| // Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/globals.h" |
| |
| // For `AllocateObjectInstr::WillAllocateNewOrRemembered` |
| #include "vm/compiler/backend/il.h" |
| |
| #define SHOULD_NOT_INCLUDE_RUNTIME |
| |
| #include "vm/compiler/stub_code_compiler.h" |
| |
| #if defined(TARGET_ARCH_IA32) |
| |
| #include "vm/class_id.h" |
| #include "vm/code_entry_kind.h" |
| #include "vm/compiler/api/type_check_mode.h" |
| #include "vm/compiler/assembler/assembler.h" |
| #include "vm/compiler/backend/locations.h" |
| #include "vm/constants.h" |
| #include "vm/ffi_callback_metadata.h" |
| #include "vm/instructions.h" |
| #include "vm/static_type_exactness_state.h" |
| #include "vm/tags.h" |
| |
| #define __ assembler-> |
| |
| namespace dart { |
| namespace compiler { |
| |
| // Ensures that [EAX] is a new object, if not it will be added to the remembered |
| // set via a leaf runtime call. |
| // |
| // WARNING: This might clobber all registers except for [EAX], [THR] and [FP]. |
| // The caller should simply call LeaveFrame() and return. |
| void StubCodeCompiler::EnsureIsNewOrRemembered() { |
| // If the object is not in an active TLAB, we call a leaf-runtime to add it to |
| // the remembered set and/or deferred marking worklist. This test assumes a |
| // Page's TLAB use is always ascending. |
| Label done; |
| __ AndImmediate(ECX, EAX, target::kPageMask); |
| __ LoadFromOffset(ECX, ECX, target::Page::original_top_offset()); |
| __ CompareRegisters(EAX, ECX); |
| __ BranchIf(UNSIGNED_GREATER_EQUAL, &done); |
| |
| { |
| LeafRuntimeScope rt(assembler, |
| /*frame_size=*/2 * target::kWordSize, |
| /*preserve_registers=*/false); |
| __ movl(Address(ESP, 1 * target::kWordSize), THR); |
| __ movl(Address(ESP, 0 * target::kWordSize), EAX); |
| rt.Call(kEnsureRememberedAndMarkingDeferredRuntimeEntry, 2); |
| } |
| |
| __ Bind(&done); |
| } |
| |
| // Input parameters: |
| // ESP : points to return address. |
| // ESP + 4 : address of last argument in argument array. |
| // ESP + 4*EDX : address of first argument in argument array. |
| // ESP + 4*EDX + 4 : address of return value. |
| // ECX : address of the runtime function to call. |
| // EDX : number of arguments to the call. |
| // Must preserve callee saved registers EDI and EBX. |
| void StubCodeCompiler::GenerateCallToRuntimeStub() { |
| const intptr_t thread_offset = target::NativeArguments::thread_offset(); |
| const intptr_t argc_tag_offset = target::NativeArguments::argc_tag_offset(); |
| const intptr_t argv_offset = target::NativeArguments::argv_offset(); |
| const intptr_t retval_offset = target::NativeArguments::retval_offset(); |
| |
| __ movl(CODE_REG, |
| Address(THR, target::Thread::call_to_runtime_stub_offset())); |
| __ EnterStubFrame(); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to Dart VM C++ code. |
| __ movl(Address(THR, target::Thread::top_exit_frame_info_offset()), EBP); |
| |
| // Mark that the thread exited generated code through a runtime call. |
| __ movl(Address(THR, target::Thread::exit_through_ffi_offset()), |
| Immediate(target::Thread::exit_through_runtime_call())); |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that we are always entering from Dart code. |
| __ cmpl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Mark that the thread is executing VM code. |
| __ movl(Assembler::VMTagAddress(), ECX); |
| |
| // Reserve space for arguments and align frame before entering C++ world. |
| __ AddImmediate( |
| ESP, |
| Immediate(-static_cast<int32_t>(target::NativeArguments::StructSize()))); |
| if (OS::ActivationFrameAlignment() > 1) { |
| __ andl(ESP, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
| } |
| |
| // Pass NativeArguments structure by value and call runtime. |
| __ movl(Address(ESP, thread_offset), THR); // Set thread in NativeArgs. |
| __ movl(Address(ESP, argc_tag_offset), EDX); // Set argc in NativeArguments. |
| // Compute argv. |
| __ leal(EAX, |
| Address(EBP, EDX, TIMES_4, |
| target::frame_layout.param_end_from_fp * target::kWordSize)); |
| __ movl(Address(ESP, argv_offset), EAX); // Set argv in NativeArguments. |
| __ addl(EAX, |
| Immediate(1 * target::kWordSize)); // Retval is next to 1st argument. |
| __ movl(Address(ESP, retval_offset), EAX); // Set retval in NativeArguments. |
| __ call(ECX); |
| |
| __ movl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| |
| // Mark that the thread has not exited generated Dart code. |
| __ movl(Address(THR, target::Thread::exit_through_ffi_offset()), |
| Immediate(0)); |
| |
| // Reset exit frame information in Isolate's mutator thread structure. |
| __ movl(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| |
| __ LeaveFrame(); |
| |
| // The following return can jump to a lazy-deopt stub, which assumes EAX |
| // contains a return value and will save it in a GC-visible way. We therefore |
| // have to ensure EAX does not contain any garbage value left from the C |
| // function we called (which has return type "void"). |
| // (See GenerateDeoptimizationSequence::saved_result_slot_from_fp.) |
| __ xorl(EAX, EAX); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateEnterSafepointStub() { |
| __ pushal(); |
| __ subl(SPREG, Immediate(8)); |
| __ movsd(Address(SPREG, 0), XMM0); |
| |
| __ EnterFrame(0); |
| __ ReserveAlignedFrameSpace(0); |
| __ movl(EAX, Address(THR, kEnterSafepointRuntimeEntry.OffsetFromThread())); |
| __ call(EAX); |
| __ LeaveFrame(); |
| |
| __ movsd(XMM0, Address(SPREG, 0)); |
| __ addl(SPREG, Immediate(8)); |
| __ popal(); |
| __ ret(); |
| } |
| |
| static void GenerateExitSafepointStubCommon(Assembler* assembler, |
| uword runtime_entry_offset) { |
| __ pushal(); |
| __ subl(SPREG, Immediate(8)); |
| __ movsd(Address(SPREG, 0), XMM0); |
| |
| __ EnterFrame(0); |
| __ ReserveAlignedFrameSpace(0); |
| |
| // Set the execution state to VM while waiting for the safepoint to end. |
| // This isn't strictly necessary but enables tests to check that we're not |
| // in native code anymore. See tests/ffi/function_gc_test.dart for example. |
| __ movl(Address(THR, target::Thread::execution_state_offset()), |
| Immediate(target::Thread::vm_execution_state())); |
| |
| __ movl(EAX, Address(THR, runtime_entry_offset)); |
| __ call(EAX); |
| __ LeaveFrame(); |
| |
| __ movsd(XMM0, Address(SPREG, 0)); |
| __ addl(SPREG, Immediate(8)); |
| __ popal(); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateExitSafepointStub() { |
| GenerateExitSafepointStubCommon( |
| assembler, kExitSafepointRuntimeEntry.OffsetFromThread()); |
| } |
| |
| void StubCodeCompiler::GenerateExitSafepointIgnoreUnwindInProgressStub() { |
| GenerateExitSafepointStubCommon( |
| assembler, |
| kExitSafepointIgnoreUnwindInProgressRuntimeEntry.OffsetFromThread()); |
| } |
| |
| void StubCodeCompiler::GenerateLoadBSSEntry(BSS::Relocation relocation, |
| Register dst, |
| Register tmp) { |
| // Only used in AOT. |
| __ Breakpoint(); |
| } |
| |
| // Calls a native function inside a safepoint. |
| // |
| // On entry: |
| // Stack: set up for native call |
| // EAX: target to call |
| // |
| // On exit: |
| // Stack: preserved |
| // EBX: clobbered (even though it's normally callee-saved) |
| void StubCodeCompiler::GenerateCallNativeThroughSafepointStub() { |
| __ popl(EBX); |
| |
| __ movl(ECX, compiler::Immediate(target::Thread::exit_through_ffi())); |
| __ TransitionGeneratedToNative(EAX, FPREG, ECX /*volatile*/, |
| /*enter_safepoint=*/true); |
| __ call(EAX); |
| __ TransitionNativeToGenerated(ECX /*volatile*/, /*leave_safepoint=*/true); |
| |
| __ jmp(EBX); |
| } |
| |
| void StubCodeCompiler::GenerateFfiCallbackTrampolineStub() { |
| Label ret_4; |
| |
| // EAX is volatile and doesn't hold any arguments. |
| COMPILE_ASSERT(!IsArgumentRegister(EAX) && !IsCalleeSavedRegister(EAX)); |
| |
| Label body, load_tramp_addr; |
| const intptr_t kCallLength = 5; |
| for (intptr_t i = 0; i < FfiCallbackMetadata::NumCallbackTrampolinesPerPage(); |
| ++i) { |
| // The FfiCallbackMetadata table is keyed by the trampoline entry point. So |
| // look up the current PC, then jump to the shared section. There's no easy |
| // way to get the PC in ia32 so we have to do a call, grab the return adress |
| // from the stack, then return here (mismatched call/ret causes problems), |
| // then jump to the shared section. |
| const intptr_t size_before = __ CodeSize(); |
| __ call(&load_tramp_addr); |
| const intptr_t size_after = __ CodeSize(); |
| ASSERT_EQUAL(size_after - size_before, kCallLength); |
| __ jmp(&body); |
| } |
| |
| ASSERT_EQUAL(__ CodeSize(), |
| FfiCallbackMetadata::kNativeCallbackTrampolineSize * |
| FfiCallbackMetadata::NumCallbackTrampolinesPerPage()); |
| |
| const intptr_t shared_stub_start = __ CodeSize(); |
| |
| __ Bind(&load_tramp_addr); |
| // Load the return adress into EAX, and subtract the size of the call |
| // instruction. This is our original trampoline address. |
| __ movl(EAX, Address(SPREG, 0)); |
| __ subl(EAX, Immediate(kCallLength)); |
| __ ret(); |
| |
| __ Bind(&body); |
| |
| // Save THR and EBX which are callee-saved. |
| __ pushl(THR); |
| __ pushl(EBX); |
| |
| // THR & return address |
| COMPILE_ASSERT(FfiCallbackMetadata::kNativeCallbackTrampolineStackDelta == 4); |
| |
| // Load the thread, verify the callback ID and exit the safepoint. |
| // |
| // We exit the safepoint inside DLRT_GetFfiCallbackMetadata in order to safe |
| // code size on this shared stub. |
| { |
| __ EnterFrame(0); |
| // entry_point, trampoline_type, &trampoline_type, &entry_point, trampoline |
| // ^------ GetFfiCallbackMetadata args ------^ |
| __ ReserveAlignedFrameSpace(5 * target::kWordSize); |
| |
| // Trampoline arg. |
| __ movl(Address(SPREG, 0 * target::kWordSize), EAX); |
| |
| // Pointer to trampoline type stack slot. |
| __ movl(EAX, SPREG); |
| __ addl(EAX, Immediate(3 * target::kWordSize)); |
| __ movl(Address(SPREG, 2 * target::kWordSize), EAX); |
| |
| // Pointer to entry point stack slot. |
| __ addl(EAX, Immediate(target::kWordSize)); |
| __ movl(Address(SPREG, 1 * target::kWordSize), EAX); |
| |
| __ movl(EAX, |
| Immediate(reinterpret_cast<int64_t>(DLRT_GetFfiCallbackMetadata))); |
| __ call(EAX); |
| __ movl(THR, EAX); |
| |
| // Save the trampoline type in EBX, and the entry point in ECX. |
| __ movl(EBX, Address(SPREG, 3 * target::kWordSize)); |
| __ movl(ECX, Address(SPREG, 4 * target::kWordSize)); |
| |
| __ LeaveFrame(); |
| |
| // Save the trampoline type to the stack, because we'll need it after the |
| // call to decide whether to ret() or ret(4). |
| __ pushl(EBX); |
| } |
| |
| COMPILE_ASSERT(!IsCalleeSavedRegister(ECX) && !IsArgumentRegister(ECX)); |
| COMPILE_ASSERT(ECX != THR); |
| |
| Label async_callback; |
| Label done; |
| |
| // If GetFfiCallbackMetadata returned a null thread, it means that the async |
| // callback was invoked after it was deleted. In this case, do nothing. |
| __ cmpl(THR, Immediate(0)); |
| __ j(EQUAL, &done, Assembler::kNearJump); |
| |
| // Check the trampoline type to see how the callback should be invoked. |
| __ cmpl(EBX, Immediate(static_cast<uword>( |
| FfiCallbackMetadata::TrampolineType::kAsync))); |
| __ j(EQUAL, &async_callback, Assembler::kNearJump); |
| |
| // Sync callback. The entry point contains the target function, so just call |
| // it. DLRT_GetThreadForNativeCallbackTrampoline exited the safepoint, so |
| // re-enter it afterwards. |
| |
| // On entry to the function, there will be two extra slots on the stack: |
| // the saved THR and the return address. The target will know to skip them. |
| __ call(ECX); |
| |
| // Takes care to not clobber *any* registers (besides scratch). |
| __ EnterFullSafepoint(/*scratch=*/ECX); |
| |
| // Pop the trampoline type into ECX. |
| __ popl(ECX); |
| |
| // Restore callee-saved registers. |
| __ popl(EBX); |
| __ popl(THR); |
| |
| __ cmpl(ECX, Immediate(static_cast<uword>( |
| FfiCallbackMetadata::TrampolineType::kSync))); |
| __ j(NOT_EQUAL, &ret_4, Assembler::kNearJump); |
| __ ret(); |
| |
| __ Bind(&ret_4); |
| __ ret(Immediate(4)); |
| |
| __ Bind(&async_callback); |
| |
| // Async callback. The entrypoint marshals the arguments into a message and |
| // sends it over the send port. DLRT_GetThreadForNativeCallbackTrampoline |
| // entered a temporary isolate, so exit it afterwards. |
| |
| // On entry to the function, there will be two extra slots on the stack: |
| // the saved THR and the return address. The target will know to skip them. |
| __ call(ECX); |
| |
| // Exit the temporary isolate. |
| { |
| __ EnterFrame(0); |
| __ ReserveAlignedFrameSpace(0); |
| |
| __ movl(EAX, |
| Immediate(reinterpret_cast<int64_t>(DLRT_ExitTemporaryIsolate))); |
| __ CallCFunction(EAX); |
| |
| __ LeaveFrame(); |
| } |
| |
| __ Bind(&done); |
| |
| // Pop the trampoline type into ECX. |
| __ popl(ECX); |
| |
| // Restore callee-saved registers. |
| __ popl(EBX); |
| __ popl(THR); |
| |
| // Stack delta is always 0 for async callbacks. |
| __ ret(); |
| |
| // 'kNativeCallbackSharedStubSize' is an upper bound because the exact |
| // instruction size can vary slightly based on OS calling conventions. |
| ASSERT_LESS_OR_EQUAL(__ CodeSize() - shared_stub_start, |
| FfiCallbackMetadata::kNativeCallbackSharedStubSize); |
| ASSERT_LESS_OR_EQUAL(__ CodeSize(), FfiCallbackMetadata::kPageSize); |
| |
| #if defined(DEBUG) |
| while (__ CodeSize() < FfiCallbackMetadata::kPageSize) { |
| __ Breakpoint(); |
| } |
| #endif |
| } |
| |
| void StubCodeCompiler::GenerateSharedStubGeneric( |
| bool save_fpu_registers, |
| intptr_t self_code_stub_offset_from_thread, |
| bool allow_return, |
| std::function<void()> perform_runtime_call) { |
| // Only used in AOT. |
| __ Breakpoint(); |
| } |
| |
| void StubCodeCompiler::GenerateSharedStub( |
| bool save_fpu_registers, |
| const RuntimeEntry* target, |
| intptr_t self_code_stub_offset_from_thread, |
| bool allow_return, |
| bool store_runtime_result_in_result_register) { |
| // Only used in AOT. |
| __ Breakpoint(); |
| } |
| |
| void StubCodeCompiler::GenerateRangeError(bool with_fpu_regs) { |
| // Only used in AOT. |
| __ Breakpoint(); |
| } |
| |
| void StubCodeCompiler::GenerateWriteError(bool with_fpu_regs) { |
| // Only used in AOT. |
| __ Breakpoint(); |
| } |
| |
| void StubCodeCompiler::GenerateDispatchTableNullErrorStub() { |
| // Only used in AOT. |
| __ Breakpoint(); |
| } |
| |
| // Input parameters: |
| // ESP : points to return address. |
| // ESP + 4 : address of return value. |
| // EAX : address of first argument in argument array. |
| // ECX : address of the native function to call. |
| // EDX : argc_tag including number of arguments and function kind. |
| static void GenerateCallNativeWithWrapperStub(Assembler* assembler, |
| Address wrapper_address) { |
| const intptr_t native_args_struct_offset = |
| target::NativeEntry::kNumCallWrapperArguments * target::kWordSize; |
| const intptr_t thread_offset = |
| target::NativeArguments::thread_offset() + native_args_struct_offset; |
| const intptr_t argc_tag_offset = |
| target::NativeArguments::argc_tag_offset() + native_args_struct_offset; |
| const intptr_t argv_offset = |
| target::NativeArguments::argv_offset() + native_args_struct_offset; |
| const intptr_t retval_offset = |
| target::NativeArguments::retval_offset() + native_args_struct_offset; |
| |
| __ EnterStubFrame(); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to dart VM code. |
| __ movl(Address(THR, target::Thread::top_exit_frame_info_offset()), EBP); |
| |
| // Mark that the thread exited generated code through a runtime call. |
| __ movl(Address(THR, target::Thread::exit_through_ffi_offset()), |
| Immediate(target::Thread::exit_through_runtime_call())); |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that we are always entering from Dart code. |
| __ cmpl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Mark that the thread is executing native code. |
| __ movl(Assembler::VMTagAddress(), ECX); |
| |
| // Reserve space for the native arguments structure, the outgoing parameters |
| // (pointer to the native arguments structure, the C function entry point) |
| // and align frame before entering the C++ world. |
| __ AddImmediate( |
| ESP, |
| Immediate(-static_cast<int32_t>(target::NativeArguments::StructSize()) - |
| (2 * target::kWordSize))); |
| if (OS::ActivationFrameAlignment() > 1) { |
| __ andl(ESP, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
| } |
| |
| // Pass NativeArguments structure by value and call native function. |
| // Set thread in NativeArgs. |
| __ movl(Address(ESP, thread_offset), THR); |
| // Set argc in NativeArguments. |
| __ movl(Address(ESP, argc_tag_offset), EDX); |
| // Set argv in NativeArguments. |
| __ movl(Address(ESP, argv_offset), EAX); |
| // Compute return value addr. |
| __ leal(EAX, Address(EBP, (target::frame_layout.param_end_from_fp + 1) * |
| target::kWordSize)); |
| // Set retval in NativeArguments. |
| __ movl(Address(ESP, retval_offset), EAX); |
| // Pointer to the NativeArguments. |
| __ leal(EAX, Address(ESP, 2 * target::kWordSize)); |
| // Pass the pointer to the NativeArguments. |
| __ movl(Address(ESP, 0), EAX); |
| |
| __ movl(Address(ESP, target::kWordSize), ECX); // Function to call. |
| __ call(wrapper_address); |
| |
| __ movl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| |
| // Mark that the thread has not exited generated Dart code. |
| __ movl(Address(THR, target::Thread::exit_through_ffi_offset()), |
| Immediate(0)); |
| |
| // Reset exit frame information in Isolate's mutator thread structure. |
| __ movl(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateCallNoScopeNativeStub() { |
| GenerateCallNativeWithWrapperStub( |
| assembler, |
| Address(THR, |
| target::Thread::no_scope_native_wrapper_entry_point_offset())); |
| } |
| |
| void StubCodeCompiler::GenerateCallAutoScopeNativeStub() { |
| GenerateCallNativeWithWrapperStub( |
| assembler, |
| Address(THR, |
| target::Thread::auto_scope_native_wrapper_entry_point_offset())); |
| } |
| |
| // Input parameters: |
| // ESP : points to return address. |
| // ESP + 4 : address of return value. |
| // EAX : address of first argument in argument array. |
| // ECX : address of the native function to call. |
| // EDX : argc_tag including number of arguments and function kind. |
| void StubCodeCompiler::GenerateCallBootstrapNativeStub() { |
| GenerateCallNativeWithWrapperStub( |
| assembler, |
| Address(THR, |
| target::Thread::bootstrap_native_wrapper_entry_point_offset())); |
| } |
| |
| // Input parameters: |
| // ARGS_DESC_REG: arguments descriptor array. |
| void StubCodeCompiler::GenerateCallStaticFunctionStub() { |
| __ EnterStubFrame(); |
| __ pushl(ARGS_DESC_REG); // Preserve arguments descriptor array. |
| __ pushl(Immediate(0)); // Setup space on stack for return value. |
| __ CallRuntime(kPatchStaticCallRuntimeEntry, 0); |
| __ popl(EAX); // Get Code object result. |
| __ popl(ARGS_DESC_REG); // Restore arguments descriptor array. |
| // Remove the stub frame as we are about to jump to the dart function. |
| __ LeaveFrame(); |
| |
| __ jmp(FieldAddress(EAX, target::Code::entry_point_offset())); |
| } |
| |
| // Called from a static call only when an invalid code has been entered |
| // (invalid because its function was optimized or deoptimized). |
| // ARGS_DESC_REG: arguments descriptor array. |
| void StubCodeCompiler::GenerateFixCallersTargetStub() { |
| Label monomorphic; |
| __ BranchOnMonomorphicCheckedEntryJIT(&monomorphic); |
| |
| // This was a static call. |
| __ EnterStubFrame(); |
| __ pushl(ARGS_DESC_REG); // Preserve arguments descriptor array. |
| __ pushl(Immediate(0)); // Setup space on stack for return value. |
| __ CallRuntime(kFixCallersTargetRuntimeEntry, 0); |
| __ popl(EAX); // Get Code object. |
| __ popl(ARGS_DESC_REG); // Restore arguments descriptor array. |
| __ movl(EAX, FieldAddress(EAX, target::Code::entry_point_offset())); |
| __ LeaveFrame(); |
| __ jmp(EAX); |
| __ int3(); |
| |
| __ Bind(&monomorphic); |
| // This was a switchable call. |
| __ EnterStubFrame(); |
| __ pushl(Immediate(0)); // Result slot. |
| __ pushl(EBX); // Preserve receiver. |
| __ pushl(ECX); // Old cache value (also 2nd return value). |
| __ CallRuntime(kFixCallersTargetMonomorphicRuntimeEntry, 2); |
| __ popl(ECX); // Get target cache object. |
| __ popl(EBX); // Restore receiver. |
| __ popl(CODE_REG); // Get target Code object. |
| __ movl(EAX, FieldAddress(CODE_REG, target::Code::entry_point_offset( |
| CodeEntryKind::kMonomorphic))); |
| __ LeaveFrame(); |
| __ jmp(EAX); |
| __ int3(); |
| } |
| |
| // Called from object allocate instruction when the allocation stub has been |
| // disabled. |
| void StubCodeCompiler::GenerateFixAllocationStubTargetStub() { |
| __ EnterStubFrame(); |
| __ pushl(Immediate(0)); // Setup space on stack for return value. |
| __ CallRuntime(kFixAllocationStubTargetRuntimeEntry, 0); |
| __ popl(EAX); // Get Code object. |
| __ movl(EAX, FieldAddress(EAX, target::Code::entry_point_offset())); |
| __ LeaveFrame(); |
| __ jmp(EAX); |
| __ int3(); |
| } |
| |
| // Called from object allocate instruction when the allocation stub for a |
| // generic class has been disabled. |
| void StubCodeCompiler::GenerateFixParameterizedAllocationStubTargetStub() { |
| __ EnterStubFrame(); |
| // Preserve type arguments register. |
| __ pushl(AllocateObjectABI::kTypeArgumentsReg); |
| __ pushl(Immediate(0)); // Setup space on stack for return value. |
| __ CallRuntime(kFixAllocationStubTargetRuntimeEntry, 0); |
| __ popl(EAX); // Get Code object. |
| // Restore type arguments register. |
| __ popl(AllocateObjectABI::kTypeArgumentsReg); |
| __ movl(EAX, FieldAddress(EAX, target::Code::entry_point_offset())); |
| __ LeaveFrame(); |
| __ jmp(EAX); |
| __ int3(); |
| } |
| |
| // Input parameters: |
| // EDX: smi-tagged argument count, may be zero. |
| // EBP[target::frame_layout.param_end_from_fp + 1]: last argument. |
| // Uses EAX, EBX, ECX, EDX, EDI. |
| static void PushArrayOfArguments(Assembler* assembler) { |
| // Allocate array to store arguments of caller. |
| const Immediate& raw_null = Immediate(target::ToRawPointer(NullObject())); |
| __ movl(ECX, raw_null); // Null element type for raw Array. |
| __ Call(StubCodeAllocateArray()); |
| __ SmiUntag(EDX); |
| // EAX: newly allocated array. |
| // EDX: length of the array (was preserved by the stub). |
| __ pushl(EAX); // Array is in EAX and on top of stack. |
| __ leal(EBX, |
| Address(EBP, EDX, TIMES_4, |
| target::frame_layout.param_end_from_fp * target::kWordSize)); |
| __ leal(ECX, FieldAddress(EAX, target::Array::data_offset())); |
| // EBX: address of first argument on stack. |
| // ECX: address of first argument in array. |
| Label loop, loop_condition; |
| __ jmp(&loop_condition, Assembler::kNearJump); |
| __ Bind(&loop); |
| __ movl(EDI, Address(EBX, 0)); |
| // Generational barrier is needed, array is not necessarily in new space. |
| __ StoreIntoObject(EAX, Address(ECX, 0), EDI); |
| __ AddImmediate(ECX, Immediate(target::kWordSize)); |
| __ AddImmediate(EBX, Immediate(-target::kWordSize)); |
| __ Bind(&loop_condition); |
| __ decl(EDX); |
| __ j(POSITIVE, &loop, Assembler::kNearJump); |
| } |
| |
| // Used by eager and lazy deoptimization. Preserve result in EAX if necessary. |
| // This stub translates optimized frame into unoptimized frame. The optimized |
| // frame can contain values in registers and on stack, the unoptimized |
| // frame contains all values on stack. |
| // Deoptimization occurs in following steps: |
| // - Push all registers that can contain values. |
| // - Call C routine to copy the stack and saved registers into temporary buffer. |
| // - Adjust caller's frame to correct unoptimized frame size. |
| // - Fill the unoptimized frame. |
| // - Materialize objects that require allocation (e.g. Double instances). |
| // GC can occur only after frame is fully rewritten. |
| // Stack after EnterDartFrame(0) below: |
| // +------------------+ |
| // | PC marker | <- TOS |
| // +------------------+ |
| // | Saved FP | <- FP of stub |
| // +------------------+ |
| // | return-address | (deoptimization point) |
| // +------------------+ |
| // | ... | <- SP of optimized frame |
| // |
| // Parts of the code cannot GC, part of the code can GC. |
| static void GenerateDeoptimizationSequence(Assembler* assembler, |
| DeoptStubKind kind) { |
| // Leaf runtime function DeoptimizeCopyFrame expects a Dart frame. |
| __ EnterDartFrame(0); |
| // The code in this frame may not cause GC. kDeoptimizeCopyFrameRuntimeEntry |
| // and kDeoptimizeFillFrameRuntimeEntry are leaf runtime calls. |
| const intptr_t saved_result_slot_from_fp = |
| target::frame_layout.first_local_from_fp + 1 - |
| (kNumberOfCpuRegisters - EAX); |
| const intptr_t saved_exception_slot_from_fp = |
| target::frame_layout.first_local_from_fp + 1 - |
| (kNumberOfCpuRegisters - EAX); |
| const intptr_t saved_stacktrace_slot_from_fp = |
| target::frame_layout.first_local_from_fp + 1 - |
| (kNumberOfCpuRegisters - EDX); |
| // Result in EAX is preserved as part of pushing all registers below. |
| |
| // Push registers in their enumeration order: lowest register number at |
| // lowest address. |
| for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; i--) { |
| if (i == CODE_REG) { |
| // Save the original value of CODE_REG pushed before invoking this stub |
| // instead of the value used to call this stub. |
| __ pushl(Address(EBP, 2 * target::kWordSize)); |
| } else { |
| __ pushl(static_cast<Register>(i)); |
| } |
| } |
| __ subl(ESP, Immediate(kNumberOfXmmRegisters * kFpuRegisterSize)); |
| intptr_t offset = 0; |
| for (intptr_t reg_idx = 0; reg_idx < kNumberOfXmmRegisters; ++reg_idx) { |
| XmmRegister xmm_reg = static_cast<XmmRegister>(reg_idx); |
| __ movups(Address(ESP, offset), xmm_reg); |
| offset += kFpuRegisterSize; |
| } |
| |
| { |
| __ movl(ECX, ESP); // Preserve saved registers block. |
| LeafRuntimeScope rt(assembler, |
| /*frame_size=*/2 * target::kWordSize, |
| /*preserve_registers=*/false); |
| bool is_lazy = |
| (kind == kLazyDeoptFromReturn) || (kind == kLazyDeoptFromThrow); |
| __ movl(Address(ESP, 0 * target::kWordSize), |
| ECX); // Start of register block. |
| __ movl(Address(ESP, 1 * target::kWordSize), Immediate(is_lazy ? 1 : 0)); |
| rt.Call(kDeoptimizeCopyFrameRuntimeEntry, 2); |
| // Result (EAX) is stack-size (FP - SP) in bytes. |
| } |
| |
| if (kind == kLazyDeoptFromReturn) { |
| // Restore result into EBX temporarily. |
| __ movl(EBX, Address(EBP, saved_result_slot_from_fp * target::kWordSize)); |
| } else if (kind == kLazyDeoptFromThrow) { |
| // Restore result into EBX temporarily. |
| __ movl(EBX, |
| Address(EBP, saved_exception_slot_from_fp * target::kWordSize)); |
| __ movl(ECX, |
| Address(EBP, saved_stacktrace_slot_from_fp * target::kWordSize)); |
| } |
| |
| __ LeaveDartFrame(); |
| __ popl(EDX); // Preserve return address. |
| __ movl(ESP, EBP); // Discard optimized frame. |
| __ subl(ESP, EAX); // Reserve space for deoptimized frame. |
| __ pushl(EDX); // Restore return address. |
| |
| // Leaf runtime function DeoptimizeFillFrame expects a Dart frame. |
| __ EnterDartFrame(0); |
| if (kind == kLazyDeoptFromReturn) { |
| __ pushl(EBX); // Preserve result as first local. |
| } else if (kind == kLazyDeoptFromThrow) { |
| __ pushl(EBX); // Preserve exception as first local. |
| __ pushl(ECX); // Preserve stacktrace as first local. |
| } |
| { |
| LeafRuntimeScope rt(assembler, |
| /*frame_size=*/1 * target::kWordSize, |
| /*preserve_registers=*/false); |
| __ movl(Address(ESP, 0), EBP); // Pass last FP as parameter on stack. |
| rt.Call(kDeoptimizeFillFrameRuntimeEntry, 1); |
| } |
| if (kind == kLazyDeoptFromReturn) { |
| // Restore result into EBX. |
| __ movl(EBX, Address(EBP, target::frame_layout.first_local_from_fp * |
| target::kWordSize)); |
| } else if (kind == kLazyDeoptFromThrow) { |
| // Restore result into EBX. |
| __ movl(EBX, Address(EBP, target::frame_layout.first_local_from_fp * |
| target::kWordSize)); |
| __ movl(ECX, Address(EBP, (target::frame_layout.first_local_from_fp - 1) * |
| target::kWordSize)); |
| } |
| // Code above cannot cause GC. |
| __ LeaveDartFrame(); |
| |
| // Frame is fully rewritten at this point and it is safe to perform a GC. |
| // Materialize any objects that were deferred by FillFrame because they |
| // require allocation. |
| __ EnterStubFrame(); |
| if (kind == kLazyDeoptFromReturn) { |
| __ pushl(EBX); // Preserve result, it will be GC-d here. |
| } else if (kind == kLazyDeoptFromThrow) { |
| // Preserve CODE_REG for one more runtime call. |
| __ pushl(CODE_REG); |
| __ pushl(EBX); // Preserve exception, it will be GC-d here. |
| __ pushl(ECX); // Preserve stacktrace, it will be GC-d here. |
| } |
| __ pushl(Immediate(target::ToRawSmi(0))); // Space for the result. |
| __ CallRuntime(kDeoptimizeMaterializeRuntimeEntry, 0); |
| // Result tells stub how many bytes to remove from the expression stack |
| // of the bottom-most frame. They were used as materialization arguments. |
| __ popl(EBX); |
| __ SmiUntag(EBX); |
| if (kind == kLazyDeoptFromReturn) { |
| __ popl(EAX); // Restore result. |
| } else if (kind == kLazyDeoptFromThrow) { |
| __ popl(EDX); // Restore stacktrace. |
| __ popl(EAX); // Restore exception. |
| __ popl(CODE_REG); |
| } |
| __ LeaveStubFrame(); |
| |
| __ popl(ECX); // Pop return address. |
| __ addl(ESP, EBX); // Remove materialization arguments. |
| __ pushl(ECX); // Push return address. |
| // The caller is responsible for emitting the return instruction. |
| |
| if (kind == kLazyDeoptFromThrow) { |
| // Unoptimized frame is now ready to accept the exception. Rethrow it to |
| // find the right handler. Ask rethrow machinery to bypass debugger it |
| // was already notified about this exception. |
| __ EnterStubFrame(); |
| __ pushl(Immediate(target::ToRawSmi(0))); // Space for the result. |
| __ pushl(EAX); // Exception |
| __ pushl(EDX); // Stacktrace |
| __ pushl(Immediate(target::ToRawSmi(1))); // Bypass debugger. |
| __ CallRuntime(kReThrowRuntimeEntry, 3); |
| __ LeaveStubFrame(); |
| } |
| } |
| |
| // EAX: result, must be preserved |
| void StubCodeCompiler::GenerateDeoptimizeLazyFromReturnStub() { |
| // Return address for "call" to deopt stub. |
| __ pushl(Immediate(kZapReturnAddress)); |
| GenerateDeoptimizationSequence(assembler, kLazyDeoptFromReturn); |
| __ ret(); |
| } |
| |
| // EAX: exception, must be preserved |
| // EDX: stacktrace, must be preserved |
| void StubCodeCompiler::GenerateDeoptimizeLazyFromThrowStub() { |
| // Return address for "call" to deopt stub. |
| __ pushl(Immediate(kZapReturnAddress)); |
| GenerateDeoptimizationSequence(assembler, kLazyDeoptFromThrow); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateDeoptimizeStub() { |
| GenerateDeoptimizationSequence(assembler, kEagerDeopt); |
| __ ret(); |
| } |
| |
| static void GenerateNoSuchMethodDispatcherCode(Assembler* assembler) { |
| __ EnterStubFrame(); |
| __ movl(EDX, FieldAddress( |
| ECX, target::CallSiteData::arguments_descriptor_offset())); |
| |
| // Load the receiver. |
| __ movl(EDI, FieldAddress(EDX, target::ArgumentsDescriptor::size_offset())); |
| __ movl(EAX, |
| Address(EBP, EDI, TIMES_HALF_WORD_SIZE, |
| target::frame_layout.param_end_from_fp * target::kWordSize)); |
| __ pushl(Immediate(0)); // Setup space on stack for result. |
| __ pushl(EAX); // Receiver. |
| __ pushl(ECX); // ICData/MegamorphicCache. |
| __ pushl(EDX); // Arguments descriptor array. |
| |
| // Adjust arguments count. |
| __ cmpl( |
| FieldAddress(EDX, target::ArgumentsDescriptor::type_args_len_offset()), |
| Immediate(0)); |
| __ movl(EDX, EDI); |
| Label args_count_ok; |
| __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
| __ addl(EDX, Immediate(target::ToRawSmi(1))); // Include the type arguments. |
| __ Bind(&args_count_ok); |
| |
| // EDX: Smi-tagged arguments array length. |
| PushArrayOfArguments(assembler); |
| const intptr_t kNumArgs = 4; |
| __ CallRuntime(kNoSuchMethodFromCallStubRuntimeEntry, kNumArgs); |
| __ Drop(4); |
| __ popl(EAX); // Return value. |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateNoSuchMethodDispatcherStub() { |
| GenerateNoSuchMethodDispatcherCode(assembler); |
| } |
| |
| // Called for inline allocation of arrays. |
| // Input registers (preserved): |
| // AllocateArrayABI::kLengthReg: array length as Smi. |
| // AllocateArrayABI::kTypeArgumentsReg: type arguments of array. |
| // Output registers: |
| // AllocateArrayABI::kResultReg: newly allocated array. |
| // Clobbered: |
| // EBX, EDI |
| void StubCodeCompiler::GenerateAllocateArrayStub() { |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| // Compute the size to be allocated, it is based on the array length |
| // and is computed as: |
| // RoundedAllocationSize( |
| // (array_length * kwordSize) + target::Array::header_size()). |
| // Assert that length is a Smi. |
| __ testl(AllocateArrayABI::kLengthReg, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &slow_case); |
| |
| // Check for maximum allowed length. |
| const Immediate& max_len = |
| Immediate(target::ToRawSmi(target::Array::kMaxNewSpaceElements)); |
| __ cmpl(AllocateArrayABI::kLengthReg, max_len); |
| __ j(ABOVE, &slow_case); |
| |
| NOT_IN_PRODUCT(__ MaybeTraceAllocation(kArrayCid, &slow_case, |
| AllocateArrayABI::kResultReg)); |
| |
| const intptr_t fixed_size_plus_alignment_padding = |
| target::Array::header_size() + |
| target::ObjectAlignment::kObjectAlignment - 1; |
| // AllocateArrayABI::kLengthReg is Smi. |
| __ leal(EBX, Address(AllocateArrayABI::kLengthReg, TIMES_2, |
| fixed_size_plus_alignment_padding)); |
| ASSERT(kSmiTagShift == 1); |
| __ andl(EBX, Immediate(-target::ObjectAlignment::kObjectAlignment)); |
| |
| // AllocateArrayABI::kTypeArgumentsReg: array type arguments. |
| // AllocateArrayABI::kLengthReg: array length as Smi. |
| // EBX: allocation size. |
| |
| const intptr_t cid = kArrayCid; |
| __ movl(AllocateArrayABI::kResultReg, |
| Address(THR, target::Thread::top_offset())); |
| __ addl(EBX, AllocateArrayABI::kResultReg); |
| __ j(CARRY, &slow_case); |
| |
| // Check if the allocation fits into the remaining space. |
| // AllocateArrayABI::kResultReg: potential new object start. |
| // EBX: potential next object start. |
| // AllocateArrayABI::kTypeArgumentsReg: array type arguments. |
| // AllocateArrayABI::kLengthReg: array length as Smi). |
| __ cmpl(EBX, Address(THR, target::Thread::end_offset())); |
| __ j(ABOVE_EQUAL, &slow_case); |
| __ CheckAllocationCanary(AllocateArrayABI::kResultReg); |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| __ movl(Address(THR, target::Thread::top_offset()), EBX); |
| __ subl(EBX, AllocateArrayABI::kResultReg); |
| __ addl(AllocateArrayABI::kResultReg, Immediate(kHeapObjectTag)); |
| |
| // Initialize the tags. |
| // AllocateArrayABI::kResultReg: new object start as a tagged pointer. |
| // EBX: allocation size. |
| // AllocateArrayABI::kTypeArgumentsReg: array type arguments. |
| // AllocateArrayABI::kLengthReg: array length as Smi. |
| { |
| Label size_tag_overflow, done; |
| __ movl(EDI, EBX); |
| __ cmpl(EDI, Immediate(target::UntaggedObject::kSizeTagMaxSizeTag)); |
| __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); |
| __ shll(EDI, Immediate(target::UntaggedObject::kTagBitsSizeTagPos - |
| target::ObjectAlignment::kObjectAlignmentLog2)); |
| __ jmp(&done, Assembler::kNearJump); |
| |
| __ Bind(&size_tag_overflow); |
| __ movl(EDI, Immediate(0)); |
| __ Bind(&done); |
| |
| // Get the class index and insert it into the tags. |
| uword tags = target::MakeTagWordForNewSpaceObject(cid, 0); |
| __ orl(EDI, Immediate(tags)); |
| __ movl(FieldAddress(AllocateArrayABI::kResultReg, |
| target::Object::tags_offset()), |
| EDI); // Tags. |
| } |
| // AllocateArrayABI::kResultReg: new object start as a tagged pointer. |
| // EBX: allocation size. |
| // AllocateArrayABI::kTypeArgumentsReg: array type arguments. |
| // AllocateArrayABI::kLengthReg: Array length as Smi (preserved). |
| // Store the type argument field. |
| // No generational barrier needed, since we store into a new object. |
| __ StoreIntoObjectNoBarrier( |
| AllocateArrayABI::kResultReg, |
| FieldAddress(AllocateArrayABI::kResultReg, |
| target::Array::type_arguments_offset()), |
| AllocateArrayABI::kTypeArgumentsReg); |
| |
| // Set the length field. |
| __ StoreIntoObjectNoBarrier(AllocateArrayABI::kResultReg, |
| FieldAddress(AllocateArrayABI::kResultReg, |
| target::Array::length_offset()), |
| AllocateArrayABI::kLengthReg); |
| |
| // Initialize all array elements to raw_null. |
| // AllocateArrayABI::kResultReg: new object start as a tagged pointer. |
| // EBX: allocation size. |
| // EDI: iterator which initially points to the start of the variable |
| // data area to be initialized. |
| // AllocateArrayABI::kTypeArgumentsReg: array type arguments. |
| // AllocateArrayABI::kLengthReg: array length as Smi. |
| __ leal(EBX, FieldAddress(AllocateArrayABI::kResultReg, EBX, TIMES_1, 0)); |
| __ leal(EDI, FieldAddress(AllocateArrayABI::kResultReg, |
| target::Array::header_size())); |
| Label loop; |
| __ Bind(&loop); |
| for (intptr_t offset = 0; offset < target::kObjectAlignment; |
| offset += target::kWordSize) { |
| // No generational barrier needed, since we are storing null. |
| __ StoreObjectIntoObjectNoBarrier(AllocateArrayABI::kResultReg, |
| Address(EDI, offset), NullObject()); |
| } |
| // Safe to only check every kObjectAlignment bytes instead of each word. |
| ASSERT(kAllocationRedZoneSize >= target::kObjectAlignment); |
| __ addl(EDI, Immediate(target::kObjectAlignment)); |
| __ cmpl(EDI, EBX); |
| __ j(UNSIGNED_LESS, &loop); |
| __ WriteAllocationCanary(EBX); // Fix overshoot. |
| __ ret(); |
| |
| // Unable to allocate the array using the fast inline code, just call |
| // into the runtime. |
| __ Bind(&slow_case); |
| } |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ pushl(Immediate(0)); // Setup space on stack for return value. |
| __ pushl(AllocateArrayABI::kLengthReg); // Array length as Smi. |
| __ pushl(AllocateArrayABI::kTypeArgumentsReg); // Type arguments. |
| __ CallRuntime(kAllocateArrayRuntimeEntry, 2); |
| |
| // Write-barrier elimination might be enabled for this array (depending on the |
| // array length). To be sure we will check if the allocated object is in old |
| // space and if so call a leaf runtime to add it to the remembered set. |
| __ movl(AllocateArrayABI::kResultReg, Address(ESP, 2 * target::kWordSize)); |
| EnsureIsNewOrRemembered(); |
| |
| __ popl(AllocateArrayABI::kTypeArgumentsReg); // Pop type arguments. |
| __ popl(AllocateArrayABI::kLengthReg); // Pop array length argument. |
| __ popl(AllocateArrayABI::kResultReg); // Pop return value from return slot. |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| // Called when invoking dart code from C++ (VM code). |
| // Input parameters: |
| // ESP : points to return address. |
| // ESP + 4 : code object of the dart function to call. |
| // ESP + 8 : arguments descriptor array. |
| // ESP + 12 : arguments array. |
| // ESP + 16 : current thread. |
| // Uses EAX, EDX, ECX, EDI as temporary registers. |
| void StubCodeCompiler::GenerateInvokeDartCodeStub() { |
| const intptr_t kTargetCodeOffset = 2 * target::kWordSize; |
| const intptr_t kArgumentsDescOffset = 3 * target::kWordSize; |
| const intptr_t kArgumentsOffset = 4 * target::kWordSize; |
| const intptr_t kThreadOffset = 5 * target::kWordSize; |
| __ EnterFrame(0); |
| |
| // Push code object to PC marker slot. |
| __ movl(EAX, Address(EBP, kThreadOffset)); |
| __ pushl(Address(EAX, target::Thread::invoke_dart_code_stub_offset())); |
| |
| // Save C++ ABI callee-saved registers. |
| __ pushl(EBX); |
| __ pushl(ESI); |
| __ pushl(EDI); |
| |
| // Set up THR, which caches the current thread in Dart code. |
| __ movl(THR, EAX); |
| |
| #if defined(USING_SHADOW_CALL_STACK) |
| #error Unimplemented |
| #endif |
| |
| // Save the current VMTag on the stack. |
| __ movl(ECX, Assembler::VMTagAddress()); |
| __ pushl(ECX); |
| |
| // Save top resource and top exit frame info. Use EDX as a temporary register. |
| // StackFrameIterator reads the top exit frame info saved in this frame. |
| __ movl(EDX, Address(THR, target::Thread::top_resource_offset())); |
| __ pushl(EDX); |
| __ movl(Address(THR, target::Thread::top_resource_offset()), Immediate(0)); |
| __ movl(EAX, Address(THR, target::Thread::exit_through_ffi_offset())); |
| __ pushl(EAX); |
| __ movl(Address(THR, target::Thread::exit_through_ffi_offset()), |
| Immediate(0)); |
| // The constant target::frame_layout.exit_link_slot_from_entry_fp must be |
| // kept in sync with the code below. |
| ASSERT(target::frame_layout.exit_link_slot_from_entry_fp == -8); |
| __ movl(EDX, Address(THR, target::Thread::top_exit_frame_info_offset())); |
| __ pushl(EDX); |
| __ movl(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| |
| // In debug mode, verify that we've pushed the top exit frame info at the |
| // correct offset from FP. |
| __ EmitEntryFrameVerification(); |
| |
| // Mark that the thread is executing Dart code. Do this after initializing the |
| // exit link for the profiler. |
| __ movl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| |
| // Load arguments descriptor array into EDX. |
| __ movl(EDX, Address(EBP, kArgumentsDescOffset)); |
| |
| // Load number of arguments into EBX and adjust count for type arguments. |
| __ movl(EBX, FieldAddress(EDX, target::ArgumentsDescriptor::count_offset())); |
| __ cmpl( |
| FieldAddress(EDX, target::ArgumentsDescriptor::type_args_len_offset()), |
| Immediate(0)); |
| Label args_count_ok; |
| __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
| __ addl(EBX, Immediate(target::ToRawSmi(1))); // Include the type arguments. |
| __ Bind(&args_count_ok); |
| // Save number of arguments as Smi on stack, replacing ArgumentsDesc. |
| __ movl(Address(EBP, kArgumentsDescOffset), EBX); |
| __ SmiUntag(EBX); |
| |
| // Set up arguments for the dart call. |
| Label push_arguments; |
| Label done_push_arguments; |
| __ testl(EBX, EBX); // check if there are arguments. |
| __ j(ZERO, &done_push_arguments, Assembler::kNearJump); |
| __ movl(EAX, Immediate(0)); |
| |
| // Compute address of 'arguments array' data area into EDI. |
| __ movl(EDI, Address(EBP, kArgumentsOffset)); |
| __ leal(EDI, FieldAddress(EDI, target::Array::data_offset())); |
| |
| __ Bind(&push_arguments); |
| __ movl(ECX, Address(EDI, EAX, TIMES_4, 0)); |
| __ pushl(ECX); |
| __ incl(EAX); |
| __ cmpl(EAX, EBX); |
| __ j(LESS, &push_arguments, Assembler::kNearJump); |
| __ Bind(&done_push_arguments); |
| |
| // Call the dart code entrypoint. |
| __ movl(EAX, Address(EBP, kTargetCodeOffset)); |
| __ call(FieldAddress(EAX, target::Code::entry_point_offset())); |
| |
| // Read the saved number of passed arguments as Smi. |
| __ movl(EDX, Address(EBP, kArgumentsDescOffset)); |
| // Get rid of arguments pushed on the stack. |
| __ leal(ESP, Address(ESP, EDX, TIMES_2, 0)); // EDX is a Smi. |
| |
| // Restore the saved top exit frame info and top resource back into the |
| // Isolate structure. |
| __ popl(Address(THR, target::Thread::top_exit_frame_info_offset())); |
| __ popl(Address(THR, target::Thread::exit_through_ffi_offset())); |
| __ popl(Address(THR, target::Thread::top_resource_offset())); |
| |
| // Restore the current VMTag from the stack. |
| __ popl(Assembler::VMTagAddress()); |
| |
| #if defined(USING_SHADOW_CALL_STACK) |
| #error Unimplemented |
| #endif |
| |
| // Restore C++ ABI callee-saved registers. |
| __ popl(EDI); |
| __ popl(ESI); |
| __ popl(EBX); |
| |
| // Restore the frame pointer. |
| __ LeaveFrame(); |
| |
| __ ret(); |
| } |
| |
| // Called when invoking compiled Dart code from interpreted Dart code. |
| // Input parameters: |
| // ESP : points to return address. |
| // ESP + 4 : code object of the dart function to call. |
| // ESP + 8 : arguments descriptor array. |
| // ESP + 12: address of first argument. |
| // ESP + 16 : current thread. |
| void StubCodeCompiler::GenerateInvokeDartCodeFromBytecodeStub() { |
| #if defined(DART_DYNAMIC_MODULES) |
| const intptr_t kTargetCodeOffset = 2 * target::kWordSize; |
| const intptr_t kArgumentsDescOffset = 3 * target::kWordSize; |
| const intptr_t kArgumentsOffset = 4 * target::kWordSize; |
| const intptr_t kThreadOffset = 5 * target::kWordSize; |
| __ EnterFrame(0); |
| |
| // Push code object to PC marker slot. |
| __ movl(EAX, Address(EBP, kThreadOffset)); |
| __ pushl(Address(EAX, target::Thread::invoke_dart_code_stub_offset())); |
| |
| // Save C++ ABI callee-saved registers. |
| __ pushl(EBX); |
| __ pushl(ESI); |
| __ pushl(EDI); |
| |
| // Set up THR, which caches the current thread in Dart code. |
| __ movl(THR, EAX); |
| |
| #if defined(USING_SHADOW_CALL_STACK) |
| #error Unimplemented |
| #endif |
| |
| // Save the current VMTag on the stack. |
| __ movl(ECX, Assembler::VMTagAddress()); |
| __ pushl(ECX); |
| |
| // Save top resource and top exit frame info. Use EDX as a temporary register. |
| // StackFrameIterator reads the top exit frame info saved in this frame. |
| __ movl(EDX, Address(THR, target::Thread::top_resource_offset())); |
| __ pushl(EDX); |
| __ movl(Address(THR, target::Thread::top_resource_offset()), Immediate(0)); |
| __ movl(EAX, Address(THR, target::Thread::exit_through_ffi_offset())); |
| __ pushl(EAX); |
| __ movl(Address(THR, target::Thread::exit_through_ffi_offset()), |
| Immediate(0)); |
| // The constant target::frame_layout.exit_link_slot_from_entry_fp must be |
| // kept in sync with the code below. |
| ASSERT(target::frame_layout.exit_link_slot_from_entry_fp == -8); |
| __ movl(EDX, Address(THR, target::Thread::top_exit_frame_info_offset())); |
| __ pushl(EDX); |
| __ movl(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| |
| // In debug mode, verify that we've pushed the top exit frame info at the |
| // correct offset from FP. |
| __ EmitEntryFrameVerification(); |
| |
| // Mark that the thread is executing Dart code. Do this after initializing the |
| // exit link for the profiler. |
| __ movl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| |
| // Load arguments descriptor array into EDX. |
| __ movl(EDX, Address(EBP, kArgumentsDescOffset)); |
| |
| // Load number of arguments into EBX and adjust count for type arguments. |
| __ movl(EBX, FieldAddress(EDX, target::ArgumentsDescriptor::count_offset())); |
| __ cmpl( |
| FieldAddress(EDX, target::ArgumentsDescriptor::type_args_len_offset()), |
| Immediate(0)); |
| Label args_count_ok; |
| __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
| __ addl(EBX, Immediate(target::ToRawSmi(1))); // Include the type arguments. |
| __ Bind(&args_count_ok); |
| // Save number of arguments as Smi on stack, replacing ArgumentsDesc. |
| __ movl(Address(EBP, kArgumentsDescOffset), EBX); |
| __ SmiUntag(EBX); |
| |
| // Set up arguments for the dart call. |
| Label push_arguments; |
| Label done_push_arguments; |
| __ testl(EBX, EBX); // check if there are arguments. |
| __ j(ZERO, &done_push_arguments, Assembler::kNearJump); |
| __ movl(EAX, Immediate(0)); |
| |
| // Compute address of 'arguments array' data area into EDI. |
| __ movl(EDI, Address(EBP, kArgumentsOffset)); |
| |
| __ Bind(&push_arguments); |
| __ movl(ECX, Address(EDI, EAX, TIMES_4, 0)); |
| __ pushl(ECX); |
| __ incl(EAX); |
| __ cmpl(EAX, EBX); |
| __ j(LESS, &push_arguments, Assembler::kNearJump); |
| __ Bind(&done_push_arguments); |
| |
| // Call the dart code entrypoint. |
| __ movl(EAX, Address(EBP, kTargetCodeOffset)); |
| __ call(FieldAddress(EAX, target::Code::entry_point_offset())); |
| |
| // Read the saved number of passed arguments as Smi. |
| __ movl(EDX, Address(EBP, kArgumentsDescOffset)); |
| // Get rid of arguments pushed on the stack. |
| __ leal(ESP, Address(ESP, EDX, TIMES_2, 0)); // EDX is a Smi. |
| |
| // Restore the saved top exit frame info and top resource back into the |
| // Isolate structure. |
| __ popl(Address(THR, target::Thread::top_exit_frame_info_offset())); |
| __ popl(Address(THR, target::Thread::exit_through_ffi_offset())); |
| __ popl(Address(THR, target::Thread::top_resource_offset())); |
| |
| // Restore the current VMTag from the stack. |
| __ popl(Assembler::VMTagAddress()); |
| |
| #if defined(USING_SHADOW_CALL_STACK) |
| #error Unimplemented |
| #endif |
| |
| // Restore C++ ABI callee-saved registers. |
| __ popl(EDI); |
| __ popl(ESI); |
| __ popl(EBX); |
| |
| // Restore the frame pointer. |
| __ LeaveFrame(); |
| |
| __ ret(); |
| |
| #else |
| __ Stop("Not using Dart dynamic modules"); |
| #endif // defined(DART_DYNAMIC_MODULES) |
| } |
| |
| // Helper to generate space allocation of context stub. |
| // This does not initialise the fields of the context. |
| // Input: |
| // EDX: number of context variables. |
| // Output: |
| // EAX: new allocated Context object. |
| // Clobbered: |
| // EBX |
| static void GenerateAllocateContextSpaceStub(Assembler* assembler, |
| Label* slow_case) { |
| // First compute the rounded instance size. |
| // EDX: number of context variables. |
| intptr_t fixed_size_plus_alignment_padding = |
| (target::Context::header_size() + |
| target::ObjectAlignment::kObjectAlignment - 1); |
| __ leal(EBX, Address(EDX, TIMES_4, fixed_size_plus_alignment_padding)); |
| __ andl(EBX, Immediate(-target::ObjectAlignment::kObjectAlignment)); |
| |
| NOT_IN_PRODUCT(__ MaybeTraceAllocation(kContextCid, slow_case, EAX)); |
| |
| // Now allocate the object. |
| // EDX: number of context variables. |
| __ movl(EAX, Address(THR, target::Thread::top_offset())); |
| __ addl(EBX, EAX); |
| // Check if the allocation fits into the remaining space. |
| // EAX: potential new object. |
| // EBX: potential next object start. |
| // EDX: number of context variables. |
| __ cmpl(EBX, Address(THR, target::Thread::end_offset())); |
| #if defined(DEBUG) |
| static auto const kJumpLength = Assembler::kFarJump; |
| #else |
| static auto const kJumpLength = Assembler::kNearJump; |
| #endif // DEBUG |
| __ j(ABOVE_EQUAL, slow_case, kJumpLength); |
| __ CheckAllocationCanary(EAX); |
| |
| // Successfully allocated the object, now update top to point to |
| // next object start and initialize the object. |
| // EAX: new object. |
| // EBX: next object start. |
| // EDX: number of context variables. |
| __ movl(Address(THR, target::Thread::top_offset()), EBX); |
| // EBX: Size of allocation in bytes. |
| __ subl(EBX, EAX); |
| __ addl(EAX, Immediate(kHeapObjectTag)); |
| // Generate isolate-independent code to allow sharing between isolates. |
| |
| // Calculate the size tag. |
| // EAX: new object. |
| // EDX: number of context variables. |
| { |
| Label size_tag_overflow, done; |
| __ leal(EBX, Address(EDX, TIMES_4, fixed_size_plus_alignment_padding)); |
| __ andl(EBX, Immediate(-target::ObjectAlignment::kObjectAlignment)); |
| __ cmpl(EBX, Immediate(target::UntaggedObject::kSizeTagMaxSizeTag)); |
| __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); |
| __ shll(EBX, Immediate(target::UntaggedObject::kTagBitsSizeTagPos - |
| target::ObjectAlignment::kObjectAlignmentLog2)); |
| __ jmp(&done); |
| |
| __ Bind(&size_tag_overflow); |
| // Set overflow size tag value. |
| __ movl(EBX, Immediate(0)); |
| |
| __ Bind(&done); |
| // EAX: new object. |
| // EDX: number of context variables. |
| // EBX: size and bit tags. |
| uword tags = target::MakeTagWordForNewSpaceObject(kContextCid, 0); |
| __ orl(EBX, Immediate(tags)); |
| __ movl(FieldAddress(EAX, target::Object::tags_offset()), EBX); // Tags. |
| } |
| |
| // Setup up number of context variables field. |
| // EAX: new object. |
| // EDX: number of context variables as integer value (not object). |
| __ movl(FieldAddress(EAX, target::Context::num_variables_offset()), EDX); |
| } |
| |
| // Called for inline allocation of contexts. |
| // Input: |
| // EDX: number of context variables. |
| // Output: |
| // EAX: new allocated Context object. |
| // Clobbered: |
| // EBX, EDX |
| void StubCodeCompiler::GenerateAllocateContextStub() { |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| |
| GenerateAllocateContextSpaceStub(assembler, &slow_case); |
| |
| // Setup the parent field. |
| // EAX: new object. |
| // EDX: number of context variables. |
| // No generational barrier needed, since we are storing null. |
| __ StoreObjectIntoObjectNoBarrier( |
| EAX, FieldAddress(EAX, target::Context::parent_offset()), NullObject()); |
| |
| // Initialize the context variables. |
| // EAX: new object. |
| // EDX: number of context variables. |
| { |
| Label loop, entry; |
| __ leal(EBX, FieldAddress(EAX, target::Context::variable_offset(0))); |
| |
| __ jmp(&entry, Assembler::kNearJump); |
| __ Bind(&loop); |
| __ decl(EDX); |
| // No generational barrier needed, since we are storing null. |
| __ StoreObjectIntoObjectNoBarrier(EAX, Address(EBX, EDX, TIMES_4, 0), |
| NullObject()); |
| __ Bind(&entry); |
| __ cmpl(EDX, Immediate(0)); |
| __ j(NOT_EQUAL, &loop, Assembler::kNearJump); |
| } |
| |
| // Done allocating and initializing the context. |
| // EAX: new object. |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ pushl(Immediate(0)); // Setup space on stack for return value. |
| __ SmiTag(EDX); |
| __ pushl(EDX); |
| __ CallRuntime(kAllocateContextRuntimeEntry, 1); // Allocate context. |
| __ popl(EAX); // Pop number of context variables argument. |
| __ popl(EAX); // Pop the new context object. |
| |
| // Write-barrier elimination might be enabled for this context (depending on |
| // the size). To be sure we will check if the allocated object is in old |
| // space and if so call a leaf runtime to add it to the remembered set. |
| EnsureIsNewOrRemembered(); |
| |
| // EAX: new object |
| // Restore the frame pointer. |
| __ LeaveFrame(); |
| |
| __ ret(); |
| } |
| |
| // Called for clone of contexts. |
| // Input: |
| // ECX: context variable. |
| // Output: |
| // EAX: new allocated Context object. |
| // Clobbered: |
| // EBX, ECX, EDX |
| void StubCodeCompiler::GenerateCloneContextStub() { |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| |
| // Load num. variable in the existing context. |
| __ movl(EDX, FieldAddress(ECX, target::Context::num_variables_offset())); |
| |
| GenerateAllocateContextSpaceStub(assembler, &slow_case); |
| |
| // Setup the parent field. |
| // EAX: new object. |
| // ECX: old object to clone. |
| __ movl(EBX, FieldAddress(ECX, target::Context::parent_offset())); |
| __ StoreIntoObjectNoBarrier( |
| EAX, FieldAddress(EAX, target::Context::parent_offset()), EBX); |
| |
| // Initialize the context variables. |
| // EAX: new context. |
| // ECX: context to clone. |
| // EDX: number of context variables. |
| { |
| Label loop, entry; |
| __ jmp(&entry, Assembler::kNearJump); |
| |
| __ Bind(&loop); |
| __ decl(EDX); |
| |
| __ movl(EBX, FieldAddress(ECX, EDX, TIMES_4, |
| target::Context::variable_offset(0))); |
| __ StoreIntoObjectNoBarrier( |
| EAX, |
| FieldAddress(EAX, EDX, TIMES_4, target::Context::variable_offset(0)), |
| EBX); |
| |
| __ Bind(&entry); |
| __ cmpl(EDX, Immediate(0)); |
| __ j(NOT_EQUAL, &loop, Assembler::kNearJump); |
| } |
| |
| // Done allocating and initializing the context. |
| // EAX: new object. |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } |
| |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ pushl(Immediate(0)); // Setup space on stack for return value. |
| __ pushl(ECX); |
| __ CallRuntime(kCloneContextRuntimeEntry, 1); // Allocate context. |
| __ popl(EAX); // Pop number of context variables argument. |
| __ popl(EAX); // Pop the new context object. |
| |
| // Write-barrier elimination might be enabled for this context (depending on |
| // the size). To be sure we will check if the allocated object is in old |
| // space and if so call a leaf runtime to add it to the remembered set. |
| EnsureIsNewOrRemembered(); |
| |
| // EAX: new object |
| // Restore the frame pointer. |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateWriteBarrierWrappersStub() { |
| for (intptr_t i = 0; i < kNumberOfCpuRegisters; ++i) { |
| if ((kDartAvailableCpuRegs & (1 << i)) == 0) continue; |
| |
| Register reg = static_cast<Register>(i); |
| intptr_t start = __ CodeSize(); |
| __ pushl(kWriteBarrierObjectReg); |
| __ movl(kWriteBarrierObjectReg, reg); |
| __ call(Address(THR, target::Thread::write_barrier_entry_point_offset())); |
| __ popl(kWriteBarrierObjectReg); |
| __ ret(); |
| intptr_t end = __ CodeSize(); |
| |
| ASSERT_EQUAL(end - start, kStoreBufferWrapperSize); |
| RELEASE_ASSERT(end - start == kStoreBufferWrapperSize); |
| } |
| } |
| |
| // Helper stub to implement Assembler::StoreIntoObject/Array. |
| // Input parameters: |
| // EDX: Object (old) |
| // EBX: Value (old or new) |
| // EDI: Slot |
| // If EAX is new, add EDX to the store buffer. Otherwise EAX is old, mark EAX |
| // and add it to the mark list. |
| COMPILE_ASSERT(kWriteBarrierObjectReg == EDX); |
| COMPILE_ASSERT(kWriteBarrierValueReg == EBX); |
| COMPILE_ASSERT(kWriteBarrierSlotReg == EDI); |
| static void GenerateWriteBarrierStubHelper(Assembler* assembler, bool cards) { |
| // Save values being destroyed. |
| __ pushl(EAX); |
| __ pushl(ECX); |
| |
| Label skip_marking; |
| __ movl(EAX, FieldAddress(EBX, target::Object::tags_offset())); |
| __ andl(EAX, Address(THR, target::Thread::write_barrier_mask_offset())); |
| __ testl(EAX, Immediate(target::UntaggedObject::kIncrementalBarrierMask)); |
| __ j(ZERO, &skip_marking); |
| |
| { |
| // Atomically clear kNotMarkedBit. |
| Label retry, is_new, done; |
| __ movl(EAX, FieldAddress(EBX, target::Object::tags_offset())); |
| __ Bind(&retry); |
| __ movl(ECX, EAX); |
| __ testl(ECX, Immediate(1 << target::UntaggedObject::kNotMarkedBit)); |
| __ j(ZERO, &done); // Marked by another thread. |
| __ andl(ECX, Immediate(~(1 << target::UntaggedObject::kNotMarkedBit))); |
| // Cmpxchgq: compare value = implicit operand EAX, new value = ECX. |
| // On failure, EAX is updated with the current value. |
| __ LockCmpxchgl(FieldAddress(EBX, target::Object::tags_offset()), ECX); |
| __ j(NOT_EQUAL, &retry, Assembler::kNearJump); |
| |
| __ testl(EBX, |
| Immediate(1 << target::ObjectAlignment::kNewObjectBitPosition)); |
| __ j(NOT_ZERO, &is_new); |
| |
| auto mark_stack_push = [&](intptr_t offset, const RuntimeEntry& entry) { |
| __ movl(EAX, Address(THR, offset)); |
| __ movl(ECX, Address(EAX, target::MarkingStackBlock::top_offset())); |
| __ movl(Address(EAX, ECX, TIMES_4, |
| target::MarkingStackBlock::pointers_offset()), |
| EBX); |
| __ incl(ECX); |
| __ movl(Address(EAX, target::MarkingStackBlock::top_offset()), ECX); |
| __ cmpl(ECX, Immediate(target::MarkingStackBlock::kSize)); |
| __ j(NOT_EQUAL, &done); |
| |
| { |
| LeafRuntimeScope rt(assembler, |
| /*frame_size=*/1 * target::kWordSize, |
| /*preserve_registers=*/true); |
| __ movl(Address(ESP, 0), THR); // Push the thread as the only argument. |
| rt.Call(entry, 1); |
| } |
| }; |
| |
| mark_stack_push(target::Thread::old_marking_stack_block_offset(), |
| kOldMarkingStackBlockProcessRuntimeEntry); |
| __ jmp(&done); |
| |
| __ Bind(&is_new); |
| mark_stack_push(target::Thread::new_marking_stack_block_offset(), |
| kNewMarkingStackBlockProcessRuntimeEntry); |
| |
| __ Bind(&done); |
| } |
| |
| Label add_to_remembered_set, remember_card; |
| __ Bind(&skip_marking); |
| __ movl(EAX, FieldAddress(EDX, target::Object::tags_offset())); |
| __ shrl(EAX, Immediate(target::UntaggedObject::kBarrierOverlapShift)); |
| __ andl(EAX, FieldAddress(EBX, target::Object::tags_offset())); |
| __ testl(EAX, Immediate(target::UntaggedObject::kGenerationalBarrierMask)); |
| __ j(NOT_ZERO, &add_to_remembered_set, Assembler::kNearJump); |
| __ popl(ECX); // Unspill. |
| __ popl(EAX); // Unspill. |
| __ ret(); |
| |
| __ Bind(&add_to_remembered_set); |
| if (cards) { |
| __ testl(FieldAddress(EDX, target::Object::tags_offset()), |
| Immediate(1 << target::UntaggedObject::kCardRememberedBit)); |
| __ j(NOT_ZERO, &remember_card, Assembler::kFarJump); // Unlikely. |
| } else { |
| #if defined(DEBUG) |
| Label ok; |
| __ testl(FieldAddress(EDX, target::Object::tags_offset()), |
| Immediate(1 << target::UntaggedObject::kCardRememberedBit)); |
| __ j(ZERO, &ok, Assembler::kFarJump); |
| __ Stop("Wrong barrier"); |
| __ Bind(&ok); |
| #endif |
| } |
| |
| { |
| // Atomically clear kOldAndNotRememberedBit. |
| Label retry, done; |
| __ movl(EAX, FieldAddress(EDX, target::Object::tags_offset())); |
| __ Bind(&retry); |
| __ movl(ECX, EAX); |
| __ testl(ECX, |
| Immediate(1 << target::UntaggedObject::kOldAndNotRememberedBit)); |
| __ j(ZERO, &done); // Remembered by another thread. |
| __ andl(ECX, |
| Immediate(~(1 << target::UntaggedObject::kOldAndNotRememberedBit))); |
| // Cmpxchgl: compare value = implicit operand EAX, new value = ECX. |
| // On failure, EAX is updated with the current value. |
| __ LockCmpxchgl(FieldAddress(EDX, target::Object::tags_offset()), ECX); |
| __ j(NOT_EQUAL, &retry, Assembler::kNearJump); |
| |
| // Load the StoreBuffer block out of the thread. Then load top_ out of the |
| // StoreBufferBlock and add the address to the pointers_. |
| // Spilled: EAX, ECX |
| // EDX: Address being stored |
| __ movl(EAX, Address(THR, target::Thread::store_buffer_block_offset())); |
| __ movl(ECX, Address(EAX, target::StoreBufferBlock::top_offset())); |
| __ movl( |
| Address(EAX, ECX, TIMES_4, target::StoreBufferBlock::pointers_offset()), |
| EDX); |
| |
| // Increment top_ and check for overflow. |
| // Spilled: EAX, ECX |
| // ECX: top_ |
| // EAX: StoreBufferBlock |
| __ incl(ECX); |
| __ movl(Address(EAX, target::StoreBufferBlock::top_offset()), ECX); |
| __ cmpl(ECX, Immediate(target::StoreBufferBlock::kSize)); |
| __ j(NOT_EQUAL, &done); |
| |
| { |
| LeafRuntimeScope rt(assembler, |
| /*frame_size=*/1 * target::kWordSize, |
| /*preserve_registers=*/true); |
| __ movl(Address(ESP, 0), THR); // Push the thread as the only argument. |
| rt.Call(kStoreBufferBlockProcessRuntimeEntry, 1); |
| } |
| |
| __ Bind(&done); |
| __ popl(ECX); |
| __ popl(EAX); |
| __ ret(); |
| } |
| if (cards) { |
| Label remember_card_slow; |
| |
| // Get card table. |
| __ Bind(&remember_card); |
| __ movl(EAX, EDX); // Object. |
| __ andl(EAX, Immediate(target::kPageMask)); // Page. |
| __ cmpl(Address(EAX, target::Page::card_table_offset()), Immediate(0)); |
| __ j(EQUAL, &remember_card_slow, Assembler::kNearJump); |
| |
| // Atomically dirty the card. |
| __ pushl(EBX); |
| __ subl(EDI, EAX); // Offset in page. |
| __ movl(EAX, |
| Address(EAX, target::Page::card_table_offset())); // Card table. |
| __ movl(ECX, EDI); |
| __ shrl(EDI, |
| Immediate(target::Page::kBytesPerCardLog2 + |
| target::kBitsPerWordLog2)); // Word offset. |
| __ shrl(ECX, Immediate(target::Page::kBytesPerCardLog2)); |
| __ movl(EBX, Immediate(1)); |
| __ shll(EBX, ECX); // Bit mask. (Shift amount is mod 32.) |
| __ lock(); |
| __ orl(Address(EAX, EDI, TIMES_4, 0), EBX); |
| __ popl(EBX); |
| __ popl(ECX); |
| __ popl(EAX); |
| __ ret(); |
| |
| // Card table not yet allocated. |
| __ Bind(&remember_card_slow); |
| |
| { |
| LeafRuntimeScope rt(assembler, |
| /*frame_size=*/2 * target::kWordSize, |
| /*preserve_registers=*/true); |
| __ movl(Address(ESP, 0 * target::kWordSize), EDX); // Object |
| __ movl(Address(ESP, 1 * target::kWordSize), EDI); // Slot |
| rt.Call(kRememberCardRuntimeEntry, 2); |
| } |
| __ popl(ECX); |
| __ popl(EAX); |
| __ ret(); |
| } |
| } |
| |
| void StubCodeCompiler::GenerateWriteBarrierStub() { |
| GenerateWriteBarrierStubHelper(assembler, false); |
| } |
| |
| void StubCodeCompiler::GenerateArrayWriteBarrierStub() { |
| GenerateWriteBarrierStubHelper(assembler, true); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateObjectStub() { |
| __ int3(); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateObjectParameterizedStub() { |
| __ int3(); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateObjectSlowStub() { |
| __ int3(); |
| } |
| |
| // Called for inline allocation of objects. |
| // Input parameters: |
| // ESP : points to return address. |
| // AllocateObjectABI::kTypeArgumentsPos : type arguments object |
| // (only if class is parameterized). |
| // Uses AllocateObjectABI::kResultReg, EBX, ECX, EDI as temporary registers. |
| // Returns patch_code_pc offset where patching code for disabling the stub |
| // has been generated (similar to regularly generated Dart code). |
| void StubCodeCompiler::GenerateAllocationStubForClass( |
| UnresolvedPcRelativeCalls* unresolved_calls, |
| const Class& cls, |
| const Code& allocate_object, |
| const Code& allocat_object_parametrized) { |
| const Immediate& raw_null = Immediate(target::ToRawPointer(NullObject())); |
| // The generated code is different if the class is parameterized. |
| const bool is_cls_parameterized = target::Class::NumTypeArguments(cls) > 0; |
| ASSERT(!is_cls_parameterized || target::Class::TypeArgumentsFieldOffset( |
| cls) != target::Class::kNoTypeArguments); |
| // kInlineInstanceSize is a constant used as a threshold for determining |
| // when the object initialization should be done as a loop or as |
| // straight line code. |
| const int kInlineInstanceSize = 12; // In words. |
| const intptr_t instance_size = target::Class::GetInstanceSize(cls); |
| ASSERT(instance_size > 0); |
| |
| // AllocateObjectABI::kTypeArgumentsReg: new object type arguments |
| // (if is_cls_parameterized). |
| if (!FLAG_use_slow_path && FLAG_inline_alloc && |
| target::Heap::IsAllocatableInNewSpace(instance_size) && |
| !target::Class::TraceAllocation(cls)) { |
| Label slow_case; |
| // Allocate the object and update top to point to |
| // next object start and initialize the allocated object. |
| // AllocateObjectABI::kTypeArgumentsReg: new object type arguments |
| // (if is_cls_parameterized). |
| __ movl(AllocateObjectABI::kResultReg, |
| Address(THR, target::Thread::top_offset())); |
| __ leal(EBX, Address(AllocateObjectABI::kResultReg, instance_size)); |
| // Check if the allocation fits into the remaining space. |
| // AllocateObjectABI::kResultReg: potential new object start. |
| // EBX: potential next object start. |
| __ cmpl(EBX, Address(THR, target::Thread::end_offset())); |
| __ j(ABOVE_EQUAL, &slow_case); |
| __ CheckAllocationCanary(AllocateObjectABI::kResultReg); |
| __ movl(Address(THR, target::Thread::top_offset()), EBX); |
| |
| // AllocateObjectABI::kResultReg: new object start (untagged). |
| // EBX: next object start. |
| // AllocateObjectABI::kTypeArgumentsReg: new object type arguments |
| // (if is_cls_parameterized). |
| // Set the tags. |
| ASSERT(target::Class::GetId(cls) != kIllegalCid); |
| uword tags = target::MakeTagWordForNewSpaceObject(target::Class::GetId(cls), |
| instance_size); |
| __ movl( |
| Address(AllocateObjectABI::kResultReg, target::Object::tags_offset()), |
| Immediate(tags)); |
| __ addl(AllocateObjectABI::kResultReg, Immediate(kHeapObjectTag)); |
| |
| // Initialize the remaining words of the object. |
| |
| // AllocateObjectABI::kResultReg: new object (tagged). |
| // EBX: next object start. |
| // AllocateObjectABI::kTypeArgumentsReg: new object type arguments |
| // (if is_cls_parameterized). |
| // First try inlining the initialization without a loop. |
| if (instance_size < (kInlineInstanceSize * target::kWordSize)) { |
| // Check if the object contains any non-header fields. |
| // Small objects are initialized using a consecutive set of writes. |
| for (intptr_t current_offset = target::Instance::first_field_offset(); |
| current_offset < instance_size; |
| current_offset += target::kWordSize) { |
| __ StoreObjectIntoObjectNoBarrier( |
| AllocateObjectABI::kResultReg, |
| FieldAddress(AllocateObjectABI::kResultReg, current_offset), |
| NullObject()); |
| } |
| } else { |
| __ leal(ECX, FieldAddress(AllocateObjectABI::kResultReg, |
| target::Instance::first_field_offset())); |
| // Loop until the whole object is initialized. |
| // AllocateObjectABI::kResultReg: new object (tagged). |
| // EBX: next object start. |
| // ECX: next word to be initialized. |
| // AllocateObjectABI::kTypeArgumentsReg: new object type arguments |
| // (if is_cls_parameterized). |
| Label loop; |
| __ Bind(&loop); |
| for (intptr_t offset = 0; offset < target::kObjectAlignment; |
| offset += target::kWordSize) { |
| __ StoreObjectIntoObjectNoBarrier(AllocateObjectABI::kResultReg, |
| Address(ECX, offset), NullObject()); |
| } |
| // Safe to only check every kObjectAlignment bytes instead of each word. |
| ASSERT(kAllocationRedZoneSize >= target::kObjectAlignment); |
| __ addl(ECX, Immediate(target::kObjectAlignment)); |
| __ cmpl(ECX, EBX); |
| __ j(UNSIGNED_LESS, &loop); |
| __ WriteAllocationCanary(EBX); // Fix overshoot. |
| } |
| if (is_cls_parameterized) { |
| // AllocateObjectABI::kResultReg: new object (tagged). |
| // AllocateObjectABI::kTypeArgumentsReg: new object type arguments. |
| // Set the type arguments in the new object. |
| const intptr_t offset = target::Class::TypeArgumentsFieldOffset(cls); |
| __ StoreIntoObjectNoBarrier( |
| AllocateObjectABI::kResultReg, |
| FieldAddress(AllocateObjectABI::kResultReg, offset), |
| AllocateObjectABI::kTypeArgumentsReg); |
| } |
| // Done allocating and initializing the instance. |
| // AllocateObjectABI::kResultReg: new object (tagged). |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } |
| // If is_cls_parameterized: |
| // AllocateObjectABI::kTypeArgumentsReg: new object type arguments. |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ pushl(raw_null); // Setup space on stack for return value. |
| __ PushObject( |
| CastHandle<Object>(cls)); // Push class of object to be allocated. |
| if (is_cls_parameterized) { |
| // Push type arguments of object to be allocated. |
| __ pushl(AllocateObjectABI::kTypeArgumentsReg); |
| } else { |
| __ pushl(raw_null); // Push null type arguments. |
| } |
| __ CallRuntime(kAllocateObjectRuntimeEntry, 2); // Allocate object. |
| __ popl(AllocateObjectABI::kResultReg); // Drop type arguments. |
| __ popl(AllocateObjectABI::kResultReg); // Drop class. |
| __ popl(AllocateObjectABI::kResultReg); // Pop allocated object. |
| |
| if (AllocateObjectInstr::WillAllocateNewOrRemembered(cls)) { |
| // Write-barrier elimination is enabled for [cls] and we therefore need to |
| // ensure that the object is in new-space or has remembered bit set. |
| EnsureIsNewOrRemembered(); |
| } |
| |
| // AllocateObjectABI::kResultReg: new object |
| // Restore the frame pointer. |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| // Called for invoking "dynamic noSuchMethod(Invocation invocation)" function |
| // from the entry code of a dart function after an error in passed argument |
| // name or number is detected. |
| // Input parameters: |
| // ESP : points to return address. |
| // ESP + 4 : address of last argument. |
| // EDX : arguments descriptor array. |
| // Uses EAX, EBX, EDI as temporary registers. |
| void StubCodeCompiler::GenerateCallClosureNoSuchMethodStub() { |
| __ EnterStubFrame(); |
| |
| // Load the receiver. |
| __ movl(EDI, FieldAddress(EDX, target::ArgumentsDescriptor::size_offset())); |
| __ movl(EAX, |
| Address(EBP, EDI, TIMES_2, |
| target::frame_layout.param_end_from_fp * target::kWordSize)); |
| |
| // Load the function. |
| __ movl(EBX, FieldAddress(EAX, target::Closure::function_offset())); |
| |
| __ pushl(Immediate(0)); // Setup space on stack for result from noSuchMethod. |
| __ pushl(EAX); // Receiver. |
| __ pushl(EBX); // Function. |
| __ pushl(EDX); // Arguments descriptor array. |
| |
| // Adjust arguments count. |
| __ cmpl( |
| FieldAddress(EDX, target::ArgumentsDescriptor::type_args_len_offset()), |
| Immediate(0)); |
| __ movl(EDX, EDI); |
| Label args_count_ok; |
| __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
| __ addl(EDX, Immediate(target::ToRawSmi(1))); // Include the type arguments. |
| __ Bind(&args_count_ok); |
| |
| // EDX: Smi-tagged arguments array length. |
| PushArrayOfArguments(assembler); |
| |
| const intptr_t kNumArgs = 4; |
| __ CallRuntime(kNoSuchMethodFromPrologueRuntimeEntry, kNumArgs); |
| // noSuchMethod on closures always throws an error, so it will never return. |
| __ int3(); |
| } |
| |
| // Cannot use function object from ICData as it may be the inlined |
| // function and not the top-scope function. |
| void StubCodeCompiler::GenerateOptimizedUsageCounterIncrement() { |
| Register ic_reg = ECX; |
| Register func_reg = EAX; |
| if (FLAG_trace_optimized_ic_calls) { |
| __ EnterStubFrame(); |
| __ pushl(func_reg); // Preserve |
| __ pushl(ic_reg); // Preserve. |
| __ pushl(ic_reg); // Argument. |
| __ pushl(func_reg); // Argument. |
| __ CallRuntime(kTraceICCallRuntimeEntry, 2); |
| __ popl(EAX); // Discard argument; |
| __ popl(EAX); // Discard argument; |
| __ popl(ic_reg); // Restore. |
| __ popl(func_reg); // Restore. |
| __ LeaveFrame(); |
| } |
| __ incl(FieldAddress(func_reg, target::Function::usage_counter_offset())); |
| } |
| |
| // Loads function into 'temp_reg'. |
| void StubCodeCompiler::GenerateUsageCounterIncrement(Register temp_reg) { |
| if (FLAG_optimization_counter_threshold >= 0) { |
| Register func_reg = temp_reg; |
| ASSERT(func_reg != IC_DATA_REG); |
| __ Comment("Increment function counter"); |
| __ movl(func_reg, |
| FieldAddress(IC_DATA_REG, target::ICData::owner_offset())); |
| __ incl(FieldAddress(func_reg, target::Function::usage_counter_offset())); |
| } |
| } |
| |
| // Note: ECX must be preserved. |
| // Attempt a quick Smi operation for known operations ('kind'). The ICData |
| // must have been primed with a Smi/Smi check that will be used for counting |
| // the invocations. |
| static void EmitFastSmiOp(Assembler* assembler, |
| Token::Kind kind, |
| intptr_t num_args, |
| Label* not_smi_or_overflow) { |
| __ Comment("Fast Smi op"); |
| ASSERT(num_args == 2); |
| __ movl(EAX, Address(ESP, +2 * target::kWordSize)); // Left |
| __ movl(EDI, Address(ESP, +1 * target::kWordSize)); // Right |
| __ movl(EBX, EDI); |
| __ orl(EBX, EAX); |
| __ testl(EBX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, not_smi_or_overflow, Assembler::kNearJump); |
| switch (kind) { |
| case Token::kADD: { |
| __ addl(EAX, EDI); |
| __ j(OVERFLOW, not_smi_or_overflow, Assembler::kNearJump); |
| break; |
| } |
| case Token::kLT: { |
| Label done, is_true; |
| __ cmpl(EAX, EDI); |
| __ setcc(GREATER_EQUAL, AL); |
| __ movzxb(EAX, AL); // EAX := EAX < EDI ? 0 : 1 |
| __ movl(EAX, |
| Address(THR, EAX, TIMES_4, target::Thread::bool_true_offset())); |
| ASSERT(target::Thread::bool_true_offset() + 4 == |
| target::Thread::bool_false_offset()); |
| break; |
| } |
| case Token::kEQ: { |
| Label done, is_true; |
| __ cmpl(EAX, EDI); |
| __ setcc(NOT_EQUAL, AL); |
| __ movzxb(EAX, AL); // EAX := EAX == EDI ? 0 : 1 |
| __ movl(EAX, |
| Address(THR, EAX, TIMES_4, target::Thread::bool_true_offset())); |
| ASSERT(target::Thread::bool_true_offset() + 4 == |
| target::Thread::bool_false_offset()); |
| break; |
| } |
| default: |
| UNIMPLEMENTED(); |
| } |
| |
| // ECX: IC data object. |
| __ movl(EBX, FieldAddress(ECX, target::ICData::entries_offset())); |
| // EBX: ic_data_array with check entries: classes and target functions. |
| __ leal(EBX, FieldAddress(EBX, target::Array::data_offset())); |
| #if defined(DEBUG) |
| // Check that first entry is for Smi/Smi. |
| Label error, ok; |
| const Immediate& imm_smi_cid = Immediate(target::ToRawSmi(kSmiCid)); |
| __ cmpl(Address(EBX, 0 * target::kWordSize), imm_smi_cid); |
| __ j(NOT_EQUAL, &error, Assembler::kNearJump); |
| __ cmpl(Address(EBX, 1 * target::kWordSize), imm_smi_cid); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Bind(&error); |
| __ Stop("Incorrect IC data"); |
| __ Bind(&ok); |
| #endif |
| if (FLAG_optimization_counter_threshold >= 0) { |
| const intptr_t count_offset = |
| target::ICData::CountIndexFor(num_args) * target::kWordSize; |
| // Update counter, ignore overflow. |
| __ addl(Address(EBX, count_offset), Immediate(target::ToRawSmi(1))); |
| } |
| __ ret(); |
| } |
| |
| // Generate inline cache check for 'num_args'. |
| // EBX: receiver (if instance call) |
| // ECX: ICData |
| // ESP[0]: return address |
| // Control flow: |
| // - If receiver is null -> jump to IC miss. |
| // - If receiver is Smi -> load Smi class. |
| // - If receiver is not-Smi -> load receiver's class. |
| // - Check if 'num_args' (including receiver) match any IC data group. |
| // - Match found -> jump to target. |
| // - Match not found -> jump to IC miss. |
| void StubCodeCompiler::GenerateNArgsCheckInlineCacheStub( |
| intptr_t num_args, |
| const RuntimeEntry& handle_ic_miss, |
| Token::Kind kind, |
| Optimized optimized, |
| CallType type, |
| Exactness exactness) { |
| GenerateNArgsCheckInlineCacheStubForEntryKind(num_args, handle_ic_miss, kind, |
| optimized, type, exactness, |
| CodeEntryKind::kNormal); |
| __ BindUncheckedEntryPoint(); |
| GenerateNArgsCheckInlineCacheStubForEntryKind(num_args, handle_ic_miss, kind, |
| optimized, type, exactness, |
| CodeEntryKind::kUnchecked); |
| } |
| |
| void StubCodeCompiler::GenerateNArgsCheckInlineCacheStubForEntryKind( |
| intptr_t num_args, |
| const RuntimeEntry& handle_ic_miss, |
| Token::Kind kind, |
| Optimized optimized, |
| CallType type, |
| Exactness exactness, |
| CodeEntryKind entry_kind) { |
| if (optimized == kOptimized) { |
| GenerateOptimizedUsageCounterIncrement(); |
| } else { |
| GenerateUsageCounterIncrement(/* scratch */ EAX); |
| } |
| |
| ASSERT(num_args == 1 || num_args == 2); |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that the IC data array has NumArgsTested() == num_args. |
| // 'NumArgsTested' is stored in the least significant bits of 'state_bits'. |
| __ movl(EAX, FieldAddress(ECX, target::ICData::state_bits_offset())); |
| ASSERT(target::ICData::NumArgsTestedShift() == 0); // No shift needed. |
| __ andl(EAX, Immediate(target::ICData::NumArgsTestedMask())); |
| __ cmpl(EAX, Immediate(num_args)); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Incorrect stub for IC data"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| |
| #if !defined(PRODUCT) |
| Label stepping, done_stepping; |
| if (optimized == kUnoptimized) { |
| __ Comment("Check single stepping"); |
| __ LoadIsolate(EAX); |
| __ cmpb(Address(EAX, target::Isolate::single_step_offset()), Immediate(0)); |
| __ j(NOT_EQUAL, &stepping); |
| __ Bind(&done_stepping); |
| } |
| #endif |
| Label not_smi_or_overflow; |
| if (kind != Token::kILLEGAL) { |
| EmitFastSmiOp(assembler, kind, num_args, ¬_smi_or_overflow); |
| } |
| __ Bind(¬_smi_or_overflow); |
| |
| __ Comment("Extract ICData initial values and receiver cid"); |
| // ECX: IC data object (preserved). |
| // Load arguments descriptor into EDX. |
| __ movl( |
| ARGS_DESC_REG, |
| FieldAddress(ECX, target::CallSiteData::arguments_descriptor_offset())); |
| // Loop that checks if there is an IC data match. |
| Label loop, found, miss; |
| // ECX: IC data object (preserved). |
| __ movl(EBX, FieldAddress(ECX, target::ICData::entries_offset())); |
| // EBX: ic_data_array with check entries: classes and target functions. |
| __ leal(EBX, FieldAddress(EBX, target::Array::data_offset())); |
| // EBX: points directly to the first ic data array element. |
| |
| // Get argument descriptor into EAX. In the 1-argument case this is the |
| // last time we need the argument descriptor, and we reuse EAX for the |
| // class IDs from the IC descriptor. In the 2-argument case we preserve |
| // the argument descriptor in EAX. |
| __ movl(EAX, FieldAddress(ARGS_DESC_REG, |
| target::ArgumentsDescriptor::count_offset())); |
| if (num_args == 1) { |
| // Load receiver into EDI. |
| __ movl(EDI, |
| Address(ESP, EAX, TIMES_2, 0)); // EAX (argument count) is Smi. |
| __ LoadTaggedClassIdMayBeSmi(EAX, EDI); |
| // EAX: receiver class ID as Smi. |
| } |
| |
| __ Comment("ICData loop"); |
| |
| // We unroll the generic one that is generated once more than the others. |
| bool optimize = kind == Token::kILLEGAL; |
| const intptr_t target_offset = |
| target::ICData::TargetIndexFor(num_args) * target::kWordSize; |
| const intptr_t count_offset = |
| target::ICData::CountIndexFor(num_args) * target::kWordSize; |
| const intptr_t exactness_offset = |
| target::ICData::ExactnessIndexFor(num_args) * target::kWordSize; |
| const intptr_t entry_size = target::ICData::TestEntryLengthFor( |
| num_args, exactness == kCheckExactness) * |
| target::kWordSize; |
| |
| __ Bind(&loop); |
| for (int unroll = optimize ? 4 : 2; unroll >= 0; unroll--) { |
| Label update; |
| if (num_args == 1) { |
| __ movl(EDI, Address(EBX, 0)); |
| __ cmpl(EDI, EAX); // Class id match? |
| __ j(EQUAL, &found); // Break. |
| __ addl(EBX, Immediate(entry_size)); // Next entry. |
| __ cmpl(EDI, Immediate(target::ToRawSmi(kIllegalCid))); // Done? |
| } else { |
| ASSERT(num_args == 2); |
| // Load receiver into EDI. |
| __ movl(EDI, Address(ESP, EAX, TIMES_2, 0)); |
| __ LoadTaggedClassIdMayBeSmi(EDI, EDI); |
| __ cmpl(EDI, Address(EBX, 0)); // Class id match? |
| __ j(NOT_EQUAL, &update); // Continue. |
| |
| // Load second argument into EDI. |
| __ movl(EDI, Address(ESP, EAX, TIMES_2, -target::kWordSize)); |
| __ LoadTaggedClassIdMayBeSmi(EDI, EDI); |
| __ cmpl(EDI, Address(EBX, target::kWordSize)); // Class id match? |
| __ j(EQUAL, &found); // Break. |
| |
| __ Bind(&update); |
| __ addl(EBX, Immediate(entry_size)); // Next entry. |
| __ cmpl(Address(EBX, -entry_size), |
| Immediate(target::ToRawSmi(kIllegalCid))); // Done? |
| } |
| |
| if (unroll == 0) { |
| __ j(NOT_EQUAL, &loop); |
| } else { |
| __ j(EQUAL, &miss); |
| } |
| } |
| |
| __ Bind(&miss); |
| __ Comment("IC miss"); |
| // Compute address of arguments (first read number of arguments from |
| // arguments descriptor array and then compute address on the stack). |
| __ movl(EAX, FieldAddress(ARGS_DESC_REG, |
| target::ArgumentsDescriptor::count_offset())); |
| __ leal(EAX, Address(ESP, EAX, TIMES_2, 0)); // EAX is Smi. |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ pushl(ARGS_DESC_REG); // Preserve arguments descriptor array. |
| __ pushl(ECX); // Preserve IC data object. |
| __ pushl(Immediate(0)); // Result slot. |
| // Push call arguments. |
| for (intptr_t i = 0; i < num_args; i++) { |
| __ movl(EBX, Address(EAX, -target::kWordSize * i)); |
| __ pushl(EBX); |
| } |
| __ pushl(ECX); // Pass IC data object. |
| __ CallRuntime(handle_ic_miss, num_args + 1); |
| // Remove the call arguments pushed earlier, including the IC data object. |
| for (intptr_t i = 0; i < num_args + 1; i++) { |
| __ popl(EAX); |
| } |
| __ popl(FUNCTION_REG); // Pop returned function object into EAX. |
| __ popl(ECX); // Restore IC data array. |
| __ popl(ARGS_DESC_REG); // Restore arguments descriptor array. |
| __ LeaveFrame(); |
| Label call_target_function; |
| ASSERT(!FLAG_precompiled_mode); |
| __ jmp(&call_target_function); |
| |
| __ Bind(&found); |
| // EBX: Pointer to an IC data check group. |
| Label call_target_function_through_unchecked_entry; |
| if (exactness == kCheckExactness) { |
| Label exactness_ok; |
| ASSERT(num_args == 1); |
| __ movl(EDI, Address(EBX, exactness_offset)); |
| __ cmpl(EDI, Immediate(target::ToRawSmi( |
| StaticTypeExactnessState::HasExactSuperType().Encode()))); |
| __ j(LESS, &exactness_ok); |
| __ j(EQUAL, &call_target_function_through_unchecked_entry); |
| |
| // Check trivial exactness. |
| // Note: UntaggedICData::receivers_static_type_ is guaranteed to be not null |
| // because we only emit calls to this stub when it is not null. |
| __ movl(EAX, FieldAddress(ARGS_DESC_REG, |
| target::ArgumentsDescriptor::count_offset())); |
| __ movl(EAX, Address(ESP, EAX, TIMES_2, 0)); // Receiver |
| // EDI contains an offset to type arguments in words as a smi, |
| // hence TIMES_2. EAX is guaranteed to be non-smi because it is expected |
| // to have type arguments. |
| __ movl(EDI, |
| FieldAddress(EAX, EDI, TIMES_2, 0)); // Receiver's type arguments |
| __ movl(EAX, |
| FieldAddress(ECX, target::ICData::receivers_static_type_offset())); |
| __ cmpl(EDI, FieldAddress(EAX, target::Type::arguments_offset())); |
| __ j(EQUAL, &call_target_function_through_unchecked_entry); |
| |
| // Update exactness state (not-exact anymore). |
| __ movl(Address(EBX, exactness_offset), |
| Immediate(target::ToRawSmi( |
| StaticTypeExactnessState::NotExact().Encode()))); |
| __ Bind(&exactness_ok); |
| } |
| |
| if (FLAG_optimization_counter_threshold >= 0) { |
| __ Comment("Update caller's counter"); |
| // Ignore overflow. |
| __ addl(Address(EBX, count_offset), Immediate(target::ToRawSmi(1))); |
| } |
| |
| __ movl(FUNCTION_REG, Address(EBX, target_offset)); |
| __ Bind(&call_target_function); |
| __ Comment("Call target"); |
| // EAX: Target function. |
| __ jmp(FieldAddress(FUNCTION_REG, |
| target::Function::entry_point_offset(entry_kind))); |
| |
| if (exactness == kCheckExactness) { |
| __ Bind(&call_target_function_through_unchecked_entry); |
| if (FLAG_optimization_counter_threshold >= 0) { |
| __ Comment("Update ICData counter"); |
| // Ignore overflow. |
| __ addl(Address(EBX, count_offset), Immediate(target::ToRawSmi(1))); |
| } |
| __ Comment("Call target (via unchecked entry point)"); |
| __ LoadCompressed(FUNCTION_REG, Address(EBX, target_offset)); |
| __ jmp(FieldAddress(FUNCTION_REG, target::Function::entry_point_offset( |
| CodeEntryKind::kUnchecked))); |
| } |
| |
| #if !defined(PRODUCT) |
| if (optimized == kUnoptimized) { |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ pushl(EBX); // Preserve receiver. |
| __ pushl(ECX); // Preserve ICData. |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ popl(ECX); // Restore ICData. |
| __ popl(EBX); // Restore receiver. |
| __ LeaveFrame(); |
| __ jmp(&done_stepping); |
| } |
| #endif |
| } |
| |
| // EBX: receiver |
| // ECX: ICData |
| // ESP[0]: return address |
| void StubCodeCompiler::GenerateOneArgCheckInlineCacheStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // EBX: receiver |
| // ECX: ICData |
| // ESP[0]: return address |
| void StubCodeCompiler::GenerateOneArgCheckInlineCacheWithExactnessCheckStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kInstanceCall, kCheckExactness); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateMintSharedWithFPURegsStub() { |
| __ Stop("Unimplemented"); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateMintSharedWithoutFPURegsStub() { |
| __ Stop("Unimplemented"); |
| } |
| |
| // EBX: receiver |
| // ECX: ICData |
| // ESP[0]: return address |
| void StubCodeCompiler::GenerateTwoArgsCheckInlineCacheStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // EBX: receiver |
| // ECX: ICData |
| // ESP[0]: return address |
| void StubCodeCompiler::GenerateSmiAddInlineCacheStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kADD, kUnoptimized, |
| kInstanceCall, kIgnoreExactness); |
| } |
| |
| // EBX: receiver |
| // ECX: ICData |
| // ESP[0]: return address |
| void StubCodeCompiler::GenerateSmiLessInlineCacheStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kLT, kUnoptimized, |
| kInstanceCall, kIgnoreExactness); |
| } |
| |
| // EBX: receiver |
| // ECX: ICData |
| // ESP[0]: return address |
| void StubCodeCompiler::GenerateSmiEqualInlineCacheStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kEQ, kUnoptimized, |
| kInstanceCall, kIgnoreExactness); |
| } |
| |
| // EBX: receiver |
| // ECX: ICData |
| // EAX: Function |
| // ESP[0]: return address |
| void StubCodeCompiler::GenerateOneArgOptimizedCheckInlineCacheStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, kOptimized, |
| kInstanceCall, kIgnoreExactness); |
| } |
| |
| // EBX: receiver |
| // ECX: ICData |
| // EAX: Function |
| // ESP[0]: return address |
| void StubCodeCompiler:: |
| GenerateOneArgOptimizedCheckInlineCacheWithExactnessCheckStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, kOptimized, |
| kInstanceCall, kCheckExactness); |
| } |
| |
| // EBX: receiver |
| // ECX: ICData |
| // EAX: Function |
| // ESP[0]: return address |
| void StubCodeCompiler::GenerateTwoArgsOptimizedCheckInlineCacheStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
| kOptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // ECX: ICData |
| // ESP[0]: return address |
| static void GenerateZeroArgsUnoptimizedStaticCallForEntryKind( |
| StubCodeCompiler* stub_code_compiler, |
| CodeEntryKind entry_kind) { |
| stub_code_compiler->GenerateUsageCounterIncrement(/* scratch */ EAX); |
| auto* const assembler = stub_code_compiler->assembler; |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that the IC data array has NumArgsTested() == num_args. |
| // 'NumArgsTested' is stored in the least significant bits of 'state_bits'. |
| __ movl(EBX, FieldAddress(ECX, target::ICData::state_bits_offset())); |
| ASSERT(target::ICData::NumArgsTestedShift() == 0); // No shift needed. |
| __ andl(EBX, Immediate(target::ICData::NumArgsTestedMask())); |
| __ cmpl(EBX, Immediate(0)); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Incorrect IC data for unoptimized static call"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| |
| #if !defined(PRODUCT) |
| // Check single stepping. |
| Label stepping, done_stepping; |
| __ LoadIsolate(EAX); |
| __ cmpb(Address(EAX, target::Isolate::single_step_offset()), Immediate(0)); |
| __ j(NOT_EQUAL, &stepping, Assembler::kNearJump); |
| __ Bind(&done_stepping); |
| #endif |
| |
| // ECX: IC data object (preserved). |
| __ movl(EBX, FieldAddress(ECX, target::ICData::entries_offset())); |
| // EBX: ic_data_array with entries: target functions and count. |
| __ leal(EBX, FieldAddress(EBX, target::Array::data_offset())); |
| // EBX: points directly to the first ic data array element. |
| const intptr_t target_offset = |
| target::ICData::TargetIndexFor(0) * target::kWordSize; |
| const intptr_t count_offset = |
| target::ICData::CountIndexFor(0) * target::kWordSize; |
| |
| if (FLAG_optimization_counter_threshold >= 0) { |
| // Increment count for this call, ignore overflow. |
| __ addl(Address(EBX, count_offset), Immediate(target::ToRawSmi(1))); |
| } |
| |
| // Load arguments descriptor into EDX. |
| __ movl( |
| ARGS_DESC_REG, |
| FieldAddress(ECX, target::CallSiteData::arguments_descriptor_offset())); |
| |
| // Get function and call it, if possible. |
| __ movl(FUNCTION_REG, Address(EBX, target_offset)); |
| __ jmp(FieldAddress(FUNCTION_REG, |
| target::Function::entry_point_offset(entry_kind))); |
| |
| #if !defined(PRODUCT) |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ pushl(ECX); |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ popl(ECX); |
| __ LeaveFrame(); |
| __ jmp(&done_stepping, Assembler::kNearJump); |
| #endif |
| } |
| |
| void StubCodeCompiler::GenerateZeroArgsUnoptimizedStaticCallStub() { |
| GenerateZeroArgsUnoptimizedStaticCallForEntryKind(this, |
| CodeEntryKind::kNormal); |
| __ BindUncheckedEntryPoint(); |
| GenerateZeroArgsUnoptimizedStaticCallForEntryKind(this, |
| CodeEntryKind::kUnchecked); |
| } |
| |
| // ECX: ICData |
| // ESP[0]: return address |
| void StubCodeCompiler::GenerateOneArgUnoptimizedStaticCallStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 2, kStaticCallMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kStaticCall, kIgnoreExactness); |
| } |
| |
| // ECX: ICData |
| // ESP[0]: return address |
| void StubCodeCompiler::GenerateTwoArgsUnoptimizedStaticCallStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 2, kStaticCallMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kStaticCall, kIgnoreExactness); |
| } |
| |
| // Stub for compiling a function and jumping to the compiled code. |
| // ARGS_DESC_REG: Arguments descriptor. |
| // FUNCTION_REG: Function. |
| void StubCodeCompiler::GenerateLazyCompileStub() { |
| __ EnterStubFrame(); |
| __ pushl(ARGS_DESC_REG); // Preserve arguments descriptor array. |
| __ pushl(FUNCTION_REG); // Pass function. |
| __ CallRuntime(kCompileFunctionRuntimeEntry, 1); |
| __ popl(FUNCTION_REG); // Restore function. |
| __ popl(ARGS_DESC_REG); // Restore arguments descriptor array. |
| __ LeaveFrame(); |
| |
| __ jmp(FieldAddress(FUNCTION_REG, target::Function::entry_point_offset())); |
| } |
| |
| // Stub for interpreting a function call. |
| // EDX: Arguments descriptor. |
| // EAX: Function. |
| void StubCodeCompiler::GenerateInterpretCallStub() { |
| #if defined(DART_DYNAMIC_MODULES) |
| |
| __ EnterStubFrame(); |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that we are always entering from Dart code. |
| __ cmpl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Adjust arguments count for type arguments vector. |
| __ movl(ECX, FieldAddress(EDX, target::ArgumentsDescriptor::count_offset())); |
| __ SmiUntag(ECX); |
| __ cmpl( |
| FieldAddress(EDX, target::ArgumentsDescriptor::type_args_len_offset()), |
| Immediate(0)); |
| Label args_count_ok; |
| __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
| __ incl(ECX); |
| __ Bind(&args_count_ok); |
| |
| // Compute argv. |
| __ leal(EBX, |
| Address(EBP, ECX, TIMES_4, |
| target::frame_layout.param_end_from_fp * target::kWordSize)); |
| |
| // Indicate decreasing memory addresses of arguments with negative argc. |
| __ negl(ECX); |
| |
| __ pushl(THR); // Arg 4: Thread. |
| __ pushl(EBX); // Arg 3: Argv. |
| __ pushl(ECX); // Arg 2: Negative argc. |
| __ pushl(EDX); // Arg 1: Arguments descriptor |
| __ pushl(EAX); // Arg 0: Function |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to Dart VM C++ code. |
| __ movl(Address(THR, target::Thread::top_exit_frame_info_offset()), EBP); |
| |
| // Mark that the thread exited generated code through a runtime call. |
| __ movl(Address(THR, target::Thread::exit_through_ffi_offset()), |
| Immediate(target::Thread::exit_through_runtime_call())); |
| |
| // Mark that the thread is executing VM code. |
| __ movl(EAX, |
| Address(THR, target::Thread::interpret_call_entry_point_offset())); |
| __ movl(Assembler::VMTagAddress(), EAX); |
| |
| __ call(EAX); |
| |
| __ Drop(5); |
| |
| // Mark that the thread is executing Dart code. |
| __ movl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| |
| // Mark that the thread has not exited generated Dart code. |
| __ movl(Address(THR, target::Thread::exit_through_ffi_offset()), |
| Immediate(0)); |
| |
| // Reset exit frame information in Isolate's mutator thread structure. |
| __ movl(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| |
| __ LeaveFrame(); |
| __ ret(); |
| |
| #else |
| __ Stop("Not using Dart dynamic modules"); |
| #endif // defined(DART_DYNAMIC_MODULES) |
| } |
| |
| // ECX: Contains an ICData. |
| void StubCodeCompiler::GenerateICCallBreakpointStub() { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| __ EnterStubFrame(); |
| __ pushl(EBX); // Preserve receiver. |
| __ pushl(ECX); // Preserve ICData. |
| __ pushl(Immediate(0)); // Room for result. |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| __ popl(EAX); // Code of original stub. |
| __ popl(ECX); // Restore ICData. |
| __ popl(EBX); // Restore receiver. |
| __ LeaveFrame(); |
| // Jump to original stub. |
| __ jmp(FieldAddress(EAX, target::Code::entry_point_offset())); |
| #endif // defined(PRODUCT) |
| } |
| |
| void StubCodeCompiler::GenerateUnoptStaticCallBreakpointStub() { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| __ EnterStubFrame(); |
| __ pushl(ECX); // Preserve ICData. |
| __ pushl(Immediate(0)); // Room for result. |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| __ popl(EAX); // Code of original stub. |
| __ popl(ECX); // Restore ICData. |
| __ LeaveFrame(); |
| // Jump to original stub. |
| __ jmp(FieldAddress(EAX, target::Code::entry_point_offset())); |
| #endif // defined(PRODUCT) |
| } |
| |
| void StubCodeCompiler::GenerateRuntimeCallBreakpointStub() { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| __ EnterStubFrame(); |
| // Room for result. Debugger stub returns address of the |
| // unpatched runtime stub. |
| __ pushl(Immediate(0)); // Room for result. |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| __ popl(EAX); // Code of the original stub |
| __ LeaveFrame(); |
| // Jump to original stub. |
| __ jmp(FieldAddress(EAX, target::Code::entry_point_offset())); |
| #endif // defined(PRODUCT) |
| } |
| |
| // Called only from unoptimized code. |
| void StubCodeCompiler::GenerateDebugStepCheckStub() { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| // Check single stepping. |
| Label stepping, done_stepping; |
| __ LoadIsolate(EAX); |
| __ movzxb(EAX, Address(EAX, target::Isolate::single_step_offset())); |
| __ cmpl(EAX, Immediate(0)); |
| __ j(NOT_EQUAL, &stepping, Assembler::kNearJump); |
| __ Bind(&done_stepping); |
| __ ret(); |
| |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ LeaveFrame(); |
| __ jmp(&done_stepping, Assembler::kNearJump); |
| #endif // defined(PRODUCT) |
| } |
| |
| // Constants used for generating subtype test cache lookup stubs. |
| // We represent the depth of as a depth from the top of the stack at the |
| // start of the stub. That is, depths for input values are non-negative and |
| // depths for values pushed during the stub are negative. |
| |
| struct STCInternal : AllStatic { |
| // Used to initialize depths for conditionally-pushed values. |
| static constexpr intptr_t kNoDepth = kIntptrMin; |
| |
| // These inputs are always on the stack when the SubtypeNTestCacheStub is |
| // called. These absolute depths will be converted to relative depths within |
| // the stub to compensate for additional pushed values. |
| static constexpr intptr_t kFunctionTypeArgumentsDepth = 1; |
| static constexpr intptr_t kInstantiatorTypeArgumentsDepth = 2; |
| static constexpr intptr_t kDestinationTypeDepth = 3; |
| static constexpr intptr_t kInstanceDepth = 4; |
| static constexpr intptr_t kCacheDepth = 5; |
| |
| // Non-stack values are stored in non-kInstanceReg registers from TypeTestABI. |
| static constexpr Register kCacheArrayReg = |
| TypeTestABI::kInstantiatorTypeArgumentsReg; |
| static constexpr Register kScratchReg = TypeTestABI::kSubtypeTestCacheReg; |
| static constexpr Register kInstanceCidOrSignatureReg = |
| TypeTestABI::kFunctionTypeArgumentsReg; |
| static constexpr Register kInstanceInstantiatorTypeArgumentsReg = |
| TypeTestABI::kDstTypeReg; |
| }; |
| |
| static void GenerateSubtypeTestCacheLoop( |
| Assembler* assembler, |
| int n, |
| intptr_t original_tos_offset, |
| intptr_t parent_function_type_args_depth, |
| intptr_t delayed_type_args_depth, |
| Label* found, |
| Label* not_found, |
| Label* next_iteration) { |
| const auto& raw_null = Immediate(target::ToRawPointer(NullObject())); |
| |
| // Compares a value at the given depth from the stack to the value in src. |
| auto compare_to_stack = [&](Register src, intptr_t depth) { |
| ASSERT(original_tos_offset + depth >= 0); |
| __ CompareToStack(src, original_tos_offset + depth); |
| }; |
| |
| __ LoadAcquireCompressedFromOffset( |
| STCInternal::kScratchReg, STCInternal::kCacheArrayReg, |
| target::kCompressedWordSize * |
| target::SubtypeTestCache::kInstanceCidOrSignature); |
| __ cmpl(STCInternal::kScratchReg, raw_null); |
| __ j(EQUAL, not_found, Assembler::kNearJump); |
| __ cmpl(STCInternal::kScratchReg, STCInternal::kInstanceCidOrSignatureReg); |
| if (n == 1) { |
| __ j(EQUAL, found, Assembler::kNearJump); |
| return; |
| } |
| __ j(NOT_EQUAL, next_iteration, Assembler::kNearJump); |
| __ cmpl(STCInternal::kInstanceInstantiatorTypeArgumentsReg, |
| Address(STCInternal::kCacheArrayReg, |
| target::kWordSize * |
| target::SubtypeTestCache::kInstanceTypeArguments)); |
| if (n == 2) { |
| __ j(EQUAL, found, Assembler::kNearJump); |
| return; |
| } |
| __ j(NOT_EQUAL, next_iteration, Assembler::kNearJump); |
| __ movl(STCInternal::kScratchReg, |
| Address(STCInternal::kCacheArrayReg, |
| target::kWordSize * |
| target::SubtypeTestCache::kInstantiatorTypeArguments)); |
| compare_to_stack(STCInternal::kScratchReg, |
| STCInternal::kInstantiatorTypeArgumentsDepth); |
| if (n == 3) { |
| __ j(EQUAL, found, Assembler::kNearJump); |
| return; |
| } |
| __ j(NOT_EQUAL, next_iteration, Assembler::kNearJump); |
| __ movl(STCInternal::kScratchReg, |
| Address(STCInternal::kCacheArrayReg, |
| target::kWordSize * |
| target::SubtypeTestCache::kFunctionTypeArguments)); |
| compare_to_stack(STCInternal::kScratchReg, |
| STCInternal::kFunctionTypeArgumentsDepth); |
| if (n == 4) { |
| __ j(EQUAL, found, Assembler::kNearJump); |
| return; |
| } |
| __ j(NOT_EQUAL, next_iteration, Assembler::kNearJump); |
| __ movl( |
| STCInternal::kScratchReg, |
| Address( |
| STCInternal::kCacheArrayReg, |
| target::kWordSize * |
| target::SubtypeTestCache::kInstanceParentFunctionTypeArguments)); |
| compare_to_stack(STCInternal::kScratchReg, parent_function_type_args_depth); |
| if (n == 5) { |
| __ j(EQUAL, found, Assembler::kNearJump); |
| return; |
| } |
| __ j(NOT_EQUAL, next_iteration, Assembler::kNearJump); |
| __ movl( |
| STCInternal::kScratchReg, |
| Address( |
| STCInternal::kCacheArrayReg, |
| target::kWordSize * |
| target::SubtypeTestCache::kInstanceDelayedFunctionTypeArguments)); |
| compare_to_stack(STCInternal::kScratchReg, delayed_type_args_depth); |
| if (n == 6) { |
| __ j(EQUAL, found, Assembler::kNearJump); |
| return; |
| } |
| __ j(NOT_EQUAL, next_iteration, Assembler::kNearJump); |
| __ movl( |
| STCInternal::kScratchReg, |
| Address(STCInternal::kCacheArrayReg, |
| target::kWordSize * target::SubtypeTestCache::kDestinationType)); |
| compare_to_stack(STCInternal::kScratchReg, |
| STCInternal::kDestinationTypeDepth); |
| __ j(EQUAL, found, Assembler::kNearJump); |
| } |
| |
| // Used to check class and type arguments. Arguments passed on stack: |
| // TOS + 0: return address. |
| // TOS + 1: function type arguments (only used if n >= 4, can be raw_null). |
| // TOS + 2: instantiator type arguments (only used if n >= 3, can be raw_null). |
| // TOS + 3: destination_type (only used if n >= 7). |
| // TOS + 4: instance. |
| // TOS + 5: SubtypeTestCache. |
| // |
| // No registers are preserved by this stub. |
| // |
| // Result in SubtypeTestCacheReg::kResultReg: null -> not found, otherwise |
| // result (true or false). |
| void StubCodeCompiler::GenerateSubtypeNTestCacheStub(Assembler* assembler, |
| int n) { |
| ASSERT(n >= 1); |
| ASSERT(n <= SubtypeTestCache::kMaxInputs); |
| // If we need the parent function type arguments for a closure, we also need |
| // the delayed type arguments, so this case will never happen. |
| ASSERT(n != 5); |
| |
| const auto& raw_null = Immediate(target::ToRawPointer(NullObject())); |
| |
| __ LoadFromStack(TypeTestABI::kInstanceReg, STCInternal::kInstanceDepth); |
| |
| // Loop initialization (moved up here to avoid having all dependent loads |
| // after each other) |
| __ LoadFromStack(STCInternal::kCacheArrayReg, STCInternal::kCacheDepth); |
| #if defined(DEBUG) |
| // Verify the STC we received has exactly as many inputs as this stub expects. |
| Label search_stc; |
| __ LoadFromSlot(STCInternal::kScratchReg, STCInternal::kCacheArrayReg, |
| Slot::SubtypeTestCache_num_inputs()); |
| __ CompareImmediate(STCInternal::kScratchReg, n); |
| __ BranchIf(EQUAL, &search_stc, Assembler::kNearJump); |
| __ Breakpoint(); |
| __ Bind(&search_stc); |
| #endif |
| // We avoid a load-acquire barrier here by relying on the fact that all other |
| // loads from the array are data-dependent loads. |
| __ movl(STCInternal::kCacheArrayReg, |
| FieldAddress(STCInternal::kCacheArrayReg, |
| target::SubtypeTestCache::cache_offset())); |
| |
| // There is a maximum size for linear caches that is smaller than the size |
| // of any hash-based cache, so we check the size of the backing array to |
| // determine if this is a linear or hash-based cache. |
| __ LoadFromSlot(STCInternal::kScratchReg, STCInternal::kCacheArrayReg, |
| Slot::Array_length()); |
| __ CompareImmediate(STCInternal::kScratchReg, |
| target::ToRawSmi(SubtypeTestCache::kMaxLinearCacheSize)); |
| // For IA32, we never handle hash caches in the stub, as there's too much |
| // register pressure. |
| Label is_linear; |
| __ BranchIf(LESS_EQUAL, &is_linear, Assembler::kNearJump); |
| // Return null so that we'll continue to the runtime for hash-based caches. |
| __ movl(TypeTestABI::kSubtypeTestCacheResultReg, raw_null); |
| __ ret(); |
| __ Bind(&is_linear); |
| __ AddImmediate(STCInternal::kCacheArrayReg, |
| target::Array::data_offset() - kHeapObjectTag); |
| |
| Label loop, not_closure; |
| if (n >= 3) { |
| __ LoadClassIdMayBeSmi(STCInternal::kInstanceCidOrSignatureReg, |
| TypeTestABI::kInstanceReg); |
| } else { |
| __ LoadClassId(STCInternal::kInstanceCidOrSignatureReg, |
| TypeTestABI::kInstanceReg); |
| } |
| __ cmpl(STCInternal::kInstanceCidOrSignatureReg, Immediate(kClosureCid)); |
| __ j(NOT_EQUAL, ¬_closure, Assembler::kNearJump); |
| |
| // Closure handling. |
| { |
| __ movl(STCInternal::kInstanceCidOrSignatureReg, |
| FieldAddress(TypeTestABI::kInstanceReg, |
| target::Closure::function_offset())); |
| __ movl(STCInternal::kInstanceCidOrSignatureReg, |
| FieldAddress(STCInternal::kInstanceCidOrSignatureReg, |
| target::Function::signature_offset())); |
| if (n >= 2) { |
| __ movl( |
| STCInternal::kInstanceInstantiatorTypeArgumentsReg, |
| FieldAddress(TypeTestABI::kInstanceReg, |
| target::Closure::instantiator_type_arguments_offset())); |
| } |
| if (n >= 5) { |
| __ pushl(FieldAddress(TypeTestABI::kInstanceReg, |
| target::Closure::function_type_arguments_offset())); |
| } |
| if (n >= 6) { |
| __ pushl(FieldAddress(TypeTestABI::kInstanceReg, |
| target::Closure::delayed_type_arguments_offset())); |
| } |
| __ jmp(&loop, Assembler::kNearJump); |
| } |
| |
| // Non-Closure handling. |
| { |
| __ Bind(¬_closure); |
| if (n >= 2) { |
| Label has_no_type_arguments; |
| __ LoadClassById(STCInternal::kScratchReg, |
| STCInternal::kInstanceCidOrSignatureReg); |
| __ movl(STCInternal::kInstanceInstantiatorTypeArgumentsReg, raw_null); |
| __ movl( |
| STCInternal::kScratchReg, |
| FieldAddress(STCInternal::kScratchReg, |
| target::Class:: |
| host_type_arguments_field_offset_in_words_offset())); |
| __ cmpl(STCInternal::kScratchReg, |
| Immediate(target::Class::kNoTypeArguments)); |
| __ j(EQUAL, &has_no_type_arguments, Assembler::kNearJump); |
| __ movl(STCInternal::kInstanceInstantiatorTypeArgumentsReg, |
| FieldAddress(TypeTestABI::kInstanceReg, STCInternal::kScratchReg, |
| TIMES_4, 0)); |
| __ Bind(&has_no_type_arguments); |
| } |
| __ SmiTag(STCInternal::kInstanceCidOrSignatureReg); |
| if (n >= 5) { |
| __ pushl(raw_null); // parent function. |
| } |
| if (n >= 6) { |
| __ pushl(raw_null); // delayed. |
| } |
| } |
| |
| // Offset of the original top of the stack from the current top of stack. |
| intptr_t original_tos_offset = 0; |
| |
| // Additional data conditionally stored on the stack use negative depths |
| // that will be non-negative when adjusted for original_tos_offset. We |
| // initialize conditionally pushed values to kNoInput for extra checking. |
| intptr_t kInstanceParentFunctionTypeArgumentsDepth = STCInternal::kNoDepth; |
| intptr_t kInstanceDelayedFunctionTypeArgumentsDepth = STCInternal::kNoDepth; |
| |
| // Now that instance handling is done, both the delayed and parent function |
| // type arguments stack slots have been set, so any input uses must be |
| // offset by the new values and the new values can now be accessed in |
| // the following code without issue when n >= 6. |
| if (n >= 5) { |
| original_tos_offset++; |
| kInstanceParentFunctionTypeArgumentsDepth = -original_tos_offset; |
| } |
| if (n >= 6) { |
| original_tos_offset++; |
| kInstanceDelayedFunctionTypeArgumentsDepth = -original_tos_offset; |
| } |
| |
| Label found, not_found, done, next_iteration; |
| |
| // Loop header. |
| __ Bind(&loop); |
| GenerateSubtypeTestCacheLoop(assembler, n, original_tos_offset, |
| kInstanceParentFunctionTypeArgumentsDepth, |
| kInstanceDelayedFunctionTypeArgumentsDepth, |
| &found, ¬_found, &next_iteration); |
| __ Bind(&next_iteration); |
| __ addl(STCInternal::kCacheArrayReg, |
| Immediate(target::kWordSize * |
| target::SubtypeTestCache::kTestEntryLength)); |
| __ jmp(&loop, Assembler::kNearJump); |
| |
| __ Bind(&found); |
| if (n >= 5) { |
| __ Drop(original_tos_offset); |
| } |
| __ movl(TypeTestABI::kSubtypeTestCacheResultReg, |
| Address(STCInternal::kCacheArrayReg, |
| target::kWordSize * target::SubtypeTestCache::kTestResult)); |
| __ ret(); |
| |
| __ Bind(¬_found); |
| if (n >= 5) { |
| __ Drop(original_tos_offset); |
| } |
| // In the not found case, even though the field that determines occupancy was |
| // null, another thread might be updating the cache and in the middle of |
| // filling in the entry. Thus, we load the null object explicitly instead of |
| // just using the (possibly mid-update) test result field. |
| __ movl(TypeTestABI::kSubtypeTestCacheResultReg, raw_null); |
| __ ret(); |
| } |
| |
| // Return the current stack pointer address, used to do stack alignment checks. |
| // TOS + 0: return address |
| // Result in EAX. |
| void StubCodeCompiler::GenerateGetCStackPointerStub() { |
| __ leal(EAX, Address(ESP, target::kWordSize)); |
| __ ret(); |
| } |
| |
| // Jump to a frame on the call stack. |
| // TOS + 0: return address |
| // TOS + 1: program_counter |
| // TOS + 2: stack_pointer |
| // TOS + 3: frame_pointer |
| // TOS + 4: thread |
| // No Result. |
| void StubCodeCompiler::GenerateJumpToFrameStub() { |
| __ movl(THR, Address(ESP, 4 * target::kWordSize)); // Load target thread. |
| __ movl(EBP, |
| Address(ESP, 3 * target::kWordSize)); // Load target frame_pointer. |
| __ movl(EBX, |
| Address(ESP, 1 * target::kWordSize)); // Load target PC into EBX. |
| __ movl(ESP, |
| Address(ESP, 2 * target::kWordSize)); // Load target stack_pointer. |
| #if defined(USING_SHADOW_CALL_STACK) |
| #error Unimplemented |
| #endif |
| |
| Label exit_through_non_ffi; |
| // Check if we exited generated from FFI. If so do transition - this is needed |
| // because normally runtime calls transition back to generated via destructor |
| // of TransitionGeneratedToVM/Native that is part of runtime boilerplate |
| // code (see DEFINE_RUNTIME_ENTRY_IMPL in runtime_entry.h). Ffi calls don't |
| // have this boilerplate, don't have this stack resource, have to transition |
| // explicitly. |
| __ cmpl(compiler::Address( |
| THR, compiler::target::Thread::exit_through_ffi_offset()), |
| compiler::Immediate(target::Thread::exit_through_ffi())); |
| __ j(NOT_EQUAL, &exit_through_non_ffi, compiler::Assembler::kNearJump); |
| __ TransitionNativeToGenerated(ECX, /*leave_safepoint=*/true, |
| /*ignore_unwind_in_progress=*/true); |
| __ Bind(&exit_through_non_ffi); |
| |
| |