blob: 93f77a971d555374098b97f963f9ee29fd36ed81 [file] [log] [blame]
// Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
import 'dart:collection';
import 'package:analyzer/dart/analysis/features.dart';
import 'package:analyzer/dart/ast/ast.dart';
import 'package:analyzer/dart/ast/syntactic_entity.dart';
import 'package:analyzer/dart/ast/token.dart';
import 'package:analyzer/dart/ast/visitor.dart';
import 'package:analyzer/dart/element/element.dart';
import 'package:analyzer/dart/element/nullability_suffix.dart';
import 'package:analyzer/dart/element/type.dart';
import 'package:analyzer/error/listener.dart';
import 'package:analyzer/src/dart/ast/ast.dart';
import 'package:analyzer/src/dart/ast/extensions.dart';
import 'package:analyzer/src/dart/element/element.dart';
import 'package:analyzer/src/dart/element/extensions.dart';
import 'package:analyzer/src/dart/element/inheritance_manager3.dart';
import 'package:analyzer/src/dart/element/member.dart' show ExecutableMember;
import 'package:analyzer/src/dart/element/type.dart';
import 'package:analyzer/src/dart/element/type_provider.dart';
import 'package:analyzer/src/dart/element/type_system.dart';
import 'package:analyzer/src/dart/resolver/body_inference_context.dart';
import 'package:analyzer/src/dart/resolver/exit_detector.dart';
import 'package:analyzer/src/dart/resolver/scope.dart';
import 'package:analyzer/src/error/codes.dart';
import 'package:analyzer/src/error/deprecated_member_use_verifier.dart';
import 'package:analyzer/src/error/error_handler_verifier.dart';
import 'package:analyzer/src/error/must_call_super_verifier.dart';
import 'package:analyzer/src/error/null_safe_api_verifier.dart';
import 'package:analyzer/src/generated/constant.dart';
import 'package:analyzer/src/generated/engine.dart';
import 'package:analyzer/src/lint/linter.dart';
import 'package:analyzer/src/utilities/extensions/string.dart';
import 'package:analyzer/src/workspace/workspace.dart';
import 'package:meta/meta.dart';
import 'package:meta/meta_meta.dart';
/// Instances of the class `BestPracticesVerifier` traverse an AST structure
/// looking for violations of Dart best practices.
class BestPracticesVerifier extends RecursiveAstVisitor<void> {
static const String toIntMethodName = "toInt";
/// The class containing the AST nodes being visited, or `null` if we are not
/// in the scope of a class.
ClassElementImpl? _enclosingClass;
/// A flag indicating whether a surrounding member is annotated as
/// `@doNotStore`.
bool _inDoNotStoreMember = false;
/// The error reporter by which errors will be reported.
final ErrorReporter _errorReporter;
/// The type [Null].
final InterfaceType _nullType;
/// The type system primitives
final TypeSystemImpl _typeSystem;
/// The inheritance manager to access interface type hierarchy.
final InheritanceManager3 _inheritanceManager;
/// The current library
final LibraryElement _currentLibrary;
final _InvalidAccessVerifier _invalidAccessVerifier;
final DeprecatedMemberUseVerifier _deprecatedVerifier;
final MustCallSuperVerifier _mustCallSuperVerifier;
final ErrorHandlerVerifier _errorHandlerVerifier;
final NullSafeApiVerifier _nullSafeApiVerifier;
/// The [WorkspacePackage] in which [_currentLibrary] is declared.
final WorkspacePackage? _workspacePackage;
/// The [LinterContext] used for possible const calculations.
final LinterContext _linterContext;
/// Is `true` if the library being analyzed is non-nullable by default.
final bool _isNonNullableByDefault;
/// True if inference failures should be reported, otherwise false.
final bool _strictInference;
/// Whether [_currentLibrary] is part of its containing package's public API.
late final bool _inPublicPackageApi = _workspacePackage != null &&
_workspacePackage!.sourceIsInPublicApi(_currentLibrary.source);
BestPracticesVerifier(
this._errorReporter,
TypeProviderImpl typeProvider,
this._currentLibrary,
CompilationUnit unit,
String content, {
required TypeSystemImpl typeSystem,
required InheritanceManager3 inheritanceManager,
required DeclaredVariables declaredVariables,
required AnalysisOptions analysisOptions,
required WorkspacePackage? workspacePackage,
}) : _nullType = typeProvider.nullType,
_typeSystem = typeSystem,
_isNonNullableByDefault = typeSystem.isNonNullableByDefault,
_strictInference =
(analysisOptions as AnalysisOptionsImpl).strictInference,
_inheritanceManager = inheritanceManager,
_invalidAccessVerifier = _InvalidAccessVerifier(
_errorReporter, _currentLibrary, workspacePackage),
_deprecatedVerifier =
DeprecatedMemberUseVerifier(workspacePackage, _errorReporter),
_mustCallSuperVerifier = MustCallSuperVerifier(_errorReporter),
_errorHandlerVerifier =
ErrorHandlerVerifier(_errorReporter, typeProvider, typeSystem),
_nullSafeApiVerifier = NullSafeApiVerifier(_errorReporter, typeSystem),
_workspacePackage = workspacePackage,
_linterContext = LinterContextImpl(
[],
LinterContextUnit(content, unit),
declaredVariables,
typeProvider,
typeSystem,
inheritanceManager,
analysisOptions,
workspacePackage,
) {
_deprecatedVerifier.pushInDeprecatedValue(_currentLibrary.hasDeprecated);
_inDoNotStoreMember = _currentLibrary.hasDoNotStore;
_invalidAccessVerifier._inTestDirectory = _linterContext.inTestDir(unit);
}
@override
void visitAnnotation(Annotation node) {
var element = node.elementAnnotation;
if (element == null) {
return;
}
AstNode parent = node.parent;
if (element.isFactory) {
if (parent is MethodDeclaration) {
_checkForInvalidFactory(parent);
} else {
_errorReporter
.reportErrorForNode(HintCode.INVALID_FACTORY_ANNOTATION, node, []);
}
} else if (element.isImmutable) {
if (parent is! ClassDeclaration &&
parent is! ClassTypeAlias &&
parent is! MixinDeclaration) {
_errorReporter.reportErrorForNode(
HintCode.INVALID_IMMUTABLE_ANNOTATION, node, []);
}
} else if (element.isInternal) {
var parentElement =
parent is Declaration ? parent.declaredElement2 : null;
if (parent is TopLevelVariableDeclaration) {
for (VariableDeclaration variable in parent.variables.variables) {
var element = variable.declaredElement2 as TopLevelVariableElement;
if (Identifier.isPrivateName(element.name)) {
_errorReporter.reportErrorForNode(
HintCode.INVALID_INTERNAL_ANNOTATION, variable, []);
}
}
} else if (parent is FieldDeclaration) {
for (VariableDeclaration variable in parent.fields.variables) {
var element = variable.declaredElement2 as FieldElement;
if (Identifier.isPrivateName(element.name)) {
_errorReporter.reportErrorForNode(
HintCode.INVALID_INTERNAL_ANNOTATION, variable, []);
}
}
} else if (parent is ConstructorDeclaration) {
var class_ = parent.declaredElement2!.enclosingElement3;
if (class_.isPrivate || (parentElement?.isPrivate ?? false)) {
_errorReporter.reportErrorForNode(
HintCode.INVALID_INTERNAL_ANNOTATION, node, []);
}
} else if (parentElement?.isPrivate ?? false) {
_errorReporter
.reportErrorForNode(HintCode.INVALID_INTERNAL_ANNOTATION, node, []);
} else if (_inPublicPackageApi) {
_errorReporter
.reportErrorForNode(HintCode.INVALID_INTERNAL_ANNOTATION, node, []);
}
} else if (element.isLiteral) {
if (parent is! ConstructorDeclaration || parent.constKeyword == null) {
_errorReporter
.reportErrorForNode(HintCode.INVALID_LITERAL_ANNOTATION, node, []);
}
} else if (element.isMustBeOverridden) {
if ((parent is MethodDeclaration && parent.isStatic) ||
(parent is FieldDeclaration && parent.isStatic) ||
parent.parent is ExtensionDeclaration ||
parent.parent is EnumDeclaration) {
_errorReporter.reportErrorForNode(
HintCode.INVALID_ANNOTATION_TARGET,
node,
[node.name.name, 'instance members of classes and mixins'],
);
}
} else if (element.isMustCallSuper) {
if ((parent is MethodDeclaration && parent.isStatic) ||
(parent is FieldDeclaration && parent.isStatic) ||
parent.parent is ExtensionDeclaration ||
parent.parent is EnumDeclaration) {
_errorReporter.reportErrorForNode(
HintCode.INVALID_ANNOTATION_TARGET,
node,
[node.name.name, 'instance members of classes and mixins'],
);
}
} else if (element.isNonVirtual) {
if (parent is FieldDeclaration) {
if (parent.isStatic) {
_errorReporter.reportErrorForNode(
HintCode.INVALID_NON_VIRTUAL_ANNOTATION, node);
}
} else if (parent is MethodDeclaration) {
if (parent.parent is ExtensionDeclaration ||
parent.isStatic ||
parent.isAbstract) {
_errorReporter.reportErrorForNode(
HintCode.INVALID_NON_VIRTUAL_ANNOTATION, node);
}
} else {
_errorReporter.reportErrorForNode(
HintCode.INVALID_NON_VIRTUAL_ANNOTATION, node);
}
} else if (element.isSealed) {
if (!(parent is ClassDeclaration || parent is ClassTypeAlias)) {
_errorReporter.reportErrorForNode(
HintCode.INVALID_SEALED_ANNOTATION, node);
}
} else if (element.isVisibleForTemplate ||
element.isVisibleForTesting ||
element.isVisibleForOverriding) {
if (parent is Declaration) {
void reportInvalidAnnotation(Element declaredElement) {
// This method is only called on named elements, so it is safe to
// assume that `declaredElement.name` is non-`null`.
_errorReporter.reportErrorForNode(
HintCode.INVALID_VISIBILITY_ANNOTATION,
node,
[declaredElement.name!, node.name.name]);
}
void reportInvalidVisibleForOverriding(Element declaredElement) {
_errorReporter.reportErrorForNode(
HintCode.INVALID_VISIBLE_FOR_OVERRIDING_ANNOTATION, node);
}
if (parent is TopLevelVariableDeclaration) {
for (VariableDeclaration variable in parent.variables.variables) {
var variableElement =
variable.declaredElement2 as TopLevelVariableElement;
if (Identifier.isPrivateName(variableElement.name)) {
reportInvalidAnnotation(variableElement);
}
if (element.isVisibleForOverriding == true) {
// Top-level variables can't be overridden.
reportInvalidVisibleForOverriding(variableElement);
}
}
} else if (parent is FieldDeclaration) {
for (VariableDeclaration variable in parent.fields.variables) {
var fieldElement = variable.declaredElement2 as FieldElement;
if (parent.isStatic && element.isVisibleForOverriding == true) {
reportInvalidVisibleForOverriding(fieldElement);
}
if (Identifier.isPrivateName(fieldElement.name)) {
reportInvalidAnnotation(fieldElement);
}
}
} else if (parent.declaredElement2 != null) {
final declaredElement = parent.declaredElement2!;
if (element.isVisibleForOverriding &&
!declaredElement.isInstanceMember) {
reportInvalidVisibleForOverriding(declaredElement);
}
var name = declaredElement.name;
if (name != null && Identifier.isPrivateName(name)) {
reportInvalidAnnotation(declaredElement);
}
}
} else {
// Something other than a declaration was annotated. Whatever this is,
// it probably warrants a Hint, but this has not been specified on
// visibleForTemplate or visibleForTesting, so leave it alone for now.
}
}
// Check for a reference to an undefined parameter in a `@UseResult.unless`
// annotation.
if (element.isUseResult) {
var undefinedParam = _findUndefinedUseResultParam(element, node, parent);
if (undefinedParam != null) {
String? name;
if (parent is FunctionDeclaration) {
name = parent.name2.lexeme;
} else if (parent is MethodDeclaration) {
name = parent.name2.lexeme;
}
if (name != null) {
var paramName = undefinedParam is SimpleStringLiteral
? undefinedParam.value
: undefinedParam.staticParameterElement?.name;
_errorReporter.reportErrorForNode(
HintCode.UNDEFINED_REFERENCED_PARAMETER,
undefinedParam,
[paramName ?? undefinedParam, name]);
}
}
}
var kinds = element.targetKinds;
if (kinds.isNotEmpty) {
if (!_isValidTarget(parent, kinds)) {
var invokedElement = element.element!;
var name = invokedElement.name;
if (invokedElement is ConstructorElement) {
var className = invokedElement.enclosingElement3.name;
if (name!.isEmpty) {
name = className;
} else {
name = '$className.$name';
}
}
var kindNames = kinds.map((kind) => kind.displayString).toList()
..sort();
var validKinds = kindNames.commaSeparatedWithOr;
// Annotations always refer to named elements, so we can safely assume
// that `name` is non-`null`.
_errorReporter.reportErrorForNode(
HintCode.INVALID_ANNOTATION_TARGET, node.name, [name!, validKinds]);
return;
}
}
super.visitAnnotation(node);
}
@override
void visitAsExpression(AsExpression node) {
if (isUnnecessaryCast(node, _typeSystem)) {
_errorReporter.reportErrorForNode(HintCode.UNNECESSARY_CAST, node);
}
var type = node.type.type;
if (_isNonNullableByDefault &&
type != null &&
_typeSystem.isNonNullable(type) &&
node.expression.typeOrThrow.isDartCoreNull) {
_errorReporter.reportErrorForNode(
HintCode.CAST_FROM_NULL_ALWAYS_FAILS, node);
}
super.visitAsExpression(node);
}
@override
void visitAssignmentExpression(AssignmentExpression node) {
_deprecatedVerifier.assignmentExpression(node);
super.visitAssignmentExpression(node);
}
@override
void visitBinaryExpression(BinaryExpression node) {
_checkForDivisionOptimizationHint(node);
_deprecatedVerifier.binaryExpression(node);
_checkForInvariantNullComparison(node);
_invalidAccessVerifier.verifyBinary(node);
super.visitBinaryExpression(node);
}
@override
void visitCatchClause(CatchClause node) {
super.visitCatchClause(node);
_checkForNullableTypeInCatchClause(node);
}
@override
void visitClassDeclaration(ClassDeclaration node) {
var element = node.declaredElement2 as ClassElementImpl;
_enclosingClass = element;
_invalidAccessVerifier._enclosingClass = element;
bool wasInDoNotStoreMember = _inDoNotStoreMember;
_deprecatedVerifier.pushInDeprecatedValue(element.hasDeprecated);
if (element.hasDoNotStore) {
_inDoNotStoreMember = true;
}
try {
// Commented out until we decide that we want this hint in the analyzer
// checkForOverrideEqualsButNotHashCode(node);
_checkForImmutable(node);
_checkForInvalidSealedSuperclass(node);
super.visitClassDeclaration(node);
} finally {
_enclosingClass = null;
_invalidAccessVerifier._enclosingClass = null;
_deprecatedVerifier.popInDeprecated();
_inDoNotStoreMember = wasInDoNotStoreMember;
}
}
@override
void visitClassTypeAlias(ClassTypeAlias node) {
_checkForImmutable(node);
_checkForInvalidSealedSuperclass(node);
super.visitClassTypeAlias(node);
}
@override
void visitCommentReference(CommentReference node) {
var newKeyword = node.newKeyword;
if (newKeyword != null &&
_currentLibrary.featureSet.isEnabled(Feature.constructor_tearoffs)) {
_errorReporter.reportErrorForToken(
HintCode.DEPRECATED_NEW_IN_COMMENT_REFERENCE, newKeyword, []);
}
super.visitCommentReference(node);
}
@override
void visitConstructorDeclaration(ConstructorDeclaration node) {
var element = node.declaredElement2 as ConstructorElementImpl;
if (!_isNonNullableByDefault && element.isFactory) {
if (node.body is BlockFunctionBody) {
// Check the block for a return statement, if not, create the hint.
if (!ExitDetector.exits(node.body)) {
_errorReporter.reportErrorForNode(
HintCode.MISSING_RETURN, node, [node.returnType.name]);
}
}
}
_checkStrictInferenceInParameters(node.parameters,
body: node.body, initializers: node.initializers);
_deprecatedVerifier.pushInDeprecatedValue(element.hasDeprecated);
try {
super.visitConstructorDeclaration(node);
} finally {
_deprecatedVerifier.popInDeprecated();
}
}
@override
void visitConstructorName(ConstructorName node) {
_deprecatedVerifier.constructorName(node);
super.visitConstructorName(node);
}
@override
void visitExportDirective(ExportDirective node) {
_deprecatedVerifier.exportDirective(node);
_checkForInternalExport(node);
super.visitExportDirective(node);
}
@override
void visitExpressionFunctionBody(ExpressionFunctionBody node) {
if (!_invalidAccessVerifier._inTestDirectory) {
_checkForReturnOfDoNotStore(node.expression);
}
super.visitExpressionFunctionBody(node);
}
@override
void visitFieldDeclaration(FieldDeclaration node) {
_deprecatedVerifier.pushInDeprecatedMetadata(node.metadata);
try {
super.visitFieldDeclaration(node);
for (var field in node.fields.variables) {
ExecutableElement? getOverriddenPropertyAccessor() {
final element = field.declaredElement2;
if (element is PropertyAccessorElement || element is FieldElement) {
Name name = Name(_currentLibrary.source.uri, element!.name);
Element enclosingElement = element.enclosingElement3!;
if (enclosingElement is ClassElement) {
var overridden = _inheritanceManager
.getMember2(enclosingElement, name, forSuper: true);
// Check for a setter.
if (overridden == null) {
Name setterName =
Name(_currentLibrary.source.uri, '${element.name}=');
overridden = _inheritanceManager
.getMember2(enclosingElement, setterName, forSuper: true);
}
return overridden;
}
}
return null;
}
final overriddenElement = getOverriddenPropertyAccessor();
if (overriddenElement != null &&
_hasNonVirtualAnnotation(overriddenElement)) {
// Overridden members are always inside classes or mixins, which are
// always named, so we can safely assume
// `overriddenElement.enclosingElement3.name` is non-`null`.
_errorReporter.reportErrorForToken(
HintCode.INVALID_OVERRIDE_OF_NON_VIRTUAL_MEMBER, field.name2, [
field.name2.lexeme,
overriddenElement.enclosingElement3.displayName
]);
}
if (!_invalidAccessVerifier._inTestDirectory) {
_checkForAssignmentOfDoNotStore(field.initializer);
}
}
} finally {
_deprecatedVerifier.popInDeprecated();
}
}
@override
void visitFieldFormalParameter(FieldFormalParameter node) {
_checkFinalParameter(node, node.keyword);
super.visitFieldFormalParameter(node);
}
@override
void visitFormalParameterList(FormalParameterList node) {
_checkRequiredParameter(node);
super.visitFormalParameterList(node);
}
@override
void visitFunctionDeclaration(FunctionDeclaration node) {
bool wasInDoNotStoreMember = _inDoNotStoreMember;
ExecutableElement element = node.declaredElement2!;
_deprecatedVerifier.pushInDeprecatedValue(element.hasDeprecated);
if (element.hasDoNotStore) {
_inDoNotStoreMember = true;
}
try {
_checkForMissingReturn(node.functionExpression.body, node);
// Return types are inferred only on non-recursive local functions.
if (node.parent is CompilationUnit && !node.isSetter) {
_checkStrictInferenceReturnType(
node.returnType, node, node.name2.lexeme);
}
_checkStrictInferenceInParameters(node.functionExpression.parameters,
body: node.functionExpression.body);
super.visitFunctionDeclaration(node);
} finally {
_deprecatedVerifier.popInDeprecated();
_inDoNotStoreMember = wasInDoNotStoreMember;
}
}
@override
void visitFunctionDeclarationStatement(FunctionDeclarationStatement node) {
// TODO(srawlins): Check strict-inference return type on recursive
// local functions.
super.visitFunctionDeclarationStatement(node);
}
@override
void visitFunctionExpression(FunctionExpression node) {
if (node.parent is! FunctionDeclaration) {
_checkForMissingReturn(node.body, node);
}
if (!(node as FunctionExpressionImpl).wasFunctionTypeSupplied) {
_checkStrictInferenceInParameters(node.parameters, body: node.body);
}
super.visitFunctionExpression(node);
}
@override
void visitFunctionExpressionInvocation(FunctionExpressionInvocation node) {
_deprecatedVerifier.functionExpressionInvocation(node);
super.visitFunctionExpressionInvocation(node);
}
@override
void visitFunctionTypeAlias(FunctionTypeAlias node) {
_checkStrictInferenceReturnType(node.returnType, node, node.name2.lexeme);
_checkStrictInferenceInParameters(node.parameters);
super.visitFunctionTypeAlias(node);
}
@override
void visitFunctionTypedFormalParameter(FunctionTypedFormalParameter node) {
_checkStrictInferenceReturnType(node.returnType, node, node.name.lexeme);
_checkStrictInferenceInParameters(node.parameters);
super.visitFunctionTypedFormalParameter(node);
}
@override
void visitGenericFunctionType(GenericFunctionType node) {
// GenericTypeAlias is handled in [visitGenericTypeAlias], where a proper
// name can be reported in any message.
if (node.parent is! GenericTypeAlias) {
_checkStrictInferenceReturnType(node.returnType, node, node.toString());
}
super.visitGenericFunctionType(node);
}
@override
void visitGenericTypeAlias(GenericTypeAlias node) {
if (node.functionType != null) {
_checkStrictInferenceReturnType(
node.functionType!.returnType, node, node.name2.lexeme);
}
super.visitGenericTypeAlias(node);
}
@override
void visitImportDirective(ImportDirective node) {
_deprecatedVerifier.importDirective(node);
var importElement = node.element2;
if (importElement != null &&
importElement.prefix is DeferredImportElementPrefix) {
_checkForLoadLibraryFunction(node, importElement);
}
_invalidAccessVerifier.verifyImport(node);
_checkForImportOfLegacyLibraryIntoNullSafe(node);
super.visitImportDirective(node);
}
@override
void visitIndexExpression(IndexExpression node) {
_deprecatedVerifier.indexExpression(node);
super.visitIndexExpression(node);
}
@override
void visitInstanceCreationExpression(InstanceCreationExpression node) {
_deprecatedVerifier.instanceCreationExpression(node);
_nullSafeApiVerifier.instanceCreation(node);
_checkForLiteralConstructorUse(node);
super.visitInstanceCreationExpression(node);
}
@override
void visitIsExpression(IsExpression node) {
_checkAllTypeChecks(node);
super.visitIsExpression(node);
}
@override
void visitMethodDeclaration(MethodDeclaration node) {
bool wasInDoNotStoreMember = _inDoNotStoreMember;
var element = node.declaredElement2!;
var enclosingElement = element.enclosingElement3;
Name name = Name(_currentLibrary.source.uri, element.name);
ExecutableElement? getConcreteOverriddenElement() =>
element is ClassMemberElement && enclosingElement is ClassElement
? _inheritanceManager.getMember2(enclosingElement, name,
forSuper: true)
: null;
ExecutableElement? getOverriddenPropertyAccessor() =>
element is PropertyAccessorElement && enclosingElement is ClassElement
? _inheritanceManager.getMember2(enclosingElement, name,
forSuper: true)
: null;
_deprecatedVerifier.pushInDeprecatedValue(element.hasDeprecated);
if (element.hasDoNotStore) {
_inDoNotStoreMember = true;
}
try {
// This was determined to not be a good hint, see: dartbug.com/16029
//checkForOverridingPrivateMember(node);
_checkForMissingReturn(node.body, node);
_mustCallSuperVerifier.checkMethodDeclaration(node);
_checkForUnnecessaryNoSuchMethod(node);
var elementIsOverride = element is ClassMemberElement &&
enclosingElement is ClassElement
? _inheritanceManager.getOverridden2(enclosingElement, name) != null
: false;
if (!node.isSetter && !elementIsOverride) {
_checkStrictInferenceReturnType(
node.returnType, node, node.name2.lexeme);
}
if (!elementIsOverride) {
_checkStrictInferenceInParameters(node.parameters, body: node.body);
}
var overriddenElement = getConcreteOverriddenElement();
if (overriddenElement == null && (node.isSetter || node.isGetter)) {
overriddenElement = getOverriddenPropertyAccessor();
}
if (overriddenElement != null &&
_hasNonVirtualAnnotation(overriddenElement)) {
// Overridden members are always inside classes or mixins, which are
// always named, so we can safely assume
// `overriddenElement.enclosingElement3.name` is non-`null`.
_errorReporter.reportErrorForToken(
HintCode.INVALID_OVERRIDE_OF_NON_VIRTUAL_MEMBER, node.name2, [
node.name2.lexeme,
overriddenElement.enclosingElement3.displayName
]);
}
super.visitMethodDeclaration(node);
} finally {
_deprecatedVerifier.popInDeprecated();
_inDoNotStoreMember = wasInDoNotStoreMember;
}
}
@override
void visitMethodInvocation(MethodInvocation node) {
_deprecatedVerifier.methodInvocation(node);
_checkForNullAwareHints(node, node.operator);
_errorHandlerVerifier.verifyMethodInvocation(node);
_nullSafeApiVerifier.methodInvocation(node);
super.visitMethodInvocation(node);
}
@override
void visitMixinDeclaration(MixinDeclaration node) {
var element = node.declaredElement2 as ClassElementImpl;
_enclosingClass = element;
_invalidAccessVerifier._enclosingClass = _enclosingClass;
_deprecatedVerifier.pushInDeprecatedValue(element.hasDeprecated);
try {
_checkForImmutable(node);
_checkForInvalidSealedSuperclass(node);
super.visitMixinDeclaration(node);
} finally {
_enclosingClass = null;
_invalidAccessVerifier._enclosingClass = null;
_deprecatedVerifier.popInDeprecated();
}
}
@override
void visitNamedType(NamedType node) {
var question = node.question;
if (question != null) {
var name = node.name.name;
var type = node.typeOrThrow;
// Only report non-aliased, non-user-defined `Null?` and `dynamic?`. Do
// not report synthetic `dynamic` in place of an unresolved type.
if ((type is InterfaceType && type.element2 == _nullType.element2 ||
(type.isDynamic && name == 'dynamic')) &&
type.alias == null) {
_errorReporter.reportErrorForToken(
HintCode.UNNECESSARY_QUESTION_MARK, question, [name]);
}
}
super.visitNamedType(node);
}
@override
void visitPostfixExpression(PostfixExpression node) {
_deprecatedVerifier.postfixExpression(node);
if (node.operator.type == TokenType.BANG &&
node.operand.typeOrThrow.isDartCoreNull) {
_errorReporter.reportErrorForNode(HintCode.NULL_CHECK_ALWAYS_FAILS, node);
}
super.visitPostfixExpression(node);
}
@override
void visitPrefixExpression(PrefixExpression node) {
_deprecatedVerifier.prefixExpression(node);
super.visitPrefixExpression(node);
}
@override
void visitPropertyAccess(PropertyAccess node) {
_checkForNullAwareHints(node, node.operator);
super.visitPropertyAccess(node);
}
@override
void visitRedirectingConstructorInvocation(
RedirectingConstructorInvocation node) {
_deprecatedVerifier.redirectingConstructorInvocation(node);
super.visitRedirectingConstructorInvocation(node);
}
@override
void visitReturnStatement(ReturnStatement node) {
if (!_invalidAccessVerifier._inTestDirectory) {
_checkForReturnOfDoNotStore(node.expression);
}
super.visitReturnStatement(node);
}
@override
void visitSetOrMapLiteral(SetOrMapLiteral node) {
_checkForDuplications(node);
super.visitSetOrMapLiteral(node);
}
@override
void visitSimpleIdentifier(SimpleIdentifier node) {
_deprecatedVerifier.simpleIdentifier(node);
_invalidAccessVerifier.verify(node);
super.visitSimpleIdentifier(node);
}
@override
void visitSuperConstructorInvocation(SuperConstructorInvocation node) {
_deprecatedVerifier.superConstructorInvocation(node);
_invalidAccessVerifier.verifySuperConstructorInvocation(node);
super.visitSuperConstructorInvocation(node);
}
@override
void visitSuperFormalParameter(SuperFormalParameter node) {
_checkFinalParameter(node, node.keyword);
super.visitSuperFormalParameter(node);
}
@override
void visitTopLevelVariableDeclaration(TopLevelVariableDeclaration node) {
_deprecatedVerifier.pushInDeprecatedMetadata(node.metadata);
if (!_invalidAccessVerifier._inTestDirectory) {
for (var decl in node.variables.variables) {
_checkForAssignmentOfDoNotStore(decl.initializer);
}
}
try {
super.visitTopLevelVariableDeclaration(node);
} finally {
_deprecatedVerifier.popInDeprecated();
}
}
/// Check for the passed is expression for the unnecessary type check hint
/// codes as well as null checks expressed using an is expression.
///
/// @param node the is expression to check
/// @return `true` if and only if a hint code is generated on the passed node
/// See [HintCode.TYPE_CHECK_IS_NOT_NULL], [HintCode.TYPE_CHECK_IS_NULL],
/// [HintCode.UNNECESSARY_TYPE_CHECK_TRUE], and
/// [HintCode.UNNECESSARY_TYPE_CHECK_FALSE].
bool _checkAllTypeChecks(IsExpression node) {
var leftNode = node.expression;
var rightNode = node.type;
var rightType = rightNode.type as TypeImpl;
void report() {
_errorReporter.reportErrorForNode(
node.notOperator == null
? HintCode.UNNECESSARY_TYPE_CHECK_TRUE
: HintCode.UNNECESSARY_TYPE_CHECK_FALSE,
node,
);
}
// `is dynamic` or `is! dynamic`
if (rightType.isDynamic) {
var rightTypeStr = rightNode is NamedType ? rightNode.name.name : null;
if (rightTypeStr == Keyword.DYNAMIC.lexeme) {
report();
return true;
}
return false;
}
// `is Null` or `is! Null`
if (rightType.isDartCoreNull) {
if (leftNode is NullLiteral) {
report();
} else {
_errorReporter.reportErrorForNode(
node.notOperator == null
? HintCode.TYPE_CHECK_IS_NULL
: HintCode.TYPE_CHECK_IS_NOT_NULL,
node,
);
}
return true;
}
if (_isNonNullableByDefault) {
var leftType = leftNode.typeOrThrow;
if (_typeSystem.isSubtypeOf(leftType, rightType)) {
report();
return true;
}
} else {
// In legacy all types are subtypes of `Object`.
if (rightType.isDartCoreObject) {
report();
return true;
}
}
return false;
}
void _checkFinalParameter(FormalParameter node, Token? keyword) {
if (node.isFinal) {
_errorReporter.reportErrorForToken(
HintCode.UNNECESSARY_FINAL,
keyword!,
);
}
}
void _checkForAssignmentOfDoNotStore(Expression? expression) {
var expressionMap = _getSubExpressionsMarkedDoNotStore(expression);
for (var entry in expressionMap.entries) {
// All the elements returned by [_getSubExpressionsMarkedDoNotStore] are
// named elements, so we can safely assume `entry.value.name` is
// non-`null`.
_errorReporter.reportErrorForNode(
HintCode.ASSIGNMENT_OF_DO_NOT_STORE,
entry.key,
[entry.value.name!],
);
}
}
/// Check for the passed binary expression for the
/// [HintCode.DIVISION_OPTIMIZATION].
///
/// @param node the binary expression to check
/// @return `true` if and only if a hint code is generated on the passed node
/// See [HintCode.DIVISION_OPTIMIZATION].
bool _checkForDivisionOptimizationHint(BinaryExpression node) {
// Return if the operator is not '/'
if (node.operator.type != TokenType.SLASH) {
return false;
}
// Return if the '/' operator is not defined in core, or if we don't know
// its static type
var methodElement = node.staticElement;
if (methodElement == null) {
return false;
}
LibraryElement libraryElement = methodElement.library;
if (!libraryElement.isDartCore) {
return false;
}
// Report error if the (x/y) has toInt() invoked on it
var parent = node.parent;
if (parent is ParenthesizedExpression) {
ParenthesizedExpression parenthesizedExpression =
_wrapParenthesizedExpression(parent);
var grandParent = parenthesizedExpression.parent;
if (grandParent is MethodInvocation) {
if (toIntMethodName == grandParent.methodName.name &&
grandParent.argumentList.arguments.isEmpty) {
_errorReporter.reportErrorForNode(
HintCode.DIVISION_OPTIMIZATION, grandParent);
return true;
}
}
}
return false;
}
/// Generate hints related to duplicate elements (keys) in sets (maps).
void _checkForDuplications(SetOrMapLiteral node) {
// This only checks for top-level elements. If, for, and spread elements
// that contribute duplicate values are not detected.
if (node.isConst) {
// This case is covered by the ErrorVerifier.
return;
}
final expressions = node.isSet
? node.elements.whereType<Expression>()
: node.elements.whereType<MapLiteralEntry>().map((entry) => entry.key);
final alreadySeen = <DartObject>{};
for (final expression in expressions) {
final constEvaluation = _linterContext.evaluateConstant(expression);
if (constEvaluation.errors.isEmpty) {
var value = constEvaluation.value;
if (value != null && !alreadySeen.add(value)) {
var errorCode = node.isSet
? HintCode.EQUAL_ELEMENTS_IN_SET
: HintCode.EQUAL_KEYS_IN_MAP;
_errorReporter.reportErrorForNode(errorCode, expression);
}
}
}
}
/// Checks whether [node] violates the rules of [immutable].
///
/// If [node] is marked with [immutable] or inherits from a class or mixin
/// marked with [immutable], this function searches the fields of [node] and
/// its superclasses, reporting a hint if any non-final instance fields are
/// found.
void _checkForImmutable(NamedCompilationUnitMember node) {
/// Return `true` if the given class [element] is annotated with the
/// `@immutable` annotation.
bool isImmutable(InterfaceElement element) {
for (ElementAnnotation annotation in element.metadata) {
if (annotation.isImmutable) {
return true;
}
}
return false;
}
/// Return `true` if the given class [element] or any superclass of it is
/// annotated with the `@immutable` annotation.
bool isOrInheritsImmutable(
InterfaceElement element, Set<InterfaceElement> visited) {
if (visited.add(element)) {
if (isImmutable(element)) {
return true;
}
for (InterfaceType interface in element.mixins) {
if (isOrInheritsImmutable(interface.element2, visited)) {
return true;
}
}
for (InterfaceType mixin in element.interfaces) {
if (isOrInheritsImmutable(mixin.element2, visited)) {
return true;
}
}
if (element.supertype != null) {
return isOrInheritsImmutable(element.supertype!.element2, visited);
}
}
return false;
}
Iterable<String> nonFinalInstanceFields(InterfaceElement element) {
return element.fields
.where((FieldElement field) =>
!field.isSynthetic && !field.isFinal && !field.isStatic)
.map((FieldElement field) => '${element.name}.${field.name}');
}
Iterable<String> definedOrInheritedNonFinalInstanceFields(
InterfaceElement element, Set<InterfaceElement> visited) {
Iterable<String> nonFinalFields = [];
if (visited.add(element)) {
nonFinalFields = nonFinalInstanceFields(element);
nonFinalFields = nonFinalFields.followedBy(element.mixins.expand(
(InterfaceType mixin) => nonFinalInstanceFields(mixin.element2)));
if (element.supertype != null) {
nonFinalFields = nonFinalFields.followedBy(
definedOrInheritedNonFinalInstanceFields(
element.supertype!.element2, visited));
}
}
return nonFinalFields;
}
var element = node.declaredElement2 as ClassElement;
if (isOrInheritsImmutable(element, HashSet<ClassElement>())) {
Iterable<String> nonFinalFields =
definedOrInheritedNonFinalInstanceFields(
element, HashSet<ClassElement>());
if (nonFinalFields.isNotEmpty) {
_errorReporter.reportErrorForToken(HintCode.MUST_BE_IMMUTABLE,
node.name2, [nonFinalFields.join(', ')]);
}
}
}
void _checkForImportOfLegacyLibraryIntoNullSafe(ImportDirective node) {
if (!_isNonNullableByDefault) {
return;
}
var importElement = node.element2;
if (importElement == null) {
return;
}
var importedLibrary = importElement.importedLibrary;
if (importedLibrary == null || importedLibrary.isNonNullableByDefault) {
return;
}
_errorReporter.reportErrorForNode(
HintCode.IMPORT_OF_LEGACY_LIBRARY_INTO_NULL_SAFE,
node.uri,
[importedLibrary.source.uri],
);
}
/// Check that the namespace exported by [node] does not include any elements
/// annotated with `@internal`.
void _checkForInternalExport(ExportDirective node) {
if (!_inPublicPackageApi) return;
var libraryElement = node.element2?.exportedLibrary;
if (libraryElement == null) return;
if (libraryElement.hasInternal) {
_errorReporter.reportErrorForNode(
HintCode.INVALID_EXPORT_OF_INTERNAL_ELEMENT,
node,
[libraryElement.displayName]);
}
var exportNamespace =
NamespaceBuilder().createExportNamespaceForDirective(node.element2!);
exportNamespace.definedNames.forEach((String name, Element element) {
if (element.hasInternal) {
_errorReporter.reportErrorForNode(
HintCode.INVALID_EXPORT_OF_INTERNAL_ELEMENT,
node,
[element.displayName]);
} else if (element is FunctionElement) {
var signatureTypes = [
...element.parameters.map((p) => p.type),
element.returnType,
...element.typeParameters.map((tp) => tp.bound),
];
for (var type in signatureTypes) {
var aliasElement = type?.alias?.element;
if (aliasElement != null && aliasElement.hasInternal) {
_errorReporter.reportErrorForNode(
HintCode.INVALID_EXPORT_OF_INTERNAL_ELEMENT_INDIRECTLY,
node,
[aliasElement.name, element.displayName]);
}
}
}
});
}
void _checkForInvalidFactory(MethodDeclaration decl) {
// Check declaration.
// Note that null return types are expected to be flagged by other analyses.
var returnType = decl.returnType?.type;
if (returnType is VoidType) {
_errorReporter.reportErrorForToken(HintCode.INVALID_FACTORY_METHOD_DECL,
decl.name2, [decl.name2.lexeme]);
return;
}
// Check implementation.
FunctionBody body = decl.body;
if (body is EmptyFunctionBody) {
// Abstract methods are OK.
return;
}
// `new Foo()` or `null`.
bool factoryExpression(Expression? expression) =>
expression is InstanceCreationExpression || expression is NullLiteral;
if (body is ExpressionFunctionBody && factoryExpression(body.expression)) {
return;
} else if (body is BlockFunctionBody) {
NodeList<Statement> statements = body.block.statements;
if (statements.isNotEmpty) {
Statement last = statements.last;
if (last is ReturnStatement && factoryExpression(last.expression)) {
return;
}
}
}
_errorReporter.reportErrorForToken(
HintCode.INVALID_FACTORY_METHOD_IMPL, decl.name2, [decl.name2.lexeme]);
}
void _checkForInvalidSealedSuperclass(NamedCompilationUnitMember node) {
bool currentPackageContains(Element element) {
return _isLibraryInWorkspacePackage(element.library);
}
// [NamedCompilationUnitMember.declaredElement] is not necessarily a
// ClassElement, but [_checkForInvalidSealedSuperclass] should only be
// called with a [ClassOrMixinDeclaration], or a [ClassTypeAlias]. The
// `declaredElement` of these specific classes is a [ClassElement].
var element = node.declaredElement2 as ClassElement;
// TODO(srawlins): Perhaps replace this with a getter on Element, like
// `Element.hasOrInheritsSealed`?
for (InterfaceType supertype in element.allSupertypes) {
final superclass = supertype.element2;
if (superclass.hasSealed) {
if (!currentPackageContains(superclass)) {
if (element.superclassConstraints.contains(supertype)) {
// This is a special violation of the sealed class contract,
// requiring specific messaging.
_errorReporter.reportErrorForNode(HintCode.MIXIN_ON_SEALED_CLASS,
node, [superclass.name.toString()]);
} else {
// This is a regular violation of the sealed class contract.
_errorReporter.reportErrorForNode(HintCode.SUBTYPE_OF_SEALED_CLASS,
node, [superclass.name.toString()]);
}
}
}
}
}
void _checkForInvariantNullComparison(BinaryExpression node) {
if (!_isNonNullableByDefault) return;
void reportStartEnd(
HintCode errorCode,
SyntacticEntity startEntity,
SyntacticEntity endEntity,
) {
var offset = startEntity.offset;
_errorReporter.reportErrorForOffset(
errorCode,
offset,
endEntity.end - offset,
);
}
void checkLeftRight(HintCode errorCode) {
if (node.leftOperand is NullLiteral) {
var rightType = node.rightOperand.typeOrThrow;
if (_typeSystem.isStrictlyNonNullable(rightType)) {
reportStartEnd(errorCode, node.leftOperand, node.operator);
}
}
if (node.rightOperand is NullLiteral) {
var leftType = node.leftOperand.typeOrThrow;
if (_typeSystem.isStrictlyNonNullable(leftType)) {
reportStartEnd(errorCode, node.operator, node.rightOperand);
}
}
}
if (node.operator.type == TokenType.BANG_EQ) {
checkLeftRight(HintCode.UNNECESSARY_NULL_COMPARISON_TRUE);
} else if (node.operator.type == TokenType.EQ_EQ) {
checkLeftRight(HintCode.UNNECESSARY_NULL_COMPARISON_FALSE);
}
}
/// Check that the instance creation node is const if the constructor is
/// marked with [literal].
void _checkForLiteralConstructorUse(InstanceCreationExpression node) {
ConstructorName constructorName = node.constructorName;
ConstructorElement? constructor = constructorName.staticElement;
if (constructor == null) {
return;
}
if (!node.isConst &&
constructor.hasLiteral &&
_linterContext.canBeConst(node)) {
// Echoing jwren's TODO from _checkForDeprecatedMemberUse:
// TODO(jwren) We should modify ConstructorElement.getDisplayName(), or
// have the logic centralized elsewhere, instead of doing this logic
// here.
String fullConstructorName = constructorName.type.name.name;
if (constructorName.name != null) {
fullConstructorName = '$fullConstructorName.${constructorName.name}';
}
HintCode hint = node.keyword?.keyword == Keyword.NEW
? HintCode.NON_CONST_CALL_TO_LITERAL_CONSTRUCTOR_USING_NEW
: HintCode.NON_CONST_CALL_TO_LITERAL_CONSTRUCTOR;
_errorReporter.reportErrorForNode(hint, node, [fullConstructorName]);
}
}
/// Check that the imported library does not define a loadLibrary function.
/// The import has already been determined to be deferred when this is called.
///
/// @param node the import directive to evaluate
/// @param importElement the [LibraryImportElement] retrieved from the node
/// @return `true` if and only if an error code is generated on the passed
/// node
/// See [CompileTimeErrorCode.IMPORT_DEFERRED_LIBRARY_WITH_LOAD_FUNCTION].
bool _checkForLoadLibraryFunction(
ImportDirective node, LibraryImportElement importElement) {
var importedLibrary = importElement.importedLibrary;
var prefix = importElement.prefix?.element;
if (importedLibrary == null || prefix == null) {
return false;
}
var importNamespace = importElement.namespace;
var loadLibraryElement = importNamespace.getPrefixed(
prefix.name, FunctionElement.LOAD_LIBRARY_NAME);
if (loadLibraryElement != null) {
_errorReporter.reportErrorForNode(
HintCode.IMPORT_DEFERRED_LIBRARY_WITH_LOAD_FUNCTION, node);
return true;
}
return false;
}
/// Generate a hint for functions or methods that have a return type, but do
/// not have a return statement on all branches. At the end of blocks with no
/// return, Dart implicitly returns `null`. Avoiding these implicit returns
/// is considered a best practice.
///
/// Note: for async functions/methods, this hint only applies when the
/// function has a return type that Future<Null> is not assignable to.
///
/// See [HintCode.MISSING_RETURN].
void _checkForMissingReturn(FunctionBody body, AstNode functionNode) {
if (_isNonNullableByDefault) {
return;
}
// Generators always return.
if (body.isGenerator) {
return;
}
if (body is! BlockFunctionBody) {
return;
}
var bodyContext = BodyInferenceContext.of(body)!;
// TODO(scheglov) Update InferenceContext to record any type, dynamic.
var returnType = bodyContext.contextType ?? DynamicTypeImpl.instance;
if (_typeSystem.isNullable(returnType)) {
return;
}
if (ExitDetector.exits(body)) {
return;
}
if (functionNode is FunctionDeclaration) {
_errorReporter.reportErrorForToken(
HintCode.MISSING_RETURN,
functionNode.name2,
[returnType],
);
} else if (functionNode is MethodDeclaration) {
_errorReporter.reportErrorForToken(
HintCode.MISSING_RETURN,
functionNode.name2,
[returnType],
);
} else {
_errorReporter.reportErrorForNode(
HintCode.MISSING_RETURN,
functionNode,
[returnType],
);
}
}
void _checkForNullableTypeInCatchClause(CatchClause node) {
if (!_isNonNullableByDefault) {
return;
}
var type = node.exceptionType;
if (type == null) {
return;
}
if (_typeSystem.isPotentiallyNullable(type.typeOrThrow)) {
_errorReporter.reportErrorForNode(
HintCode.NULLABLE_TYPE_IN_CATCH_CLAUSE,
type,
);
}
}
/// Produce several null-aware related hints.
void _checkForNullAwareHints(Expression node, Token? operator) {
if (_isNonNullableByDefault) {
return;
}
if (operator == null || operator.type != TokenType.QUESTION_PERIOD) {
return;
}
// childOfParent is used to know from which branch node comes.
var childOfParent = node;
var parent = node.parent;
while (parent is ParenthesizedExpression) {
childOfParent = parent;
parent = parent.parent;
}
// CAN_BE_NULL_AFTER_NULL_AWARE
if (parent is MethodInvocation &&
!parent.isNullAware &&
_nullType.lookUpMethod2(parent.methodName.name, _currentLibrary) ==
null) {
_errorReporter.reportErrorForNode(
HintCode.CAN_BE_NULL_AFTER_NULL_AWARE, childOfParent);
return;
}
if (parent is PropertyAccess &&
!parent.isNullAware &&
_nullType.lookUpGetter2(parent.propertyName.name, _currentLibrary) ==
null) {
_errorReporter.reportErrorForNode(
HintCode.CAN_BE_NULL_AFTER_NULL_AWARE, childOfParent);
return;
}
if (parent is CascadeExpression && parent.target == childOfParent) {
_errorReporter.reportErrorForNode(
HintCode.CAN_BE_NULL_AFTER_NULL_AWARE, childOfParent);
return;
}
// NULL_AWARE_IN_CONDITION
if (parent is IfStatement && parent.condition == childOfParent ||
parent is ForPartsWithDeclarations &&
parent.condition == childOfParent ||
parent is DoStatement && parent.condition == childOfParent ||
parent is WhileStatement && parent.condition == childOfParent ||
parent is ConditionalExpression && parent.condition == childOfParent ||
parent is AssertStatement && parent.condition == childOfParent) {
_errorReporter.reportErrorForNode(
HintCode.NULL_AWARE_IN_CONDITION, childOfParent);
return;
}
// NULL_AWARE_IN_LOGICAL_OPERATOR
if (parent is PrefixExpression && parent.operator.type == TokenType.BANG ||
parent is BinaryExpression &&
[TokenType.BAR_BAR, TokenType.AMPERSAND_AMPERSAND]
.contains(parent.operator.type)) {
_errorReporter.reportErrorForNode(
HintCode.NULL_AWARE_IN_LOGICAL_OPERATOR, childOfParent);
return;
}
// NULL_AWARE_BEFORE_OPERATOR
if (parent is BinaryExpression &&
![TokenType.EQ_EQ, TokenType.BANG_EQ, TokenType.QUESTION_QUESTION]
.contains(parent.operator.type) &&
parent.leftOperand == childOfParent) {
_errorReporter.reportErrorForNode(
HintCode.NULL_AWARE_BEFORE_OPERATOR, childOfParent);
return;
}
}
void _checkForReturnOfDoNotStore(Expression? expression) {
if (_inDoNotStoreMember) {
return;
}
var expressionMap = _getSubExpressionsMarkedDoNotStore(expression);
if (expressionMap.isNotEmpty) {
var parent = expression!.thisOrAncestorMatching(
(e) => e is FunctionDeclaration || e is MethodDeclaration)
as Declaration?;
if (parent == null) {
return;
}
for (var entry in expressionMap.entries) {
// All the elements returned by [_getSubExpressionsMarkedDoNotStore] are
// named elements, so we can safely assume `entry.value.name` is
// non-`null`.
_errorReporter.reportErrorForNode(
HintCode.RETURN_OF_DO_NOT_STORE,
entry.key,
[entry.value.name!, parent.declaredElement2!.displayName],
);
}
}
}
/// Generate a hint for `noSuchMethod` methods that do nothing except of
/// calling another `noSuchMethod` that is not defined by `Object`.
///
/// Return `true` if and only if a hint code is generated on the passed node.
bool _checkForUnnecessaryNoSuchMethod(MethodDeclaration node) {
if (node.name2.lexeme != FunctionElement.NO_SUCH_METHOD_METHOD_NAME) {
return false;
}
bool isNonObjectNoSuchMethodInvocation(Expression? invocation) {
if (invocation is MethodInvocation &&
invocation.target is SuperExpression &&
invocation.argumentList.arguments.length == 1) {
SimpleIdentifier name = invocation.methodName;
if (name.name == FunctionElement.NO_SUCH_METHOD_METHOD_NAME) {
var methodElement = name.staticElement;
var classElement = methodElement?.enclosingElement3;
return methodElement is MethodElement &&
classElement is ClassElement &&
!classElement.isDartCoreObject;
}
}
return false;
}
FunctionBody body = node.body;
if (body is ExpressionFunctionBody) {
if (isNonObjectNoSuchMethodInvocation(body.expression)) {
_errorReporter.reportErrorForToken(
HintCode.UNNECESSARY_NO_SUCH_METHOD, node.name2);
return true;
}
} else if (body is BlockFunctionBody) {
List<Statement> statements = body.block.statements;
if (statements.length == 1) {
Statement returnStatement = statements.first;
if (returnStatement is ReturnStatement &&
isNonObjectNoSuchMethodInvocation(returnStatement.expression)) {
_errorReporter.reportErrorForToken(
HintCode.UNNECESSARY_NO_SUCH_METHOD, node.name2);
return true;
}
}
}
return false;
}
void _checkRequiredParameter(FormalParameterList node) {
final requiredParameters =
node.parameters.where((p) => p.declaredElement?.hasRequired == true);
final nonNamedParamsWithRequired =
requiredParameters.where((p) => p.isPositional);
final namedParamsWithRequiredAndDefault = requiredParameters
.where((p) => p.isNamed)
.where((p) => p.declaredElement!.defaultValueCode != null);
for (final param in nonNamedParamsWithRequired.where((p) => p.isOptional)) {
_errorReporter.reportErrorForNode(
HintCode.INVALID_REQUIRED_OPTIONAL_POSITIONAL_PARAM,
param,
[_formalParameterNameOrEmpty(param)]);
}
for (final param in nonNamedParamsWithRequired.where((p) => p.isRequired)) {
_errorReporter.reportErrorForNode(
HintCode.INVALID_REQUIRED_POSITIONAL_PARAM,
param,
[_formalParameterNameOrEmpty(param)]);
}
for (final param in namedParamsWithRequiredAndDefault) {
_errorReporter.reportErrorForNode(HintCode.INVALID_REQUIRED_NAMED_PARAM,
param, [_formalParameterNameOrEmpty(param)]);
}
}
/// In "strict-inference" mode, check that each of the [parameters]' type is
/// specified.
///
/// Only parameters which are referenced in [initializers] or [body] are
/// reported. If [initializers] and [body] are both null, the parameters are
/// assumed to originate from a typedef, function-typed parameter, or function
/// which is abstract or external.
void _checkStrictInferenceInParameters(FormalParameterList? parameters,
{List<ConstructorInitializer>? initializers, FunctionBody? body}) {
_UsedParameterVisitor? usedParameterVisitor;
bool isParameterReferenced(SimpleFormalParameter parameter) {
if ((body == null || body is EmptyFunctionBody) && initializers == null) {
// The parameter is in a typedef, or function that is abstract,
// external, etc.
return true;
}
if (usedParameterVisitor == null) {
// Visit the function body and initializers once to determine whether
// each of the parameters is referenced.
usedParameterVisitor = _UsedParameterVisitor(
parameters!.parameters.map((p) => p.declaredElement!).toSet());
body?.accept(usedParameterVisitor!);
for (var initializer in initializers ?? <ConstructorInitializer>[]) {
initializer.accept(usedParameterVisitor!);
}
}
return usedParameterVisitor!.isUsed(parameter.declaredElement!);
}
void checkParameterTypeIsKnown(SimpleFormalParameter parameter) {
if (parameter.type == null && isParameterReferenced(parameter)) {
ParameterElement element = parameter.declaredElement!;
_errorReporter.reportErrorForNode(
HintCode.INFERENCE_FAILURE_ON_UNTYPED_PARAMETER,
parameter,
[element.displayName],
);
}
}
if (_strictInference && parameters != null) {
for (FormalParameter parameter in parameters.parameters) {
if (parameter is SimpleFormalParameter) {
checkParameterTypeIsKnown(parameter);
} else if (parameter is DefaultFormalParameter) {
var nonDefault = parameter.parameter;
if (nonDefault is SimpleFormalParameter) {
checkParameterTypeIsKnown(nonDefault);
}
}
}
}
}
/// In "strict-inference" mode, check that [returnType] is specified.
void _checkStrictInferenceReturnType(
AstNode? returnType, AstNode reportNode, String displayName) {
if (!_strictInference) {
return;
}
if (returnType == null) {
_errorReporter.reportErrorForNode(
HintCode.INFERENCE_FAILURE_ON_FUNCTION_RETURN_TYPE,
reportNode,
[displayName]);
}
}
Expression? _findUndefinedUseResultParam(
ElementAnnotation element, Annotation node, AstNode parent) {
var constructorName = node.name;
if (constructorName is! PrefixedIdentifier ||
constructorName.identifier.name != 'unless') {
return null;
}
var unlessParam = element
.computeConstantValue()
?.getField('parameterDefined')
?.toStringValue();
if (unlessParam == null) {
return null;
}
Expression? checkParams(FormalParameterList? parameterList) {
if (parameterList == null) {
return null;
}
for (var param in parameterList.parameters) {
// Param is defined.
if (param.name?.lexeme == unlessParam) {
return null;
}
}
// Find and return the parameter value node.
var arguments = node.arguments?.arguments;
if (arguments == null) {
return null;
}
for (var arg in arguments) {
if (arg is NamedExpression &&
arg.name.label.name == 'parameterDefined') {
return arg.expression;
}
}
return null;
}
if (parent is FunctionDeclarationImpl) {
return checkParams(parent.functionExpression.parameters);
}
if (parent is MethodDeclarationImpl) {
return checkParams(parent.parameters);
}
return null;
}
/// Return subexpressions that are marked `@doNotStore`, as a map so that
/// corresponding elements can be used in the diagnostic message.
Map<Expression, Element> _getSubExpressionsMarkedDoNotStore(
Expression? expression,
{Map<Expression, Element>? addTo}) {
var expressions = addTo ?? <Expression, Element>{};
Element? element;
if (expression is PropertyAccess) {
element = expression.propertyName.staticElement;
// Tear-off.
if (element is FunctionElement || element is MethodElement) {
element = null;
}
} else if (expression is MethodInvocation) {
element = expression.methodName.staticElement;
} else if (expression is Identifier) {
element = expression.staticElement;
// Tear-off.
if (element is FunctionElement || element is MethodElement) {
element = null;
}
} else if (expression is ConditionalExpression) {
_getSubExpressionsMarkedDoNotStore(expression.elseExpression,
addTo: expressions);
_getSubExpressionsMarkedDoNotStore(expression.thenExpression,
addTo: expressions);
} else if (expression is BinaryExpression) {
_getSubExpressionsMarkedDoNotStore(expression.leftOperand,
addTo: expressions);
_getSubExpressionsMarkedDoNotStore(expression.rightOperand,
addTo: expressions);
} else if (expression is FunctionExpression) {
var body = expression.body;
if (body is ExpressionFunctionBody) {
_getSubExpressionsMarkedDoNotStore(body.expression, addTo: expressions);
}
}
if (element is PropertyAccessorElement && element.isSynthetic) {
element = element.variable;
}
if (element != null && element.hasOrInheritsDoNotStore) {
expressions[expression!] = element;
}
return expressions;
}
bool _isLibraryInWorkspacePackage(LibraryElement? library) {
if (_workspacePackage == null || library == null) {
// Better to not make a big claim that they _are_ in the same package,
// if we were unable to determine what package [_currentLibrary] is in.
return false;
}
return _workspacePackage!.contains(library.source);
}
/// Return `true` if it is valid to have an annotation on the given [target]
/// when the annotation is marked as being valid for the given [kinds] of
/// targets.
bool _isValidTarget(AstNode target, Set<TargetKind> kinds) {
if (target is ClassDeclaration) {
return kinds.contains(TargetKind.classType) ||
kinds.contains(TargetKind.type);
} else if (target is Directive) {
return (target.parent as CompilationUnit).directives.first == target &&
kinds.contains(TargetKind.library);
} else if (target is EnumDeclaration) {
return kinds.contains(TargetKind.enumType) ||
kinds.contains(TargetKind.type);
} else if (target is ExtensionDeclaration) {
return kinds.contains(TargetKind.extension);
} else if (target is FieldDeclaration) {
return kinds.contains(TargetKind.field);
} else if (target is FunctionDeclaration) {
if (target.isGetter) {
return kinds.contains(TargetKind.getter);
}
if (target.isSetter) {
return kinds.contains(TargetKind.setter);
}
return kinds.contains(TargetKind.function);
} else if (target is MethodDeclaration) {
if (target.isGetter) {
return kinds.contains(TargetKind.getter);
}
if (target.isSetter) {
return kinds.contains(TargetKind.setter);
}
return kinds.contains(TargetKind.method);
} else if (target is MixinDeclaration) {
return kinds.contains(TargetKind.mixinType) ||
kinds.contains(TargetKind.type);
} else if (target is FormalParameter) {
return kinds.contains(TargetKind.parameter);
} else if (target is FunctionTypeAlias || target is GenericTypeAlias) {
return kinds.contains(TargetKind.typedefType) ||
kinds.contains(TargetKind.type);
} else if (target is TopLevelVariableDeclaration) {
return kinds.contains(TargetKind.topLevelVariable);
}
return false;
}
/// Checks for the passed as expression for the [HintCode.UNNECESSARY_CAST]
/// hint code.
///
/// Returns `true` if and only if an unnecessary cast hint should be generated
/// on [node]. See [HintCode.UNNECESSARY_CAST].
static bool isUnnecessaryCast(AsExpression node, TypeSystemImpl typeSystem) {
var leftType = node.expression.typeOrThrow;
var rightType = node.type.typeOrThrow;
// `dynamicValue as SomeType` is a valid use case.
if (leftType.isDynamic) {
return false;
}
// `x as Unresolved` is already reported as an error.
if (rightType.isDynamic) {
return false;
}
// The cast is necessary.
if (!typeSystem.isSubtypeOf(leftType, rightType)) {
return false;
}
// Casting from `T*` to `T?` is a way to force `T?`.
if (leftType.nullabilitySuffix == NullabilitySuffix.star &&
rightType.nullabilitySuffix == NullabilitySuffix.question) {
return false;
}
// For `condition ? then : else` the result type is `LUB`.
// Casts might be used to consider only a portion of the inheritance tree.
var parent = node.parent;
if (parent is ConditionalExpression) {
var other = node == parent.thenExpression
? parent.elseExpression
: parent.thenExpression;
var currentType = typeSystem.leastUpperBound(
node.typeOrThrow,
other.typeOrThrow,
);
var typeWithoutCast = typeSystem.leastUpperBound(
node.expression.typeOrThrow,
other.typeOrThrow,
);
if (typeWithoutCast != currentType) {
return false;
}
}
return true;
}
static String _formalParameterNameOrEmpty(FormalParameter node) {
return node.name?.lexeme ?? '';
}
static bool _hasNonVirtualAnnotation(ExecutableElement element) {
if (element is PropertyAccessorElement && element.isSynthetic) {
return element.variable.hasNonVirtual;
}
return element.hasNonVirtual;
}
/// Given a parenthesized expression, this returns the parent (or recursively
/// grand-parent) of the expression that is a parenthesized expression, but
/// whose parent is not a parenthesized expression.
///
/// For example given the code `(((e)))`: `(e) -> (((e)))`.
///
/// @param parenthesizedExpression some expression whose parent is a
/// parenthesized expression
/// @return the first parent or grand-parent that is a parenthesized
/// expression, that does not have a parenthesized expression parent
static ParenthesizedExpression _wrapParenthesizedExpression(
ParenthesizedExpression parenthesizedExpression) {
var parent = parenthesizedExpression.parent;
if (parent is ParenthesizedExpression) {
return _wrapParenthesizedExpression(parent);
}
return parenthesizedExpression;
}
}
class _InvalidAccessVerifier {
static final _templateExtension = '.template';
final ErrorReporter _errorReporter;
final LibraryElement _library;
final WorkspacePackage? _workspacePackage;
final bool _inTemplateSource;
late final bool _inTestDirectory;
ClassElement? _enclosingClass;
_InvalidAccessVerifier(
this._errorReporter, this._library, this._workspacePackage)
: _inTemplateSource =
_library.source.fullName.contains(_templateExtension);
/// Produces a hint if [identifier] is accessed from an invalid location.
///
/// In particular, a hint is produced in either of the two following cases:
///
/// * The element associated with [identifier] is annotated with [internal],
/// and is accessed from outside the package in which the element is
/// declared.
/// * The element associated with [identifier] is annotated with [protected],
/// [visibleForTesting], and/or [visibleForTemplate], and is accessed from a
/// location which is invalid as per the rules of each such annotation.
/// Conversely, if the element is annotated with more than one of these
/// annotations, the access is valid (and no hint will be produced) if it
/// conforms to the rules of at least one of the annotations.
void verify(SimpleIdentifier identifier) {
if (identifier.inDeclarationContext() || _inCommentReference(identifier)) {
return;
}
// This is the same logic used in [checkForDeprecatedMemberUseAtIdentifier]
// to avoid reporting an error twice for named constructors.
var parent = identifier.parent;
if (parent is ConstructorName && identical(identifier, parent.name)) {
return;
}
var grandparent = parent?.parent;
var element = grandparent is ConstructorName
? grandparent.staticElement
: identifier.writeOrReadElement;
if (element == null || _inCurrentLibrary(element)) {
return;
}
if (parent is HideCombinator) {
return;
}
_checkForInvalidInternalAccess(identifier, element);
_checkForOtherInvalidAccess(identifier, element);
}
void verifyBinary(BinaryExpression node) {
var element = node.staticElement;
if (element != null && _hasVisibleForOverriding(element)) {
var operator = node.operator;
if (node.leftOperand is SuperExpression) {
var methodDeclaration = node.thisOrAncestorOfType<MethodDeclaration>();
if (methodDeclaration?.name2.lexeme == operator.lexeme) {
return;
}
}
_errorReporter.reportErrorForToken(
HintCode.INVALID_USE_OF_VISIBLE_FOR_OVERRIDING_MEMBER,
operator,
[operator.type.lexeme]);
}
}
void verifyImport(ImportDirective node) {
var element = node.element2?.importedLibrary;
if (_hasInternal(element) &&
!_isLibraryInWorkspacePackage(element!.library)) {
// The only way for an import directive's URI to have a `null`
// `stringValue` is if its string contains an interpolation, in which case
// the element would never have resolved in the first place. So we can
// safely assume `node.uri.stringValue` is non-`null`.
_errorReporter.reportErrorForNode(HintCode.INVALID_USE_OF_INTERNAL_MEMBER,
node, [node.uri.stringValue!]);
}
}
void verifySuperConstructorInvocation(SuperConstructorInvocation node) {
if (node.constructorName != null) {
// Named constructor calls are handled by [verify].
return;
}
var element = node.staticElement;
if (_hasInternal(element) &&
!_isLibraryInWorkspacePackage(element!.library)) {
_errorReporter.reportErrorForNode(
HintCode.INVALID_USE_OF_INTERNAL_MEMBER, node, [element.name]);
}
}
void _checkForInvalidInternalAccess(
SimpleIdentifier identifier, Element element) {
if (_hasInternal(element) &&
!_isLibraryInWorkspacePackage(element.library)) {
String name;
AstNode node;
var grandparent = identifier.parent?.parent;
if (grandparent is ConstructorName) {
name = grandparent.toSource();
node = grandparent;
} else {
name = identifier.name;
node = identifier;
}
_errorReporter.reportErrorForNode(
HintCode.INVALID_USE_OF_INTERNAL_MEMBER, node, [name]);
}
}
void _checkForOtherInvalidAccess(
SimpleIdentifier identifier, Element element) {
bool hasProtected = _hasProtected(element);
if (hasProtected) {
var definingClass = element.enclosingElement3 as ClassElement;
if (_hasTypeOrSuperType(_enclosingClass, definingClass)) {
return;
}
}
bool hasVisibleForTemplate = _hasVisibleForTemplate(element);
if (hasVisibleForTemplate) {
if (_inTemplateSource || _inExportDirective(identifier)) {
return;
}
}
bool hasVisibleForTesting = _hasVisibleForTesting(element);
if (hasVisibleForTesting) {
if (_inTestDirectory || _inExportDirective(identifier)) {
return;
}
}
bool hasVisibleForOverriding = _hasVisibleForOverriding(element);
// At this point, [identifier] was not cleared as protected access, nor
// cleared as access for templates or testing. Report a violation for each
// annotation present.
String name;
AstNode node;
var grandparent = identifier.parent?.parent;
if (grandparent is ConstructorName) {
name = grandparent.toSource();
node = grandparent;
} else {
name = identifier.name;
node = identifier;
}
var definingClass = element.enclosingElement3;
if (hasProtected) {
_errorReporter.reportErrorForNode(
HintCode.INVALID_USE_OF_PROTECTED_MEMBER,
node,
[name, definingClass!.source!.uri]);
}
if (hasVisibleForTemplate) {
_errorReporter.reportErrorForNode(
HintCode.INVALID_USE_OF_VISIBLE_FOR_TEMPLATE_MEMBER,
node,
[name, definingClass!.source!.uri]);
}
if (hasVisibleForTesting) {
_errorReporter.reportErrorForNode(
HintCode.INVALID_USE_OF_VISIBLE_FOR_TESTING_MEMBER,
node,
[name, definingClass!.source!.uri]);
}
if (hasVisibleForOverriding) {
var parent = node.parent;
var validOverride = false;
if (parent is MethodInvocation && parent.target is SuperExpression ||
parent is PropertyAccess && parent.target is SuperExpression) {
var methodDeclaration =
grandparent?.thisOrAncestorOfType<MethodDeclaration>();
if (methodDeclaration?.name2.lexeme == identifier.name) {
validOverride = true;
}
}
if (!validOverride) {
_errorReporter.reportErrorForNode(
HintCode.INVALID_USE_OF_VISIBLE_FOR_OVERRIDING_MEMBER,
node,
[name]);
}
}
}
bool _hasInternal(Element? element) {
if (element == null) {
return false;
}
if (element.hasInternal) {
return true;
}
if (element is PropertyAccessorElement && element.variable.hasInternal) {
return true;
}
return false;
}
bool _hasProtected(Element element) {
if (element is PropertyAccessorElement &&
element.enclosingElement3 is ClassElement &&
(element.hasProtected || element.variable.hasProtected)) {
return true;
}
if (element is MethodElement &&
element.enclosingElement3 is ClassElement &&
element.hasProtected) {
return true;
}
return false;
}
bool _hasTypeOrSuperType(ClassElement? element, ClassElement superElement) {
if (element == null) {
return false;
}
return element.thisType.asInstanceOf(superElement) != null;
}
bool _hasVisibleForOverriding(Element element) {
if (element.hasVisibleForOverriding) {
return true;
}
if (element is PropertyAccessorElement &&
element.variable.hasVisibleForOverriding) {
return true;
}
return false;
}
bool _hasVisibleForTemplate(Element? element) {
if (element == null) {
return false;
}
if (element.hasVisibleForTemplate) {
return true;
}
if (element is PropertyAccessorElement &&
element.variable.hasVisibleForTemplate) {
return true;
}
return false;
}
bool _hasVisibleForTesting(Element element) {
if (element.hasVisibleForTesting) {
return true;
}
if (element is PropertyAccessorElement &&
element.variable.hasVisibleForTesting) {
return true;
}
return false;
}
bool _inCommentReference(SimpleIdentifier identifier) {
var parent = identifier.parent;
return parent is CommentReference || parent?.parent is CommentReference;
}
bool _inCurrentLibrary(Element element) => element.library == _library;
bool _inExportDirective(SimpleIdentifier identifier) =>
identifier.parent is Combinator &&
identifier.parent!.parent is ExportDirective;
bool _isLibraryInWorkspacePackage(LibraryElement? library) {
if (_workspacePackage == null || library == null) {
// Better to not make a big claim that they _are_ in the same package,
// if we were unable to determine what package [_currentLibrary] is in.
return false;
}
return _workspacePackage!.contains(library.source);
}
}
/// A visitor that determines, upon visiting a function body and/or a
/// constructor's initializers, whether a parameter is referenced.
class _UsedParameterVisitor extends RecursiveAstVisitor<void> {
final Set<ParameterElement> _parameters;
final Set<ParameterElement> _usedParameters = {};
_UsedParameterVisitor(this._parameters);
bool isUsed(ParameterElement parameter) =>
_usedParameters.contains(parameter);
@override
void visitSimpleIdentifier(SimpleIdentifier node) {
var element = node.staticElement;
if (element is ExecutableMember) {
element = element.declaration;
}
if (_parameters.contains(element)) {
_usedParameters.add(element as ParameterElement);
}
}
}