blob: 6d9995d6d0145d38923e1dbb60aacf3eb951d754 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_ARM.
#if defined(TARGET_ARCH_ARM)
#include "vm/assembler.h"
#include "vm/constants_arm.h"
#include "vm/cpu.h"
#include "vm/instructions.h"
#include "vm/object.h"
namespace dart {
CallPattern::CallPattern(uword pc, const Code& code)
: object_pool_(Array::Handle(code.ObjectPool())),
end_(pc),
args_desc_load_end_(0),
ic_data_load_end_(0),
target_address_pool_index_(-1),
args_desc_(Array::Handle()),
ic_data_(ICData::Handle()) {
ASSERT(code.ContainsInstructionAt(pc));
// Last instruction: blx lr.
ASSERT(*(reinterpret_cast<uword*>(end_) - 1) == 0xe12fff3e);
Register reg;
ic_data_load_end_ =
InstructionPattern::DecodeLoadWordFromPool(end_ - Instr::kInstrSize,
&reg,
&target_address_pool_index_);
ASSERT(reg == LR);
}
int CallPattern::LengthInBytes() {
const ARMVersion version = TargetCPUFeatures::arm_version();
if ((version == ARMv5TE) || (version == ARMv6)) {
return 5 * Instr::kInstrSize;
} else {
ASSERT(version == ARMv7);
return 3 * Instr::kInstrSize;
}
}
// Decodes a load sequence ending at 'end' (the last instruction of the load
// sequence is the instruction before the one at end). Returns a pointer to
// the first instruction in the sequence. Returns the register being loaded
// and the loaded object in the output parameters 'reg' and 'obj'
// respectively.
uword InstructionPattern::DecodeLoadObject(uword end,
const Array& object_pool,
Register* reg,
Object* obj) {
uword start = 0;
Instr* instr = Instr::At(end - Instr::kInstrSize);
if ((instr->InstructionBits() & 0xfff00000) == 0xe5900000) {
// ldr reg, [reg, #+offset]
intptr_t index = 0;
start = DecodeLoadWordFromPool(end, reg, &index);
*obj = object_pool.At(index);
} else {
intptr_t value = 0;
start = DecodeLoadWordImmediate(end, reg, &value);
*obj = reinterpret_cast<RawObject*>(value);
}
return start;
}
// Decodes a load sequence ending at 'end' (the last instruction of the load
// sequence is the instruction before the one at end). Returns a pointer to
// the first instruction in the sequence. Returns the register being loaded
// and the loaded immediate value in the output parameters 'reg' and 'value'
// respectively.
uword InstructionPattern::DecodeLoadWordImmediate(uword end,
Register* reg,
intptr_t* value) {
uword start = end - Instr::kInstrSize;
int32_t instr = Instr::At(start)->InstructionBits();
intptr_t imm = 0;
const ARMVersion version = TargetCPUFeatures::arm_version();
if ((version == ARMv5TE) || (version == ARMv6)) {
ASSERT((instr & 0xfff00000) == 0xe3800000); // orr rd, rd, byte0
imm |= (instr & 0x000000ff);
start -= Instr::kInstrSize;
instr = Instr::At(start)->InstructionBits();
ASSERT((instr & 0xfff00000) == 0xe3800c00); // orr rd, rd, (byte1 rot 12)
imm |= (instr & 0x000000ff);
start -= Instr::kInstrSize;
instr = Instr::At(start)->InstructionBits();
ASSERT((instr & 0xfff00f00) == 0xe3800800); // orr rd, rd, (byte2 rot 8)
imm |= (instr & 0x000000ff);
start -= Instr::kInstrSize;
instr = Instr::At(start)->InstructionBits();
ASSERT((instr & 0xffff0f00) == 0xe3a00400); // mov rd, (byte3 rot 4)
imm |= (instr & 0x000000ff);
*reg = static_cast<Register>((instr & 0x0000f000) >> 12);
*value = imm;
} else {
ASSERT(version == ARMv7);
if ((instr & 0xfff00000) == 0xe3400000) { // movt reg, #imm_hi
imm |= (instr & 0xf0000) << 12;
imm |= (instr & 0xfff) << 16;
start -= Instr::kInstrSize;
instr = Instr::At(start)->InstructionBits();
}
ASSERT((instr & 0xfff00000) == 0xe3000000); // movw reg, #imm_lo
imm |= (instr & 0xf0000) >> 4;
imm |= instr & 0xfff;
*reg = static_cast<Register>((instr & 0xf000) >> 12);
*value = imm;
}
return start;
}
// Decodes a load sequence ending at 'end' (the last instruction of the load
// sequence is the instruction before the one at end). Returns a pointer to
// the first instruction in the sequence. Returns the register being loaded
// and the index in the pool being read from in the output parameters 'reg'
// and 'index' respectively.
uword InstructionPattern::DecodeLoadWordFromPool(uword end,
Register* reg,
intptr_t* index) {
uword start = end - Instr::kInstrSize;
int32_t instr = Instr::At(start)->InstructionBits();
intptr_t offset = 0;
if ((instr & 0xffff0000) == 0xe59a0000) { // ldr reg, [pp, #+offset]
offset = instr & 0xfff;
*reg = static_cast<Register>((instr & 0xf000) >> 12);
} else {
ASSERT((instr & 0xfff00000) == 0xe5900000); // ldr reg, [reg, #+offset]
offset = instr & 0xfff;
start -= Instr::kInstrSize;
instr = Instr::At(start)->InstructionBits();
if ((instr & 0xffff0000) == 0xe28a0000) { // add reg, pp, operand
const intptr_t rot = (instr & 0xf00) >> 7;
const intptr_t imm8 = instr & 0xff;
offset += (imm8 >> rot) | (imm8 << (32 - rot));
*reg = static_cast<Register>((instr & 0xf000) >> 12);
} else {
ASSERT((instr & 0xffff0000) == 0xe08a0000); // add reg, pp, reg
end = DecodeLoadWordImmediate(end, reg, &offset);
}
}
offset += kHeapObjectTag;
ASSERT(Utils::IsAligned(offset, 4));
*index = (offset - Array::data_offset()) / 4;
return start;
}
RawICData* CallPattern::IcData() {
if (ic_data_.IsNull()) {
Register reg;
args_desc_load_end_ =
InstructionPattern::DecodeLoadObject(ic_data_load_end_,
object_pool_,
&reg,
&ic_data_);
ASSERT(reg == R5);
}
return ic_data_.raw();
}
RawArray* CallPattern::ClosureArgumentsDescriptor() {
if (args_desc_.IsNull()) {
IcData(); // Loading of the ic_data must be decoded first, if not already.
Register reg;
InstructionPattern::DecodeLoadObject(args_desc_load_end_,
object_pool_,
&reg,
&args_desc_);
ASSERT(reg == R4);
}
return args_desc_.raw();
}
uword CallPattern::TargetAddress() const {
ASSERT(target_address_pool_index_ >= 0);
const Object& target_address =
Object::Handle(object_pool_.At(target_address_pool_index_));
ASSERT(target_address.IsSmi());
// The address is stored in the object array as a RawSmi.
return reinterpret_cast<uword>(target_address.raw());
}
void CallPattern::SetTargetAddress(uword target_address) const {
ASSERT(Utils::IsAligned(target_address, 4));
// The address is stored in the object array as a RawSmi.
const Smi& smi = Smi::Handle(reinterpret_cast<RawSmi*>(target_address));
object_pool_.SetAt(target_address_pool_index_, smi);
// No need to flush the instruction cache, since the code is not modified.
}
void CallPattern::InsertAt(uword pc, uword target_address) {
const ARMVersion version = TargetCPUFeatures::arm_version();
if ((version == ARMv5TE) || (version == ARMv6)) {
const uint32_t byte0 = (target_address & 0x000000ff);
const uint32_t byte1 = (target_address & 0x0000ff00) >> 8;
const uint32_t byte2 = (target_address & 0x00ff0000) >> 16;
const uint32_t byte3 = (target_address & 0xff000000) >> 24;
const uword mov_ip = 0xe3a0c400 | byte3; // mov ip, (byte3 rot 4)
const uword or1_ip = 0xe38cc800 | byte2; // orr ip, ip, (byte2 rot 8)
const uword or2_ip = 0xe38ccc00 | byte1; // orr ip, ip, (byte1 rot 12)
const uword or3_ip = 0xe38cc000 | byte0; // orr ip, ip, byte0
const uword blx_ip = 0xe12fff3c;
*reinterpret_cast<uword*>(pc + (0 * Instr::kInstrSize)) = mov_ip;
*reinterpret_cast<uword*>(pc + (1 * Instr::kInstrSize)) = or1_ip;
*reinterpret_cast<uword*>(pc + (2 * Instr::kInstrSize)) = or2_ip;
*reinterpret_cast<uword*>(pc + (3 * Instr::kInstrSize)) = or3_ip;
*reinterpret_cast<uword*>(pc + (4 * Instr::kInstrSize)) = blx_ip;
ASSERT(LengthInBytes() == 5 * Instr::kInstrSize);
CPU::FlushICache(pc, LengthInBytes());
} else {
ASSERT(version == ARMv7);
const uint16_t target_lo = target_address & 0xffff;
const uint16_t target_hi = target_address >> 16;
const uword movw_ip =
0xe300c000 | ((target_lo >> 12) << 16) | (target_lo & 0xfff);
const uword movt_ip =
0xe340c000 | ((target_hi >> 12) << 16) | (target_hi & 0xfff);
const uword blx_ip = 0xe12fff3c;
*reinterpret_cast<uword*>(pc + (0 * Instr::kInstrSize)) = movw_ip;
*reinterpret_cast<uword*>(pc + (1 * Instr::kInstrSize)) = movt_ip;
*reinterpret_cast<uword*>(pc + (2 * Instr::kInstrSize)) = blx_ip;
ASSERT(LengthInBytes() == 3 * Instr::kInstrSize);
CPU::FlushICache(pc, LengthInBytes());
}
}
JumpPattern::JumpPattern(uword pc, const Code& code) : pc_(pc) { }
int JumpPattern::pattern_length_in_bytes() {
const ARMVersion version = TargetCPUFeatures::arm_version();
if ((version == ARMv5TE) || (version == ARMv6)) {
return 5 * Instr::kInstrSize;
} else {
ASSERT(version == ARMv7);
return 3 * Instr::kInstrSize;
}
}
bool JumpPattern::IsValid() const {
const ARMVersion version = TargetCPUFeatures::arm_version();
if ((version == ARMv5TE) || (version == ARMv6)) {
Instr* mov_ip = Instr::At(pc_ + (0 * Instr::kInstrSize));
Instr* or1_ip = Instr::At(pc_ + (1 * Instr::kInstrSize));
Instr* or2_ip = Instr::At(pc_ + (2 * Instr::kInstrSize));
Instr* or3_ip = Instr::At(pc_ + (3 * Instr::kInstrSize));
Instr* bx_ip = Instr::At(pc_ + (4 * Instr::kInstrSize));
return ((mov_ip->InstructionBits() & 0xffffff00) == 0xe3a0c400) &&
((or1_ip->InstructionBits() & 0xffffff00) == 0xe38cc800) &&
((or2_ip->InstructionBits() & 0xffffff00) == 0xe38ccc00) &&
((or3_ip->InstructionBits() & 0xffffff00) == 0xe38cc000) &&
((bx_ip->InstructionBits() & 0xffffffff) == 0xe12fff1c);
} else {
ASSERT(version == ARMv7);
Instr* movw_ip = Instr::At(pc_ + (0 * Instr::kInstrSize)); // target_lo
Instr* movt_ip = Instr::At(pc_ + (1 * Instr::kInstrSize)); // target_hi
Instr* bx_ip = Instr::At(pc_ + (2 * Instr::kInstrSize));
return (movw_ip->InstructionBits() & 0xfff0f000) == 0xe300c000 &&
(movt_ip->InstructionBits() & 0xfff0f000) == 0xe340c000 &&
(bx_ip->InstructionBits() & 0xffffffff) == 0xe12fff1c;
}
}
uword JumpPattern::TargetAddress() const {
const ARMVersion version = TargetCPUFeatures::arm_version();
if ((version == ARMv5TE) || (version == ARMv6)) {
Instr* mov_ip = Instr::At(pc_ + (0 * Instr::kInstrSize));
Instr* or1_ip = Instr::At(pc_ + (1 * Instr::kInstrSize));
Instr* or2_ip = Instr::At(pc_ + (2 * Instr::kInstrSize));
Instr* or3_ip = Instr::At(pc_ + (3 * Instr::kInstrSize));
uword imm = 0;
imm |= or3_ip->Immed8Field();
imm |= or2_ip->Immed8Field() << 8;
imm |= or1_ip->Immed8Field() << 16;
imm |= mov_ip->Immed8Field() << 24;
return imm;
} else {
ASSERT(version == ARMv7);
Instr* movw_ip = Instr::At(pc_ + (0 * Instr::kInstrSize)); // target_lo
Instr* movt_ip = Instr::At(pc_ + (1 * Instr::kInstrSize)); // target_hi
uint16_t target_lo = movw_ip->MovwField();
uint16_t target_hi = movt_ip->MovwField();
return (target_hi << 16) | target_lo;
}
}
void JumpPattern::SetTargetAddress(uword target_address) const {
const ARMVersion version = TargetCPUFeatures::arm_version();
if ((version == ARMv5TE) || (version == ARMv6)) {
const uint32_t byte0 = (target_address & 0x000000ff);
const uint32_t byte1 = (target_address & 0x0000ff00) >> 8;
const uint32_t byte2 = (target_address & 0x00ff0000) >> 16;
const uint32_t byte3 = (target_address & 0xff000000) >> 24;
const uword mov_ip = 0xe3a0c400 | byte3; // mov ip, (byte3 rot 4)
const uword or1_ip = 0xe38cc800 | byte2; // orr ip, ip, (byte2 rot 8)
const uword or2_ip = 0xe38ccc00 | byte1; // orr ip, ip, (byte1 rot 12)
const uword or3_ip = 0xe38cc000 | byte0; // orr ip, ip, byte0
*reinterpret_cast<uword*>(pc_ + (0 * Instr::kInstrSize)) = mov_ip;
*reinterpret_cast<uword*>(pc_ + (1 * Instr::kInstrSize)) = or1_ip;
*reinterpret_cast<uword*>(pc_ + (2 * Instr::kInstrSize)) = or2_ip;
*reinterpret_cast<uword*>(pc_ + (3 * Instr::kInstrSize)) = or3_ip;
CPU::FlushICache(pc_, 4 * Instr::kInstrSize);
} else {
ASSERT(version == ARMv7);
const uint16_t target_lo = target_address & 0xffff;
const uint16_t target_hi = target_address >> 16;
const uword movw_ip =
0xe300c000 | ((target_lo >> 12) << 16) | (target_lo & 0xfff);
const uword movt_ip =
0xe340c000 | ((target_hi >> 12) << 16) | (target_hi & 0xfff);
*reinterpret_cast<uword*>(pc_ + (0 * Instr::kInstrSize)) = movw_ip;
*reinterpret_cast<uword*>(pc_ + (1 * Instr::kInstrSize)) = movt_ip;
CPU::FlushICache(pc_, 2 * Instr::kInstrSize);
}
}
} // namespace dart
#endif // defined TARGET_ARCH_ARM