blob: 9e4023a584cc36aeb3865ded8610a5b92fddf56a [file] [log] [blame]
// Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
// For `AllocateObjectInstr::WillAllocateNewOrRemembered`
#include "vm/compiler/backend/il.h"
#define SHOULD_NOT_INCLUDE_RUNTIME
#include "vm/compiler/stub_code_compiler.h"
#if defined(TARGET_ARCH_IA32)
#include "vm/class_id.h"
#include "vm/code_entry_kind.h"
#include "vm/compiler/api/type_check_mode.h"
#include "vm/compiler/assembler/assembler.h"
#include "vm/compiler/backend/locations.h"
#include "vm/constants.h"
#include "vm/ffi_callback_metadata.h"
#include "vm/instructions.h"
#include "vm/static_type_exactness_state.h"
#include "vm/tags.h"
#define __ assembler->
namespace dart {
namespace compiler {
// Ensures that [EAX] is a new object, if not it will be added to the remembered
// set via a leaf runtime call.
//
// WARNING: This might clobber all registers except for [EAX], [THR] and [FP].
// The caller should simply call LeaveFrame() and return.
void StubCodeCompiler::EnsureIsNewOrRemembered() {
// If the object is not in an active TLAB, we call a leaf-runtime to add it to
// the remembered set and/or deferred marking worklist. This test assumes a
// Page's TLAB use is always ascending.
Label done;
__ AndImmediate(ECX, EAX, target::kPageMask);
__ LoadFromOffset(ECX, ECX, target::Page::original_top_offset());
__ CompareRegisters(EAX, ECX);
__ BranchIf(UNSIGNED_GREATER_EQUAL, &done);
{
LeafRuntimeScope rt(assembler,
/*frame_size=*/2 * target::kWordSize,
/*preserve_registers=*/false);
__ movl(Address(ESP, 1 * target::kWordSize), THR);
__ movl(Address(ESP, 0 * target::kWordSize), EAX);
rt.Call(kEnsureRememberedAndMarkingDeferredRuntimeEntry, 2);
}
__ Bind(&done);
}
// Input parameters:
// ESP : points to return address.
// ESP + 4 : address of last argument in argument array.
// ESP + 4*EDX : address of first argument in argument array.
// ESP + 4*EDX + 4 : address of return value.
// ECX : address of the runtime function to call.
// EDX : number of arguments to the call.
// Must preserve callee saved registers EDI and EBX.
void StubCodeCompiler::GenerateCallToRuntimeStub() {
const intptr_t thread_offset = target::NativeArguments::thread_offset();
const intptr_t argc_tag_offset = target::NativeArguments::argc_tag_offset();
const intptr_t argv_offset = target::NativeArguments::argv_offset();
const intptr_t retval_offset = target::NativeArguments::retval_offset();
__ movl(CODE_REG,
Address(THR, target::Thread::call_to_runtime_stub_offset()));
__ EnterStubFrame();
// Save exit frame information to enable stack walking as we are about
// to transition to Dart VM C++ code.
__ movl(Address(THR, target::Thread::top_exit_frame_info_offset()), EBP);
// Mark that the thread exited generated code through a runtime call.
__ movl(Address(THR, target::Thread::exit_through_ffi_offset()),
Immediate(target::Thread::exit_through_runtime_call()));
#if defined(DEBUG)
{
Label ok;
// Check that we are always entering from Dart code.
__ cmpl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId));
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Stop("Not coming from Dart code.");
__ Bind(&ok);
}
#endif
// Mark that the thread is executing VM code.
__ movl(Assembler::VMTagAddress(), ECX);
// Reserve space for arguments and align frame before entering C++ world.
__ AddImmediate(
ESP,
Immediate(-static_cast<int32_t>(target::NativeArguments::StructSize())));
if (OS::ActivationFrameAlignment() > 1) {
__ andl(ESP, Immediate(~(OS::ActivationFrameAlignment() - 1)));
}
// Pass NativeArguments structure by value and call runtime.
__ movl(Address(ESP, thread_offset), THR); // Set thread in NativeArgs.
__ movl(Address(ESP, argc_tag_offset), EDX); // Set argc in NativeArguments.
// Compute argv.
__ leal(EAX,
Address(EBP, EDX, TIMES_4,
target::frame_layout.param_end_from_fp * target::kWordSize));
__ movl(Address(ESP, argv_offset), EAX); // Set argv in NativeArguments.
__ addl(EAX,
Immediate(1 * target::kWordSize)); // Retval is next to 1st argument.
__ movl(Address(ESP, retval_offset), EAX); // Set retval in NativeArguments.
__ call(ECX);
__ movl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId));
// Mark that the thread has not exited generated Dart code.
__ movl(Address(THR, target::Thread::exit_through_ffi_offset()),
Immediate(0));
// Reset exit frame information in Isolate's mutator thread structure.
__ movl(Address(THR, target::Thread::top_exit_frame_info_offset()),
Immediate(0));
__ LeaveFrame();
// The following return can jump to a lazy-deopt stub, which assumes EAX
// contains a return value and will save it in a GC-visible way. We therefore
// have to ensure EAX does not contain any garbage value left from the C
// function we called (which has return type "void").
// (See GenerateDeoptimizationSequence::saved_result_slot_from_fp.)
__ xorl(EAX, EAX);
__ ret();
}
void StubCodeCompiler::GenerateEnterSafepointStub() {
__ pushal();
__ subl(SPREG, Immediate(8));
__ movsd(Address(SPREG, 0), XMM0);
__ EnterFrame(0);
__ ReserveAlignedFrameSpace(0);
__ movl(EAX, Address(THR, kEnterSafepointRuntimeEntry.OffsetFromThread()));
__ call(EAX);
__ LeaveFrame();
__ movsd(XMM0, Address(SPREG, 0));
__ addl(SPREG, Immediate(8));
__ popal();
__ ret();
}
static void GenerateExitSafepointStubCommon(Assembler* assembler,
uword runtime_entry_offset) {
__ pushal();
__ subl(SPREG, Immediate(8));
__ movsd(Address(SPREG, 0), XMM0);
__ EnterFrame(0);
__ ReserveAlignedFrameSpace(0);
// Set the execution state to VM while waiting for the safepoint to end.
// This isn't strictly necessary but enables tests to check that we're not
// in native code anymore. See tests/ffi/function_gc_test.dart for example.
__ movl(Address(THR, target::Thread::execution_state_offset()),
Immediate(target::Thread::vm_execution_state()));
__ movl(EAX, Address(THR, runtime_entry_offset));
__ call(EAX);
__ LeaveFrame();
__ movsd(XMM0, Address(SPREG, 0));
__ addl(SPREG, Immediate(8));
__ popal();
__ ret();
}
void StubCodeCompiler::GenerateExitSafepointStub() {
GenerateExitSafepointStubCommon(
assembler, kExitSafepointRuntimeEntry.OffsetFromThread());
}
void StubCodeCompiler::GenerateExitSafepointIgnoreUnwindInProgressStub() {
GenerateExitSafepointStubCommon(
assembler,
kExitSafepointIgnoreUnwindInProgressRuntimeEntry.OffsetFromThread());
}
void StubCodeCompiler::GenerateLoadBSSEntry(BSS::Relocation relocation,
Register dst,
Register tmp) {
// Only used in AOT.
__ Breakpoint();
}
// Calls a native function inside a safepoint.
//
// On entry:
// Stack: set up for native call
// EAX: target to call
//
// On exit:
// Stack: preserved
// EBX: clobbered (even though it's normally callee-saved)
void StubCodeCompiler::GenerateCallNativeThroughSafepointStub() {
__ popl(EBX);
__ movl(ECX, compiler::Immediate(target::Thread::exit_through_ffi()));
__ TransitionGeneratedToNative(EAX, FPREG, ECX /*volatile*/,
/*enter_safepoint=*/true);
__ call(EAX);
__ TransitionNativeToGenerated(ECX /*volatile*/, /*leave_safepoint=*/true);
__ jmp(EBX);
}
void StubCodeCompiler::GenerateFfiCallbackTrampolineStub() {
Label ret_4;
// EAX is volatile and doesn't hold any arguments.
COMPILE_ASSERT(!IsArgumentRegister(EAX) && !IsCalleeSavedRegister(EAX));
Label body, load_tramp_addr;
const intptr_t kCallLength = 5;
for (intptr_t i = 0; i < FfiCallbackMetadata::NumCallbackTrampolinesPerPage();
++i) {
// The FfiCallbackMetadata table is keyed by the trampoline entry point. So
// look up the current PC, then jump to the shared section. There's no easy
// way to get the PC in ia32 so we have to do a call, grab the return adress
// from the stack, then return here (mismatched call/ret causes problems),
// then jump to the shared section.
const intptr_t size_before = __ CodeSize();
__ call(&load_tramp_addr);
const intptr_t size_after = __ CodeSize();
ASSERT_EQUAL(size_after - size_before, kCallLength);
__ jmp(&body);
}
ASSERT_EQUAL(__ CodeSize(),
FfiCallbackMetadata::kNativeCallbackTrampolineSize *
FfiCallbackMetadata::NumCallbackTrampolinesPerPage());
const intptr_t shared_stub_start = __ CodeSize();
__ Bind(&load_tramp_addr);
// Load the return adress into EAX, and subtract the size of the call
// instruction. This is our original trampoline address.
__ movl(EAX, Address(SPREG, 0));
__ subl(EAX, Immediate(kCallLength));
__ ret();
__ Bind(&body);
// Save THR and EBX which are callee-saved.
__ pushl(THR);
__ pushl(EBX);
// THR & return address
COMPILE_ASSERT(FfiCallbackMetadata::kNativeCallbackTrampolineStackDelta == 4);
// Load the thread, verify the callback ID and exit the safepoint.
//
// We exit the safepoint inside DLRT_GetFfiCallbackMetadata in order to safe
// code size on this shared stub.
{
__ EnterFrame(0);
// entry_point, trampoline_type, &trampoline_type, &entry_point, trampoline
// ^------ GetFfiCallbackMetadata args ------^
__ ReserveAlignedFrameSpace(5 * target::kWordSize);
// Trampoline arg.
__ movl(Address(SPREG, 0 * target::kWordSize), EAX);
// Pointer to trampoline type stack slot.
__ movl(EAX, SPREG);
__ addl(EAX, Immediate(3 * target::kWordSize));
__ movl(Address(SPREG, 2 * target::kWordSize), EAX);
// Pointer to entry point stack slot.
__ addl(EAX, Immediate(target::kWordSize));
__ movl(Address(SPREG, 1 * target::kWordSize), EAX);
__ movl(EAX,
Immediate(reinterpret_cast<int64_t>(DLRT_GetFfiCallbackMetadata)));
__ call(EAX);
__ movl(THR, EAX);
// Save the trampoline type in EBX, and the entry point in ECX.
__ movl(EBX, Address(SPREG, 3 * target::kWordSize));
__ movl(ECX, Address(SPREG, 4 * target::kWordSize));
__ LeaveFrame();
// Save the trampoline type to the stack, because we'll need it after the
// call to decide whether to ret() or ret(4).
__ pushl(EBX);
}
COMPILE_ASSERT(!IsCalleeSavedRegister(ECX) && !IsArgumentRegister(ECX));
COMPILE_ASSERT(ECX != THR);
Label async_callback;
Label done;
// If GetFfiCallbackMetadata returned a null thread, it means that the async
// callback was invoked after it was deleted. In this case, do nothing.
__ cmpl(THR, Immediate(0));
__ j(EQUAL, &done, Assembler::kNearJump);
// Check the trampoline type to see how the callback should be invoked.
__ cmpl(EBX, Immediate(static_cast<uword>(
FfiCallbackMetadata::TrampolineType::kAsync)));
__ j(EQUAL, &async_callback, Assembler::kNearJump);
// Sync callback. The entry point contains the target function, so just call
// it. DLRT_GetThreadForNativeCallbackTrampoline exited the safepoint, so
// re-enter it afterwards.
// On entry to the function, there will be two extra slots on the stack:
// the saved THR and the return address. The target will know to skip them.
__ call(ECX);
// Takes care to not clobber *any* registers (besides scratch).
__ EnterFullSafepoint(/*scratch=*/ECX);
// Pop the trampoline type into ECX.
__ popl(ECX);
// Restore callee-saved registers.
__ popl(EBX);
__ popl(THR);
__ cmpl(ECX, Immediate(static_cast<uword>(
FfiCallbackMetadata::TrampolineType::kSync)));
__ j(NOT_EQUAL, &ret_4, Assembler::kNearJump);
__ ret();
__ Bind(&ret_4);
__ ret(Immediate(4));
__ Bind(&async_callback);
// Async callback. The entrypoint marshals the arguments into a message and
// sends it over the send port. DLRT_GetThreadForNativeCallbackTrampoline
// entered a temporary isolate, so exit it afterwards.
// On entry to the function, there will be two extra slots on the stack:
// the saved THR and the return address. The target will know to skip them.
__ call(ECX);
// Exit the temporary isolate.
{
__ EnterFrame(0);
__ ReserveAlignedFrameSpace(0);
__ movl(EAX,
Immediate(reinterpret_cast<int64_t>(DLRT_ExitTemporaryIsolate)));
__ CallCFunction(EAX);
__ LeaveFrame();
}
__ Bind(&done);
// Pop the trampoline type into ECX.
__ popl(ECX);
// Restore callee-saved registers.
__ popl(EBX);
__ popl(THR);
// Stack delta is always 0 for async callbacks.
__ ret();
// 'kNativeCallbackSharedStubSize' is an upper bound because the exact
// instruction size can vary slightly based on OS calling conventions.
ASSERT_LESS_OR_EQUAL(__ CodeSize() - shared_stub_start,
FfiCallbackMetadata::kNativeCallbackSharedStubSize);
ASSERT_LESS_OR_EQUAL(__ CodeSize(), FfiCallbackMetadata::kPageSize);
#if defined(DEBUG)
while (__ CodeSize() < FfiCallbackMetadata::kPageSize) {
__ Breakpoint();
}
#endif
}
void StubCodeCompiler::GenerateSharedStubGeneric(
bool save_fpu_registers,
intptr_t self_code_stub_offset_from_thread,
bool allow_return,
std::function<void()> perform_runtime_call) {
// Only used in AOT.
__ Breakpoint();
}
void StubCodeCompiler::GenerateSharedStub(
bool save_fpu_registers,
const RuntimeEntry* target,
intptr_t self_code_stub_offset_from_thread,
bool allow_return,
bool store_runtime_result_in_result_register) {
// Only used in AOT.
__ Breakpoint();
}
void StubCodeCompiler::GenerateRangeError(bool with_fpu_regs) {
// Only used in AOT.
__ Breakpoint();
}
void StubCodeCompiler::GenerateWriteError(bool with_fpu_regs) {
// Only used in AOT.
__ Breakpoint();
}
void StubCodeCompiler::GenerateDispatchTableNullErrorStub() {
// Only used in AOT.
__ Breakpoint();
}
// Input parameters:
// ESP : points to return address.
// ESP + 4 : address of return value.
// EAX : address of first argument in argument array.
// ECX : address of the native function to call.
// EDX : argc_tag including number of arguments and function kind.
static void GenerateCallNativeWithWrapperStub(Assembler* assembler,
Address wrapper_address) {
const intptr_t native_args_struct_offset =
target::NativeEntry::kNumCallWrapperArguments * target::kWordSize;
const intptr_t thread_offset =
target::NativeArguments::thread_offset() + native_args_struct_offset;
const intptr_t argc_tag_offset =
target::NativeArguments::argc_tag_offset() + native_args_struct_offset;
const intptr_t argv_offset =
target::NativeArguments::argv_offset() + native_args_struct_offset;
const intptr_t retval_offset =
target::NativeArguments::retval_offset() + native_args_struct_offset;
__ EnterStubFrame();
// Save exit frame information to enable stack walking as we are about
// to transition to dart VM code.
__ movl(Address(THR, target::Thread::top_exit_frame_info_offset()), EBP);
// Mark that the thread exited generated code through a runtime call.
__ movl(Address(THR, target::Thread::exit_through_ffi_offset()),
Immediate(target::Thread::exit_through_runtime_call()));
#if defined(DEBUG)
{
Label ok;
// Check that we are always entering from Dart code.
__ cmpl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId));
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Stop("Not coming from Dart code.");
__ Bind(&ok);
}
#endif
// Mark that the thread is executing native code.
__ movl(Assembler::VMTagAddress(), ECX);
// Reserve space for the native arguments structure, the outgoing parameters
// (pointer to the native arguments structure, the C function entry point)
// and align frame before entering the C++ world.
__ AddImmediate(
ESP,
Immediate(-static_cast<int32_t>(target::NativeArguments::StructSize()) -
(2 * target::kWordSize)));
if (OS::ActivationFrameAlignment() > 1) {
__ andl(ESP, Immediate(~(OS::ActivationFrameAlignment() - 1)));
}
// Pass NativeArguments structure by value and call native function.
// Set thread in NativeArgs.
__ movl(Address(ESP, thread_offset), THR);
// Set argc in NativeArguments.
__ movl(Address(ESP, argc_tag_offset), EDX);
// Set argv in NativeArguments.
__ movl(Address(ESP, argv_offset), EAX);
// Compute return value addr.
__ leal(EAX, Address(EBP, (target::frame_layout.param_end_from_fp + 1) *
target::kWordSize));
// Set retval in NativeArguments.
__ movl(Address(ESP, retval_offset), EAX);
// Pointer to the NativeArguments.
__ leal(EAX, Address(ESP, 2 * target::kWordSize));
// Pass the pointer to the NativeArguments.
__ movl(Address(ESP, 0), EAX);
__ movl(Address(ESP, target::kWordSize), ECX); // Function to call.
__ call(wrapper_address);
__ movl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId));
// Mark that the thread has not exited generated Dart code.
__ movl(Address(THR, target::Thread::exit_through_ffi_offset()),
Immediate(0));
// Reset exit frame information in Isolate's mutator thread structure.
__ movl(Address(THR, target::Thread::top_exit_frame_info_offset()),
Immediate(0));
__ LeaveFrame();
__ ret();
}
void StubCodeCompiler::GenerateCallNoScopeNativeStub() {
GenerateCallNativeWithWrapperStub(
assembler,
Address(THR,
target::Thread::no_scope_native_wrapper_entry_point_offset()));
}
void StubCodeCompiler::GenerateCallAutoScopeNativeStub() {
GenerateCallNativeWithWrapperStub(
assembler,
Address(THR,
target::Thread::auto_scope_native_wrapper_entry_point_offset()));
}
// Input parameters:
// ESP : points to return address.
// ESP + 4 : address of return value.
// EAX : address of first argument in argument array.
// ECX : address of the native function to call.
// EDX : argc_tag including number of arguments and function kind.
void StubCodeCompiler::GenerateCallBootstrapNativeStub() {
GenerateCallNativeWithWrapperStub(
assembler,
Address(THR,
target::Thread::bootstrap_native_wrapper_entry_point_offset()));
}
// Input parameters:
// ARGS_DESC_REG: arguments descriptor array.
void StubCodeCompiler::GenerateCallStaticFunctionStub() {
__ EnterStubFrame();
__ pushl(ARGS_DESC_REG); // Preserve arguments descriptor array.
__ pushl(Immediate(0)); // Setup space on stack for return value.
__ CallRuntime(kPatchStaticCallRuntimeEntry, 0);
__ popl(EAX); // Get Code object result.
__ popl(ARGS_DESC_REG); // Restore arguments descriptor array.
// Remove the stub frame as we are about to jump to the dart function.
__ LeaveFrame();
__ jmp(FieldAddress(EAX, target::Code::entry_point_offset()));
}
// Called from a static call only when an invalid code has been entered
// (invalid because its function was optimized or deoptimized).
// ARGS_DESC_REG: arguments descriptor array.
void StubCodeCompiler::GenerateFixCallersTargetStub() {
Label monomorphic;
__ BranchOnMonomorphicCheckedEntryJIT(&monomorphic);
// This was a static call.
__ EnterStubFrame();
__ pushl(ARGS_DESC_REG); // Preserve arguments descriptor array.
__ pushl(Immediate(0)); // Setup space on stack for return value.
__ CallRuntime(kFixCallersTargetRuntimeEntry, 0);
__ popl(EAX); // Get Code object.
__ popl(ARGS_DESC_REG); // Restore arguments descriptor array.
__ movl(EAX, FieldAddress(EAX, target::Code::entry_point_offset()));
__ LeaveFrame();
__ jmp(EAX);
__ int3();
__ Bind(&monomorphic);
// This was a switchable call.
__ EnterStubFrame();
__ pushl(Immediate(0)); // Result slot.
__ pushl(EBX); // Preserve receiver.
__ pushl(ECX); // Old cache value (also 2nd return value).
__ CallRuntime(kFixCallersTargetMonomorphicRuntimeEntry, 2);
__ popl(ECX); // Get target cache object.
__ popl(EBX); // Restore receiver.
__ popl(CODE_REG); // Get target Code object.
__ movl(EAX, FieldAddress(CODE_REG, target::Code::entry_point_offset(
CodeEntryKind::kMonomorphic)));
__ LeaveFrame();
__ jmp(EAX);
__ int3();
}
// Called from object allocate instruction when the allocation stub has been
// disabled.
void StubCodeCompiler::GenerateFixAllocationStubTargetStub() {
__ EnterStubFrame();
__ pushl(Immediate(0)); // Setup space on stack for return value.
__ CallRuntime(kFixAllocationStubTargetRuntimeEntry, 0);
__ popl(EAX); // Get Code object.
__ movl(EAX, FieldAddress(EAX, target::Code::entry_point_offset()));
__ LeaveFrame();
__ jmp(EAX);
__ int3();
}
// Called from object allocate instruction when the allocation stub for a
// generic class has been disabled.
void StubCodeCompiler::GenerateFixParameterizedAllocationStubTargetStub() {
__ EnterStubFrame();
// Preserve type arguments register.
__ pushl(AllocateObjectABI::kTypeArgumentsReg);
__ pushl(Immediate(0)); // Setup space on stack for return value.
__ CallRuntime(kFixAllocationStubTargetRuntimeEntry, 0);
__ popl(EAX); // Get Code object.
// Restore type arguments register.
__ popl(AllocateObjectABI::kTypeArgumentsReg);
__ movl(EAX, FieldAddress(EAX, target::Code::entry_point_offset()));
__ LeaveFrame();
__ jmp(EAX);
__ int3();
}
// Input parameters:
// EDX: smi-tagged argument count, may be zero.
// EBP[target::frame_layout.param_end_from_fp + 1]: last argument.
// Uses EAX, EBX, ECX, EDX, EDI.
static void PushArrayOfArguments(Assembler* assembler) {
// Allocate array to store arguments of caller.
const Immediate& raw_null = Immediate(target::ToRawPointer(NullObject()));
__ movl(ECX, raw_null); // Null element type for raw Array.
__ Call(StubCodeAllocateArray());
__ SmiUntag(EDX);
// EAX: newly allocated array.
// EDX: length of the array (was preserved by the stub).
__ pushl(EAX); // Array is in EAX and on top of stack.
__ leal(EBX,
Address(EBP, EDX, TIMES_4,
target::frame_layout.param_end_from_fp * target::kWordSize));
__ leal(ECX, FieldAddress(EAX, target::Array::data_offset()));
// EBX: address of first argument on stack.
// ECX: address of first argument in array.
Label loop, loop_condition;
__ jmp(&loop_condition, Assembler::kNearJump);
__ Bind(&loop);
__ movl(EDI, Address(EBX, 0));
// Generational barrier is needed, array is not necessarily in new space.
__ StoreIntoObject(EAX, Address(ECX, 0), EDI);
__ AddImmediate(ECX, Immediate(target::kWordSize));
__ AddImmediate(EBX, Immediate(-target::kWordSize));
__ Bind(&loop_condition);
__ decl(EDX);
__ j(POSITIVE, &loop, Assembler::kNearJump);
}
// Used by eager and lazy deoptimization. Preserve result in EAX if necessary.
// This stub translates optimized frame into unoptimized frame. The optimized
// frame can contain values in registers and on stack, the unoptimized
// frame contains all values on stack.
// Deoptimization occurs in following steps:
// - Push all registers that can contain values.
// - Call C routine to copy the stack and saved registers into temporary buffer.
// - Adjust caller's frame to correct unoptimized frame size.
// - Fill the unoptimized frame.
// - Materialize objects that require allocation (e.g. Double instances).
// GC can occur only after frame is fully rewritten.
// Stack after EnterDartFrame(0) below:
// +------------------+
// | PC marker | <- TOS
// +------------------+
// | Saved FP | <- FP of stub
// +------------------+
// | return-address | (deoptimization point)
// +------------------+
// | ... | <- SP of optimized frame
//
// Parts of the code cannot GC, part of the code can GC.
static void GenerateDeoptimizationSequence(Assembler* assembler,
DeoptStubKind kind) {
// Leaf runtime function DeoptimizeCopyFrame expects a Dart frame.
__ EnterDartFrame(0);
// The code in this frame may not cause GC. kDeoptimizeCopyFrameRuntimeEntry
// and kDeoptimizeFillFrameRuntimeEntry are leaf runtime calls.
const intptr_t saved_result_slot_from_fp =
target::frame_layout.first_local_from_fp + 1 -
(kNumberOfCpuRegisters - EAX);
const intptr_t saved_exception_slot_from_fp =
target::frame_layout.first_local_from_fp + 1 -
(kNumberOfCpuRegisters - EAX);
const intptr_t saved_stacktrace_slot_from_fp =
target::frame_layout.first_local_from_fp + 1 -
(kNumberOfCpuRegisters - EDX);
// Result in EAX is preserved as part of pushing all registers below.
// Push registers in their enumeration order: lowest register number at
// lowest address.
for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; i--) {
if (i == CODE_REG) {
// Save the original value of CODE_REG pushed before invoking this stub
// instead of the value used to call this stub.
__ pushl(Address(EBP, 2 * target::kWordSize));
} else {
__ pushl(static_cast<Register>(i));
}
}
__ subl(ESP, Immediate(kNumberOfXmmRegisters * kFpuRegisterSize));
intptr_t offset = 0;
for (intptr_t reg_idx = 0; reg_idx < kNumberOfXmmRegisters; ++reg_idx) {
XmmRegister xmm_reg = static_cast<XmmRegister>(reg_idx);
__ movups(Address(ESP, offset), xmm_reg);
offset += kFpuRegisterSize;
}
{
__ movl(ECX, ESP); // Preserve saved registers block.
LeafRuntimeScope rt(assembler,
/*frame_size=*/2 * target::kWordSize,
/*preserve_registers=*/false);
bool is_lazy =
(kind == kLazyDeoptFromReturn) || (kind == kLazyDeoptFromThrow);
__ movl(Address(ESP, 0 * target::kWordSize),
ECX); // Start of register block.
__ movl(Address(ESP, 1 * target::kWordSize), Immediate(is_lazy ? 1 : 0));
rt.Call(kDeoptimizeCopyFrameRuntimeEntry, 2);
// Result (EAX) is stack-size (FP - SP) in bytes.
}
if (kind == kLazyDeoptFromReturn) {
// Restore result into EBX temporarily.
__ movl(EBX, Address(EBP, saved_result_slot_from_fp * target::kWordSize));
} else if (kind == kLazyDeoptFromThrow) {
// Restore result into EBX temporarily.
__ movl(EBX,
Address(EBP, saved_exception_slot_from_fp * target::kWordSize));
__ movl(ECX,
Address(EBP, saved_stacktrace_slot_from_fp * target::kWordSize));
}
__ LeaveDartFrame();
__ popl(EDX); // Preserve return address.
__ movl(ESP, EBP); // Discard optimized frame.
__ subl(ESP, EAX); // Reserve space for deoptimized frame.
__ pushl(EDX); // Restore return address.
// Leaf runtime function DeoptimizeFillFrame expects a Dart frame.
__ EnterDartFrame(0);
if (kind == kLazyDeoptFromReturn) {
__ pushl(EBX); // Preserve result as first local.
} else if (kind == kLazyDeoptFromThrow) {
__ pushl(EBX); // Preserve exception as first local.
__ pushl(ECX); // Preserve stacktrace as first local.
}
{
LeafRuntimeScope rt(assembler,
/*frame_size=*/1 * target::kWordSize,
/*preserve_registers=*/false);
__ movl(Address(ESP, 0), EBP); // Pass last FP as parameter on stack.
rt.Call(kDeoptimizeFillFrameRuntimeEntry, 1);
}
if (kind == kLazyDeoptFromReturn) {
// Restore result into EBX.
__ movl(EBX, Address(EBP, target::frame_layout.first_local_from_fp *
target::kWordSize));
} else if (kind == kLazyDeoptFromThrow) {
// Restore result into EBX.
__ movl(EBX, Address(EBP, target::frame_layout.first_local_from_fp *
target::kWordSize));
__ movl(ECX, Address(EBP, (target::frame_layout.first_local_from_fp - 1) *
target::kWordSize));
}
// Code above cannot cause GC.
__ LeaveDartFrame();
// Frame is fully rewritten at this point and it is safe to perform a GC.
// Materialize any objects that were deferred by FillFrame because they
// require allocation.
__ EnterStubFrame();
if (kind == kLazyDeoptFromReturn) {
__ pushl(EBX); // Preserve result, it will be GC-d here.
} else if (kind == kLazyDeoptFromThrow) {
// Preserve CODE_REG for one more runtime call.
__ pushl(CODE_REG);
__ pushl(EBX); // Preserve exception, it will be GC-d here.
__ pushl(ECX); // Preserve stacktrace, it will be GC-d here.
}
__ pushl(Immediate(target::ToRawSmi(0))); // Space for the result.
__ CallRuntime(kDeoptimizeMaterializeRuntimeEntry, 0);
// Result tells stub how many bytes to remove from the expression stack
// of the bottom-most frame. They were used as materialization arguments.
__ popl(EBX);
__ SmiUntag(EBX);
if (kind == kLazyDeoptFromReturn) {
__ popl(EAX); // Restore result.
} else if (kind == kLazyDeoptFromThrow) {
__ popl(EDX); // Restore stacktrace.
__ popl(EAX); // Restore exception.
__ popl(CODE_REG);
}
__ LeaveStubFrame();
__ popl(ECX); // Pop return address.
__ addl(ESP, EBX); // Remove materialization arguments.
__ pushl(ECX); // Push return address.
// The caller is responsible for emitting the return instruction.
if (kind == kLazyDeoptFromThrow) {
// Unoptimized frame is now ready to accept the exception. Rethrow it to
// find the right handler. Ask rethrow machinery to bypass debugger it
// was already notified about this exception.
__ EnterStubFrame();
__ pushl(Immediate(target::ToRawSmi(0))); // Space for the result.
__ pushl(EAX); // Exception
__ pushl(EDX); // Stacktrace
__ pushl(Immediate(target::ToRawSmi(1))); // Bypass debugger.
__ CallRuntime(kReThrowRuntimeEntry, 3);
__ LeaveStubFrame();
}
}
// EAX: result, must be preserved
void StubCodeCompiler::GenerateDeoptimizeLazyFromReturnStub() {
// Return address for "call" to deopt stub.
__ pushl(Immediate(kZapReturnAddress));
GenerateDeoptimizationSequence(assembler, kLazyDeoptFromReturn);
__ ret();
}
// EAX: exception, must be preserved
// EDX: stacktrace, must be preserved
void StubCodeCompiler::GenerateDeoptimizeLazyFromThrowStub() {
// Return address for "call" to deopt stub.
__ pushl(Immediate(kZapReturnAddress));
GenerateDeoptimizationSequence(assembler, kLazyDeoptFromThrow);
__ ret();
}
void StubCodeCompiler::GenerateDeoptimizeStub() {
GenerateDeoptimizationSequence(assembler, kEagerDeopt);
__ ret();
}
static void GenerateNoSuchMethodDispatcherCode(Assembler* assembler) {
__ EnterStubFrame();
__ movl(EDX, FieldAddress(
ECX, target::CallSiteData::arguments_descriptor_offset()));
// Load the receiver.
__ movl(EDI, FieldAddress(EDX, target::ArgumentsDescriptor::size_offset()));
__ movl(EAX,
Address(EBP, EDI, TIMES_HALF_WORD_SIZE,
target::frame_layout.param_end_from_fp * target::kWordSize));
__ pushl(Immediate(0)); // Setup space on stack for result.
__ pushl(EAX); // Receiver.
__ pushl(ECX); // ICData/MegamorphicCache.
__ pushl(EDX); // Arguments descriptor array.
// Adjust arguments count.
__ cmpl(
FieldAddress(EDX, target::ArgumentsDescriptor::type_args_len_offset()),
Immediate(0));
__ movl(EDX, EDI);
Label args_count_ok;
__ j(EQUAL, &args_count_ok, Assembler::kNearJump);
__ addl(EDX, Immediate(target::ToRawSmi(1))); // Include the type arguments.
__ Bind(&args_count_ok);
// EDX: Smi-tagged arguments array length.
PushArrayOfArguments(assembler);
const intptr_t kNumArgs = 4;
__ CallRuntime(kNoSuchMethodFromCallStubRuntimeEntry, kNumArgs);
__ Drop(4);
__ popl(EAX); // Return value.
__ LeaveFrame();
__ ret();
}
void StubCodeCompiler::GenerateNoSuchMethodDispatcherStub() {
GenerateNoSuchMethodDispatcherCode(assembler);
}
// Called for inline allocation of arrays.
// Input registers (preserved):
// AllocateArrayABI::kLengthReg: array length as Smi.
// AllocateArrayABI::kTypeArgumentsReg: type arguments of array.
// Output registers:
// AllocateArrayABI::kResultReg: newly allocated array.
// Clobbered:
// EBX, EDI
void StubCodeCompiler::GenerateAllocateArrayStub() {
if (!FLAG_use_slow_path && FLAG_inline_alloc) {
Label slow_case;
// Compute the size to be allocated, it is based on the array length
// and is computed as:
// RoundedAllocationSize(
// (array_length * kwordSize) + target::Array::header_size()).
// Assert that length is a Smi.
__ testl(AllocateArrayABI::kLengthReg, Immediate(kSmiTagMask));
__ j(NOT_ZERO, &slow_case);
// Check for maximum allowed length.
const Immediate& max_len =
Immediate(target::ToRawSmi(target::Array::kMaxNewSpaceElements));
__ cmpl(AllocateArrayABI::kLengthReg, max_len);
__ j(ABOVE, &slow_case);
NOT_IN_PRODUCT(__ MaybeTraceAllocation(kArrayCid, &slow_case,
AllocateArrayABI::kResultReg));
const intptr_t fixed_size_plus_alignment_padding =
target::Array::header_size() +
target::ObjectAlignment::kObjectAlignment - 1;
// AllocateArrayABI::kLengthReg is Smi.
__ leal(EBX, Address(AllocateArrayABI::kLengthReg, TIMES_2,
fixed_size_plus_alignment_padding));
ASSERT(kSmiTagShift == 1);
__ andl(EBX, Immediate(-target::ObjectAlignment::kObjectAlignment));
// AllocateArrayABI::kTypeArgumentsReg: array type arguments.
// AllocateArrayABI::kLengthReg: array length as Smi.
// EBX: allocation size.
const intptr_t cid = kArrayCid;
__ movl(AllocateArrayABI::kResultReg,
Address(THR, target::Thread::top_offset()));
__ addl(EBX, AllocateArrayABI::kResultReg);
__ j(CARRY, &slow_case);
// Check if the allocation fits into the remaining space.
// AllocateArrayABI::kResultReg: potential new object start.
// EBX: potential next object start.
// AllocateArrayABI::kTypeArgumentsReg: array type arguments.
// AllocateArrayABI::kLengthReg: array length as Smi).
__ cmpl(EBX, Address(THR, target::Thread::end_offset()));
__ j(ABOVE_EQUAL, &slow_case);
__ CheckAllocationCanary(AllocateArrayABI::kResultReg);
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
__ movl(Address(THR, target::Thread::top_offset()), EBX);
__ subl(EBX, AllocateArrayABI::kResultReg);
__ addl(AllocateArrayABI::kResultReg, Immediate(kHeapObjectTag));
// Initialize the tags.
// AllocateArrayABI::kResultReg: new object start as a tagged pointer.
// EBX: allocation size.
// AllocateArrayABI::kTypeArgumentsReg: array type arguments.
// AllocateArrayABI::kLengthReg: array length as Smi.
{
Label size_tag_overflow, done;
__ movl(EDI, EBX);
__ cmpl(EDI, Immediate(target::UntaggedObject::kSizeTagMaxSizeTag));
__ j(ABOVE, &size_tag_overflow, Assembler::kNearJump);
__ shll(EDI, Immediate(target::UntaggedObject::kTagBitsSizeTagPos -
target::ObjectAlignment::kObjectAlignmentLog2));
__ jmp(&done, Assembler::kNearJump);
__ Bind(&size_tag_overflow);
__ movl(EDI, Immediate(0));
__ Bind(&done);
// Get the class index and insert it into the tags.
uword tags = target::MakeTagWordForNewSpaceObject(cid, 0);
__ orl(EDI, Immediate(tags));
__ movl(FieldAddress(AllocateArrayABI::kResultReg,
target::Object::tags_offset()),
EDI); // Tags.
}
// AllocateArrayABI::kResultReg: new object start as a tagged pointer.
// EBX: allocation size.
// AllocateArrayABI::kTypeArgumentsReg: array type arguments.
// AllocateArrayABI::kLengthReg: Array length as Smi (preserved).
// Store the type argument field.
// No generational barrier needed, since we store into a new object.
__ StoreIntoObjectNoBarrier(
AllocateArrayABI::kResultReg,
FieldAddress(AllocateArrayABI::kResultReg,
target::Array::type_arguments_offset()),
AllocateArrayABI::kTypeArgumentsReg);
// Set the length field.
__ StoreIntoObjectNoBarrier(AllocateArrayABI::kResultReg,
FieldAddress(AllocateArrayABI::kResultReg,
target::Array::length_offset()),
AllocateArrayABI::kLengthReg);
// Initialize all array elements to raw_null.
// AllocateArrayABI::kResultReg: new object start as a tagged pointer.
// EBX: allocation size.
// EDI: iterator which initially points to the start of the variable
// data area to be initialized.
// AllocateArrayABI::kTypeArgumentsReg: array type arguments.
// AllocateArrayABI::kLengthReg: array length as Smi.
__ leal(EBX, FieldAddress(AllocateArrayABI::kResultReg, EBX, TIMES_1, 0));
__ leal(EDI, FieldAddress(AllocateArrayABI::kResultReg,
target::Array::header_size()));
Label loop;
__ Bind(&loop);
for (intptr_t offset = 0; offset < target::kObjectAlignment;
offset += target::kWordSize) {
// No generational barrier needed, since we are storing null.
__ StoreObjectIntoObjectNoBarrier(AllocateArrayABI::kResultReg,
Address(EDI, offset), NullObject());
}
// Safe to only check every kObjectAlignment bytes instead of each word.
ASSERT(kAllocationRedZoneSize >= target::kObjectAlignment);
__ addl(EDI, Immediate(target::kObjectAlignment));
__ cmpl(EDI, EBX);
__ j(UNSIGNED_LESS, &loop);
__ WriteAllocationCanary(EBX); // Fix overshoot.
__ ret();
// Unable to allocate the array using the fast inline code, just call
// into the runtime.
__ Bind(&slow_case);
}
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
__ pushl(Immediate(0)); // Setup space on stack for return value.
__ pushl(AllocateArrayABI::kLengthReg); // Array length as Smi.
__ pushl(AllocateArrayABI::kTypeArgumentsReg); // Type arguments.
__ CallRuntime(kAllocateArrayRuntimeEntry, 2);
// Write-barrier elimination might be enabled for this array (depending on the
// array length). To be sure we will check if the allocated object is in old
// space and if so call a leaf runtime to add it to the remembered set.
__ movl(AllocateArrayABI::kResultReg, Address(ESP, 2 * target::kWordSize));
EnsureIsNewOrRemembered();
__ popl(AllocateArrayABI::kTypeArgumentsReg); // Pop type arguments.
__ popl(AllocateArrayABI::kLengthReg); // Pop array length argument.
__ popl(AllocateArrayABI::kResultReg); // Pop return value from return slot.
__ LeaveFrame();
__ ret();
}
// Called when invoking dart code from C++ (VM code).
// Input parameters:
// ESP : points to return address.
// ESP + 4 : code object of the dart function to call.
// ESP + 8 : arguments descriptor array.
// ESP + 12 : arguments array.
// ESP + 16 : current thread.
// Uses EAX, EDX, ECX, EDI as temporary registers.
void StubCodeCompiler::GenerateInvokeDartCodeStub() {
const intptr_t kTargetCodeOffset = 2 * target::kWordSize;
const intptr_t kArgumentsDescOffset = 3 * target::kWordSize;
const intptr_t kArgumentsOffset = 4 * target::kWordSize;
const intptr_t kThreadOffset = 5 * target::kWordSize;
__ EnterFrame(0);
// Push code object to PC marker slot.
__ movl(EAX, Address(EBP, kThreadOffset));
__ pushl(Address(EAX, target::Thread::invoke_dart_code_stub_offset()));
// Save C++ ABI callee-saved registers.
__ pushl(EBX);
__ pushl(ESI);
__ pushl(EDI);
// Set up THR, which caches the current thread in Dart code.
__ movl(THR, EAX);
#if defined(USING_SHADOW_CALL_STACK)
#error Unimplemented
#endif
// Save the current VMTag on the stack.
__ movl(ECX, Assembler::VMTagAddress());
__ pushl(ECX);
// Save top resource and top exit frame info. Use EDX as a temporary register.
// StackFrameIterator reads the top exit frame info saved in this frame.
__ movl(EDX, Address(THR, target::Thread::top_resource_offset()));
__ pushl(EDX);
__ movl(Address(THR, target::Thread::top_resource_offset()), Immediate(0));
__ movl(EAX, Address(THR, target::Thread::exit_through_ffi_offset()));
__ pushl(EAX);
__ movl(Address(THR, target::Thread::exit_through_ffi_offset()),
Immediate(0));
// The constant target::frame_layout.exit_link_slot_from_entry_fp must be
// kept in sync with the code below.
ASSERT(target::frame_layout.exit_link_slot_from_entry_fp == -8);
__ movl(EDX, Address(THR, target::Thread::top_exit_frame_info_offset()));
__ pushl(EDX);
__ movl(Address(THR, target::Thread::top_exit_frame_info_offset()),
Immediate(0));
// In debug mode, verify that we've pushed the top exit frame info at the
// correct offset from FP.
__ EmitEntryFrameVerification();
// Mark that the thread is executing Dart code. Do this after initializing the
// exit link for the profiler.
__ movl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId));
// Load arguments descriptor array into EDX.
__ movl(EDX, Address(EBP, kArgumentsDescOffset));
// Load number of arguments into EBX and adjust count for type arguments.
__ movl(EBX, FieldAddress(EDX, target::ArgumentsDescriptor::count_offset()));
__ cmpl(
FieldAddress(EDX, target::ArgumentsDescriptor::type_args_len_offset()),
Immediate(0));
Label args_count_ok;
__ j(EQUAL, &args_count_ok, Assembler::kNearJump);
__ addl(EBX, Immediate(target::ToRawSmi(1))); // Include the type arguments.
__ Bind(&args_count_ok);
// Save number of arguments as Smi on stack, replacing ArgumentsDesc.
__ movl(Address(EBP, kArgumentsDescOffset), EBX);
__ SmiUntag(EBX);
// Set up arguments for the dart call.
Label push_arguments;
Label done_push_arguments;
__ testl(EBX, EBX); // check if there are arguments.
__ j(ZERO, &done_push_arguments, Assembler::kNearJump);
__ movl(EAX, Immediate(0));
// Compute address of 'arguments array' data area into EDI.
__ movl(EDI, Address(EBP, kArgumentsOffset));
__ leal(EDI, FieldAddress(EDI, target::Array::data_offset()));
__ Bind(&push_arguments);
__ movl(ECX, Address(EDI, EAX, TIMES_4, 0));
__ pushl(ECX);
__ incl(EAX);
__ cmpl(EAX, EBX);
__ j(LESS, &push_arguments, Assembler::kNearJump);
__ Bind(&done_push_arguments);
// Call the dart code entrypoint.
__ movl(EAX, Address(EBP, kTargetCodeOffset));
__ call(FieldAddress(EAX, target::Code::entry_point_offset()));
// Read the saved number of passed arguments as Smi.
__ movl(EDX, Address(EBP, kArgumentsDescOffset));
// Get rid of arguments pushed on the stack.
__ leal(ESP, Address(ESP, EDX, TIMES_2, 0)); // EDX is a Smi.
// Restore the saved top exit frame info and top resource back into the
// Isolate structure.
__ popl(Address(THR, target::Thread::top_exit_frame_info_offset()));
__ popl(Address(THR, target::Thread::exit_through_ffi_offset()));
__ popl(Address(THR, target::Thread::top_resource_offset()));
// Restore the current VMTag from the stack.
__ popl(Assembler::VMTagAddress());
#if defined(USING_SHADOW_CALL_STACK)
#error Unimplemented
#endif
// Restore C++ ABI callee-saved registers.
__ popl(EDI);
__ popl(ESI);
__ popl(EBX);
// Restore the frame pointer.
__ LeaveFrame();
__ ret();
}
// Called when invoking compiled Dart code from interpreted Dart code.
// Input parameters:
// ESP : points to return address.
// ESP + 4 : code object of the dart function to call.
// ESP + 8 : arguments descriptor array.
// ESP + 12: address of first argument.
// ESP + 16 : current thread.
void StubCodeCompiler::GenerateInvokeDartCodeFromBytecodeStub() {
#if defined(DART_DYNAMIC_MODULES)
const intptr_t kTargetCodeOffset = 2 * target::kWordSize;
const intptr_t kArgumentsDescOffset = 3 * target::kWordSize;
const intptr_t kArgumentsOffset = 4 * target::kWordSize;
const intptr_t kThreadOffset = 5 * target::kWordSize;
__ EnterFrame(0);
// Push code object to PC marker slot.
__ movl(EAX, Address(EBP, kThreadOffset));
__ pushl(Address(EAX, target::Thread::invoke_dart_code_stub_offset()));
// Save C++ ABI callee-saved registers.
__ pushl(EBX);
__ pushl(ESI);
__ pushl(EDI);
// Set up THR, which caches the current thread in Dart code.
__ movl(THR, EAX);
#if defined(USING_SHADOW_CALL_STACK)
#error Unimplemented
#endif
// Save the current VMTag on the stack.
__ movl(ECX, Assembler::VMTagAddress());
__ pushl(ECX);
// Save top resource and top exit frame info. Use EDX as a temporary register.
// StackFrameIterator reads the top exit frame info saved in this frame.
__ movl(EDX, Address(THR, target::Thread::top_resource_offset()));
__ pushl(EDX);
__ movl(Address(THR, target::Thread::top_resource_offset()), Immediate(0));
__ movl(EAX, Address(THR, target::Thread::exit_through_ffi_offset()));
__ pushl(EAX);
__ movl(Address(THR, target::Thread::exit_through_ffi_offset()),
Immediate(0));
// The constant target::frame_layout.exit_link_slot_from_entry_fp must be
// kept in sync with the code below.
ASSERT(target::frame_layout.exit_link_slot_from_entry_fp == -8);
__ movl(EDX, Address(THR, target::Thread::top_exit_frame_info_offset()));
__ pushl(EDX);
__ movl(Address(THR, target::Thread::top_exit_frame_info_offset()),
Immediate(0));
// In debug mode, verify that we've pushed the top exit frame info at the
// correct offset from FP.
__ EmitEntryFrameVerification();
// Mark that the thread is executing Dart code. Do this after initializing the
// exit link for the profiler.
__ movl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId));
// Load arguments descriptor array into EDX.
__ movl(EDX, Address(EBP, kArgumentsDescOffset));
// Load number of arguments into EBX and adjust count for type arguments.
__ movl(EBX, FieldAddress(EDX, target::ArgumentsDescriptor::count_offset()));
__ cmpl(
FieldAddress(EDX, target::ArgumentsDescriptor::type_args_len_offset()),
Immediate(0));
Label args_count_ok;
__ j(EQUAL, &args_count_ok, Assembler::kNearJump);
__ addl(EBX, Immediate(target::ToRawSmi(1))); // Include the type arguments.
__ Bind(&args_count_ok);
// Save number of arguments as Smi on stack, replacing ArgumentsDesc.
__ movl(Address(EBP, kArgumentsDescOffset), EBX);
__ SmiUntag(EBX);
// Set up arguments for the dart call.
Label push_arguments;
Label done_push_arguments;
__ testl(EBX, EBX); // check if there are arguments.
__ j(ZERO, &done_push_arguments, Assembler::kNearJump);
__ movl(EAX, Immediate(0));
// Compute address of 'arguments array' data area into EDI.
__ movl(EDI, Address(EBP, kArgumentsOffset));
__ Bind(&push_arguments);
__ movl(ECX, Address(EDI, EAX, TIMES_4, 0));
__ pushl(ECX);
__ incl(EAX);
__ cmpl(EAX, EBX);
__ j(LESS, &push_arguments, Assembler::kNearJump);
__ Bind(&done_push_arguments);
// Call the dart code entrypoint.
__ movl(EAX, Address(EBP, kTargetCodeOffset));
__ call(FieldAddress(EAX, target::Code::entry_point_offset()));
// Read the saved number of passed arguments as Smi.
__ movl(EDX, Address(EBP, kArgumentsDescOffset));
// Get rid of arguments pushed on the stack.
__ leal(ESP, Address(ESP, EDX, TIMES_2, 0)); // EDX is a Smi.
// Restore the saved top exit frame info and top resource back into the
// Isolate structure.
__ popl(Address(THR, target::Thread::top_exit_frame_info_offset()));
__ popl(Address(THR, target::Thread::exit_through_ffi_offset()));
__ popl(Address(THR, target::Thread::top_resource_offset()));
// Restore the current VMTag from the stack.
__ popl(Assembler::VMTagAddress());
#if defined(USING_SHADOW_CALL_STACK)
#error Unimplemented
#endif
// Restore C++ ABI callee-saved registers.
__ popl(EDI);
__ popl(ESI);
__ popl(EBX);
// Restore the frame pointer.
__ LeaveFrame();
__ ret();
#else
__ Stop("Not using Dart dynamic modules");
#endif // defined(DART_DYNAMIC_MODULES)
}
// Helper to generate space allocation of context stub.
// This does not initialise the fields of the context.
// Input:
// EDX: number of context variables.
// Output:
// EAX: new allocated Context object.
// Clobbered:
// EBX
static void GenerateAllocateContextSpaceStub(Assembler* assembler,
Label* slow_case) {
// First compute the rounded instance size.
// EDX: number of context variables.
intptr_t fixed_size_plus_alignment_padding =
(target::Context::header_size() +
target::ObjectAlignment::kObjectAlignment - 1);
__ leal(EBX, Address(EDX, TIMES_4, fixed_size_plus_alignment_padding));
__ andl(EBX, Immediate(-target::ObjectAlignment::kObjectAlignment));
NOT_IN_PRODUCT(__ MaybeTraceAllocation(kContextCid, slow_case, EAX));
// Now allocate the object.
// EDX: number of context variables.
__ movl(EAX, Address(THR, target::Thread::top_offset()));
__ addl(EBX, EAX);
// Check if the allocation fits into the remaining space.
// EAX: potential new object.
// EBX: potential next object start.
// EDX: number of context variables.
__ cmpl(EBX, Address(THR, target::Thread::end_offset()));
#if defined(DEBUG)
static auto const kJumpLength = Assembler::kFarJump;
#else
static auto const kJumpLength = Assembler::kNearJump;
#endif // DEBUG
__ j(ABOVE_EQUAL, slow_case, kJumpLength);
__ CheckAllocationCanary(EAX);
// Successfully allocated the object, now update top to point to
// next object start and initialize the object.
// EAX: new object.
// EBX: next object start.
// EDX: number of context variables.
__ movl(Address(THR, target::Thread::top_offset()), EBX);
// EBX: Size of allocation in bytes.
__ subl(EBX, EAX);
__ addl(EAX, Immediate(kHeapObjectTag));
// Generate isolate-independent code to allow sharing between isolates.
// Calculate the size tag.
// EAX: new object.
// EDX: number of context variables.
{
Label size_tag_overflow, done;
__ leal(EBX, Address(EDX, TIMES_4, fixed_size_plus_alignment_padding));
__ andl(EBX, Immediate(-target::ObjectAlignment::kObjectAlignment));
__ cmpl(EBX, Immediate(target::UntaggedObject::kSizeTagMaxSizeTag));
__ j(ABOVE, &size_tag_overflow, Assembler::kNearJump);
__ shll(EBX, Immediate(target::UntaggedObject::kTagBitsSizeTagPos -
target::ObjectAlignment::kObjectAlignmentLog2));
__ jmp(&done);
__ Bind(&size_tag_overflow);
// Set overflow size tag value.
__ movl(EBX, Immediate(0));
__ Bind(&done);
// EAX: new object.
// EDX: number of context variables.
// EBX: size and bit tags.
uword tags = target::MakeTagWordForNewSpaceObject(kContextCid, 0);
__ orl(EBX, Immediate(tags));
__ movl(FieldAddress(EAX, target::Object::tags_offset()), EBX); // Tags.
}
// Setup up number of context variables field.
// EAX: new object.
// EDX: number of context variables as integer value (not object).
__ movl(FieldAddress(EAX, target::Context::num_variables_offset()), EDX);
}
// Called for inline allocation of contexts.
// Input:
// EDX: number of context variables.
// Output:
// EAX: new allocated Context object.
// Clobbered:
// EBX, EDX
void StubCodeCompiler::GenerateAllocateContextStub() {
if (!FLAG_use_slow_path && FLAG_inline_alloc) {
Label slow_case;
GenerateAllocateContextSpaceStub(assembler, &slow_case);
// Setup the parent field.
// EAX: new object.
// EDX: number of context variables.
// No generational barrier needed, since we are storing null.
__ StoreObjectIntoObjectNoBarrier(
EAX, FieldAddress(EAX, target::Context::parent_offset()), NullObject());
// Initialize the context variables.
// EAX: new object.
// EDX: number of context variables.
{
Label loop, entry;
__ leal(EBX, FieldAddress(EAX, target::Context::variable_offset(0)));
__ jmp(&entry, Assembler::kNearJump);
__ Bind(&loop);
__ decl(EDX);
// No generational barrier needed, since we are storing null.
__ StoreObjectIntoObjectNoBarrier(EAX, Address(EBX, EDX, TIMES_4, 0),
NullObject());
__ Bind(&entry);
__ cmpl(EDX, Immediate(0));
__ j(NOT_EQUAL, &loop, Assembler::kNearJump);
}
// Done allocating and initializing the context.
// EAX: new object.
__ ret();
__ Bind(&slow_case);
}
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
__ pushl(Immediate(0)); // Setup space on stack for return value.
__ SmiTag(EDX);
__ pushl(EDX);
__ CallRuntime(kAllocateContextRuntimeEntry, 1); // Allocate context.
__ popl(EAX); // Pop number of context variables argument.
__ popl(EAX); // Pop the new context object.
// Write-barrier elimination might be enabled for this context (depending on
// the size). To be sure we will check if the allocated object is in old
// space and if so call a leaf runtime to add it to the remembered set.
EnsureIsNewOrRemembered();
// EAX: new object
// Restore the frame pointer.
__ LeaveFrame();
__ ret();
}
// Called for clone of contexts.
// Input:
// ECX: context variable.
// Output:
// EAX: new allocated Context object.
// Clobbered:
// EBX, ECX, EDX
void StubCodeCompiler::GenerateCloneContextStub() {
if (!FLAG_use_slow_path && FLAG_inline_alloc) {
Label slow_case;
// Load num. variable in the existing context.
__ movl(EDX, FieldAddress(ECX, target::Context::num_variables_offset()));
GenerateAllocateContextSpaceStub(assembler, &slow_case);
// Setup the parent field.
// EAX: new object.
// ECX: old object to clone.
__ movl(EBX, FieldAddress(ECX, target::Context::parent_offset()));
__ StoreIntoObjectNoBarrier(
EAX, FieldAddress(EAX, target::Context::parent_offset()), EBX);
// Initialize the context variables.
// EAX: new context.
// ECX: context to clone.
// EDX: number of context variables.
{
Label loop, entry;
__ jmp(&entry, Assembler::kNearJump);
__ Bind(&loop);
__ decl(EDX);
__ movl(EBX, FieldAddress(ECX, EDX, TIMES_4,
target::Context::variable_offset(0)));
__ StoreIntoObjectNoBarrier(
EAX,
FieldAddress(EAX, EDX, TIMES_4, target::Context::variable_offset(0)),
EBX);
__ Bind(&entry);
__ cmpl(EDX, Immediate(0));
__ j(NOT_EQUAL, &loop, Assembler::kNearJump);
}
// Done allocating and initializing the context.
// EAX: new object.
__ ret();
__ Bind(&slow_case);
}
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
__ pushl(Immediate(0)); // Setup space on stack for return value.
__ pushl(ECX);
__ CallRuntime(kCloneContextRuntimeEntry, 1); // Allocate context.
__ popl(EAX); // Pop number of context variables argument.
__ popl(EAX); // Pop the new context object.
// Write-barrier elimination might be enabled for this context (depending on
// the size). To be sure we will check if the allocated object is in old
// space and if so call a leaf runtime to add it to the remembered set.
EnsureIsNewOrRemembered();
// EAX: new object
// Restore the frame pointer.
__ LeaveFrame();
__ ret();
}
void StubCodeCompiler::GenerateWriteBarrierWrappersStub() {
for (intptr_t i = 0; i < kNumberOfCpuRegisters; ++i) {
if ((kDartAvailableCpuRegs & (1 << i)) == 0) continue;
Register reg = static_cast<Register>(i);
intptr_t start = __ CodeSize();
__ pushl(kWriteBarrierObjectReg);
__ movl(kWriteBarrierObjectReg, reg);
__ call(Address(THR, target::Thread::write_barrier_entry_point_offset()));
__ popl(kWriteBarrierObjectReg);
__ ret();
intptr_t end = __ CodeSize();
ASSERT_EQUAL(end - start, kStoreBufferWrapperSize);
RELEASE_ASSERT(end - start == kStoreBufferWrapperSize);
}
}
// Helper stub to implement Assembler::StoreIntoObject/Array.
// Input parameters:
// EDX: Object (old)
// EBX: Value (old or new)
// EDI: Slot
// If EAX is new, add EDX to the store buffer. Otherwise EAX is old, mark EAX
// and add it to the mark list.
COMPILE_ASSERT(kWriteBarrierObjectReg == EDX);
COMPILE_ASSERT(kWriteBarrierValueReg == EBX);
COMPILE_ASSERT(kWriteBarrierSlotReg == EDI);
static void GenerateWriteBarrierStubHelper(Assembler* assembler, bool cards) {
// Save values being destroyed.
__ pushl(EAX);
__ pushl(ECX);
Label skip_marking;
__ movl(EAX, FieldAddress(EBX, target::Object::tags_offset()));
__ andl(EAX, Address(THR, target::Thread::write_barrier_mask_offset()));
__ testl(EAX, Immediate(target::UntaggedObject::kIncrementalBarrierMask));
__ j(ZERO, &skip_marking);
{
// Atomically clear kNotMarkedBit.
Label retry, is_new, done;
__ movl(EAX, FieldAddress(EBX, target::Object::tags_offset()));
__ Bind(&retry);
__ movl(ECX, EAX);
__ testl(ECX, Immediate(1 << target::UntaggedObject::kNotMarkedBit));
__ j(ZERO, &done); // Marked by another thread.
__ andl(ECX, Immediate(~(1 << target::UntaggedObject::kNotMarkedBit)));
// Cmpxchgq: compare value = implicit operand EAX, new value = ECX.
// On failure, EAX is updated with the current value.
__ LockCmpxchgl(FieldAddress(EBX, target::Object::tags_offset()), ECX);
__ j(NOT_EQUAL, &retry, Assembler::kNearJump);
__ testl(EBX,
Immediate(1 << target::ObjectAlignment::kNewObjectBitPosition));
__ j(NOT_ZERO, &is_new);
auto mark_stack_push = [&](intptr_t offset, const RuntimeEntry& entry) {
__ movl(EAX, Address(THR, offset));
__ movl(ECX, Address(EAX, target::MarkingStackBlock::top_offset()));
__ movl(Address(EAX, ECX, TIMES_4,
target::MarkingStackBlock::pointers_offset()),
EBX);
__ incl(ECX);
__ movl(Address(EAX, target::MarkingStackBlock::top_offset()), ECX);
__ cmpl(ECX, Immediate(target::MarkingStackBlock::kSize));
__ j(NOT_EQUAL, &done);
{
LeafRuntimeScope rt(assembler,
/*frame_size=*/1 * target::kWordSize,
/*preserve_registers=*/true);
__ movl(Address(ESP, 0), THR); // Push the thread as the only argument.
rt.Call(entry, 1);
}
};
mark_stack_push(target::Thread::old_marking_stack_block_offset(),
kOldMarkingStackBlockProcessRuntimeEntry);
__ jmp(&done);
__ Bind(&is_new);
mark_stack_push(target::Thread::new_marking_stack_block_offset(),
kNewMarkingStackBlockProcessRuntimeEntry);
__ Bind(&done);
}
Label add_to_remembered_set, remember_card;
__ Bind(&skip_marking);
__ movl(EAX, FieldAddress(EDX, target::Object::tags_offset()));
__ shrl(EAX, Immediate(target::UntaggedObject::kBarrierOverlapShift));
__ andl(EAX, FieldAddress(EBX, target::Object::tags_offset()));
__ testl(EAX, Immediate(target::UntaggedObject::kGenerationalBarrierMask));
__ j(NOT_ZERO, &add_to_remembered_set, Assembler::kNearJump);
__ popl(ECX); // Unspill.
__ popl(EAX); // Unspill.
__ ret();
__ Bind(&add_to_remembered_set);
if (cards) {
__ testl(FieldAddress(EDX, target::Object::tags_offset()),
Immediate(1 << target::UntaggedObject::kCardRememberedBit));
__ j(NOT_ZERO, &remember_card, Assembler::kFarJump); // Unlikely.
} else {
#if defined(DEBUG)
Label ok;
__ testl(FieldAddress(EDX, target::Object::tags_offset()),
Immediate(1 << target::UntaggedObject::kCardRememberedBit));
__ j(ZERO, &ok, Assembler::kFarJump);
__ Stop("Wrong barrier");
__ Bind(&ok);
#endif
}
{
// Atomically clear kOldAndNotRememberedBit.
Label retry, done;
__ movl(EAX, FieldAddress(EDX, target::Object::tags_offset()));
__ Bind(&retry);
__ movl(ECX, EAX);
__ testl(ECX,
Immediate(1 << target::UntaggedObject::kOldAndNotRememberedBit));
__ j(ZERO, &done); // Remembered by another thread.
__ andl(ECX,
Immediate(~(1 << target::UntaggedObject::kOldAndNotRememberedBit)));
// Cmpxchgl: compare value = implicit operand EAX, new value = ECX.
// On failure, EAX is updated with the current value.
__ LockCmpxchgl(FieldAddress(EDX, target::Object::tags_offset()), ECX);
__ j(NOT_EQUAL, &retry, Assembler::kNearJump);
// Load the StoreBuffer block out of the thread. Then load top_ out of the
// StoreBufferBlock and add the address to the pointers_.
// Spilled: EAX, ECX
// EDX: Address being stored
__ movl(EAX, Address(THR, target::Thread::store_buffer_block_offset()));
__ movl(ECX, Address(EAX, target::StoreBufferBlock::top_offset()));
__ movl(
Address(EAX, ECX, TIMES_4, target::StoreBufferBlock::pointers_offset()),
EDX);
// Increment top_ and check for overflow.
// Spilled: EAX, ECX
// ECX: top_
// EAX: StoreBufferBlock
__ incl(ECX);
__ movl(Address(EAX, target::StoreBufferBlock::top_offset()), ECX);
__ cmpl(ECX, Immediate(target::StoreBufferBlock::kSize));
__ j(NOT_EQUAL, &done);
{
LeafRuntimeScope rt(assembler,
/*frame_size=*/1 * target::kWordSize,
/*preserve_registers=*/true);
__ movl(Address(ESP, 0), THR); // Push the thread as the only argument.
rt.Call(kStoreBufferBlockProcessRuntimeEntry, 1);
}
__ Bind(&done);
__ popl(ECX);
__ popl(EAX);
__ ret();
}
if (cards) {
Label remember_card_slow;
// Get card table.
__ Bind(&remember_card);
__ movl(EAX, EDX); // Object.
__ andl(EAX, Immediate(target::kPageMask)); // Page.
__ cmpl(Address(EAX, target::Page::card_table_offset()), Immediate(0));
__ j(EQUAL, &remember_card_slow, Assembler::kNearJump);
// Atomically dirty the card.
__ pushl(EBX);
__ subl(EDI, EAX); // Offset in page.
__ movl(EAX,
Address(EAX, target::Page::card_table_offset())); // Card table.
__ movl(ECX, EDI);
__ shrl(EDI,
Immediate(target::Page::kBytesPerCardLog2 +
target::kBitsPerWordLog2)); // Word offset.
__ shrl(ECX, Immediate(target::Page::kBytesPerCardLog2));
__ movl(EBX, Immediate(1));
__ shll(EBX, ECX); // Bit mask. (Shift amount is mod 32.)
__ lock();
__ orl(Address(EAX, EDI, TIMES_4, 0), EBX);
__ popl(EBX);
__ popl(ECX);
__ popl(EAX);
__ ret();
// Card table not yet allocated.
__ Bind(&remember_card_slow);
{
LeafRuntimeScope rt(assembler,
/*frame_size=*/2 * target::kWordSize,
/*preserve_registers=*/true);
__ movl(Address(ESP, 0 * target::kWordSize), EDX); // Object
__ movl(Address(ESP, 1 * target::kWordSize), EDI); // Slot
rt.Call(kRememberCardRuntimeEntry, 2);
}
__ popl(ECX);
__ popl(EAX);
__ ret();
}
}
void StubCodeCompiler::GenerateWriteBarrierStub() {
GenerateWriteBarrierStubHelper(assembler, false);
}
void StubCodeCompiler::GenerateArrayWriteBarrierStub() {
GenerateWriteBarrierStubHelper(assembler, true);
}
void StubCodeCompiler::GenerateAllocateObjectStub() {
__ int3();
}
void StubCodeCompiler::GenerateAllocateObjectParameterizedStub() {
__ int3();
}
void StubCodeCompiler::GenerateAllocateObjectSlowStub() {
__ int3();
}
// Called for inline allocation of objects.
// Input parameters:
// ESP : points to return address.
// AllocateObjectABI::kTypeArgumentsPos : type arguments object
// (only if class is parameterized).
// Uses AllocateObjectABI::kResultReg, EBX, ECX, EDI as temporary registers.
// Returns patch_code_pc offset where patching code for disabling the stub
// has been generated (similar to regularly generated Dart code).
void StubCodeCompiler::GenerateAllocationStubForClass(
UnresolvedPcRelativeCalls* unresolved_calls,
const Class& cls,
const Code& allocate_object,
const Code& allocat_object_parametrized) {
const Immediate& raw_null = Immediate(target::ToRawPointer(NullObject()));
// The generated code is different if the class is parameterized.
const bool is_cls_parameterized = target::Class::NumTypeArguments(cls) > 0;
ASSERT(!is_cls_parameterized || target::Class::TypeArgumentsFieldOffset(
cls) != target::Class::kNoTypeArguments);
// kInlineInstanceSize is a constant used as a threshold for determining
// when the object initialization should be done as a loop or as
// straight line code.
const int kInlineInstanceSize = 12; // In words.
const intptr_t instance_size = target::Class::GetInstanceSize(cls);
ASSERT(instance_size > 0);
// AllocateObjectABI::kTypeArgumentsReg: new object type arguments
// (if is_cls_parameterized).
if (!FLAG_use_slow_path && FLAG_inline_alloc &&
target::Heap::IsAllocatableInNewSpace(instance_size) &&
!target::Class::TraceAllocation(cls)) {
Label slow_case;
// Allocate the object and update top to point to
// next object start and initialize the allocated object.
// AllocateObjectABI::kTypeArgumentsReg: new object type arguments
// (if is_cls_parameterized).
__ movl(AllocateObjectABI::kResultReg,
Address(THR, target::Thread::top_offset()));
__ leal(EBX, Address(AllocateObjectABI::kResultReg, instance_size));
// Check if the allocation fits into the remaining space.
// AllocateObjectABI::kResultReg: potential new object start.
// EBX: potential next object start.
__ cmpl(EBX, Address(THR, target::Thread::end_offset()));
__ j(ABOVE_EQUAL, &slow_case);
__ CheckAllocationCanary(AllocateObjectABI::kResultReg);
__ movl(Address(THR, target::Thread::top_offset()), EBX);
// AllocateObjectABI::kResultReg: new object start (untagged).
// EBX: next object start.
// AllocateObjectABI::kTypeArgumentsReg: new object type arguments
// (if is_cls_parameterized).
// Set the tags.
ASSERT(target::Class::GetId(cls) != kIllegalCid);
uword tags = target::MakeTagWordForNewSpaceObject(target::Class::GetId(cls),
instance_size);
__ movl(
Address(AllocateObjectABI::kResultReg, target::Object::tags_offset()),
Immediate(tags));
__ addl(AllocateObjectABI::kResultReg, Immediate(kHeapObjectTag));
// Initialize the remaining words of the object.
// AllocateObjectABI::kResultReg: new object (tagged).
// EBX: next object start.
// AllocateObjectABI::kTypeArgumentsReg: new object type arguments
// (if is_cls_parameterized).
// First try inlining the initialization without a loop.
if (instance_size < (kInlineInstanceSize * target::kWordSize)) {
// Check if the object contains any non-header fields.
// Small objects are initialized using a consecutive set of writes.
for (intptr_t current_offset = target::Instance::first_field_offset();
current_offset < instance_size;
current_offset += target::kWordSize) {
__ StoreObjectIntoObjectNoBarrier(
AllocateObjectABI::kResultReg,
FieldAddress(AllocateObjectABI::kResultReg, current_offset),
NullObject());
}
} else {
__ leal(ECX, FieldAddress(AllocateObjectABI::kResultReg,
target::Instance::first_field_offset()));
// Loop until the whole object is initialized.
// AllocateObjectABI::kResultReg: new object (tagged).
// EBX: next object start.
// ECX: next word to be initialized.
// AllocateObjectABI::kTypeArgumentsReg: new object type arguments
// (if is_cls_parameterized).
Label loop;
__ Bind(&loop);
for (intptr_t offset = 0; offset < target::kObjectAlignment;
offset += target::kWordSize) {
__ StoreObjectIntoObjectNoBarrier(AllocateObjectABI::kResultReg,
Address(ECX, offset), NullObject());
}
// Safe to only check every kObjectAlignment bytes instead of each word.
ASSERT(kAllocationRedZoneSize >= target::kObjectAlignment);
__ addl(ECX, Immediate(target::kObjectAlignment));
__ cmpl(ECX, EBX);
__ j(UNSIGNED_LESS, &loop);
__ WriteAllocationCanary(EBX); // Fix overshoot.
}
if (is_cls_parameterized) {
// AllocateObjectABI::kResultReg: new object (tagged).
// AllocateObjectABI::kTypeArgumentsReg: new object type arguments.
// Set the type arguments in the new object.
const intptr_t offset = target::Class::TypeArgumentsFieldOffset(cls);
__ StoreIntoObjectNoBarrier(
AllocateObjectABI::kResultReg,
FieldAddress(AllocateObjectABI::kResultReg, offset),
AllocateObjectABI::kTypeArgumentsReg);
}
// Done allocating and initializing the instance.
// AllocateObjectABI::kResultReg: new object (tagged).
__ ret();
__ Bind(&slow_case);
}
// If is_cls_parameterized:
// AllocateObjectABI::kTypeArgumentsReg: new object type arguments.
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
__ pushl(raw_null); // Setup space on stack for return value.
__ PushObject(
CastHandle<Object>(cls)); // Push class of object to be allocated.
if (is_cls_parameterized) {
// Push type arguments of object to be allocated.
__ pushl(AllocateObjectABI::kTypeArgumentsReg);
} else {
__ pushl(raw_null); // Push null type arguments.
}
__ CallRuntime(kAllocateObjectRuntimeEntry, 2); // Allocate object.
__ popl(AllocateObjectABI::kResultReg); // Drop type arguments.
__ popl(AllocateObjectABI::kResultReg); // Drop class.
__ popl(AllocateObjectABI::kResultReg); // Pop allocated object.
if (AllocateObjectInstr::WillAllocateNewOrRemembered(cls)) {
// Write-barrier elimination is enabled for [cls] and we therefore need to
// ensure that the object is in new-space or has remembered bit set.
EnsureIsNewOrRemembered();
}
// AllocateObjectABI::kResultReg: new object
// Restore the frame pointer.
__ LeaveFrame();
__ ret();
}
// Called for invoking "dynamic noSuchMethod(Invocation invocation)" function
// from the entry code of a dart function after an error in passed argument
// name or number is detected.
// Input parameters:
// ESP : points to return address.
// ESP + 4 : address of last argument.
// EDX : arguments descriptor array.
// Uses EAX, EBX, EDI as temporary registers.
void StubCodeCompiler::GenerateCallClosureNoSuchMethodStub() {
__ EnterStubFrame();
// Load the receiver.
__ movl(EDI, FieldAddress(EDX, target::ArgumentsDescriptor::size_offset()));
__ movl(EAX,
Address(EBP, EDI, TIMES_2,
target::frame_layout.param_end_from_fp * target::kWordSize));
// Load the function.
__ movl(EBX, FieldAddress(EAX, target::Closure::function_offset()));
__ pushl(Immediate(0)); // Setup space on stack for result from noSuchMethod.
__ pushl(EAX); // Receiver.
__ pushl(EBX); // Function.
__ pushl(EDX); // Arguments descriptor array.
// Adjust arguments count.
__ cmpl(
FieldAddress(EDX, target::ArgumentsDescriptor::type_args_len_offset()),
Immediate(0));
__ movl(EDX, EDI);
Label args_count_ok;
__ j(EQUAL, &args_count_ok, Assembler::kNearJump);
__ addl(EDX, Immediate(target::ToRawSmi(1))); // Include the type arguments.
__ Bind(&args_count_ok);
// EDX: Smi-tagged arguments array length.
PushArrayOfArguments(assembler);
const intptr_t kNumArgs = 4;
__ CallRuntime(kNoSuchMethodFromPrologueRuntimeEntry, kNumArgs);
// noSuchMethod on closures always throws an error, so it will never return.
__ int3();
}
// Cannot use function object from ICData as it may be the inlined
// function and not the top-scope function.
void StubCodeCompiler::GenerateOptimizedUsageCounterIncrement() {
Register ic_reg = ECX;
Register func_reg = EAX;
if (FLAG_trace_optimized_ic_calls) {
__ EnterStubFrame();
__ pushl(func_reg); // Preserve
__ pushl(ic_reg); // Preserve.
__ pushl(ic_reg); // Argument.
__ pushl(func_reg); // Argument.
__ CallRuntime(kTraceICCallRuntimeEntry, 2);
__ popl(EAX); // Discard argument;
__ popl(EAX); // Discard argument;
__ popl(ic_reg); // Restore.
__ popl(func_reg); // Restore.
__ LeaveFrame();
}
__ incl(FieldAddress(func_reg, target::Function::usage_counter_offset()));
}
// Loads function into 'temp_reg'.
void StubCodeCompiler::GenerateUsageCounterIncrement(Register temp_reg) {
if (FLAG_optimization_counter_threshold >= 0) {
Register func_reg = temp_reg;
ASSERT(func_reg != IC_DATA_REG);
__ Comment("Increment function counter");
__ movl(func_reg,
FieldAddress(IC_DATA_REG, target::ICData::owner_offset()));
__ incl(FieldAddress(func_reg, target::Function::usage_counter_offset()));
}
}
// Note: ECX must be preserved.
// Attempt a quick Smi operation for known operations ('kind'). The ICData
// must have been primed with a Smi/Smi check that will be used for counting
// the invocations.
static void EmitFastSmiOp(Assembler* assembler,
Token::Kind kind,
intptr_t num_args,
Label* not_smi_or_overflow) {
__ Comment("Fast Smi op");
ASSERT(num_args == 2);
__ movl(EAX, Address(ESP, +2 * target::kWordSize)); // Left
__ movl(EDI, Address(ESP, +1 * target::kWordSize)); // Right
__ movl(EBX, EDI);
__ orl(EBX, EAX);
__ testl(EBX, Immediate(kSmiTagMask));
__ j(NOT_ZERO, not_smi_or_overflow, Assembler::kNearJump);
switch (kind) {
case Token::kADD: {
__ addl(EAX, EDI);
__ j(OVERFLOW, not_smi_or_overflow, Assembler::kNearJump);
break;
}
case Token::kLT: {
Label done, is_true;
__ cmpl(EAX, EDI);
__ setcc(GREATER_EQUAL, AL);
__ movzxb(EAX, AL); // EAX := EAX < EDI ? 0 : 1
__ movl(EAX,
Address(THR, EAX, TIMES_4, target::Thread::bool_true_offset()));
ASSERT(target::Thread::bool_true_offset() + 4 ==
target::Thread::bool_false_offset());
break;
}
case Token::kEQ: {
Label done, is_true;
__ cmpl(EAX, EDI);
__ setcc(NOT_EQUAL, AL);
__ movzxb(EAX, AL); // EAX := EAX == EDI ? 0 : 1
__ movl(EAX,
Address(THR, EAX, TIMES_4, target::Thread::bool_true_offset()));
ASSERT(target::Thread::bool_true_offset() + 4 ==
target::Thread::bool_false_offset());
break;
}
default:
UNIMPLEMENTED();
}
// ECX: IC data object.
__ movl(EBX, FieldAddress(ECX, target::ICData::entries_offset()));
// EBX: ic_data_array with check entries: classes and target functions.
__ leal(EBX, FieldAddress(EBX, target::Array::data_offset()));
#if defined(DEBUG)
// Check that first entry is for Smi/Smi.
Label error, ok;
const Immediate& imm_smi_cid = Immediate(target::ToRawSmi(kSmiCid));
__ cmpl(Address(EBX, 0 * target::kWordSize), imm_smi_cid);
__ j(NOT_EQUAL, &error, Assembler::kNearJump);
__ cmpl(Address(EBX, 1 * target::kWordSize), imm_smi_cid);
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Bind(&error);
__ Stop("Incorrect IC data");
__ Bind(&ok);
#endif
if (FLAG_optimization_counter_threshold >= 0) {
const intptr_t count_offset =
target::ICData::CountIndexFor(num_args) * target::kWordSize;
// Update counter, ignore overflow.
__ addl(Address(EBX, count_offset), Immediate(target::ToRawSmi(1)));
}
__ ret();
}
// Generate inline cache check for 'num_args'.
// EBX: receiver (if instance call)
// ECX: ICData
// ESP[0]: return address
// Control flow:
// - If receiver is null -> jump to IC miss.
// - If receiver is Smi -> load Smi class.
// - If receiver is not-Smi -> load receiver's class.
// - Check if 'num_args' (including receiver) match any IC data group.
// - Match found -> jump to target.
// - Match not found -> jump to IC miss.
void StubCodeCompiler::GenerateNArgsCheckInlineCacheStub(
intptr_t num_args,
const RuntimeEntry& handle_ic_miss,
Token::Kind kind,
Optimized optimized,
CallType type,
Exactness exactness) {
GenerateNArgsCheckInlineCacheStubForEntryKind(num_args, handle_ic_miss, kind,
optimized, type, exactness,
CodeEntryKind::kNormal);
__ BindUncheckedEntryPoint();
GenerateNArgsCheckInlineCacheStubForEntryKind(num_args, handle_ic_miss, kind,
optimized, type, exactness,
CodeEntryKind::kUnchecked);
}
void StubCodeCompiler::GenerateNArgsCheckInlineCacheStubForEntryKind(
intptr_t num_args,
const RuntimeEntry& handle_ic_miss,
Token::Kind kind,
Optimized optimized,
CallType type,
Exactness exactness,
CodeEntryKind entry_kind) {
if (optimized == kOptimized) {
GenerateOptimizedUsageCounterIncrement();
} else {
GenerateUsageCounterIncrement(/* scratch */ EAX);
}
ASSERT(num_args == 1 || num_args == 2);
#if defined(DEBUG)
{
Label ok;
// Check that the IC data array has NumArgsTested() == num_args.
// 'NumArgsTested' is stored in the least significant bits of 'state_bits'.
__ movl(EAX, FieldAddress(ECX, target::ICData::state_bits_offset()));
ASSERT(target::ICData::NumArgsTestedShift() == 0); // No shift needed.
__ andl(EAX, Immediate(target::ICData::NumArgsTestedMask()));
__ cmpl(EAX, Immediate(num_args));
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Stop("Incorrect stub for IC data");
__ Bind(&ok);
}
#endif // DEBUG
#if !defined(PRODUCT)
Label stepping, done_stepping;
if (optimized == kUnoptimized) {
__ Comment("Check single stepping");
__ LoadIsolate(EAX);
__ cmpb(Address(EAX, target::Isolate::single_step_offset()), Immediate(0));
__ j(NOT_EQUAL, &stepping);
__ Bind(&done_stepping);
}
#endif
Label not_smi_or_overflow;
if (kind != Token::kILLEGAL) {
EmitFastSmiOp(assembler, kind, num_args, &not_smi_or_overflow);
}
__ Bind(&not_smi_or_overflow);
__ Comment("Extract ICData initial values and receiver cid");
// ECX: IC data object (preserved).
// Load arguments descriptor into EDX.
__ movl(
ARGS_DESC_REG,
FieldAddress(ECX, target::CallSiteData::arguments_descriptor_offset()));
// Loop that checks if there is an IC data match.
Label loop, found, miss;
// ECX: IC data object (preserved).
__ movl(EBX, FieldAddress(ECX, target::ICData::entries_offset()));
// EBX: ic_data_array with check entries: classes and target functions.
__ leal(EBX, FieldAddress(EBX, target::Array::data_offset()));
// EBX: points directly to the first ic data array element.
// Get argument descriptor into EAX. In the 1-argument case this is the
// last time we need the argument descriptor, and we reuse EAX for the
// class IDs from the IC descriptor. In the 2-argument case we preserve
// the argument descriptor in EAX.
__ movl(EAX, FieldAddress(ARGS_DESC_REG,
target::ArgumentsDescriptor::count_offset()));
if (num_args == 1) {
// Load receiver into EDI.
__ movl(EDI,
Address(ESP, EAX, TIMES_2, 0)); // EAX (argument count) is Smi.
__ LoadTaggedClassIdMayBeSmi(EAX, EDI);
// EAX: receiver class ID as Smi.
}
__ Comment("ICData loop");
// We unroll the generic one that is generated once more than the others.
bool optimize = kind == Token::kILLEGAL;
const intptr_t target_offset =
target::ICData::TargetIndexFor(num_args) * target::kWordSize;
const intptr_t count_offset =
target::ICData::CountIndexFor(num_args) * target::kWordSize;
const intptr_t exactness_offset =
target::ICData::ExactnessIndexFor(num_args) * target::kWordSize;
const intptr_t entry_size = target::ICData::TestEntryLengthFor(
num_args, exactness == kCheckExactness) *
target::kWordSize;
__ Bind(&loop);
for (int unroll = optimize ? 4 : 2; unroll >= 0; unroll--) {
Label update;
if (num_args == 1) {
__ movl(EDI, Address(EBX, 0));
__ cmpl(EDI, EAX); // Class id match?
__ j(EQUAL, &found); // Break.
__ addl(EBX, Immediate(entry_size)); // Next entry.
__ cmpl(EDI, Immediate(target::ToRawSmi(kIllegalCid))); // Done?
} else {
ASSERT(num_args == 2);
// Load receiver into EDI.
__ movl(EDI, Address(ESP, EAX, TIMES_2, 0));
__ LoadTaggedClassIdMayBeSmi(EDI, EDI);
__ cmpl(EDI, Address(EBX, 0)); // Class id match?
__ j(NOT_EQUAL, &update); // Continue.
// Load second argument into EDI.
__ movl(EDI, Address(ESP, EAX, TIMES_2, -target::kWordSize));
__ LoadTaggedClassIdMayBeSmi(EDI, EDI);
__ cmpl(EDI, Address(EBX, target::kWordSize)); // Class id match?
__ j(EQUAL, &found); // Break.
__ Bind(&update);
__ addl(EBX, Immediate(entry_size)); // Next entry.
__ cmpl(Address(EBX, -entry_size),
Immediate(target::ToRawSmi(kIllegalCid))); // Done?
}
if (unroll == 0) {
__ j(NOT_EQUAL, &loop);
} else {
__ j(EQUAL, &miss);
}
}
__ Bind(&miss);
__ Comment("IC miss");
// Compute address of arguments (first read number of arguments from
// arguments descriptor array and then compute address on the stack).
__ movl(EAX, FieldAddress(ARGS_DESC_REG,
target::ArgumentsDescriptor::count_offset()));
__ leal(EAX, Address(ESP, EAX, TIMES_2, 0)); // EAX is Smi.
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
__ pushl(ARGS_DESC_REG); // Preserve arguments descriptor array.
__ pushl(ECX); // Preserve IC data object.
__ pushl(Immediate(0)); // Result slot.
// Push call arguments.
for (intptr_t i = 0; i < num_args; i++) {
__ movl(EBX, Address(EAX, -target::kWordSize * i));
__ pushl(EBX);
}
__ pushl(ECX); // Pass IC data object.
__ CallRuntime(handle_ic_miss, num_args + 1);
// Remove the call arguments pushed earlier, including the IC data object.
for (intptr_t i = 0; i < num_args + 1; i++) {
__ popl(EAX);
}
__ popl(FUNCTION_REG); // Pop returned function object into EAX.
__ popl(ECX); // Restore IC data array.
__ popl(ARGS_DESC_REG); // Restore arguments descriptor array.
__ LeaveFrame();
Label call_target_function;
ASSERT(!FLAG_precompiled_mode);
__ jmp(&call_target_function);
__ Bind(&found);
// EBX: Pointer to an IC data check group.
Label call_target_function_through_unchecked_entry;
if (exactness == kCheckExactness) {
Label exactness_ok;
ASSERT(num_args == 1);
__ movl(EDI, Address(EBX, exactness_offset));
__ cmpl(EDI, Immediate(target::ToRawSmi(
StaticTypeExactnessState::HasExactSuperType().Encode())));
__ j(LESS, &exactness_ok);
__ j(EQUAL, &call_target_function_through_unchecked_entry);
// Check trivial exactness.
// Note: UntaggedICData::receivers_static_type_ is guaranteed to be not null
// because we only emit calls to this stub when it is not null.
__ movl(EAX, FieldAddress(ARGS_DESC_REG,
target::ArgumentsDescriptor::count_offset()));
__ movl(EAX, Address(ESP, EAX, TIMES_2, 0)); // Receiver
// EDI contains an offset to type arguments in words as a smi,
// hence TIMES_2. EAX is guaranteed to be non-smi because it is expected
// to have type arguments.
__ movl(EDI,
FieldAddress(EAX, EDI, TIMES_2, 0)); // Receiver's type arguments
__ movl(EAX,
FieldAddress(ECX, target::ICData::receivers_static_type_offset()));
__ cmpl(EDI, FieldAddress(EAX, target::Type::arguments_offset()));
__ j(EQUAL, &call_target_function_through_unchecked_entry);
// Update exactness state (not-exact anymore).
__ movl(Address(EBX, exactness_offset),
Immediate(target::ToRawSmi(
StaticTypeExactnessState::NotExact().Encode())));
__ Bind(&exactness_ok);
}
if (FLAG_optimization_counter_threshold >= 0) {
__ Comment("Update caller's counter");
// Ignore overflow.
__ addl(Address(EBX, count_offset), Immediate(target::ToRawSmi(1)));
}
__ movl(FUNCTION_REG, Address(EBX, target_offset));
__ Bind(&call_target_function);
__ Comment("Call target");
// EAX: Target function.
__ jmp(FieldAddress(FUNCTION_REG,
target::Function::entry_point_offset(entry_kind)));
if (exactness == kCheckExactness) {
__ Bind(&call_target_function_through_unchecked_entry);
if (FLAG_optimization_counter_threshold >= 0) {
__ Comment("Update ICData counter");
// Ignore overflow.
__ addl(Address(EBX, count_offset), Immediate(target::ToRawSmi(1)));
}
__ Comment("Call target (via unchecked entry point)");
__ LoadCompressed(FUNCTION_REG, Address(EBX, target_offset));
__ jmp(FieldAddress(FUNCTION_REG, target::Function::entry_point_offset(
CodeEntryKind::kUnchecked)));
}
#if !defined(PRODUCT)
if (optimized == kUnoptimized) {
__ Bind(&stepping);
__ EnterStubFrame();
__ pushl(EBX); // Preserve receiver.
__ pushl(ECX); // Preserve ICData.
__ CallRuntime(kSingleStepHandlerRuntimeEntry, 0);
__ popl(ECX); // Restore ICData.
__ popl(EBX); // Restore receiver.
__ LeaveFrame();
__ jmp(&done_stepping);
}
#endif
}
// EBX: receiver
// ECX: ICData
// ESP[0]: return address
void StubCodeCompiler::GenerateOneArgCheckInlineCacheStub() {
GenerateNArgsCheckInlineCacheStub(
1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL,
kUnoptimized, kInstanceCall, kIgnoreExactness);
}
// EBX: receiver
// ECX: ICData
// ESP[0]: return address
void StubCodeCompiler::GenerateOneArgCheckInlineCacheWithExactnessCheckStub() {
GenerateNArgsCheckInlineCacheStub(
1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL,
kUnoptimized, kInstanceCall, kCheckExactness);
}
void StubCodeCompiler::GenerateAllocateMintSharedWithFPURegsStub() {
__ Stop("Unimplemented");
}
void StubCodeCompiler::GenerateAllocateMintSharedWithoutFPURegsStub() {
__ Stop("Unimplemented");
}
// EBX: receiver
// ECX: ICData
// ESP[0]: return address
void StubCodeCompiler::GenerateTwoArgsCheckInlineCacheStub() {
GenerateNArgsCheckInlineCacheStub(
2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL,
kUnoptimized, kInstanceCall, kIgnoreExactness);
}
// EBX: receiver
// ECX: ICData
// ESP[0]: return address
void StubCodeCompiler::GenerateSmiAddInlineCacheStub() {
GenerateNArgsCheckInlineCacheStub(
2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kADD, kUnoptimized,
kInstanceCall, kIgnoreExactness);
}
// EBX: receiver
// ECX: ICData
// ESP[0]: return address
void StubCodeCompiler::GenerateSmiLessInlineCacheStub() {
GenerateNArgsCheckInlineCacheStub(
2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kLT, kUnoptimized,
kInstanceCall, kIgnoreExactness);
}
// EBX: receiver
// ECX: ICData
// ESP[0]: return address
void StubCodeCompiler::GenerateSmiEqualInlineCacheStub() {
GenerateNArgsCheckInlineCacheStub(
2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kEQ, kUnoptimized,
kInstanceCall, kIgnoreExactness);
}
// EBX: receiver
// ECX: ICData
// EAX: Function
// ESP[0]: return address
void StubCodeCompiler::GenerateOneArgOptimizedCheckInlineCacheStub() {
GenerateNArgsCheckInlineCacheStub(
1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, kOptimized,
kInstanceCall, kIgnoreExactness);
}
// EBX: receiver
// ECX: ICData
// EAX: Function
// ESP[0]: return address
void StubCodeCompiler::
GenerateOneArgOptimizedCheckInlineCacheWithExactnessCheckStub() {
GenerateNArgsCheckInlineCacheStub(
1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, kOptimized,
kInstanceCall, kCheckExactness);
}
// EBX: receiver
// ECX: ICData
// EAX: Function
// ESP[0]: return address
void StubCodeCompiler::GenerateTwoArgsOptimizedCheckInlineCacheStub() {
GenerateNArgsCheckInlineCacheStub(
2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL,
kOptimized, kInstanceCall, kIgnoreExactness);
}
// ECX: ICData
// ESP[0]: return address
static void GenerateZeroArgsUnoptimizedStaticCallForEntryKind(
StubCodeCompiler* stub_code_compiler,
CodeEntryKind entry_kind) {
stub_code_compiler->GenerateUsageCounterIncrement(/* scratch */ EAX);
auto* const assembler = stub_code_compiler->assembler;
#if defined(DEBUG)
{
Label ok;
// Check that the IC data array has NumArgsTested() == num_args.
// 'NumArgsTested' is stored in the least significant bits of 'state_bits'.
__ movl(EBX, FieldAddress(ECX, target::ICData::state_bits_offset()));
ASSERT(target::ICData::NumArgsTestedShift() == 0); // No shift needed.
__ andl(EBX, Immediate(target::ICData::NumArgsTestedMask()));
__ cmpl(EBX, Immediate(0));
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Stop("Incorrect IC data for unoptimized static call");
__ Bind(&ok);
}
#endif // DEBUG
#if !defined(PRODUCT)
// Check single stepping.
Label stepping, done_stepping;
__ LoadIsolate(EAX);
__ cmpb(Address(EAX, target::Isolate::single_step_offset()), Immediate(0));
__ j(NOT_EQUAL, &stepping, Assembler::kNearJump);
__ Bind(&done_stepping);
#endif
// ECX: IC data object (preserved).
__ movl(EBX, FieldAddress(ECX, target::ICData::entries_offset()));
// EBX: ic_data_array with entries: target functions and count.
__ leal(EBX, FieldAddress(EBX, target::Array::data_offset()));
// EBX: points directly to the first ic data array element.
const intptr_t target_offset =
target::ICData::TargetIndexFor(0) * target::kWordSize;
const intptr_t count_offset =
target::ICData::CountIndexFor(0) * target::kWordSize;
if (FLAG_optimization_counter_threshold >= 0) {
// Increment count for this call, ignore overflow.
__ addl(Address(EBX, count_offset), Immediate(target::ToRawSmi(1)));
}
// Load arguments descriptor into EDX.
__ movl(
ARGS_DESC_REG,
FieldAddress(ECX, target::CallSiteData::arguments_descriptor_offset()));
// Get function and call it, if possible.
__ movl(FUNCTION_REG, Address(EBX, target_offset));
__ jmp(FieldAddress(FUNCTION_REG,
target::Function::entry_point_offset(entry_kind)));
#if !defined(PRODUCT)
__ Bind(&stepping);
__ EnterStubFrame();
__ pushl(ECX);
__ CallRuntime(kSingleStepHandlerRuntimeEntry, 0);
__ popl(ECX);
__ LeaveFrame();
__ jmp(&done_stepping, Assembler::kNearJump);
#endif
}
void StubCodeCompiler::GenerateZeroArgsUnoptimizedStaticCallStub() {
GenerateZeroArgsUnoptimizedStaticCallForEntryKind(this,
CodeEntryKind::kNormal);
__ BindUncheckedEntryPoint();
GenerateZeroArgsUnoptimizedStaticCallForEntryKind(this,
CodeEntryKind::kUnchecked);
}
// ECX: ICData
// ESP[0]: return address
void StubCodeCompiler::GenerateOneArgUnoptimizedStaticCallStub() {
GenerateNArgsCheckInlineCacheStub(
2, kStaticCallMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL,
kUnoptimized, kStaticCall, kIgnoreExactness);
}
// ECX: ICData
// ESP[0]: return address
void StubCodeCompiler::GenerateTwoArgsUnoptimizedStaticCallStub() {
GenerateNArgsCheckInlineCacheStub(
2, kStaticCallMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL,
kUnoptimized, kStaticCall, kIgnoreExactness);
}
// Stub for compiling a function and jumping to the compiled code.
// ARGS_DESC_REG: Arguments descriptor.
// FUNCTION_REG: Function.
void StubCodeCompiler::GenerateLazyCompileStub() {
__ EnterStubFrame();
__ pushl(ARGS_DESC_REG); // Preserve arguments descriptor array.
__ pushl(FUNCTION_REG); // Pass function.
__ CallRuntime(kCompileFunctionRuntimeEntry, 1);
__ popl(FUNCTION_REG); // Restore function.
__ popl(ARGS_DESC_REG); // Restore arguments descriptor array.
__ LeaveFrame();
__ jmp(FieldAddress(FUNCTION_REG, target::Function::entry_point_offset()));
}
// Stub for interpreting a function call.
// EDX: Arguments descriptor.
// EAX: Function.
void StubCodeCompiler::GenerateInterpretCallStub() {
#if defined(DART_DYNAMIC_MODULES)
__ EnterStubFrame();
#if defined(DEBUG)
{
Label ok;
// Check that we are always entering from Dart code.
__ cmpl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId));
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Stop("Not coming from Dart code.");
__ Bind(&ok);
}
#endif
// Adjust arguments count for type arguments vector.
__ movl(ECX, FieldAddress(EDX, target::ArgumentsDescriptor::count_offset()));
__ SmiUntag(ECX);
__ cmpl(
FieldAddress(EDX, target::ArgumentsDescriptor::type_args_len_offset()),
Immediate(0));
Label args_count_ok;
__ j(EQUAL, &args_count_ok, Assembler::kNearJump);
__ incl(ECX);
__ Bind(&args_count_ok);
// Compute argv.
__ leal(EBX,
Address(EBP, ECX, TIMES_4,
target::frame_layout.param_end_from_fp * target::kWordSize));
// Indicate decreasing memory addresses of arguments with negative argc.
__ negl(ECX);
__ pushl(THR); // Arg 4: Thread.
__ pushl(EBX); // Arg 3: Argv.
__ pushl(ECX); // Arg 2: Negative argc.
__ pushl(EDX); // Arg 1: Arguments descriptor
__ pushl(EAX); // Arg 0: Function
// Save exit frame information to enable stack walking as we are about
// to transition to Dart VM C++ code.
__ movl(Address(THR, target::Thread::top_exit_frame_info_offset()), EBP);
// Mark that the thread exited generated code through a runtime call.
__ movl(Address(THR, target::Thread::exit_through_ffi_offset()),
Immediate(target::Thread::exit_through_runtime_call()));
// Mark that the thread is executing VM code.
__ movl(EAX,
Address(THR, target::Thread::interpret_call_entry_point_offset()));
__ movl(Assembler::VMTagAddress(), EAX);
__ call(EAX);
__ Drop(5);
// Mark that the thread is executing Dart code.
__ movl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId));
// Mark that the thread has not exited generated Dart code.
__ movl(Address(THR, target::Thread::exit_through_ffi_offset()),
Immediate(0));
// Reset exit frame information in Isolate's mutator thread structure.
__ movl(Address(THR, target::Thread::top_exit_frame_info_offset()),
Immediate(0));
__ LeaveFrame();
__ ret();
#else
__ Stop("Not using Dart dynamic modules");
#endif // defined(DART_DYNAMIC_MODULES)
}
// ECX: Contains an ICData.
void StubCodeCompiler::GenerateICCallBreakpointStub() {
#if defined(PRODUCT)
__ Stop("No debugging in PRODUCT mode");
#else
__ EnterStubFrame();
__ pushl(EBX); // Preserve receiver.
__ pushl(ECX); // Preserve ICData.
__ pushl(Immediate(0)); // Room for result.
__ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0);
__ popl(EAX); // Code of original stub.
__ popl(ECX); // Restore ICData.
__ popl(EBX); // Restore receiver.
__ LeaveFrame();
// Jump to original stub.
__ jmp(FieldAddress(EAX, target::Code::entry_point_offset()));
#endif // defined(PRODUCT)
}
void StubCodeCompiler::GenerateUnoptStaticCallBreakpointStub() {
#if defined(PRODUCT)
__ Stop("No debugging in PRODUCT mode");
#else
__ EnterStubFrame();
__ pushl(ECX); // Preserve ICData.
__ pushl(Immediate(0)); // Room for result.
__ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0);
__ popl(EAX); // Code of original stub.
__ popl(ECX); // Restore ICData.
__ LeaveFrame();
// Jump to original stub.
__ jmp(FieldAddress(EAX, target::Code::entry_point_offset()));
#endif // defined(PRODUCT)
}
void StubCodeCompiler::GenerateRuntimeCallBreakpointStub() {
#if defined(PRODUCT)
__ Stop("No debugging in PRODUCT mode");
#else
__ EnterStubFrame();
// Room for result. Debugger stub returns address of the
// unpatched runtime stub.
__ pushl(Immediate(0)); // Room for result.
__ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0);
__ popl(EAX); // Code of the original stub
__ LeaveFrame();
// Jump to original stub.
__ jmp(FieldAddress(EAX, target::Code::entry_point_offset()));
#endif // defined(PRODUCT)
}
// Called only from unoptimized code.
void StubCodeCompiler::GenerateDebugStepCheckStub() {
#if defined(PRODUCT)
__ Stop("No debugging in PRODUCT mode");
#else
// Check single stepping.
Label stepping, done_stepping;
__ LoadIsolate(EAX);
__ movzxb(EAX, Address(EAX, target::Isolate::single_step_offset()));
__ cmpl(EAX, Immediate(0));
__ j(NOT_EQUAL, &stepping, Assembler::kNearJump);
__ Bind(&done_stepping);
__ ret();
__ Bind(&stepping);
__ EnterStubFrame();
__ CallRuntime(kSingleStepHandlerRuntimeEntry, 0);
__ LeaveFrame();
__ jmp(&done_stepping, Assembler::kNearJump);
#endif // defined(PRODUCT)
}
// Constants used for generating subtype test cache lookup stubs.
// We represent the depth of as a depth from the top of the stack at the
// start of the stub. That is, depths for input values are non-negative and
// depths for values pushed during the stub are negative.
struct STCInternal : AllStatic {
// Used to initialize depths for conditionally-pushed values.
static constexpr intptr_t kNoDepth = kIntptrMin;
// These inputs are always on the stack when the SubtypeNTestCacheStub is
// called. These absolute depths will be converted to relative depths within
// the stub to compensate for additional pushed values.
static constexpr intptr_t kFunctionTypeArgumentsDepth = 1;
static constexpr intptr_t kInstantiatorTypeArgumentsDepth = 2;
static constexpr intptr_t kDestinationTypeDepth = 3;
static constexpr intptr_t kInstanceDepth = 4;
static constexpr intptr_t kCacheDepth = 5;
// Non-stack values are stored in non-kInstanceReg registers from TypeTestABI.
static constexpr Register kCacheArrayReg =
TypeTestABI::kInstantiatorTypeArgumentsReg;
static constexpr Register kScratchReg = TypeTestABI::kSubtypeTestCacheReg;
static constexpr Register kInstanceCidOrSignatureReg =
TypeTestABI::kFunctionTypeArgumentsReg;
static constexpr Register kInstanceInstantiatorTypeArgumentsReg =
TypeTestABI::kDstTypeReg;
};
static void GenerateSubtypeTestCacheLoop(
Assembler* assembler,
int n,
intptr_t original_tos_offset,
intptr_t parent_function_type_args_depth,
intptr_t delayed_type_args_depth,
Label* found,
Label* not_found,
Label* next_iteration) {
const auto& raw_null = Immediate(target::ToRawPointer(NullObject()));
// Compares a value at the given depth from the stack to the value in src.
auto compare_to_stack = [&](Register src, intptr_t depth) {
ASSERT(original_tos_offset + depth >= 0);
__ CompareToStack(src, original_tos_offset + depth);
};
__ LoadAcquireCompressedFromOffset(
STCInternal::kScratchReg, STCInternal::kCacheArrayReg,
target::kCompressedWordSize *
target::SubtypeTestCache::kInstanceCidOrSignature);
__ cmpl(STCInternal::kScratchReg, raw_null);
__ j(EQUAL, not_found, Assembler::kNearJump);
__ cmpl(STCInternal::kScratchReg, STCInternal::kInstanceCidOrSignatureReg);
if (n == 1) {
__ j(EQUAL, found, Assembler::kNearJump);
return;
}
__ j(NOT_EQUAL, next_iteration, Assembler::kNearJump);
__ cmpl(STCInternal::kInstanceInstantiatorTypeArgumentsReg,
Address(STCInternal::kCacheArrayReg,
target::kWordSize *
target::SubtypeTestCache::kInstanceTypeArguments));
if (n == 2) {
__ j(EQUAL, found, Assembler::kNearJump);
return;
}
__ j(NOT_EQUAL, next_iteration, Assembler::kNearJump);
__ movl(STCInternal::kScratchReg,
Address(STCInternal::kCacheArrayReg,
target::kWordSize *
target::SubtypeTestCache::kInstantiatorTypeArguments));
compare_to_stack(STCInternal::kScratchReg,
STCInternal::kInstantiatorTypeArgumentsDepth);
if (n == 3) {
__ j(EQUAL, found, Assembler::kNearJump);
return;
}
__ j(NOT_EQUAL, next_iteration, Assembler::kNearJump);
__ movl(STCInternal::kScratchReg,
Address(STCInternal::kCacheArrayReg,
target::kWordSize *
target::SubtypeTestCache::kFunctionTypeArguments));
compare_to_stack(STCInternal::kScratchReg,
STCInternal::kFunctionTypeArgumentsDepth);
if (n == 4) {
__ j(EQUAL, found, Assembler::kNearJump);
return;
}
__ j(NOT_EQUAL, next_iteration, Assembler::kNearJump);
__ movl(
STCInternal::kScratchReg,
Address(
STCInternal::kCacheArrayReg,
target::kWordSize *
target::SubtypeTestCache::kInstanceParentFunctionTypeArguments));
compare_to_stack(STCInternal::kScratchReg, parent_function_type_args_depth);
if (n == 5) {
__ j(EQUAL, found, Assembler::kNearJump);
return;
}
__ j(NOT_EQUAL, next_iteration, Assembler::kNearJump);
__ movl(
STCInternal::kScratchReg,
Address(
STCInternal::kCacheArrayReg,
target::kWordSize *
target::SubtypeTestCache::kInstanceDelayedFunctionTypeArguments));
compare_to_stack(STCInternal::kScratchReg, delayed_type_args_depth);
if (n == 6) {
__ j(EQUAL, found, Assembler::kNearJump);
return;
}
__ j(NOT_EQUAL, next_iteration, Assembler::kNearJump);
__ movl(
STCInternal::kScratchReg,
Address(STCInternal::kCacheArrayReg,
target::kWordSize * target::SubtypeTestCache::kDestinationType));
compare_to_stack(STCInternal::kScratchReg,
STCInternal::kDestinationTypeDepth);
__ j(EQUAL, found, Assembler::kNearJump);
}
// Used to check class and type arguments. Arguments passed on stack:
// TOS + 0: return address.
// TOS + 1: function type arguments (only used if n >= 4, can be raw_null).
// TOS + 2: instantiator type arguments (only used if n >= 3, can be raw_null).
// TOS + 3: destination_type (only used if n >= 7).
// TOS + 4: instance.
// TOS + 5: SubtypeTestCache.
//
// No registers are preserved by this stub.
//
// Result in SubtypeTestCacheReg::kResultReg: null -> not found, otherwise
// result (true or false).
void StubCodeCompiler::GenerateSubtypeNTestCacheStub(Assembler* assembler,
int n) {
ASSERT(n >= 1);
ASSERT(n <= SubtypeTestCache::kMaxInputs);
// If we need the parent function type arguments for a closure, we also need
// the delayed type arguments, so this case will never happen.
ASSERT(n != 5);
const auto& raw_null = Immediate(target::ToRawPointer(NullObject()));
__ LoadFromStack(TypeTestABI::kInstanceReg, STCInternal::kInstanceDepth);
// Loop initialization (moved up here to avoid having all dependent loads
// after each other)
__ LoadFromStack(STCInternal::kCacheArrayReg, STCInternal::kCacheDepth);
#if defined(DEBUG)
// Verify the STC we received has exactly as many inputs as this stub expects.
Label search_stc;
__ LoadFromSlot(STCInternal::kScratchReg, STCInternal::kCacheArrayReg,
Slot::SubtypeTestCache_num_inputs());
__ CompareImmediate(STCInternal::kScratchReg, n);
__ BranchIf(EQUAL, &search_stc, Assembler::kNearJump);
__ Breakpoint();
__ Bind(&search_stc);
#endif
// We avoid a load-acquire barrier here by relying on the fact that all other
// loads from the array are data-dependent loads.
__ movl(STCInternal::kCacheArrayReg,
FieldAddress(STCInternal::kCacheArrayReg,
target::SubtypeTestCache::cache_offset()));
// There is a maximum size for linear caches that is smaller than the size
// of any hash-based cache, so we check the size of the backing array to
// determine if this is a linear or hash-based cache.
__ LoadFromSlot(STCInternal::kScratchReg, STCInternal::kCacheArrayReg,
Slot::Array_length());
__ CompareImmediate(STCInternal::kScratchReg,
target::ToRawSmi(SubtypeTestCache::kMaxLinearCacheSize));
// For IA32, we never handle hash caches in the stub, as there's too much
// register pressure.
Label is_linear;
__ BranchIf(LESS_EQUAL, &is_linear, Assembler::kNearJump);
// Return null so that we'll continue to the runtime for hash-based caches.
__ movl(TypeTestABI::kSubtypeTestCacheResultReg, raw_null);
__ ret();
__ Bind(&is_linear);
__ AddImmediate(STCInternal::kCacheArrayReg,
target::Array::data_offset() - kHeapObjectTag);
Label loop, not_closure;
if (n >= 3) {
__ LoadClassIdMayBeSmi(STCInternal::kInstanceCidOrSignatureReg,
TypeTestABI::kInstanceReg);
} else {
__ LoadClassId(STCInternal::kInstanceCidOrSignatureReg,
TypeTestABI::kInstanceReg);
}
__ cmpl(STCInternal::kInstanceCidOrSignatureReg, Immediate(kClosureCid));
__ j(NOT_EQUAL, &not_closure, Assembler::kNearJump);
// Closure handling.
{
__ movl(STCInternal::kInstanceCidOrSignatureReg,
FieldAddress(TypeTestABI::kInstanceReg,
target::Closure::function_offset()));
__ movl(STCInternal::kInstanceCidOrSignatureReg,
FieldAddress(STCInternal::kInstanceCidOrSignatureReg,
target::Function::signature_offset()));
if (n >= 2) {
__ movl(
STCInternal::kInstanceInstantiatorTypeArgumentsReg,
FieldAddress(TypeTestABI::kInstanceReg,
target::Closure::instantiator_type_arguments_offset()));
}
if (n >= 5) {
__ pushl(FieldAddress(TypeTestABI::kInstanceReg,
target::Closure::function_type_arguments_offset()));
}
if (n >= 6) {
__ pushl(FieldAddress(TypeTestABI::kInstanceReg,
target::Closure::delayed_type_arguments_offset()));
}
__ jmp(&loop, Assembler::kNearJump);
}
// Non-Closure handling.
{
__ Bind(&not_closure);
if (n >= 2) {
Label has_no_type_arguments;
__ LoadClassById(STCInternal::kScratchReg,
STCInternal::kInstanceCidOrSignatureReg);
__ movl(STCInternal::kInstanceInstantiatorTypeArgumentsReg, raw_null);
__ movl(
STCInternal::kScratchReg,
FieldAddress(STCInternal::kScratchReg,
target::Class::
host_type_arguments_field_offset_in_words_offset()));
__ cmpl(STCInternal::kScratchReg,
Immediate(target::Class::kNoTypeArguments));
__ j(EQUAL, &has_no_type_arguments, Assembler::kNearJump);
__ movl(STCInternal::kInstanceInstantiatorTypeArgumentsReg,
FieldAddress(TypeTestABI::kInstanceReg, STCInternal::kScratchReg,
TIMES_4, 0));
__ Bind(&has_no_type_arguments);
}
__ SmiTag(STCInternal::kInstanceCidOrSignatureReg);
if (n >= 5) {
__ pushl(raw_null); // parent function.
}
if (n >= 6) {
__ pushl(raw_null); // delayed.
}
}
// Offset of the original top of the stack from the current top of stack.
intptr_t original_tos_offset = 0;
// Additional data conditionally stored on the stack use negative depths
// that will be non-negative when adjusted for original_tos_offset. We
// initialize conditionally pushed values to kNoInput for extra checking.
intptr_t kInstanceParentFunctionTypeArgumentsDepth = STCInternal::kNoDepth;
intptr_t kInstanceDelayedFunctionTypeArgumentsDepth = STCInternal::kNoDepth;
// Now that instance handling is done, both the delayed and parent function
// type arguments stack slots have been set, so any input uses must be
// offset by the new values and the new values can now be accessed in
// the following code without issue when n >= 6.
if (n >= 5) {
original_tos_offset++;
kInstanceParentFunctionTypeArgumentsDepth = -original_tos_offset;
}
if (n >= 6) {
original_tos_offset++;
kInstanceDelayedFunctionTypeArgumentsDepth = -original_tos_offset;
}
Label found, not_found, done, next_iteration;
// Loop header.
__ Bind(&loop);
GenerateSubtypeTestCacheLoop(assembler, n, original_tos_offset,
kInstanceParentFunctionTypeArgumentsDepth,
kInstanceDelayedFunctionTypeArgumentsDepth,
&found, &not_found, &next_iteration);
__ Bind(&next_iteration);
__ addl(STCInternal::kCacheArrayReg,
Immediate(target::kWordSize *
target::SubtypeTestCache::kTestEntryLength));
__ jmp(&loop, Assembler::kNearJump);
__ Bind(&found);
if (n >= 5) {
__ Drop(original_tos_offset);
}
__ movl(TypeTestABI::kSubtypeTestCacheResultReg,
Address(STCInternal::kCacheArrayReg,
target::kWordSize * target::SubtypeTestCache::kTestResult));
__ ret();
__ Bind(&not_found);
if (n >= 5) {
__ Drop(original_tos_offset);
}
// In the not found case, even though the field that determines occupancy was
// null, another thread might be updating the cache and in the middle of
// filling in the entry. Thus, we load the null object explicitly instead of
// just using the (possibly mid-update) test result field.
__ movl(TypeTestABI::kSubtypeTestCacheResultReg, raw_null);
__ ret();
}
// Return the current stack pointer address, used to do stack alignment checks.
// TOS + 0: return address
// Result in EAX.
void StubCodeCompiler::GenerateGetCStackPointerStub() {
__ leal(EAX, Address(ESP, target::kWordSize));
__ ret();
}
// Jump to a frame on the call stack.
// TOS + 0: return address
// TOS + 1: program_counter
// TOS + 2: stack_pointer
// TOS + 3: frame_pointer
// TOS + 4: thread
// No Result.
void StubCodeCompiler::GenerateJumpToFrameStub() {
__ movl(THR, Address(ESP, 4 * target::kWordSize)); // Load target thread.
__ movl(EBP,
Address(ESP, 3 * target::kWordSize)); // Load target frame_pointer.
__ movl(EBX,
Address(ESP, 1 * target::kWordSize)); // Load target PC into EBX.
__ movl(ESP,
Address(ESP, 2 * target::kWordSize)); // Load target stack_pointer.
#if defined(USING_SHADOW_CALL_STACK)
#error Unimplemented
#endif
Label exit_through_non_ffi;
// Check if we exited generated from FFI. If so do transition - this is needed
// because normally runtime calls transition back to generated via destructor
// of TransitionGeneratedToVM/Native that is part of runtime boilerplate
// code (see DEFINE_RUNTIME_ENTRY_IMPL in runtime_entry.h). Ffi calls don't
// have this boilerplate, don't have this stack resource, have to transition
// explicitly.
__ cmpl(compiler::Address(
THR, compiler::target::Thread::exit_through_ffi_offset()),
compiler::Immediate(target::Thread::exit_through_ffi()));
__ j(NOT_EQUAL, &exit_through_non_ffi, compiler::Assembler::kNearJump);
__ TransitionNativeToGenerated(ECX, /*leave_safepoint=*/true,
/*ignore_unwind_in_progress=*/true);
__ Bind(&exit_through_non_ffi);