiator_reg,
Immediate(Smi::RawValue(StubCode::kNoInstantiator)));
__ jmp(&done);
__ Bind(&instantiator_not_null);
}
// Instantiate non-null type arguments.
if (type_arguments().IsUninstantiatedIdentity()) {
// TODO(regis): The following emitted code is duplicated in
// VisitExtractConstructorTypeArguments above. The reason is that the code
// is split between two computations, so that each one produces a
// single value, rather than producing a pair of values.
// If this becomes an issue, we should expose these tests at the IL level.
// Check if the instantiator type argument vector is a TypeArguments of a
// matching length and, if so, use it as the instantiated type_arguments.
// No need to check the instantiator (RAX) for null here, because a null
// instantiator will have the wrong class (Null instead of TypeArguments).
__ CompareClassId(instantiator_reg, kTypeArgumentsCid);
__ j(NOT_EQUAL, &done, Assembler::kNearJump);
Immediate arguments_length =
Immediate(Smi::RawValue(type_arguments().Length()));
__ cmpq(FieldAddress(instantiator_reg, TypeArguments::length_offset()),
arguments_length);
__ j(NOT_EQUAL, &done, Assembler::kNearJump);
// The instantiator was used in VisitExtractConstructorTypeArguments as the
// instantiated type arguments, no proper instantiator needed.
__ movq(instantiator_reg,
Immediate(Smi::RawValue(StubCode::kNoInstantiator)));
}
__ Bind(&done);
// instantiator_reg: instantiator or kNoInstantiator.
}
LocationSummary* AllocateContextInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_temp(0, Location::RegisterLocation(R10));
locs->set_out(Location::RegisterLocation(RAX));
return locs;
}
void AllocateContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->temp(0).reg() == R10);
ASSERT(locs()->out().reg() == RAX);
__ movq(R10, Immediate(num_context_variables()));
const ExternalLabel label("alloc_context",
StubCode::AllocateContextEntryPoint());
compiler->GenerateCall(token_pos(),
&label,
PcDescriptors::kOther,
locs());
}
LocationSummary* CloneContextInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RAX));
locs->set_out(Location::RegisterLocation(RAX));
return locs;
}
void CloneContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register context_value = locs()->in(0).reg();
Register result = locs()->out().reg();
__ PushObject(Object::ZoneHandle()); // Make room for the result.
__ pushq(context_value);
compiler->GenerateCallRuntime(token_pos(),
kCloneContextRuntimeEntry,
locs());
__ popq(result); // Remove argument.
__ popq(result); // Get result (cloned context).
}
LocationSummary* CatchEntryInstr::MakeLocationSummary() const {
return LocationSummary::Make(0,
Location::NoLocation(),
LocationSummary::kNoCall);
}
// Restore stack and initialize the two exception variables:
// exception and stack trace variables.
void CatchEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Restore RSP from RBP as we are coming from a throw and the code for
// popping arguments has not been run.
const intptr_t locals_space_size = compiler->StackSize() * kWordSize;
ASSERT(locals_space_size >= 0);
const intptr_t offset_size =
-locals_space_size + FlowGraphCompiler::kLocalsOffsetFromFP;
__ leaq(RSP, Address(RBP, offset_size));
ASSERT(!exception_var().is_captured());
ASSERT(!stacktrace_var().is_captured());
__ movq(Address(RBP, exception_var().index() * kWordSize),
kExceptionObjectReg);
__ movq(Address(RBP, stacktrace_var().index() * kWordSize),
kStackTraceObjectReg);
}
LocationSummary* CheckStackOverflowInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 1;
LocationSummary* summary =
new LocationSummary(kNumInputs,
kNumTemps,
LocationSummary::kCallOnSlowPath);
summary->set_temp(0, Location::RequiresRegister());
return summary;
}
class CheckStackOverflowSlowPath : public SlowPathCode {
public:
explicit CheckStackOverflowSlowPath(CheckStackOverflowInstr* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Bind(entry_label());
compiler->SaveLiveRegisters(instruction_->locs());
compiler->GenerateCallRuntime(instruction_->token_pos(),
kStackOverflowRuntimeEntry,
instruction_->locs());
compiler->RestoreLiveRegisters(instruction_->locs());
__ jmp(exit_label());
}
private:
CheckStackOverflowInstr* instruction_;
};
void CheckStackOverflowInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
CheckStackOverflowSlowPath* slow_path = new CheckStackOverflowSlowPath(this);
compiler->AddSlowPathCode(slow_path);
Register temp = locs()->temp(0).reg();
// Generate stack overflow check.
__ movq(temp, Immediate(Isolate::Current()->stack_limit_address()));
__ cmpq(RSP, Address(temp, 0));
__ j(BELOW_EQUAL, slow_path->entry_label());
__ Bind(slow_path->exit_label());
}
static bool CanBeImmediate(const Object& constant) {
return constant.IsSmi() &&
Immediate(reinterpret_cast<int64_t>(constant.raw())).is_int32();
}
LocationSummary* BinarySmiOpInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
ConstantInstr* right_constant = right()->definition()->AsConstant();
if ((right_constant != NULL) &&
(op_kind() != Token::kTRUNCDIV) &&
(op_kind() != Token::kSHL) &&
(op_kind() != Token::kMUL) &&
CanBeImmediate(right_constant->value())) {
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::Constant(right_constant->value()));
summary->set_out(Location::SameAsFirstInput());
return summary;
}
if (op_kind() == Token::kTRUNCDIV) {
const intptr_t kNumTemps = 3;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RegisterLocation(RAX));
summary->set_in(1, Location::RegisterLocation(RCX));
summary->set_out(Location::SameAsFirstInput());
summary->set_temp(0, Location::RegisterLocation(RBX));
// Will be used for for sign extension.
summary->set_temp(1, Location::RegisterLocation(RDX));
summary->set_temp(2, Location::RequiresRegister());
return summary;
} else if (op_kind() == Token::kSHR) {
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RegisterLocation(RCX));
summary->set_out(Location::SameAsFirstInput());
return summary;
} else if (op_kind() == Token::kSHL) {
// Two Smi operands can easily overflow into Mint.
const intptr_t kNumTemps = 2;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(RAX));
summary->set_in(1, Location::RegisterLocation(RDX));
summary->set_out(Location::RegisterLocation(RAX));
summary->set_temp(0, Location::RegisterLocation(RBX));
summary->set_temp(1, Location::RegisterLocation(RCX));
return summary;
} else {
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
}
void BinarySmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register left = locs()->in(0).reg();
Register result = locs()->out().reg();
ASSERT(left == result);
Label* deopt = NULL;
if (CanDeoptimize()) {
deopt = compiler->AddDeoptStub(instance_call()->deopt_id(),
kDeoptBinarySmiOp);
}
if (locs()->in(1).IsConstant()) {
const Object& constant = locs()->in(1).constant();
ASSERT(constant.IsSmi());
const int64_t imm =
reinterpret_cast<int64_t>(constant.raw());
switch (op_kind()) {
case Token::kADD: {
__ addq(left, Immediate(imm));
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kSUB: {
__ subq(left, Immediate(imm));
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kBIT_AND: {
// No overflow check.
__ andq(left, Immediate(imm));
break;
}
case Token::kBIT_OR: {
// No overflow check.
__ orq(left, Immediate(imm));
break;
}
case Token::kBIT_XOR: {
// No overflow check.
__ xorq(left, Immediate(imm));
break;
}
case Token::kSHR: {
// sarq operation masks the count to 6 bits.
const intptr_t kCountLimit = 0x3F;
intptr_t value = Smi::Cast(constant).Value();
if (value == 0) {
// TODO(vegorov): should be handled outside.
break;
} else if (value < 0) {
// TODO(vegorov): should be handled outside.
__ jmp(deopt);
break;
}
value = value + kSmiTagSize;
if (value >= kCountLimit) value = kCountLimit;
__ sarq(left, Immediate(value));
__ SmiTag(left);
break;
}
default:
UNREACHABLE();
break;
}
return;
}
Register right = locs()->in(1).reg();
switch (op_kind()) {
case Token::kADD: {
__ addq(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kSUB: {
__ subq(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kMUL: {
__ SmiUntag(left);
__ imulq(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kBIT_AND: {
// No overflow check.
__ andq(left, right);
break;
}
case Token::kBIT_OR: {
// No overflow check.
__ orq(left, right);
break;
}
case Token::kBIT_XOR: {
// No overflow check.
__ xorq(left, right);
break;
}
case Token::kTRUNCDIV: {
Register temp = locs()->temp(0).reg();
// Handle divide by zero in runtime.
// Deoptimization requires that temp and right are preserved.
__ testq(right, right);
__ j(ZERO, deopt);
ASSERT(left == RAX);
ASSERT((right != RDX) && (right != RAX));
ASSERT((temp != RDX) && (temp != RAX));
ASSERT(locs()->temp(1).reg() == RDX);
ASSERT(result == RAX);
Register right_temp = locs()->temp(2).reg();
__ movq(right_temp, right);
__ SmiUntag(left);
__ SmiUntag(right_temp);
__ cqo(); // Sign extend RAX -> RDX:RAX.
__ idivq(right_temp); // RAX: quotient, RDX: remainder.
// Check the corner case of dividing the 'MIN_SMI' with -1, in which
// case we cannot tag the result.
__ cmpq(result, Immediate(0x4000000000000000));
__ j(EQUAL, deopt);
__ SmiTag(result);
break;
}
case Token::kSHR: {
// sarq operation masks the count to 6 bits.
const Immediate kCountLimit = Immediate(0x3F);
__ cmpq(right, Immediate(0));
__ j(LESS, deopt);
__ SmiUntag(right);
__ cmpq(right, kCountLimit);
Label count_ok;
__ j(LESS, &count_ok, Assembler::kNearJump);
__ movq(right, kCountLimit);
__ Bind(&count_ok);
ASSERT(right == RCX); // Count must be in RCX
__ SmiUntag(left);
__ sarq(left, right);
__ SmiTag(left);
break;
}
case Token::kSHL: {
Register temp = locs()->temp(0).reg();
Label call_method, done;
// Check if count too large for handling it inlined.
__ movq(temp, left);
__ cmpq(right,
Immediate(reinterpret_cast<int64_t>(Smi::New(Smi::kBits))));
__ j(ABOVE_EQUAL, &call_method, Assembler::kNearJump);
Register right_temp = locs()->temp(1).reg();
ASSERT(right_temp == RCX); // Count must be in RCX
__ movq(right_temp, right);
__ SmiUntag(right_temp);
// Overflow test (preserve temp and right);
__ shlq(left, right_temp);
__ sarq(left, right_temp);
__ cmpq(left, temp);
__ j(NOT_EQUAL, &call_method, Assembler::kNearJump); // Overflow.
// Shift for result now we know there is no overflow.
__ shlq(left, right_temp);
__ jmp(&done);
{
__ Bind(&call_method);
Function& target = Function::ZoneHandle(
ic_data()->GetTargetForReceiverClassId(kSmiCid));
ASSERT(!target.IsNull());
const intptr_t kArgumentCount = 2;
__ pushq(temp);
__ pushq(right);
compiler->GenerateStaticCall(
instance_call()->deopt_id(),
instance_call()->token_pos(),
target,
kArgumentCount,
Array::Handle(), // No argument names.
locs());
ASSERT(result == RAX);
}
__ Bind(&done);
break;
}
case Token::kDIV: {
// Dispatches to 'Double./'.
// TODO(srdjan): Implement as conversion to double and double division.
UNREACHABLE();
break;
}
case Token::kMOD: {
// TODO(srdjan): Implement.
UNREACHABLE();
break;
}
case Token::kOR:
case Token::kAND: {
// Flow graph builder has dissected this operation to guarantee correct
// behavior (short-circuit evaluation).
UNREACHABLE();
break;
}
default:
UNREACHABLE();
break;
}
}
LocationSummary* CheckEitherNonSmiInstr::MakeLocationSummary() const {
ASSERT((left()->ResultCid() != kDoubleCid) &&
(right()->ResultCid() != kDoubleCid));
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
return summary;
}
void CheckEitherNonSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt = compiler->AddDeoptStub(deopt_id(), kDeoptBinaryDoubleOp);
Register temp = locs()->temp(0).reg();
__ movq(temp, locs()->in(0).reg());
__ orq(temp, locs()->in(1).reg());
__ testl(temp, Immediate(kSmiTagMask));
__ j(ZERO, deopt);
}
LocationSummary* BoxDoubleInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs,
kNumTemps,
LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresXmmRegister());
summary->set_out(Location::RequiresRegister());
return summary;
}
class BoxDoubleSlowPath : public SlowPathCode {
public:
explicit BoxDoubleSlowPath(BoxDoubleInstr* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Bind(entry_label());
const Class& double_class = compiler->double_class();
const Code& stub =
Code::Handle(StubCode::GetAllocationStubForClass(double_class));
const ExternalLabel label(double_class.ToCString(), stub.EntryPoint());
LocationSummary* locs = instruction_->locs();
locs->live_registers()->Remove(locs->out());
compiler->SaveLiveRegisters(locs);
compiler->GenerateCall(instruction_->token_pos(),
&label,
PcDescriptors::kOther,
locs);
if (RAX != locs->out().reg()) __ movq(locs->out().reg(), RAX);
compiler->RestoreLiveRegisters(locs);
__ jmp(exit_label());
}
private:
BoxDoubleInstr* instruction_;
};
void BoxDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
BoxDoubleSlowPath* slow_path = new BoxDoubleSlowPath(this);
compiler->AddSlowPathCode(slow_path);
Register out_reg = locs()->out().reg();
XmmRegister value = locs()->in(0).xmm_reg();
AssemblerMacros::TryAllocate(compiler->assembler(),
compiler->double_class(),
slow_path->entry_label(),
Assembler::kFarJump,
out_reg);
__ Bind(slow_path->exit_label());
__ movsd(FieldAddress(out_reg, Double::value_offset()), value);
}
LocationSummary* UnboxDoubleInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = CanDeoptimize() ? 1 : 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (CanDeoptimize()) summary->set_temp(0, Location::RequiresRegister());
summary->set_out(Location::RequiresXmmRegister());
return summary;
}
void UnboxDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const intptr_t value_cid = value()->ResultCid();
const Register value = locs()->in(0).reg();
const XmmRegister result = locs()->out().xmm_reg();
if (value_cid == kDoubleCid) {
__ movsd(result, FieldAddress(value, Double::value_offset()));
} else if (value_cid == kSmiCid) {
__ SmiUntag(value); // Untag input before conversion.
__ cvtsi2sd(result, value);
__ SmiTag(value); // Restore input register.
} else {
Label* deopt = compiler->AddDeoptStub(deopt_id_, kDeoptBinaryDoubleOp);
compiler->LoadDoubleOrSmiToXmm(result,
value,
locs()->temp(0).reg(),
deopt);
}
}
LocationSummary* BinaryDoubleOpInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresXmmRegister());
summary->set_in(1, Location::RequiresXmmRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void BinaryDoubleOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).xmm_reg();
XmmRegister right = locs()->in(1).xmm_reg();
ASSERT(locs()->out().xmm_reg() == left);
switch (op_kind()) {
case Token::kADD: __ addsd(left, right); break;
case Token::kSUB: __ subsd(left, right); break;
case Token::kMUL: __ mulsd(left, right); break;
case Token::kDIV: __ divsd(left, right); break;
default: UNREACHABLE();
}
}
LocationSummary* MathSqrtInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresXmmRegister());
summary->set_out(Location::RequiresXmmRegister());
return summary;
}
void MathSqrtInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ sqrtsd(locs()->out().xmm_reg(), locs()->in(0).xmm_reg());
}
LocationSummary* UnarySmiOpInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void UnarySmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
ASSERT(value == locs()->out().reg());
switch (op_kind()) {
case Token::kNEGATE: {
Label* deopt = compiler->AddDeoptStub(instance_call()->deopt_id(),
kDeoptUnaryOp);
__ negq(value);
__ j(OVERFLOW, deopt);
break;
}
case Token::kBIT_NOT:
__ notq(value);
__ andq(value, Immediate(~kSmiTagMask)); // Remove inverted smi-tag.
break;
default:
UNREACHABLE();
}
}
LocationSummary* DoubleToDoubleInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_out(Location::SameAsFirstInput());
return locs;
}
void DoubleToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register result = locs()->out().reg();
Label* deopt = compiler->AddDeoptStub(instance_call()->deopt_id(),
kDeoptDoubleToDouble);
__ testq(value, Immediate(kSmiTagMask));
__ j(ZERO, deopt); // Deoptimize if Smi.
__ CompareClassId(value, kDoubleCid);
__ j(NOT_EQUAL, deopt); // Deoptimize if not Double.
ASSERT(value == result);
}
LocationSummary* SmiToDoubleInstr::MakeLocationSummary() const {
return MakeCallSummary(); // Calls a stub to allocate result.
}
void SmiToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register result = locs()->out().reg();
Label* deopt = compiler->AddDeoptStub(instance_call()->deopt_id(),
kDeoptIntegerToDouble);
const Class& double_class = compiler->double_class();
const Code& stub =
Code::Handle(StubCode::GetAllocationStubForClass(double_class));
const ExternalLabel label(double_class.ToCString(), stub.EntryPoint());
// TODO(fschneider): Inline new-space allocation and move the call into
// deferred code.
compiler->GenerateCall(instance_call()->token_pos(),
&label,
PcDescriptors::kOther,
locs());
ASSERT(result == RAX);
Register value = RBX;
// Preserve argument on the stack until after the deoptimization point.
__ movq(value, Address(RSP, 0));
__ testq(value, Immediate(kSmiTagMask));
__ j(NOT_ZERO, deopt); // Deoptimize if not Smi.
__ SmiUntag(value);
__ cvtsi2sd(XMM0, value);
__ movsd(FieldAddress(result, Double::value_offset()), XMM0);
__ Drop(1);
}
LocationSummary* DoubleToIntegerInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* result =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
result->set_in(0, Location::RegisterLocation(RCX));
result->set_out(Location::RegisterLocation(RAX));
result->set_temp(0, Location::RegisterLocation(RBX));
return result;
}
void DoubleToIntegerInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register result = locs()->out().reg();
Register value_obj = locs()->in(0).reg();
Register temp = locs()->temp(0).reg();
XmmRegister value_double = XMM0;
ASSERT(result == RAX);
ASSERT(result != value_obj);
ASSERT(result != temp);
__ movsd(value_double, FieldAddress(value_obj, Double::value_offset()));
__ cvttsd2siq(result, value_double);
// Overflow is signalled with minint.
Label do_call, done;
// Check for overflow and that it fits into Smi.
__ movq(temp, result);
__ shlq(temp, Immediate(1));
__ j(OVERFLOW, &do_call, Assembler::kNearJump);
__ SmiTag(result);
__ jmp(&done);
__ Bind(&do_call);
ASSERT(instance_call()->HasICData());
const ICData& ic_data = *instance_call()->ic_data();
ASSERT((ic_data.NumberOfChecks() == 1));
const Function& target = Function::ZoneHandle(ic_data.GetTargetAt(0));
const intptr_t kNumberOfArguments = 1;
__ pushq(value_obj);
compiler->GenerateStaticCall(instance_call()->deopt_id(),
instance_call()->token_pos(),
target,
kNumberOfArguments,
Array::Handle(), // No argument names.
locs());
__ Bind(&done);
}
LocationSummary* PolymorphicInstanceCallInstr::MakeLocationSummary() const {
return MakeCallSummary();
}
void PolymorphicInstanceCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt = compiler->AddDeoptStub(instance_call()->deopt_id(),
kDeoptPolymorphicInstanceCallTestFail);
if (ic_data().NumberOfChecks() == 0) {
__ jmp(deopt);
return;
}
ASSERT(ic_data().num_args_tested() == 1);
if (!with_checks()) {
const Function& target = Function::ZoneHandle(ic_data().GetTargetAt(0));
compiler->GenerateStaticCall(instance_call()->deopt_id(),
instance_call()->token_pos(),
target,
instance_call()->ArgumentCount(),
instance_call()->argument_names(),
locs());
return;
}
// Load receiver into RAX.
__ movq(RAX,
Address(RSP, (instance_call()->ArgumentCount() - 1) * kWordSize));
Label done;
if (ic_data().GetReceiverClassIdAt(0) == kSmiCid) {
__ movq(RDI, Immediate(kSmiCid));
__ testq(RAX, Immediate(kSmiTagMask));
__ j(ZERO, &done, Assembler::kNearJump);
} else {
__ testq(RAX, Immediate(kSmiTagMask));
__ j(ZERO, deopt);
}
__ LoadClassId(RDI, RAX);
__ Bind(&done);
compiler->EmitTestAndCall(ic_data(),
RDI, // Class id register.
instance_call()->ArgumentCount(),
instance_call()->argument_names(),
deopt,
instance_call()->deopt_id(),
instance_call()->token_pos(),
locs());
}
LocationSummary* BranchInstr::MakeLocationSummary() const {
UNREACHABLE();
return NULL;
}
void BranchInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
comparison()->EmitBranchCode(compiler, this);
}
LocationSummary* CheckClassInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
return summary;
}
void CheckClassInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register temp = locs()->temp(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptCheckClass);
Label is_ok;
intptr_t cix = 0;
if (unary_checks().GetReceiverClassIdAt(cix) == kSmiCid) {
__ testq(value, Immediate(kSmiTagMask));
__ j(ZERO, &is_ok);
cix++; // Skip first check.
} else {
__ testq(value, Immediate(kSmiTagMask));
__ j(ZERO, deopt);
}
__ LoadClassId(temp, value);
const intptr_t num_checks = unary_checks().NumberOfChecks();
const bool use_near_jump = num_checks < 5;
for (intptr_t i = cix; i < num_checks; i++) {
ASSERT(unary_checks().GetReceiverClassIdAt(i) != kSmiCid);
__ cmpl(temp, Immediate(unary_checks().GetReceiverClassIdAt(i)));
if (i == (num_checks - 1)) {
__ j(NOT_EQUAL, deopt);
} else {
if (use_near_jump) {
__ j(EQUAL, &is_ok, Assembler::kNearJump);
} else {
__ j(EQUAL, &is_ok);
}
}
}
__ Bind(&is_ok);
}
LocationSummary* CheckSmiInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
return summary;
}
void CheckSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// TODO(srdjan): Check if we can remove this by reordering CSE and LICM.
if (value()->ResultCid() == kSmiCid) return;
Register value = locs()->in(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptCheckSmi);
__ testq(value, Immediate(kSmiTagMask));
__ j(NOT_ZERO, deopt);
}
LocationSummary* CheckArrayBoundInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_in(1, Location::RegisterOrConstant(index()));
return locs;
}
void CheckArrayBoundInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const DeoptReasonId deopt_reason =
(array_type() == kGrowableObjectArrayCid) ?
kDeoptLoadIndexedGrowableArray : kDeoptLoadIndexedFixedArray;
Label* deopt = compiler->AddDeoptStub(deopt_id(),
deopt_reason);
ASSERT(array_type() == kArrayCid ||
array_type() == kImmutableArrayCid ||
array_type() == kGrowableObjectArrayCid);
intptr_t length_offset = (array_type() == kGrowableObjectArrayCid)
? GrowableObjectArray::length_offset()
: Array::length_offset();
// This case should not have created a bound check instruction.
ASSERT(!(locs()->in(0).IsConstant() && locs()->in(1).IsConstant()));
if (locs()->in(1).IsConstant()) {
Register receiver = locs()->in(0).reg();
const Object& constant = locs()->in(1).constant();
ASSERT(constant.IsSmi());
const int64_t imm =
reinterpret_cast<int64_t>(constant.raw());
__ cmpq(FieldAddress(receiver, length_offset), Immediate(imm));
__ j(BELOW_EQUAL, deopt);
} else if (locs()->in(0).IsConstant()) {
const Object& constant = locs()->in(0).constant();
ASSERT(constant.IsArray());
const Array& array = Array::Cast(constant);
Register index = locs()->in(1).reg();
__ cmpq(index,
Immediate(reinterpret_cast<int64_t>(Smi::New(array.Length()))));
__ j(ABOVE_EQUAL, deopt);
} else {
Register receiver = locs()->in(0).reg();
Register index = locs()->in(1).reg();
__ cmpq(index, FieldAddress(receiver, length_offset));
__ j(ABOVE_EQUAL, deopt);
}
}
LocationSummary* UnboxIntegerInstr::MakeLocationSummary() const {
UNIMPLEMENTED();
return NULL;
}
void UnboxIntegerInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
}
LocationSummary* BoxIntegerInstr::MakeLocationSummary() const {
UNIMPLEMENTED();
return NULL;
}
void BoxIntegerInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
}
LocationSummary* BinaryMintOpInstr::MakeLocationSummary() const {
UNIMPLEMENTED();
return NULL;
}
void BinaryMintOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
}
LocationSummary* UnaryMintOpInstr::MakeLocationSummary() const {
UNIMPLEMENTED();
return NULL;
}
void UnaryMintOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
}
LocationSummary* ShiftMintOpInstr::MakeLocationSummary() const {
UNIMPLEMENTED();
return NULL;
}
void ShiftMintOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
}
} // namespace dart
#undef __
#endif // defined TARGET_ARCH_X64