blob: 846f8459611ecfce674e678494a126bb56383ccb [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
import 'dart:collection';
import 'package:analyzer/dart/ast/token.dart';
import 'package:analyzer/dart/element/element.dart';
import 'package:analyzer/dart/element/nullability_suffix.dart';
import 'package:analyzer/dart/element/type.dart';
import 'package:analyzer/dart/element/type_visitor.dart';
import 'package:analyzer/src/dart/analysis/session.dart';
import 'package:analyzer/src/dart/element/display_string_builder.dart';
import 'package:analyzer/src/dart/element/element.dart';
import 'package:analyzer/src/dart/element/extensions.dart';
import 'package:analyzer/src/dart/element/inheritance_manager3.dart';
import 'package:analyzer/src/dart/element/member.dart';
import 'package:analyzer/src/dart/element/type_algebra.dart';
import 'package:analyzer/src/dart/element/type_system.dart';
import 'package:analyzer/src/generated/element_type_provider.dart';
import 'package:analyzer/src/generated/utilities_dart.dart';
/// Transforms the given [list] by applying [transform] to all its elements.
///
/// If no changes are made (i.e. the return value of [transform] is identical
/// to its parameter each time it is invoked), the original list is returned.
List<T> _transformOrShare<T>(List<T> list, T Function(T) transform) {
var length = list.length;
for (int i = 0; i < length; i++) {
var item = list[i];
var transformed = transform(item);
if (!identical(item, transformed)) {
var newList = list.toList();
newList[i] = transformed;
for (i++; i < length; i++) {
newList[i] = transform(list[i]);
}
return newList;
}
}
return list;
}
/// The [Type] representing the type `dynamic`.
class DynamicTypeImpl extends TypeImpl implements DynamicType {
/// The unique instance of this class.
static final DynamicTypeImpl instance = DynamicTypeImpl._();
/// Prevent the creation of instances of this class.
DynamicTypeImpl._() : super(DynamicElementImpl());
@override
int get hashCode => 1;
@override
bool get isDynamic => true;
@Deprecated('Check element, or use getDisplayString()')
@override
String get name => Keyword.DYNAMIC.lexeme;
@override
NullabilitySuffix get nullabilitySuffix => NullabilitySuffix.none;
@override
bool operator ==(Object object) => identical(object, this);
@override
R accept<R>(TypeVisitor<R> visitor) {
return visitor.visitDynamicType(this);
}
@override
R acceptWithArgument<R, A>(
TypeVisitorWithArgument<R, A> visitor,
A argument,
) {
return visitor.visitDynamicType(this, argument);
}
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeDynamicType();
}
@override
TypeImpl withNullability(NullabilitySuffix nullabilitySuffix) {
// The dynamic type is always nullable.
return this;
}
}
/// The type of a function, method, constructor, getter, or setter.
class FunctionTypeImpl extends TypeImpl implements FunctionType {
@override
final DartType returnType;
@override
final List<TypeParameterElement> typeFormals;
@override
final List<ParameterElement> parameters;
@override
final NullabilitySuffix nullabilitySuffix;
FunctionTypeImpl({
required List<TypeParameterElement> typeFormals,
required List<ParameterElement> parameters,
required DartType returnType,
required NullabilitySuffix nullabilitySuffix,
InstantiatedTypeAliasElement? alias,
}) : typeFormals = typeFormals,
parameters = _sortNamedParameters(parameters),
returnType = returnType,
nullabilitySuffix = nullabilitySuffix,
super(null, alias: alias);
@override
int get hashCode {
// Reference the arrays of parameters
final normalParameterTypes = this.normalParameterTypes;
final optionalParameterTypes = this.optionalParameterTypes;
var namedParameterTypes = this.namedParameterTypes.values;
// Generate the hashCode
var code = returnType.hashCode;
for (int i = 0; i < normalParameterTypes.length; i++) {
code = (code << 1) + normalParameterTypes[i].hashCode;
}
for (int i = 0; i < optionalParameterTypes.length; i++) {
code = (code << 1) + optionalParameterTypes[i].hashCode;
}
for (DartType type in namedParameterTypes) {
code = (code << 1) + type.hashCode;
}
return code;
}
@Deprecated('Check element, or use getDisplayString()')
@override
String? get name => null;
@override
Map<String, DartType> get namedParameterTypes {
// TODO(brianwilkerson) This implementation breaks the contract because the
// parameters will not necessarily be returned in the order in which they
// were declared.
Map<String, DartType> types = <String, DartType>{};
_forEachParameterType(ParameterKind.NAMED, (name, type) {
types[name] = type;
});
_forEachParameterType(ParameterKind.NAMED_REQUIRED, (name, type) {
types[name] = type;
});
return types;
}
@override
List<String> get normalParameterNames => parameters
.where((p) => p.isRequiredPositional)
.map((p) => p.name)
.toList();
@override
List<DartType> get normalParameterTypes {
List<DartType> types = <DartType>[];
_forEachParameterType(ParameterKind.REQUIRED, (name, type) {
types.add(type);
});
return types;
}
@override
List<String> get optionalParameterNames => parameters
.where((p) => p.isOptionalPositional)
.map((p) => p.name)
.toList();
@override
List<DartType> get optionalParameterTypes {
List<DartType> types = <DartType>[];
_forEachParameterType(ParameterKind.POSITIONAL, (name, type) {
types.add(type);
});
return types;
}
@override
bool operator ==(Object other) {
if (identical(other, this)) {
return true;
}
if (other is FunctionTypeImpl) {
if (other.nullabilitySuffix != nullabilitySuffix) {
return false;
}
if (other.typeFormals.length != typeFormals.length) {
return false;
}
// `<T>T -> T` should be equal to `<U>U -> U`
// To test this, we instantiate both types with the same (unique) type
// variables, and see if the result is equal.
if (typeFormals.isNotEmpty) {
var freshVariables = FunctionTypeImpl.relateTypeFormals(
this, other, (t, s, _, __) => t == s);
if (freshVariables == null) {
return false;
}
return instantiate(freshVariables) == other.instantiate(freshVariables);
}
return other.returnType == returnType &&
_equalParameters(other.parameters, parameters);
}
return false;
}
@override
R accept<R>(TypeVisitor<R> visitor) {
return visitor.visitFunctionType(this);
}
@override
R acceptWithArgument<R, A>(
TypeVisitorWithArgument<R, A> visitor,
A argument,
) {
return visitor.visitFunctionType(this, argument);
}
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeFunctionType(this);
}
@override
FunctionTypeImpl instantiate(List<DartType> argumentTypes) {
if (argumentTypes.length != typeFormals.length) {
throw ArgumentError("argumentTypes.length (${argumentTypes.length}) != "
"typeFormals.length (${typeFormals.length})");
}
if (argumentTypes.isEmpty) {
return this;
}
var substitution = Substitution.fromPairs(typeFormals, argumentTypes);
ParameterElement transformParameter(ParameterElement p) {
return p.copyWith(
type: substitution.substituteType(p.type),
);
}
return FunctionTypeImpl(
returnType: substitution.substituteType(returnType),
typeFormals: const [],
parameters: _transformOrShare(parameters, transformParameter),
nullabilitySuffix: nullabilitySuffix,
);
}
@override
bool referencesAny(Set<TypeParameterElement> parameters) {
if (typeFormals.any((element) {
var elementImpl = element as TypeParameterElementImpl;
assert(!parameters.contains(elementImpl));
var bound = elementImpl.bound as TypeImpl?;
if (bound != null && bound.referencesAny(parameters)) {
return true;
}
var defaultType = elementImpl.defaultType as TypeImpl;
return defaultType.referencesAny(parameters);
})) {
return true;
}
if (this.parameters.any((element) {
var type = element.type as TypeImpl;
return type.referencesAny(parameters);
})) {
return true;
}
return (returnType as TypeImpl).referencesAny(parameters);
}
@override
TypeImpl withNullability(NullabilitySuffix nullabilitySuffix) {
if (this.nullabilitySuffix == nullabilitySuffix) return this;
return FunctionTypeImpl(
typeFormals: typeFormals,
parameters: parameters,
returnType: returnType,
nullabilitySuffix: nullabilitySuffix,
alias: alias,
);
}
void _forEachParameterType(
ParameterKind kind, void Function(String name, DartType type) callback) {
for (var parameter in parameters) {
// ignore: deprecated_member_use_from_same_package
if (parameter.parameterKind == kind) {
callback(parameter.name, parameter.type);
}
}
}
/// Compares two function types [t] and [s] to see if their corresponding
/// parameter types match [parameterRelation], return types match
/// [returnRelation], and type parameter bounds match [boundsRelation].
///
/// Used for the various relations on function types which have the same
/// structural rules for handling optional parameters and arity, but use their
/// own relation for comparing corresponding parameters or return types.
///
/// If [parameterRelation] is omitted, uses [returnRelation] for both. This
/// is convenient for Dart 1 type system methods.
///
/// If [boundsRelation] is omitted, uses [returnRelation]. This is for
/// backwards compatibility, and convenience for Dart 1 type system methods.
static bool relate(FunctionType t, DartType? other,
bool Function(DartType t, DartType s) returnRelation,
{bool Function(ParameterElement t, ParameterElement s)? parameterRelation,
bool Function(DartType bound2, DartType bound1,
TypeParameterElement formal2, TypeParameterElement formal1)?
boundsRelation}) {
parameterRelation ??= (t, s) => returnRelation(t.type, s.type);
boundsRelation ??= (t, s, _, __) => returnRelation(t, s);
// Trivial base cases.
if (other == null) {
return false;
} else if (identical(t, other) ||
other.isDynamic ||
other.isDartCoreFunction ||
other.isDartCoreObject) {
return true;
} else if (other is! FunctionType) {
return false;
}
// This type cast is safe, because we checked it above.
FunctionType s = other;
if (t.typeFormals.isNotEmpty) {
var freshVariables = relateTypeFormals(t, s, boundsRelation);
if (freshVariables == null) {
return false;
}
t = t.instantiate(freshVariables);
s = s.instantiate(freshVariables);
} else if (s.typeFormals.isNotEmpty) {
return false;
}
// Test the return types.
DartType sRetType = s.returnType;
if (!sRetType.isVoid && !returnRelation(t.returnType, sRetType)) {
return false;
}
// Test the parameter types.
return relateParameters(t.parameters, s.parameters, parameterRelation);
}
/// Compares parameters [tParams] and [sParams] of two function types, taking
/// corresponding parameters from the lists, and see if they match
/// [parameterRelation].
///
/// Corresponding parameters are defined as a pair `(t, s)` where `t` is a
/// parameter from [tParams] and `s` is a parameter from [sParams], and both
/// `t` and `s` are at the same position (for positional parameters)
/// or have the same name (for named parameters).
///
/// Used for the various relations on function types which have the same
/// structural rules for handling optional parameters and arity, but use their
/// own relation for comparing the parameters.
static bool relateParameters(
List<ParameterElement> tParams,
List<ParameterElement> sParams,
bool Function(ParameterElement t, ParameterElement s) parameterRelation) {
// TODO(jmesserly): this could be implemented with less allocation if we
// wanted, by taking advantage of the fact that positional arguments must
// appear before named ones.
var tRequired = <ParameterElement>[];
var tOptional = <ParameterElement>[];
var tNamed = <String, ParameterElement>{};
for (var p in tParams) {
if (p.isRequiredPositional) {
tRequired.add(p);
} else if (p.isOptionalPositional) {
tOptional.add(p);
} else {
assert(p.isNamed);
tNamed[p.name] = p;
}
}
var sRequired = <ParameterElement>[];
var sOptional = <ParameterElement>[];
var sNamed = <String, ParameterElement>{};
for (var p in sParams) {
if (p.isRequiredPositional) {
sRequired.add(p);
} else if (p.isOptionalPositional) {
sOptional.add(p);
} else {
assert(p.isNamed);
sNamed[p.name] = p;
}
}
// If one function has positional and the other has named parameters,
// they don't relate.
if (sOptional.isNotEmpty && tNamed.isNotEmpty ||
tOptional.isNotEmpty && sNamed.isNotEmpty) {
return false;
}
// If the passed function includes more named parameters than we do, we
// don't relate.
if (tNamed.length < sNamed.length) {
return false;
}
// For each named parameter in s, make sure we have a corresponding one
// that relates.
for (String key in sNamed.keys) {
var tParam = tNamed[key];
if (tParam == null) {
return false;
}
var sParam = sNamed[key]!;
if (!parameterRelation(tParam, sParam)) {
return false;
}
}
// Make sure all of the positional parameters (both required and optional)
// relate to each other.
var tPositional = tRequired;
var sPositional = sRequired;
if (tOptional.isNotEmpty) {
tPositional = tPositional.toList()..addAll(tOptional);
}
if (sOptional.isNotEmpty) {
sPositional = sPositional.toList()..addAll(sOptional);
}
// Check that s has enough required parameters.
if (sRequired.length < tRequired.length) {
return false;
}
// Check that s does not include more positional parameters than we do.
if (tPositional.length < sPositional.length) {
return false;
}
for (int i = 0; i < sPositional.length; i++) {
if (!parameterRelation(tPositional[i], sPositional[i])) {
return false;
}
}
return true;
}
/// Given two functions [f1] and [f2] where f1 and f2 are known to be
/// generic function types (both have type formals), this checks that they
/// have the same number of formals, and that those formals have bounds
/// (e.g. `<T extends LowerBound>`) that satisfy [relation].
///
/// The return value will be a new list of fresh type variables, that can be
/// used to instantiate both function types, allowing further comparison.
/// For example, given `<T>T -> T` and `<U>U -> U` we can instantiate them
/// with `F` to get `F -> F` and `F -> F`, which we can see are equal.
static List<TypeParameterType>? relateTypeFormals(
FunctionType f1,
FunctionType f2,
bool Function(DartType bound2, DartType bound1,
TypeParameterElement formal2, TypeParameterElement formal1)
relation) {
List<TypeParameterElement> params1 = f1.typeFormals;
List<TypeParameterElement> params2 = f2.typeFormals;
return relateTypeFormals2(params1, params2, relation);
}
static List<TypeParameterType>? relateTypeFormals2(
List<TypeParameterElement> params1,
List<TypeParameterElement> params2,
bool Function(DartType bound2, DartType bound1,
TypeParameterElement formal2, TypeParameterElement formal1)
relation) {
int count = params1.length;
if (params2.length != count) {
return null;
}
// We build up a substitution matching up the type parameters
// from the two types, {variablesFresh/variables1} and
// {variablesFresh/variables2}
List<TypeParameterElement> variables1 = <TypeParameterElement>[];
List<TypeParameterElement> variables2 = <TypeParameterElement>[];
var variablesFresh = <TypeParameterType>[];
for (int i = 0; i < count; i++) {
TypeParameterElement p1 = params1[i];
TypeParameterElement p2 = params2[i];
TypeParameterElementImpl pFresh =
TypeParameterElementImpl.synthetic(p2.name);
ElementTypeProvider.current.freshTypeParameterCreated(pFresh, p2);
var variableFresh = pFresh.instantiate(
nullabilitySuffix: NullabilitySuffix.none,
);
variables1.add(p1);
variables2.add(p2);
variablesFresh.add(variableFresh);
DartType bound1 = p1.bound ?? DynamicTypeImpl.instance;
DartType bound2 = p2.bound ?? DynamicTypeImpl.instance;
bound1 = Substitution.fromPairs(variables1, variablesFresh)
.substituteType(bound1);
bound2 = Substitution.fromPairs(variables2, variablesFresh)
.substituteType(bound2);
if (!relation(bound2, bound1, p2, p1)) {
return null;
}
if (!bound2.isDynamic) {
pFresh.bound = bound2;
}
}
return variablesFresh;
}
/// Return `true` if given lists of parameters are semantically - have the
/// same kinds (required, optional position, named, required named), and
/// the same types. Named parameters must also have same names. Named
/// parameters must be sorted in the given lists.
static bool _equalParameters(
List<ParameterElement> firstParameters,
List<ParameterElement> secondParameters,
) {
if (firstParameters.length != secondParameters.length) {
return false;
}
for (var i = 0; i < firstParameters.length; ++i) {
var firstParameter = firstParameters[i];
var secondParameter = secondParameters[i];
// ignore: deprecated_member_use_from_same_package
if (firstParameter.parameterKind != secondParameter.parameterKind) {
return false;
}
if (firstParameter.type != secondParameter.type) {
return false;
}
if (firstParameter.isNamed &&
firstParameter.name != secondParameter.name) {
return false;
}
}
return true;
}
/// If named parameters are already sorted in [parameters], return it.
/// Otherwise, return a new list, in which named parameters are sorted.
static List<ParameterElement> _sortNamedParameters(
List<ParameterElement> parameters,
) {
int? firstNamedParameterIndex;
// Check if already sorted.
var namedParametersAlreadySorted = true;
var lastNamedParameterName = '';
for (var i = 0; i < parameters.length; ++i) {
var parameter = parameters[i];
if (parameter.isNamed) {
firstNamedParameterIndex ??= i;
var name = parameter.name;
if (lastNamedParameterName.compareTo(name) > 0) {
namedParametersAlreadySorted = false;
break;
}
lastNamedParameterName = name;
}
}
if (namedParametersAlreadySorted) {
return parameters;
}
// Sort named parameters.
var namedParameters =
parameters.sublist(firstNamedParameterIndex!, parameters.length);
namedParameters.sort((a, b) => a.name.compareTo(b.name));
// Combine into a new list, with sorted named parameters.
var newParameters = parameters.toList();
newParameters.replaceRange(
firstNamedParameterIndex, parameters.length, namedParameters);
return newParameters;
}
}
class InstantiatedTypeAliasElementImpl implements InstantiatedTypeAliasElement {
@override
final TypeAliasElement element;
@override
final List<DartType> typeArguments;
InstantiatedTypeAliasElementImpl({
required this.element,
required this.typeArguments,
});
}
/// A concrete implementation of an [InterfaceType].
class InterfaceTypeImpl extends TypeImpl implements InterfaceType {
@override
final List<DartType> typeArguments;
@override
final NullabilitySuffix nullabilitySuffix;
/// Cached [ConstructorElement]s - members or raw elements.
List<ConstructorElement>? _constructors;
/// Cached [PropertyAccessorElement]s - members or raw elements.
List<PropertyAccessorElement>? _accessors;
/// Cached [MethodElement]s - members or raw elements.
List<MethodElement>? _methods;
InterfaceTypeImpl({
required ClassElement element,
required this.typeArguments,
required this.nullabilitySuffix,
InstantiatedTypeAliasElement? alias,
}) : super(
element,
alias: alias,
);
@override
List<PropertyAccessorElement> get accessors {
if (_accessors == null) {
List<PropertyAccessorElement> accessors = element.accessors;
var members = <PropertyAccessorElement>[];
for (int i = 0; i < accessors.length; i++) {
members.add(PropertyAccessorMember.from(accessors[i], this)!);
}
_accessors = members;
}
return _accessors!;
}
@override
List<InterfaceType> get allSupertypes {
var substitution = Substitution.fromInterfaceType(this);
return element.allSupertypes
.map((t) => substitution.substituteType(t) as InterfaceType)
.toList();
}
@override
List<ConstructorElement> get constructors {
if (_constructors == null) {
List<ConstructorElement> constructors = element.constructors;
var members = <ConstructorElement>[];
for (int i = 0; i < constructors.length; i++) {
members.add(ConstructorMember.from(constructors[i], this));
}
_constructors = members;
}
return _constructors!;
}
@override
ClassElement get element => super.element as ClassElement;
@override
int get hashCode {
return element.hashCode;
}
@override
List<InterfaceType> get interfaces {
return _instantiateSuperTypes(element.interfaces);
}
@override
bool get isDartAsyncFuture {
return element.name == "Future" && element.library.isDartAsync;
}
@override
bool get isDartAsyncFutureOr {
return element.name == "FutureOr" && element.library.isDartAsync;
}
@override
bool get isDartCoreBool {
return element.name == "bool" && element.library.isDartCore;
}
@override
bool get isDartCoreDouble {
return element.name == "double" && element.library.isDartCore;
}
@override
bool get isDartCoreFunction {
return element.name == "Function" && element.library.isDartCore;
}
@override
bool get isDartCoreInt {
return element.name == "int" && element.library.isDartCore;
}
@override
bool get isDartCoreIterable {
return element.name == "Iterable" && element.library.isDartCore;
}
@override
bool get isDartCoreList {
return element.name == "List" && element.library.isDartCore;
}
@override
bool get isDartCoreMap {
return element.name == "Map" && element.library.isDartCore;
}
@override
bool get isDartCoreNull {
return element.name == "Null" && element.library.isDartCore;
}
@override
bool get isDartCoreNum {
return element.name == "num" && element.library.isDartCore;
}
@override
bool get isDartCoreObject {
return element.name == "Object" && element.library.isDartCore;
}
@override
bool get isDartCoreSet {
return element.name == "Set" && element.library.isDartCore;
}
@override
bool get isDartCoreString {
return element.name == "String" && element.library.isDartCore;
}
@override
bool get isDartCoreSymbol {
return element.name == "Symbol" && element.library.isDartCore;
}
@override
List<MethodElement> get methods {
if (_methods == null) {
List<MethodElement> methods = element.methods;
var members = <MethodElement>[];
for (int i = 0; i < methods.length; i++) {
members.add(MethodMember.from(methods[i], this)!);
}
_methods = members;
}
return _methods!;
}
@override
List<InterfaceType> get mixins {
List<InterfaceType> mixins = element.mixins;
return _instantiateSuperTypes(mixins);
}
@Deprecated('Check element, or use getDisplayString()')
@override
String get name => element.name;
@override
InterfaceType? get superclass {
var supertype = element.supertype;
if (supertype == null) {
return null;
}
return Substitution.fromInterfaceType(this).substituteType(supertype)
as InterfaceType;
}
@override
List<InterfaceType> get superclassConstraints {
List<InterfaceType> constraints = element.superclassConstraints;
return _instantiateSuperTypes(constraints);
}
InheritanceManager3 get _inheritanceManager =>
(element.library.session as AnalysisSessionImpl).inheritanceManager;
@override
bool operator ==(Object other) {
if (identical(other, this)) {
return true;
}
if (other is InterfaceTypeImpl) {
if (other.nullabilitySuffix != nullabilitySuffix) {
return false;
}
return other.element == element &&
TypeImpl.equalArrays(other.typeArguments, typeArguments);
}
return false;
}
@override
R accept<R>(TypeVisitor<R> visitor) {
return visitor.visitInterfaceType(this);
}
@override
R acceptWithArgument<R, A>(
TypeVisitorWithArgument<R, A> visitor,
A argument,
) {
return visitor.visitInterfaceType(this, argument);
}
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeInterfaceType(this);
}
@override
InterfaceType? asInstanceOf(ClassElement targetElement) {
if (element == targetElement) {
return this;
}
for (var rawInterface in element.allSupertypes) {
if (rawInterface.element == targetElement) {
var substitution = Substitution.fromInterfaceType(this);
return substitution.substituteType(rawInterface) as InterfaceType;
}
}
return null;
}
@override
PropertyAccessorElement? getGetter(String getterName) =>
PropertyAccessorMember.from(element.getGetter(getterName), this);
@override
MethodElement? getMethod(String methodName) =>
MethodMember.from(element.getMethod(methodName), this);
@override
PropertyAccessorElement? getSetter(String setterName) =>
PropertyAccessorMember.from(element.getSetter(setterName), this);
@override
ConstructorElement? lookUpConstructor(
String? constructorName, LibraryElement library) {
// prepare base ConstructorElement
ConstructorElement? constructorElement;
if (constructorName == null) {
constructorElement = element.unnamedConstructor;
} else {
constructorElement = element.getNamedConstructor(constructorName);
}
// not found or not accessible
if (constructorElement == null ||
!constructorElement.isAccessibleIn(library)) {
return null;
}
// return member
return ConstructorMember.from(constructorElement, this);
}
@deprecated
@override
PropertyAccessorElement? lookUpGetter(
String getterName, LibraryElement? library) {
var element = getGetter(getterName);
if (element != null && element.isAccessibleIn(library)) {
return element;
}
return lookUpGetterInSuperclass(getterName, library);
}
@override
PropertyAccessorElement? lookUpGetter2(
String name,
LibraryElement library, {
bool concrete = false,
bool inherited = false,
bool recoveryStatic = false,
}) {
var inheritance = _inheritanceManager;
var nameObj = Name(library.source.uri, name);
if (inherited) {
if (concrete) {
var result = inheritance.getMember(this, nameObj, forSuper: inherited);
if (result is PropertyAccessorElement) {
return result;
}
} else {
var result = inheritance.getInherited(this, nameObj);
if (result is PropertyAccessorElement) {
return result;
}
}
return null;
}
var result = inheritance.getMember(this, nameObj, concrete: concrete);
if (result is PropertyAccessorElement) {
return result;
}
if (recoveryStatic) {
final element = this.element as AbstractClassElementImpl;
return element.lookupStaticGetter(name, library);
}
return null;
}
@deprecated
@override
PropertyAccessorElement? lookUpGetterInSuperclass(
String getterName, LibraryElement? library) {
for (InterfaceType mixin in mixins.reversed) {
var element = mixin.getGetter(getterName);
if (element != null && element.isAccessibleIn(library)) {
return element;
}
}
for (InterfaceType constraint in superclassConstraints) {
var element = constraint.getGetter(getterName);
if (element != null && element.isAccessibleIn(library)) {
return element;
}
}
HashSet<ClassElement> visitedClasses = HashSet<ClassElement>();
var supertype = superclass;
var supertypeElement = supertype?.element;
while (supertype != null &&
supertypeElement != null &&
!visitedClasses.contains(supertypeElement)) {
visitedClasses.add(supertypeElement);
var element = supertype.getGetter(getterName);
if (element != null && element.isAccessibleIn(library)) {
return element;
}
for (InterfaceType mixin in supertype.mixins.reversed) {
element = mixin.getGetter(getterName);
if (element != null && element.isAccessibleIn(library)) {
return element;
}
}
supertype = supertype.superclass;
supertypeElement = supertype?.element;
}
return null;
}
@deprecated
@override
PropertyAccessorElement? lookUpInheritedGetter(String name,
{LibraryElement? library, bool thisType = true}) {
PropertyAccessorElement? result;
if (thisType) {
result = lookUpGetter(name, library);
} else {
result = lookUpGetterInSuperclass(name, library);
}
if (result != null) {
return result;
}
return _lookUpMemberInInterfaces(this, false, library,
HashSet<ClassElement>(), (InterfaceType t) => t.getGetter(name));
}
@deprecated
@override
ExecutableElement? lookUpInheritedGetterOrMethod(String name,
{LibraryElement? library}) {
var result = lookUpGetter(name, library) ?? lookUpMethod(name, library);
if (result != null) {
return result;
}
return _lookUpMemberInInterfaces(
this,
false,
library,
HashSet<ClassElement>(),
(InterfaceType t) => t.getGetter(name) ?? t.getMethod(name));
}
@deprecated
ExecutableElement? lookUpInheritedMember(String name, LibraryElement library,
{bool concrete = false,
bool forSuperInvocation = false,
int? startMixinIndex,
bool setter = false,
bool thisType = false}) {
HashSet<ClassElement> visitedClasses = HashSet<ClassElement>();
/// TODO(scheglov) Remove [includeSupers]. It is used only to work around
/// the problem with Flutter code base (using old super-mixins).
ExecutableElement? lookUpImpl(InterfaceType? type,
{bool acceptAbstract = false,
bool includeType = true,
bool inMixin = false,
int? startMixinIndex}) {
if (type == null || !visitedClasses.add(type.element)) {
return null;
}
if (includeType) {
ExecutableElement? result;
if (setter) {
result = type.getSetter(name);
} else {
result = type.getMethod(name);
result ??= type.getGetter(name);
}
if (result != null && result.isAccessibleIn(library)) {
if (!concrete || acceptAbstract || !result.isAbstract) {
return result;
}
}
}
if (!inMixin || acceptAbstract) {
var mixins = type.mixins;
startMixinIndex ??= mixins.length;
for (var i = startMixinIndex - 1; i >= 0; i--) {
var result = lookUpImpl(
mixins[i],
acceptAbstract: acceptAbstract,
inMixin: true,
);
if (result != null) {
return result;
}
}
}
// We were not able to find the concrete dispatch target.
// It is OK to look into interfaces, we need just some resolution now.
if (!concrete) {
for (InterfaceType mixin in type.interfaces) {
var result = lookUpImpl(mixin, acceptAbstract: acceptAbstract);
if (result != null) {
return result;
}
}
}
if (!inMixin || acceptAbstract) {
return lookUpImpl(type.superclass,
acceptAbstract: acceptAbstract, inMixin: inMixin);
}
return null;
}
if (element.isMixin) {
// TODO(scheglov) We should choose the most specific signature.
// Not just the first signature.
for (InterfaceType constraint in superclassConstraints) {
var result = lookUpImpl(constraint, acceptAbstract: true);
if (result != null) {
return result;
}
}
return null;
} else {
return lookUpImpl(
this,
includeType: thisType,
startMixinIndex: startMixinIndex,
);
}
}
@deprecated
@override
MethodElement? lookUpInheritedMethod(String name,
{LibraryElement? library, bool thisType = true}) {
MethodElement? result;
if (thisType) {
result = lookUpMethod(name, library);
} else {
result = lookUpMethodInSuperclass(name, library);
}
if (result != null) {
return result;
}
return _lookUpMemberInInterfaces(this, false, library,
HashSet<ClassElement>(), (InterfaceType t) => t.getMethod(name));
}
@deprecated
@override
PropertyAccessorElement? lookUpInheritedSetter(String name,
{LibraryElement? library, bool thisType = true}) {
PropertyAccessorElement? result;
if (thisType) {
result = lookUpSetter(name, library);
} else {
result = lookUpSetterInSuperclass(name, library);
}
if (result != null) {
return result;
}
return _lookUpMemberInInterfaces(this, false, library,
HashSet<ClassElement>(), (t) => t.getSetter(name));
}
@deprecated
@override
MethodElement? lookUpMethod(String methodName, LibraryElement? library) {
var element = getMethod(methodName);
if (element != null && element.isAccessibleIn(library)) {
return element;
}
return lookUpMethodInSuperclass(methodName, library);
}
@override
MethodElement? lookUpMethod2(
String name,
LibraryElement library, {
bool concrete = false,
bool inherited = false,
bool recoveryStatic = false,
}) {
var inheritance = _inheritanceManager;
var nameObj = Name(library.source.uri, name);
if (inherited) {
if (concrete) {
var result = inheritance.getMember(this, nameObj, forSuper: inherited);
if (result is MethodElement) {
return result;
}
} else {
var result = inheritance.getInherited(this, nameObj);
if (result is MethodElement) {
return result;
}
}
return null;
}
var result = inheritance.getMember(this, nameObj, concrete: concrete);
if (result is MethodElement) {
return result;
}
if (recoveryStatic) {
final element = this.element as AbstractClassElementImpl;
return element.lookupStaticMethod(name, library);
}
return null;
}
@deprecated
@override
MethodElement? lookUpMethodInSuperclass(
String methodName, LibraryElement? library) {
for (InterfaceType mixin in mixins.reversed) {
var element = mixin.getMethod(methodName);
if (element != null && element.isAccessibleIn(library)) {
return element;
}
}
for (InterfaceType constraint in superclassConstraints) {
var element = constraint.getMethod(methodName);
if (element != null && element.isAccessibleIn(library)) {
return element;
}
}
HashSet<ClassElement> visitedClasses = HashSet<ClassElement>();
var supertype = superclass;
var supertypeElement = supertype?.element;
while (supertype != null &&
supertypeElement != null &&
!visitedClasses.contains(supertypeElement)) {
visitedClasses.add(supertypeElement);
var element = supertype.getMethod(methodName);
if (element != null && element.isAccessibleIn(library)) {
return element;
}
for (InterfaceType mixin in supertype.mixins.reversed) {
element = mixin.getMethod(methodName);
if (element != null && element.isAccessibleIn(library)) {
return element;
}
}
supertype = supertype.superclass;
supertypeElement = supertype?.element;
}
return null;
}
@deprecated
@override
PropertyAccessorElement? lookUpSetter(
String setterName, LibraryElement? library) {
var element = getSetter(setterName);
if (element != null && element.isAccessibleIn(library)) {
return element;
}
return lookUpSetterInSuperclass(setterName, library);
}
@override
PropertyAccessorElement? lookUpSetter2(
String name,
LibraryElement library, {
bool concrete = false,
bool inherited = false,
bool recoveryStatic = false,
}) {
var inheritance = _inheritanceManager;
var nameObj = Name(library.source.uri, '$name=');
if (inherited) {
if (concrete) {
var result = inheritance.getMember(this, nameObj, forSuper: inherited);
if (result is PropertyAccessorElement) {
return result;
}
} else {
var result = inheritance.getInherited(this, nameObj);
if (result is PropertyAccessorElement) {
return result;
}
}
return null;
}
var result = inheritance.getMember(this, nameObj, concrete: concrete);
if (result is PropertyAccessorElement) {
return result;
}
if (recoveryStatic) {
final element = this.element as AbstractClassElementImpl;
return element.lookupStaticSetter(name, library);
}
return null;
}
@deprecated
@override
PropertyAccessorElement? lookUpSetterInSuperclass(
String setterName, LibraryElement? library) {
for (InterfaceType mixin in mixins.reversed) {
var element = mixin.getSetter(setterName);
if (element != null && element.isAccessibleIn(library)) {
return element;
}
}
for (InterfaceType constraint in superclassConstraints) {
var element = constraint.getSetter(setterName);
if (element != null && element.isAccessibleIn(library)) {
return element;
}
}
HashSet<ClassElement> visitedClasses = HashSet<ClassElement>();
var supertype = superclass;
var supertypeElement = supertype?.element;
while (supertype != null &&
supertypeElement != null &&
!visitedClasses.contains(supertypeElement)) {
visitedClasses.add(supertypeElement);
var element = supertype.getSetter(setterName);
if (element != null && element.isAccessibleIn(library)) {
return element;
}
for (InterfaceType mixin in supertype.mixins.reversed) {
element = mixin.getSetter(setterName);
if (element != null && element.isAccessibleIn(library)) {
return element;
}
}
supertype = supertype.superclass;
supertypeElement = supertype?.element;
}
return null;
}
@override
bool referencesAny(Set<TypeParameterElement> parameters) {
return typeArguments.any((argument) {
var argumentImpl = argument as TypeImpl;
return argumentImpl.referencesAny(parameters);
});
}
@override
InterfaceTypeImpl withNullability(NullabilitySuffix nullabilitySuffix) {
if (this.nullabilitySuffix == nullabilitySuffix) return this;
return InterfaceTypeImpl(
element: element,
typeArguments: typeArguments,
nullabilitySuffix: nullabilitySuffix,
);
}
List<InterfaceType> _instantiateSuperTypes(List<InterfaceType> defined) {
if (defined.isEmpty) return defined;
var typeParameters = element.typeParameters;
if (typeParameters.isEmpty) return defined;
var substitution = Substitution.fromInterfaceType(this);
var result = <InterfaceType>[];
for (int i = 0; i < defined.length; i++) {
result.add(substitution.substituteType(defined[i]) as InterfaceType);
}
return result;
}
/// If there is a single type which is at least as specific as all of the
/// types in [types], return it. Otherwise return `null`.
static DartType? findMostSpecificType(
List<DartType> types, TypeSystemImpl typeSystem) {
// The << relation ("more specific than") is a partial ordering on types,
// so to find the most specific type of a set, we keep a bucket of the most
// specific types seen so far such that no type in the bucket is more
// specific than any other type in the bucket.
List<DartType> bucket = <DartType>[];
// Then we consider each type in turn.
for (DartType type in types) {
// If any existing type in the bucket is more specific than this type,
// then we can ignore this type.
if (bucket.any((DartType t) => typeSystem.isSubtypeOf(t, type))) {
continue;
}
// Otherwise, we need to add this type to the bucket and remove any types
// that are less specific than it.
bool added = false;
int i = 0;
while (i < bucket.length) {
if (typeSystem.isSubtypeOf(type, bucket[i])) {
if (added) {
if (i < bucket.length - 1) {
bucket[i] = bucket.removeLast();
} else {
bucket.removeLast();
}
} else {
bucket[i] = type;
i++;
added = true;
}
} else {
i++;
}
}
if (!added) {
bucket.add(type);
}
}
// Now that we are finished, if there is exactly one type left in the
// bucket, it is the most specific type.
if (bucket.length == 1) {
return bucket[0];
}
// Otherwise, there is no single type that is more specific than the
// others.
return null;
}
/// Returns a "smart" version of the "least upper bound" of the given types.
///
/// If these types have the same element and differ only in terms of the type
/// arguments, attempts to find a compatible set of type arguments.
///
/// Otherwise, calls [DartType.getLeastUpperBound].
static InterfaceType getSmartLeastUpperBound(
InterfaceType first, InterfaceType second) {
// TODO(paulberry): this needs to be deprecated and replaced with a method
// in [TypeSystem], since it relies on the deprecated functionality of
// [DartType.getLeastUpperBound].
if (first.element == second.element) {
return _leastUpperBound(first, second);
}
var typeSystem = first.element.library.typeSystem as TypeSystemImpl;
return typeSystem.getLeastUpperBound(first, second) as InterfaceType;
}
/// Return the "least upper bound" of the given types under the assumption
/// that the types have the same element and differ only in terms of the type
/// arguments.
///
/// The resulting type is composed by comparing the corresponding type
/// arguments, keeping those that are the same, and using 'dynamic' for those
/// that are different.
static InterfaceType _leastUpperBound(
InterfaceType firstType, InterfaceType secondType) {
ClassElement firstElement = firstType.element;
ClassElement secondElement = secondType.element;
if (firstElement != secondElement) {
throw ArgumentError('The same elements expected, but '
'$firstElement and $secondElement are given.');
}
if (firstType == secondType) {
return firstType;
}
List<DartType> firstArguments = firstType.typeArguments;
List<DartType> secondArguments = secondType.typeArguments;
int argumentCount = firstArguments.length;
if (argumentCount == 0) {
return firstType;
}
var lubArguments = List<DartType>.filled(
argumentCount,
DynamicTypeImpl.instance,
);
for (int i = 0; i < argumentCount; i++) {
//
// Ideally we would take the least upper bound of the two argument types,
// but this can cause an infinite recursion (such as when finding the
// least upper bound of String and num).
//
if (firstArguments[i] == secondArguments[i]) {
lubArguments[i] = firstArguments[i];
}
}
NullabilitySuffix computeNullability() {
NullabilitySuffix first = firstType.nullabilitySuffix;
NullabilitySuffix second = secondType.nullabilitySuffix;
if (first == NullabilitySuffix.question ||
second == NullabilitySuffix.question) {
return NullabilitySuffix.question;
} else if (first == NullabilitySuffix.star ||
second == NullabilitySuffix.star) {
return NullabilitySuffix.star;
}
return NullabilitySuffix.none;
}
return InterfaceTypeImpl(
element: firstElement,
typeArguments: lubArguments,
nullabilitySuffix: computeNullability(),
);
}
/// Look up the getter with the given name in the interfaces implemented by
/// the given [targetType], either directly or indirectly. Return the element
/// representing the getter that was found, or `null` if there is no getter
/// with the given name. The flag [includeTargetType] should be `true` if the
/// search should include the target type. The [visitedInterfaces] is a set
/// containing all of the interfaces that have been examined, used to prevent
/// infinite recursion and to optimize the search.
static T? _lookUpMemberInInterfaces<T extends ExecutableElement>(
InterfaceType targetType,
bool includeTargetType,
LibraryElement? library,
HashSet<ClassElement> visitedInterfaces,
T? Function(InterfaceType type) getMember) {
// TODO(brianwilkerson) This isn't correct. Section 8.1.1 of the
// specification (titled "Inheritance and Overriding" under "Interfaces")
// describes a much more complex scheme for finding the inherited member.
// We need to follow that scheme. The code below should cover the 80% case.
ClassElement targetClass = targetType.element;
if (!visitedInterfaces.add(targetClass)) {
return null;
}
if (includeTargetType) {
var member = getMember(targetType);
if (member != null && member.isAccessibleIn(library)) {
return member;
}
}
for (InterfaceType interfaceType in targetType.interfaces) {
var member = _lookUpMemberInInterfaces(
interfaceType, true, library, visitedInterfaces, getMember);
if (member != null) {
return member;
}
}
for (InterfaceType constraint in targetType.superclassConstraints) {
var member = _lookUpMemberInInterfaces(
constraint, true, library, visitedInterfaces, getMember);
if (member != null) {
return member;
}
}
for (InterfaceType mixinType in targetType.mixins.reversed) {
var member = _lookUpMemberInInterfaces(
mixinType, true, library, visitedInterfaces, getMember);
if (member != null) {
return member;
}
}
var superclass = targetType.superclass;
if (superclass == null) {
return null;
}
return _lookUpMemberInInterfaces(
superclass, true, library, visitedInterfaces, getMember);
}
}
/// The type `Never` represents the uninhabited bottom type.
class NeverTypeImpl extends TypeImpl implements NeverType {
/// The unique instance of this class, nullable.
///
/// This behaves equivalently to the `Null` type, but we distinguish it for
/// two reasons: (1) there are circumstances where we need access to this
/// type, but we don't have access to the type provider, so using `Never?` is
/// a convenient solution. (2) we may decide that the distinction is
/// convenient in diagnostic messages (this is TBD).
static final NeverTypeImpl instanceNullable =
NeverTypeImpl._(NullabilitySuffix.question);
/// The unique instance of this class, starred.
///
/// This behaves like a version of the Null* type that could be conceivably
/// migrated to be of type Never. Therefore, it's the bottom of all legacy
/// types, and also assignable to the true bottom. Note that Never? and Never*
/// are not the same type, as Never* is a subtype of Never, while Never? is
/// not.
static final NeverTypeImpl instanceLegacy =
NeverTypeImpl._(NullabilitySuffix.star);
/// The unique instance of this class, non-nullable.
static final NeverTypeImpl instance = NeverTypeImpl._(NullabilitySuffix.none);
@override
final NullabilitySuffix nullabilitySuffix;
/// Prevent the creation of instances of this class.
NeverTypeImpl._(this.nullabilitySuffix) : super(NeverElementImpl());
@override
NeverElementImpl get element => super.element as NeverElementImpl;
@override
int get hashCode => 0;
@override
bool get isBottom => nullabilitySuffix != NullabilitySuffix.question;
@override
bool get isDartCoreNull {
// `Never?` is equivalent to `Null`, so make sure it behaves the same.
return nullabilitySuffix == NullabilitySuffix.question;
}
@Deprecated('Check element, or use getDisplayString()')
@override
String get name => 'Never';
@override
bool operator ==(Object object) => identical(object, this);
@override
R accept<R>(TypeVisitor<R> visitor) {
return visitor.visitNeverType(this);
}
@override
R acceptWithArgument<R, A>(
TypeVisitorWithArgument<R, A> visitor,
A argument,
) {
return visitor.visitNeverType(this, argument);
}
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeNeverType(this);
}
@override
TypeImpl withNullability(NullabilitySuffix nullabilitySuffix) {
switch (nullabilitySuffix) {
case NullabilitySuffix.question:
return instanceNullable;
case NullabilitySuffix.star:
return instanceLegacy;
case NullabilitySuffix.none:
return instance;
}
}
}
/// The abstract class `TypeImpl` implements the behavior common to objects
/// representing the declared type of elements in the element model.
abstract class TypeImpl implements DartType {
@override
InstantiatedTypeAliasElement? alias;
/// The element representing the declaration of this type, or `null` if the
/// type has not, or cannot, be associated with an element.
final Element? _element;
/// Initialize a newly created type to be declared by the given [element].
TypeImpl(this._element, {this.alias});
@Deprecated('Use alias instead')
@override
List<DartType>? get aliasArguments {
return alias?.typeArguments;
}
@Deprecated('Use alias instead')
@override
TypeAliasElement? get aliasElement {
return alias?.element;
}
@deprecated
@override
String get displayName {
return getDisplayString(
withNullability: false,
skipAllDynamicArguments: true,
);
}
@override
Element? get element => _element;
@override
bool get isBottom => false;
@override
bool get isDartAsyncFuture => false;
@override
bool get isDartAsyncFutureOr => false;
@override
bool get isDartCoreBool => false;
@override
bool get isDartCoreDouble => false;
@override
bool get isDartCoreFunction => false;
@override
bool get isDartCoreInt => false;
@override
bool get isDartCoreIterable => false;
@override
bool get isDartCoreList => false;
@override
bool get isDartCoreMap => false;
@override
bool get isDartCoreNull => false;
@override
bool get isDartCoreNum => false;
@override
bool get isDartCoreObject => false;
@override
bool get isDartCoreSet => false;
@override
bool get isDartCoreString => false;
@override
bool get isDartCoreSymbol => false;
@override
bool get isDynamic => false;
@override
bool get isVoid => false;
@override
NullabilitySuffix get nullabilitySuffix;
/// Append a textual representation of this type to the given [builder].
void appendTo(ElementDisplayStringBuilder builder);
@override
InterfaceType? asInstanceOf(ClassElement element) => null;
@override
String getDisplayString({
bool skipAllDynamicArguments = false,
required bool withNullability,
}) {
var builder = ElementDisplayStringBuilder(
skipAllDynamicArguments: skipAllDynamicArguments,
withNullability: withNullability,
);
appendTo(builder);
return builder.toString();
}
/// Returns true if this type references any of the [parameters].
bool referencesAny(Set<TypeParameterElement> parameters) {
return false;
}
@override
DartType resolveToBound(DartType objectType) => this;
@override
String toString() {
return getDisplayString(withNullability: true);
}
/// Return the same type, but with the given [nullabilitySuffix].
///
/// If the nullability of `this` already matches [nullabilitySuffix], `this`
/// is returned.
///
/// Note: this method just does low-level manipulations of the underlying
/// type, so it is what you want if you are constructing a fresh type and want
/// it to have the correct nullability suffix, but it is generally *not* what
/// you want if you're manipulating existing types. For manipulating existing
/// types, please use the methods in [TypeSystemImpl].
TypeImpl withNullability(NullabilitySuffix nullabilitySuffix);
/// Return `true` if corresponding elements of the [first] and [second] lists
/// of type arguments are all equal.
static bool equalArrays(List<DartType> first, List<DartType> second) {
if (first.length != second.length) {
return false;
}
for (int i = 0; i < first.length; i++) {
if (first[i] != second[i]) {
return false;
}
}
return true;
}
}
/// A concrete implementation of a [TypeParameterType].
class TypeParameterTypeImpl extends TypeImpl implements TypeParameterType {
@override
final NullabilitySuffix nullabilitySuffix;
/// An optional promoted bound on the type parameter.
///
/// 'null' indicates that the type parameter's bound has not been promoted and
/// is therefore the same as the bound of [element].
final DartType? promotedBound;
/// Initialize a newly created type parameter type to be declared by the given
/// [element] and to have the given name.
TypeParameterTypeImpl({
required TypeParameterElement element,
required this.nullabilitySuffix,
this.promotedBound,
InstantiatedTypeAliasElement? alias,
}) : super(
element,
alias: alias,
);
@override
DartType get bound =>
promotedBound ?? element.bound ?? DynamicTypeImpl.instance;
@override
ElementLocation get definition => element.location!;
@override
TypeParameterElement get element => super.element as TypeParameterElement;
@override
int get hashCode => element.hashCode;
@override
bool get isBottom {
// In principle we ought to be able to do `return bound.isBottom;`, but that
// goes into an infinite loop with illegal code in which type parameter
// bounds form a loop. So we have to be more careful.
Set<TypeParameterElement> seenTypes = {};
TypeParameterType type = this;
while (seenTypes.add(type.element)) {
var bound = type.bound;
if (bound is TypeParameterType) {
type = bound;
} else {
return bound.isBottom;
}
}
// Infinite loop.
return false;
}
@Deprecated('Check element, or use getDisplayString()')
@override
String get name => element.name;
@override
bool operator ==(Object other) {
if (identical(other, this)) {
return true;
}
if (other is TypeParameterTypeImpl && other.element == element) {
if (other.nullabilitySuffix != nullabilitySuffix) {
return false;
}
return other.promotedBound == promotedBound;
}
return false;
}
@override
R accept<R>(TypeVisitor<R> visitor) {
return visitor.visitTypeParameterType(this);
}
@override
R acceptWithArgument<R, A>(
TypeVisitorWithArgument<R, A> visitor,
A argument,
) {
return visitor.visitTypeParameterType(this, argument);
}
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeTypeParameterType(this);
}
@override
InterfaceType? asInstanceOf(ClassElement element) {
return bound.asInstanceOf(element);
}
@override
bool referencesAny(Set<TypeParameterElement> parameters) {
return parameters.contains(element);
}
@override
DartType resolveToBound(DartType objectType) {
final promotedBound = this.promotedBound;
if (promotedBound != null) {
return promotedBound.resolveToBound(objectType);
}
var bound = element.bound;
if (bound == null) {
return objectType;
}
NullabilitySuffix newNullabilitySuffix;
if (nullabilitySuffix == NullabilitySuffix.question ||
bound.nullabilitySuffix == NullabilitySuffix.question) {
newNullabilitySuffix = NullabilitySuffix.question;
} else if (nullabilitySuffix == NullabilitySuffix.star ||
bound.nullabilitySuffix == NullabilitySuffix.star) {
newNullabilitySuffix = NullabilitySuffix.star;
} else {
newNullabilitySuffix = NullabilitySuffix.none;
}
return (bound.resolveToBound(objectType) as TypeImpl)
.withNullability(newNullabilitySuffix);
}
@override
TypeImpl withNullability(NullabilitySuffix nullabilitySuffix) {
if (this.nullabilitySuffix == nullabilitySuffix) return this;
return TypeParameterTypeImpl(
element: element,
nullabilitySuffix: nullabilitySuffix,
promotedBound: promotedBound,
);
}
}
/// A concrete implementation of a [VoidType].
class VoidTypeImpl extends TypeImpl implements VoidType {
/// The unique instance of this class, with indeterminate nullability.
static final VoidTypeImpl instance = VoidTypeImpl._();
/// Prevent the creation of instances of this class.
VoidTypeImpl._() : super(null);
@override
int get hashCode => 2;
@override
bool get isVoid => true;
@Deprecated('Check element, or use getDisplayString()')
@override
String get name => Keyword.VOID.lexeme;
@override
NullabilitySuffix get nullabilitySuffix => NullabilitySuffix.none;
@override
bool operator ==(Object object) => identical(object, this);
@override
R accept<R>(TypeVisitor<R> visitor) {
return visitor.visitVoidType(this);
}
@override
R acceptWithArgument<R, A>(
TypeVisitorWithArgument<R, A> visitor,
A argument,
) {
return visitor.visitVoidType(this, argument);
}
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeVoidType();
}
@override
TypeImpl withNullability(NullabilitySuffix nullabilitySuffix) {
// The void type is always nullable.
return this;
}
}