blob: 533d8e47f3f225a4bd354a0d1d3d79920cc0d847 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_MIPS.
#if defined(TARGET_ARCH_MIPS)
#include "vm/constants_mips.h"
#include "vm/cpu.h"
#include "vm/instructions.h"
#include "vm/object.h"
namespace dart {
CallPattern::CallPattern(uword pc, const Code& code)
: object_pool_(Array::Handle(code.ObjectPool())),
end_(pc),
args_desc_load_end_(0),
ic_data_load_end_(0),
target_address_pool_index_(-1),
args_desc_(Array::Handle()),
ic_data_(ICData::Handle()) {
ASSERT(code.ContainsInstructionAt(pc));
// Last instruction: jalr RA, T9(=R25).
ASSERT(*(reinterpret_cast<uword*>(end_) - 2) == 0x0320f809);
Register reg;
// The end of the pattern is the instruction after the delay slot of the jalr.
ic_data_load_end_ =
InstructionPattern::DecodeLoadWordFromPool(end_ - (2 * Instr::kInstrSize),
&reg,
&target_address_pool_index_);
ASSERT(reg == T9);
}
// Decodes a load sequence ending at 'end' (the last instruction of the load
// sequence is the instruction before the one at end). Returns a pointer to
// the first instruction in the sequence. Returns the register being loaded
// and the loaded object in the output parameters 'reg' and 'obj'
// respectively.
uword InstructionPattern::DecodeLoadObject(uword end,
const Array& object_pool,
Register* reg,
Object* obj) {
uword start = 0;
Instr* instr = Instr::At(end - Instr::kInstrSize);
if (instr->OpcodeField() == LW) {
intptr_t index = 0;
start = DecodeLoadWordFromPool(end, reg, &index);
*obj = object_pool.At(index);
} else {
intptr_t value = 0;
start = DecodeLoadWordImmediate(end, reg, &value);
*obj = reinterpret_cast<RawObject*>(value);
}
return start;
}
// Decodes a load sequence ending at 'end' (the last instruction of the load
// sequence is the instruction before the one at end). Returns a pointer to
// the first instruction in the sequence. Returns the register being loaded
// and the loaded immediate value in the output parameters 'reg' and 'value'
// respectively.
uword InstructionPattern::DecodeLoadWordImmediate(uword end,
Register* reg,
intptr_t* value) {
// The pattern is a fixed size, but match backwards for uniformity with
// DecodeLoadWordFromPool.
uword start = end - Instr::kInstrSize;
Instr* instr = Instr::At(start);
intptr_t imm = 0;
ASSERT(instr->OpcodeField() == ORI);
imm = instr->UImmField();
*reg = instr->RtField();
start -= Instr::kInstrSize;
instr = Instr::At(start);
ASSERT(instr->OpcodeField() == LUI);
ASSERT(instr->RtField() == *reg);
imm |= (instr->UImmField() << 16);
*value = imm;
return start;
}
// Decodes a load sequence ending at 'end' (the last instruction of the load
// sequence is the instruction before the one at end). Returns a pointer to
// the first instruction in the sequence. Returns the register being loaded
// and the index in the pool being read from in the output parameters 'reg'
// and 'index' respectively.
uword InstructionPattern::DecodeLoadWordFromPool(uword end,
Register* reg,
intptr_t* index) {
uword start = end - Instr::kInstrSize;
Instr* instr = Instr::At(start);
intptr_t offset = 0;
if ((instr->OpcodeField() == LW) && (instr->RsField() == PP)) {
offset = instr->SImmField();
*reg = instr->RtField();
} else {
ASSERT(instr->OpcodeField() == LW);
offset = instr->SImmField();
*reg = instr->RtField();
start -= Instr::kInstrSize;
instr = Instr::At(start);
ASSERT(instr->OpcodeField() == SPECIAL);
ASSERT(instr->FunctionField() == ADDU);
ASSERT(instr->RdField() == *reg);
ASSERT(instr->RsField() == *reg);
ASSERT(instr->RtField() == PP);
start -= Instr::kInstrSize;
instr = Instr::At(start);
ASSERT(instr->OpcodeField() == LUI);
ASSERT(instr->RtField() == *reg);
// Offset is signed, so add the upper 16 bits.
offset += (instr->UImmField() << 16);
}
offset += kHeapObjectTag;
ASSERT(Utils::IsAligned(offset, 4));
*index = (offset - Array::data_offset()) / 4;
return start;
}
RawICData* CallPattern::IcData() {
if (ic_data_.IsNull()) {
Register reg;
args_desc_load_end_ =
InstructionPattern::DecodeLoadObject(ic_data_load_end_,
object_pool_,
&reg,
&ic_data_);
ASSERT(reg == S5);
}
return ic_data_.raw();
}
RawArray* CallPattern::ClosureArgumentsDescriptor() {
if (args_desc_.IsNull()) {
IcData(); // Loading of the ic_data must be decoded first, if not already.
Register reg;
InstructionPattern::DecodeLoadObject(args_desc_load_end_,
object_pool_,
&reg,
&args_desc_);
ASSERT(reg == S4);
}
return args_desc_.raw();
}
uword CallPattern::TargetAddress() const {
ASSERT(target_address_pool_index_ >= 0);
const Object& target_address =
Object::Handle(object_pool_.At(target_address_pool_index_));
ASSERT(target_address.IsSmi());
// The address is stored in the object array as a RawSmi.
return reinterpret_cast<uword>(target_address.raw());
}
void CallPattern::SetTargetAddress(uword target_address) const {
ASSERT(Utils::IsAligned(target_address, 4));
// The address is stored in the object array as a RawSmi.
const Smi& smi = Smi::Handle(reinterpret_cast<RawSmi*>(target_address));
object_pool_.SetAt(target_address_pool_index_, smi);
// No need to flush the instruction cache, since the code is not modified.
}
void CallPattern::InsertAt(uword pc, uword target_address) {
Instr* lui = Instr::At(pc + (0 * Instr::kInstrSize));
Instr* ori = Instr::At(pc + (1 * Instr::kInstrSize));
Instr* jr = Instr::At(pc + (2 * Instr::kInstrSize));
Instr* nop = Instr::At(pc + (3 * Instr::kInstrSize));
uint16_t target_lo = target_address & 0xffff;
uint16_t target_hi = target_address >> 16;
lui->SetImmInstrBits(LUI, ZR, T9, target_hi);
ori->SetImmInstrBits(ORI, T9, T9, target_lo);
jr->SetSpecialInstrBits(JALR, T9, ZR, RA);
nop->SetInstructionBits(Instr::kNopInstruction);
ASSERT(kFixedLengthInBytes == 4 * Instr::kInstrSize);
CPU::FlushICache(pc, kFixedLengthInBytes);
}
JumpPattern::JumpPattern(uword pc, const Code& code) : pc_(pc) { }
bool JumpPattern::IsValid() const {
Instr* lui = Instr::At(pc_ + (0 * Instr::kInstrSize));
Instr* ori = Instr::At(pc_ + (1 * Instr::kInstrSize));
Instr* jr = Instr::At(pc_ + (2 * Instr::kInstrSize));
Instr* nop = Instr::At(pc_ + (3 * Instr::kInstrSize));
return (lui->OpcodeField() == LUI) &&
(ori->OpcodeField() == ORI) &&
(jr->OpcodeField() == SPECIAL) &&
(jr->FunctionField() == JR) &&
(nop->InstructionBits() == Instr::kNopInstruction);
}
uword JumpPattern::TargetAddress() const {
Instr* lui = Instr::At(pc_ + (0 * Instr::kInstrSize));
Instr* ori = Instr::At(pc_ + (1 * Instr::kInstrSize));
const uint16_t target_lo = ori->UImmField();
const uint16_t target_hi = lui->UImmField();
return (target_hi << 16) | target_lo;
}
void JumpPattern::SetTargetAddress(uword target_address) const {
Instr* lui = Instr::At(pc_ + (0 * Instr::kInstrSize));
Instr* ori = Instr::At(pc_ + (1 * Instr::kInstrSize));
const int32_t lui_bits = lui->InstructionBits();
const int32_t ori_bits = ori->InstructionBits();
const uint16_t target_lo = target_address & 0xffff;
const uint16_t target_hi = target_address >> 16;
lui->SetInstructionBits((lui_bits & 0xffff0000) | target_hi);
ori->SetInstructionBits((ori_bits & 0xffff0000) | target_lo);
}
} // namespace dart
#endif // defined TARGET_ARCH_MIPS