blob: e100c750a68f8cb7ee764256df99b0c82d38e237 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
patch class HashMap<K, V> {
/* patch */ factory HashMap({ bool equals(K key1, K key2),
int hashCode(K key),
bool isValidKey(potentialKey) }) {
if (isValidKey == null) {
if (hashCode == null) {
if (equals == null) {
return new _HashMap<K, V>();
}
hashCode = _defaultHashCode;
} else {
if (identical(identityHashCode, hashCode) &&
identical(identical, equals)) {
return new _IdentityHashMap<K, V>();
}
if (equals == null) {
equals = _defaultEquals;
}
}
} else {
if (hashCode == null) {
hashCode = _defaultHashCode;
}
if (equals == null) {
equals = _defaultEquals;
}
}
return new _CustomHashMap<K, V>(equals, hashCode, isValidKey);
}
/* patch */ factory HashMap.identity() = _IdentityHashMap<K, V>;
Set<K> _newKeySet();
}
const int _MODIFICATION_COUNT_MASK = 0x3fffffff;
class _HashMap<K, V> implements HashMap<K, V> {
static const int _INITIAL_CAPACITY = 8;
int _elementCount = 0;
List<_HashMapEntry> _buckets = new List(_INITIAL_CAPACITY);
int _modificationCount = 0;
int get length => _elementCount;
bool get isEmpty => _elementCount == 0;
bool get isNotEmpty => _elementCount != 0;
Iterable<K> get keys => new _HashMapKeyIterable<K>(this);
Iterable<V> get values => new _HashMapValueIterable<V>(this);
bool containsKey(Object key) {
int hashCode = key.hashCode;
List buckets = _buckets;
int index = hashCode & (buckets.length - 1);
_HashMapEntry entry = buckets[index];
while (entry != null) {
if (hashCode == entry.hashCode && entry.key == key) return true;
entry = entry.next;
}
return false;
}
bool containsValue(Object value) {
List buckets = _buckets;
int length = buckets.length;
for (int i = 0; i < length; i++) {
_HashMapEntry entry = buckets[i];
while (entry != null) {
if (entry.value == value) return true;
entry = entry.next;
}
}
return false;
}
V operator[](Object key) {
int hashCode = key.hashCode;
List buckets = _buckets;
int index = hashCode & (buckets.length - 1);
_HashMapEntry entry = buckets[index];
while (entry != null) {
if (hashCode == entry.hashCode && entry.key == key) {
return entry.value;
}
entry = entry.next;
}
return null;
}
void operator []=(K key, V value) {
int hashCode = key.hashCode;
List buckets = _buckets;
int length = buckets.length;
int index = hashCode & (length - 1);
_HashMapEntry entry = buckets[index];
while (entry != null) {
if (hashCode == entry.hashCode && entry.key == key) {
entry.value = value;
return;
}
entry = entry.next;
}
_addEntry(buckets, index, length, key, value, hashCode);
}
V putIfAbsent(K key, V ifAbsent()) {
int hashCode = key.hashCode;
List buckets = _buckets;
int length = buckets.length;
int index = hashCode & (length - 1);
_HashMapEntry entry = buckets[index];
while (entry != null) {
if (hashCode == entry.hashCode && entry.key == key) {
return entry.value;
}
entry = entry.next;
}
int stamp = _modificationCount;
V value = ifAbsent();
if (stamp == _modificationCount) {
_addEntry(buckets, index, length, key, value, hashCode);
} else {
this[key] = value;
}
return value;
}
void addAll(Map<K, V> other) {
other.forEach((K key, V value) {
this[key] = value;
});
}
void forEach(void action(K key, V value)) {
int stamp = _modificationCount;
List buckets = _buckets;
int length = buckets.length;
for (int i = 0; i < length; i++) {
_HashMapEntry entry = buckets[i];
while (entry != null) {
action(entry.key, entry.value);
if (stamp != _modificationCount) {
throw new ConcurrentModificationError(this);
}
entry = entry.next;
}
}
}
V remove(Object key) {
int hashCode = key.hashCode;
List buckets = _buckets;
int index = hashCode & (buckets.length - 1);
_HashMapEntry entry = buckets[index];
_HashMapEntry previous = null;
while (entry != null) {
_HashMapEntry next = entry.next;
if (hashCode == entry.hashCode && entry.key == key) {
_removeEntry(entry, previous, index);
_elementCount--;
_modificationCount =
(_modificationCount + 1) & _MODIFICATION_COUNT_MASK;
return entry.value;
}
previous = entry;
entry = next;
}
return null;
}
void clear() {
_buckets = new List(_INITIAL_CAPACITY);
if (_elementCount > 0) {
_elementCount = 0;
_modificationCount = (_modificationCount + 1) & _MODIFICATION_COUNT_MASK;
}
}
void _removeEntry(_HashMapEntry entry,
_HashMapEntry previousInBucket,
int bucketIndex) {
if (previousInBucket == null) {
_buckets[bucketIndex] = entry.next;
} else {
previousInBucket.next = entry.next;
}
}
void _addEntry(List buckets, int index, int length,
K key, V value, int hashCode) {
_HashMapEntry entry =
new _HashMapEntry(key, value, hashCode, buckets[index]);
buckets[index] = entry;
int newElements = _elementCount + 1;
_elementCount = newElements;
// If we end up with more than 75% non-empty entries, we
// resize the backing store.
if ((newElements << 2) > ((length << 1) + length)) _resize();
_modificationCount = (_modificationCount + 1) & _MODIFICATION_COUNT_MASK;
}
void _resize() {
List oldBuckets = _buckets;
int oldLength = oldBuckets.length;
int newLength = oldLength << 1;
List newBuckets = new List(newLength);
for (int i = 0; i < oldLength; i++) {
_HashMapEntry entry = oldBuckets[i];
while (entry != null) {
_HashMapEntry next = entry.next;
int hashCode = entry.hashCode;
int index = hashCode & (newLength - 1);
entry.next = newBuckets[index];
newBuckets[index] = entry;
entry = next;
}
}
_buckets = newBuckets;
}
String toString() => Maps.mapToString(this);
Set<K> _newKeySet() => new _HashSet<K>();
}
class _CustomHashMap<K, V> extends _HashMap<K, V> {
final _Equality<K> _equals;
final _Hasher<K> _hashCode;
final _Predicate _validKey;
_CustomHashMap(this._equals, this._hashCode, validKey)
: _validKey = (validKey != null) ? validKey : new _TypeTest<K>().test;
bool containsKey(Object key) {
if (!_validKey(key)) return false;
int hashCode = _hashCode(key);
List buckets = _buckets;
int index = hashCode & (buckets.length - 1);
_HashMapEntry entry = buckets[index];
while (entry != null) {
if (hashCode == entry.hashCode && _equals(entry.key, key)) return true;
entry = entry.next;
}
return false;
}
V operator[](Object key) {
if (!_validKey(key)) return null;
int hashCode = _hashCode(key);
List buckets = _buckets;
int index = hashCode & (buckets.length - 1);
_HashMapEntry entry = buckets[index];
while (entry != null) {
if (hashCode == entry.hashCode && _equals(entry.key, key)) {
return entry.value;
}
entry = entry.next;
}
return null;
}
void operator []=(K key, V value) {
int hashCode = _hashCode(key);
List buckets = _buckets;
int length = buckets.length;
int index = hashCode & (length - 1);
_HashMapEntry entry = buckets[index];
while (entry != null) {
if (hashCode == entry.hashCode && _equals(entry.key, key)) {
entry.value = value;
return;
}
entry = entry.next;
}
_addEntry(buckets, index, length, key, value, hashCode);
}
V putIfAbsent(K key, V ifAbsent()) {
int hashCode = _hashCode(key);
List buckets = _buckets;
int length = buckets.length;
int index = hashCode & (length - 1);
_HashMapEntry entry = buckets[index];
while (entry != null) {
if (hashCode == entry.hashCode && _equals(entry.key, key)) {
return entry.value;
}
entry = entry.next;
}
int stamp = _modificationCount;
V value = ifAbsent();
if (stamp == _modificationCount) {
_addEntry(buckets, index, length, key, value, hashCode);
} else {
this[key] = value;
}
return value;
}
V remove(Object key) {
if (!_validKey(key)) return null;
int hashCode = _hashCode(key);
List buckets = _buckets;
int index = hashCode & (buckets.length - 1);
_HashMapEntry entry = buckets[index];
_HashMapEntry previous = null;
while (entry != null) {
_HashMapEntry next = entry.next;
if (hashCode == entry.hashCode && _equals(entry.key, key)) {
_removeEntry(entry, previous, index);
_elementCount--;
_modificationCount =
(_modificationCount + 1) & _MODIFICATION_COUNT_MASK;
return entry.value;
}
previous = entry;
entry = next;
}
return null;
}
String toString() => Maps.mapToString(this);
Set<K> _newKeySet() => new _CustomHashSet<K>(_equals, _hashCode, _validKey);
}
class _IdentityHashMap<K, V> extends _HashMap<K, V> {
bool containsKey(Object key) {
int hashCode = identityHashCode(key);
List buckets = _buckets;
int index = hashCode & (buckets.length - 1);
_HashMapEntry entry = buckets[index];
while (entry != null) {
if (hashCode == entry.hashCode && identical(entry.key, key)) return true;
entry = entry.next;
}
return false;
}
V operator[](Object key) {
int hashCode = identityHashCode(key);
List buckets = _buckets;
int index = hashCode & (buckets.length - 1);
_HashMapEntry entry = buckets[index];
while (entry != null) {
if (hashCode == entry.hashCode && identical(entry.key, key)) {
return entry.value;
}
entry = entry.next;
}
return null;
}
void operator []=(K key, V value) {
int hashCode = identityHashCode(key);
List buckets = _buckets;
int length = buckets.length;
int index = hashCode & (length - 1);
_HashMapEntry entry = buckets[index];
while (entry != null) {
if (hashCode == entry.hashCode && identical(entry.key, key)) {
entry.value = value;
return;
}
entry = entry.next;
}
_addEntry(buckets, index, length, key, value, hashCode);
}
V putIfAbsent(K key, V ifAbsent()) {
int hashCode = identityHashCode(key);
List buckets = _buckets;
int length = buckets.length;
int index = hashCode & (length - 1);
_HashMapEntry entry = buckets[index];
while (entry != null) {
if (hashCode == entry.hashCode && identical(entry.key, key)) {
return entry.value;
}
entry = entry.next;
}
int stamp = _modificationCount;
V value = ifAbsent();
if (stamp == _modificationCount) {
_addEntry(buckets, index, length, key, value, hashCode);
} else {
this[key] = value;
}
return value;
}
V remove(Object key) {
int hashCode = identityHashCode(key);
List buckets = _buckets;
int index = hashCode & (buckets.length - 1);
_HashMapEntry entry = buckets[index];
_HashMapEntry previous = null;
while (entry != null) {
_HashMapEntry next = entry.next;
if (hashCode == entry.hashCode && identical(entry.key, key)) {
_removeEntry(entry, previous, index);
_elementCount--;
_modificationCount =
(_modificationCount + 1) & _MODIFICATION_COUNT_MASK;
return entry.value;
}
previous = entry;
entry = next;
}
return null;
}
String toString() => Maps.mapToString(this);
Set<K> _newKeySet() => new _IdentityHashSet<K>();
}
class _HashMapEntry {
final key;
var value;
final int hashCode;
_HashMapEntry next;
_HashMapEntry(this.key, this.value, this.hashCode, this.next);
}
abstract class _HashMapIterable<E> extends IterableBase<E>
implements EfficientLength {
final HashMap _map;
_HashMapIterable(this._map);
int get length => _map.length;
bool get isEmpty => _map.isEmpty;
bool get isNotEmpty => _map.isNotEmpty;
}
class _HashMapKeyIterable<K> extends _HashMapIterable<K> {
_HashMapKeyIterable(HashMap map) : super(map);
Iterator<K> get iterator => new _HashMapKeyIterator<K>(_map);
bool contains(Object key) => _map.containsKey(key);
void forEach(void action(K key)) {
_map.forEach((K key, _) {
action(key);
});
}
Set<K> toSet() => _map._newKeySet()..addAll(this);
}
class _HashMapValueIterable<V> extends _HashMapIterable<V> {
_HashMapValueIterable(HashMap map) : super(map);
Iterator<V> get iterator => new _HashMapValueIterator<V>(_map);
bool contains(Object value) => _map.containsValue(value);
void forEach(void action(V value)) {
_map.forEach((_, V value) {
action(value);
});
}
}
abstract class _HashMapIterator<E> implements Iterator<E> {
final HashMap _map;
final int _stamp;
int _index = 0;
_HashMapEntry _entry;
_HashMapIterator(HashMap map)
: _map = map, _stamp = map._modificationCount;
bool moveNext() {
if (_stamp != _map._modificationCount) {
throw new ConcurrentModificationError(_map);
}
_HashMapEntry entry = _entry;
if (entry != null) {
_HashMapEntry next = entry.next;
if (next != null) {
_entry = next;
return true;
}
_entry = null;
}
List buckets = _map._buckets;
int length = buckets.length;
for (int i = _index; i < length; i++) {
entry = buckets[i];
if (entry != null) {
_index = i + 1;
_entry = entry;
return true;
}
}
_index = length;
return false;
}
}
class _HashMapKeyIterator<K> extends _HashMapIterator<K> {
_HashMapKeyIterator(HashMap map) : super(map);
K get current {
_HashMapEntry entry = _entry;
return (entry == null) ? null : entry.key;
}
}
class _HashMapValueIterator<V> extends _HashMapIterator<V> {
_HashMapValueIterator(HashMap map) : super(map);
V get current {
_HashMapEntry entry = _entry;
return (entry == null) ? null : entry.value;
}
}
patch class HashSet<E> {
/* patch */ factory HashSet({ bool equals(E e1, E e2),
int hashCode(E e),
bool isValidKey(potentialKey) }) {
if (isValidKey == null) {
if (hashCode == null) {
if (equals == null) {
return new _HashSet<E>();
}
hashCode = _defaultHashCode;
} else {
if (identical(identityHashCode, hashCode) &&
identical(identical, equals)) {
return new _IdentityHashSet<E>();
}
if (equals == null) {
equals = _defaultEquals;
}
}
} else {
if (hashCode == null) {
hashCode = _defaultHashCode;
}
if (equals == null) {
equals = _defaultEquals;
}
}
return new _CustomHashSet<E>(equals, hashCode, isValidKey);
}
/* patch */ factory HashSet.identity() = _IdentityHashSet<E>;
}
class _HashSet<E> extends _HashSetBase<E> implements HashSet<E> {
static const int _INITIAL_CAPACITY = 8;
List<_HashSetEntry> _buckets = new List(_INITIAL_CAPACITY);
int _elementCount = 0;
int _modificationCount = 0;
bool _equals(e1, e2) => e1 == e2;
int _hashCode(e) => e.hashCode;
// Iterable.
Iterator<E> get iterator => new _HashSetIterator<E>(this);
int get length => _elementCount;
bool get isEmpty => _elementCount == 0;
bool get isNotEmpty => _elementCount != 0;
bool contains(Object object) {
int index = _hashCode(object) & (_buckets.length - 1);
_HashSetEntry entry = _buckets[index];
while (entry != null) {
if (_equals(entry.key, object)) return true;
entry = entry.next;
}
return false;
}
E lookup(Object object) {
int index = _hashCode(object) & (_buckets.length - 1);
_HashSetEntry entry = _buckets[index];
while (entry != null) {
var key = entry.key;
if (_equals(key, object)) return key;
entry = entry.next;
}
return null;
}
// Set.
bool add(E element) {
int hashCode = _hashCode(element);
int index = hashCode & (_buckets.length - 1);
_HashSetEntry entry = _buckets[index];
while (entry != null) {
if (_equals(entry.key, element)) return false;
entry = entry.next;
}
_addEntry(element, hashCode, index);
return true;
}
void addAll(Iterable<E> objects) {
int ctr = 0;
for (E object in objects) {
ctr++;
add(object);
}
}
bool _remove(Object object, int hashCode) {
int index = hashCode & (_buckets.length - 1);
_HashSetEntry entry = _buckets[index];
_HashSetEntry previous = null;
while (entry != null) {
if (_equals(entry.key, object)) {
_HashSetEntry next = entry.remove();
if (previous == null) {
_buckets[index] = next;
} else {
previous.next = next;
}
_elementCount--;
_modificationCount =
(_modificationCount + 1) & _MODIFICATION_COUNT_MASK;
return true;
}
previous = entry;
entry = entry.next;
}
return false;
}
bool remove(Object object) => _remove(object, _hashCode(object));
void removeAll(Iterable<Object> objectsToRemove) {
for (Object object in objectsToRemove) {
_remove(object, _hashCode(object));
}
}
void _filterWhere(bool test(E element), bool removeMatching) {
int length = _buckets.length;
for (int index = 0; index < length; index++) {
_HashSetEntry entry = _buckets[index];
_HashSetEntry previous = null;
while (entry != null) {
int modificationCount = _modificationCount;
bool testResult = test(entry.key);
if (modificationCount != _modificationCount) {
throw new ConcurrentModificationError(this);
}
if (testResult == removeMatching) {
_HashSetEntry next = entry.remove();
if (previous == null) {
_buckets[index] = next;
} else {
previous.next = next;
}
_elementCount--;
_modificationCount =
(_modificationCount + 1) & _MODIFICATION_COUNT_MASK;
entry = next;
} else {
previous = entry;
entry = entry.next;
}
}
}
}
void removeWhere(bool test(E element)) {
_filterWhere(test, true);
}
void retainWhere(bool test(E element)) {
_filterWhere(test, false);
}
void clear() {
_buckets = new List(_INITIAL_CAPACITY);
if (_elementCount > 0) {
_elementCount = 0;
_modificationCount = (_modificationCount + 1) & _MODIFICATION_COUNT_MASK;
}
}
void _addEntry(E key, int hashCode, int index) {
_buckets[index] = new _HashSetEntry(key, hashCode, _buckets[index]);
int newElements = _elementCount + 1;
_elementCount = newElements;
int length = _buckets.length;
// If we end up with more than 75% non-empty entries, we
// resize the backing store.
if ((newElements << 2) > ((length << 1) + length)) _resize();
_modificationCount = (_modificationCount + 1) & _MODIFICATION_COUNT_MASK;
}
void _resize() {
int oldLength = _buckets.length;
int newLength = oldLength << 1;
List oldBuckets = _buckets;
List newBuckets = new List(newLength);
for (int i = 0; i < oldLength; i++) {
_HashSetEntry entry = oldBuckets[i];
while (entry != null) {
_HashSetEntry next = entry.next;
int newIndex = entry.hashCode & (newLength - 1);
entry.next = newBuckets[newIndex];
newBuckets[newIndex] = entry;
entry = next;
}
}
_buckets = newBuckets;
}
HashSet<E> _newSet() => new _HashSet<E>();
}
class _IdentityHashSet<E> extends _HashSet<E> {
int _hashCode(e) => identityHashCode(e);
bool _equals(e1, e2) => identical(e1, e2);
HashSet<E> _newSet() => new _IdentityHashSet<E>();
}
class _CustomHashSet<E> extends _HashSet<E> {
final _Equality<E> _equality;
final _Hasher<E> _hasher;
final _Predicate _validKey;
_CustomHashSet(this._equality, this._hasher, bool validKey(Object o))
: _validKey = (validKey != null) ? validKey : new _TypeTest<E>().test;
bool remove(Object element) {
if (!_validKey(element)) return false;
return super.remove(element);
}
bool contains(Object element) {
if (!_validKey(element)) return false;
return super.contains(element);
}
E lookup(Object element) {
if (!_validKey(element)) return null;
return super.lookup(element);
}
bool containsAll(Iterable<Object> elements) {
for (Object element in elements) {
if (!_validKey(element) || !this.contains(element)) return false;
}
return true;
}
void removeAll(Iterable<Object> elements) {
for (Object element in elements) {
if (_validKey(element)) {
super._remove(element, _hasher(element));
}
}
}
bool _equals(e1, e2) => _equality(e1, e2);
int _hashCode(e) => _hasher(e);
HashSet<E> _newSet() => new _CustomHashSet<E>(_equality, _hasher, _validKey);
}
class _HashSetEntry {
final key;
final int hashCode;
_HashSetEntry next;
_HashSetEntry(this.key, this.hashCode, this.next);
_HashSetEntry remove() {
_HashSetEntry result = next;
next = null;
return result;
}
}
class _HashSetIterator<E> implements Iterator<E> {
final _HashSet _set;
final int _modificationCount;
int _index = 0;
_HashSetEntry _next;
E _current;
_HashSetIterator(_HashSet hashSet)
: _set = hashSet, _modificationCount = hashSet._modificationCount;
bool moveNext() {
if (_modificationCount != _set._modificationCount) {
throw new ConcurrentModificationError(_set);
}
if (_next != null) {
_current = _next.key;
_next = _next.next;
return true;
}
List<_HashSetEntry> buckets = _set._buckets;
while (_index < buckets.length) {
_next = buckets[_index];
_index = _index + 1;
if (_next != null) {
_current = _next.key;
_next = _next.next;
return true;
}
}
_current = null;
return false;
}
E get current => _current;
}
class _LinkedHashMapEntry extends _HashMapEntry {
/// Double-linked list of entries of a linked hash map.
/// The _LinkedHashMap itself is the head of the list, so the type is "var".
/// Both are initialized to `this` when initialized.
var _nextEntry;
var _previousEntry;
_LinkedHashMapEntry(key, value, int hashCode, _LinkedHashMapEntry next,
this._previousEntry, this._nextEntry)
: super(key, value, hashCode, next) {
_previousEntry._nextEntry = this;
_nextEntry._previousEntry = this;
}
}
class _LinkedHashMapKeyIterable<K> extends IterableBase<K>
implements EfficientLength {
LinkedHashMap<K, dynamic> _map;
_LinkedHashMapKeyIterable(this._map);
Iterator<K> get iterator => new _LinkedHashMapKeyIterator<K>(_map);
bool contains(Object key) => _map.containsKey(key);
bool get isEmpty => _map.isEmpty;
bool get isNotEmpty => _map.isNotEmpty;
int get length => _map.length;
Set<K> toSet() => _map._newKeySet()..addAll(this);
}
class _LinkedHashMapValueIterable<V> extends IterableBase<V>
implements EfficientLength {
LinkedHashMap<dynamic, V> _map;
_LinkedHashMapValueIterable(this._map);
Iterator<V> get iterator => new _LinkedHashMapValueIterator<V>(_map);
bool contains(Object value) => _map.containsValue(value);
bool get isEmpty => _map.isEmpty;
bool get isNotEmpty => _map.isNotEmpty;
int get length => _map.length;
}
abstract class _LinkedHashMapIterator<T> implements Iterator<T> {
final LinkedHashMap _map;
var _next;
T _current;
int _modificationCount;
_LinkedHashMapIterator(LinkedHashMap map)
: _map = map,
_next = map._nextEntry,
_modificationCount = map._modificationCount;
bool moveNext() {
if (_modificationCount != _map._modificationCount) {
throw new ConcurrentModificationError(_map);
}
if (identical(_map, _next)) {
_current = null;
return false;
}
_LinkedHashMapEntry entry = _next;
_next = entry._nextEntry;
_current = _getValue(entry);
return true;
}
T _getValue(_LinkedHashMapEntry entry);
T get current => _current;
}
class _LinkedHashMapKeyIterator<K> extends _LinkedHashMapIterator<K> {
_LinkedHashMapKeyIterator(LinkedHashMap map) : super(map);
K _getValue(_LinkedHashMapEntry entry) => entry.key;
}
class _LinkedHashMapValueIterator<V> extends _LinkedHashMapIterator<V> {
_LinkedHashMapValueIterator(LinkedHashMap map) : super(map);
V _getValue(_LinkedHashMapEntry entry) => entry.value;
}
/**
* A hash-based map that iterates keys and values in key insertion order.
*/
patch class LinkedHashMap<K, V> {
/// Holds a double-linked list of entries in insertion order.
/// The fields have the same name as the ones in [_LinkedHashMapEntry],
/// and this map is itself used as the head entry of the list.
/// Set to `this` when initialized, representing the empty list (containing
/// only the head entry itself).
var _nextEntry;
var _previousEntry;
/* patch */ factory LinkedHashMap({ bool equals(K key1, K key2),
int hashCode(K key),
bool isValidKey(potentialKey) }) {
if (isValidKey == null) {
if (hashCode == null) {
if (equals == null) {
if (_useInternalCached) {
return new _InternalLinkedHashMap<K, V>();
} else {
return new _LinkedHashMap<K, V>();
}
}
hashCode = _defaultHashCode;
} else {
if (identical(identityHashCode, hashCode) &&
identical(identical, equals)) {
return new _LinkedIdentityHashMap<K, V>();
}
if (equals == null) {
equals = _defaultEquals;
}
}
} else {
if (hashCode == null) {
hashCode = _defaultHashCode;
}
if (equals == null) {
equals = _defaultEquals;
}
}
return new _LinkedCustomHashMap<K, V>(equals, hashCode, isValidKey);
}
/* patch */ factory LinkedHashMap.identity() = _LinkedIdentityHashMap<K, V>;
static final bool _useInternalCached = _useInternal;
static bool get _useInternal native "LinkedHashMap_useInternal";
}
// Methods that are exactly the same in all three linked hash map variants.
abstract class _LinkedHashMapMixin<K, V> implements LinkedHashMap<K, V> {
var _nextEntry;
var _previousEntry;
bool containsValue(Object value) {
int modificationCount = _modificationCount;
var cursor = _nextEntry;
while (!identical(cursor, this)) {
_HashMapEntry entry = cursor;
if (entry.value == value) return true;
if (modificationCount != _modificationCount) {
throw new ConcurrentModificationError(this);
}
cursor = cursor._nextEntry;
}
return false;
}
void forEach(void action(K key, V value)) {
int modificationCount = _modificationCount;
var cursor = _nextEntry;
while (!identical(cursor, this)) {
_HashMapEntry entry = cursor;
action(entry.key, entry.value);
if (modificationCount != _modificationCount) {
throw new ConcurrentModificationError(this);
}
cursor = cursor._nextEntry;
}
}
void clear() {
_nextEntry = _previousEntry = this;
_buckets = new List(_HashMap._INITIAL_CAPACITY);
if (_elementCount > 0) {
_elementCount = 0;
_modificationCount = (_modificationCount + 1) & _MODIFICATION_COUNT_MASK;
}
}
void _addEntry(List buckets, int index, int length,
K key, V value, int hashCode) {
_HashMapEntry entry =
new _LinkedHashMapEntry(key, value, hashCode, buckets[index],
_previousEntry, this);
buckets[index] = entry;
int newElements = _elementCount + 1;
_elementCount = newElements;
// If we end up with more than 75% non-empty entries, we
// resize the backing store.
if ((newElements << 2) > ((length << 1) + length)) _resize();
_modificationCount = (_modificationCount + 1) & _MODIFICATION_COUNT_MASK;
}
void _removeEntry(_LinkedHashMapEntry entry,
_HashMapEntry previousInBucket,
int bucketIndex) {
var previousInChain = entry._previousEntry;
var nextInChain = entry._nextEntry;
previousInChain._nextEntry = nextInChain;
nextInChain._previousEntry = previousInChain;
if (previousInBucket == null) {
_buckets[bucketIndex] = entry.next;
} else {
previousInBucket.next = entry.next;
}
}
Iterable<K> get keys => new _LinkedHashMapKeyIterable<K>(this);
Iterable<V> get values => new _LinkedHashMapValueIterable<V>(this);
}
class _LinkedHashMap<K, V> extends _HashMap<K, V>
with _LinkedHashMapMixin<K, V> {
_LinkedHashMap() {
_nextEntry = _previousEntry = this;
}
Set<K> _newKeySet() => new _LinkedHashSet<K>();
}
class _LinkedIdentityHashMap<K, V> extends _IdentityHashMap<K, V>
with _LinkedHashMapMixin<K, V> {
_LinkedIdentityHashMap() {
_nextEntry = _previousEntry = this;
}
Set<K> _newKeySet() => new _LinkedIdentityHashSet<K>();
}
class _LinkedCustomHashMap<K, V> extends _CustomHashMap<K, V>
with _LinkedHashMapMixin<K, V> {
_LinkedCustomHashMap(bool equals(K key1, K key2),
int hashCode(K key),
bool isValidKey(potentialKey))
: super(equals, hashCode, isValidKey) {
_nextEntry = _previousEntry = this;
}
Set<K> _newKeySet() =>
new _LinkedCustomHashSet<K>(_equals, _hashCode, _validKey);
}
patch class LinkedHashSet<E> {
/* patch */ factory LinkedHashSet({ bool equals(E e1, E e2),
int hashCode(E e),
bool isValidKey(potentialKey) }) {
if (isValidKey == null) {
if (hashCode == null) {
if (equals == null) {
return new _LinkedHashSet<E>();
}
hashCode = _defaultHashCode;
} else {
if (identical(identityHashCode, hashCode) &&
identical(identical, equals)) {
return new _LinkedIdentityHashSet<E>();
}
if (equals == null) {
equals = _defaultEquals;
}
}
} else {
if (hashCode == null) {
hashCode = _defaultHashCode;
}
if (equals == null) {
equals = _defaultEquals;
}
}
return new _LinkedCustomHashSet<E>(equals, hashCode, isValidKey);
}
/* patch */ factory LinkedHashSet.identity() = _LinkedIdentityHashSet<E>;
}
class _LinkedHashSetEntry extends _HashSetEntry {
/// Links this element into a double-linked list of elements of a hash set.
/// The hash set object itself is used as the head entry of the list, so
/// the field is typed as "var".
/// Both links are initialized to `this` when the object is created.
var _nextEntry;
var _previousEntry;
_LinkedHashSetEntry(var key, int hashCode, _LinkedHashSetEntry next,
this._previousEntry, this._nextEntry)
: super(key, hashCode, next) {
_previousEntry._nextEntry = _nextEntry._previousEntry = this;
}
_LinkedHashSetEntry remove() {
_previousEntry._nextEntry = _nextEntry;
_nextEntry._previousEntry = _previousEntry;
_nextEntry = _previousEntry = this;
return super.remove();
}
}
class _LinkedHashSet<E> extends _HashSet<E>
implements LinkedHashSet<E> {
/// Holds a double linked list of the element entries of the set in
/// insertion order.
/// The fields have the same names as the ones in [_LinkedHashSetEntry],
/// allowing this object to be used as the head entry of the list.
/// The fields are initialized to `this` when created, representing the
/// empty list that only contains the head entry.
var _nextEntry;
var _previousEntry;
_LinkedHashSet() {
_nextEntry = _previousEntry = this;
}
// Iterable.
Iterator<E> get iterator => new _LinkedHashSetIterator<E>(this);
void forEach(void action(E element)) {
var cursor = _nextEntry;
int modificationCount = _modificationCount;
while (!identical(cursor, this)) {
_LinkedHashSetEntry entry = cursor;
action(entry.key);
if (_modificationCount != modificationCount) {
throw new ConcurrentModificationError(this);
}
cursor = entry._nextEntry;
}
}
E get first {
if (identical(_nextEntry, this)) {
throw new StateError("No elements");
}
_LinkedHashSetEntry entry = _nextEntry;
return entry.key;
}
E get last {
if (identical(_previousEntry, this)) {
throw new StateError("No elements");
}
_LinkedHashSetEntry entry = _previousEntry;
return entry.key;
}
// Set.
void _filterWhere(bool test(E element), bool removeMatching) {
var cursor = _nextEntry;
while (!identical(cursor, this)) {
_LinkedHashSetEntry entry = cursor;
int modificationCount = _modificationCount;
bool testResult = test(entry.key);
if (modificationCount != _modificationCount) {
throw new ConcurrentModificationError(this);
}
cursor = entry._nextEntry;
if (testResult == removeMatching) {
_remove(entry.key, entry.hashCode);
}
}
}
void _addEntry(E key, int hashCode, int index) {
_buckets[index] =
new _LinkedHashSetEntry(key, hashCode, _buckets[index],
_previousEntry, this);
int newElements = _elementCount + 1;
_elementCount = newElements;
int length = _buckets.length;
// If we end up with more than 75% non-empty entries, we
// resize the backing store.
if ((newElements << 2) > ((length << 1) + length)) _resize();
_modificationCount = (_modificationCount + 1) & _MODIFICATION_COUNT_MASK;
}
void clear() {
_nextEntry = _previousEntry = this;
super.clear();
}
HashSet<E> _newSet() => new _LinkedHashSet<E>();
}
class _LinkedIdentityHashSet<E> extends _LinkedHashSet<E> {
int _hashCode(e) => identityHashCode(e);
bool _equals(e1, e2) => identical(e1, e2);
HashSet<E> _newSet() => new _LinkedIdentityHashSet<E>();
}
class _LinkedCustomHashSet<E> extends _LinkedHashSet<E> {
final _Equality<E> _equality;
final _Hasher<E> _hasher;
final _Predicate _validKey;
_LinkedCustomHashSet(this._equality, this._hasher, bool validKey(Object o))
: _validKey = (validKey != null) ? validKey : new _TypeTest<E>().test;
bool _equals(e1, e2) => _equality(e1, e2);
int _hashCode(e) => _hasher(e);
bool contains(Object o) {
if (!_validKey(o)) return false;
return super.contains(o);
}
E lookup(Object o) {
if (!_validKey(o)) return null;
return super.lookup(o);
}
bool remove(Object o) {
if (!_validKey(o)) return false;
return super.remove(o);
}
bool containsAll(Iterable<Object> elements) {
for (Object element in elements) {
if (!_validKey(element) || !this.contains(element)) return false;
}
return true;
}
void removeAll(Iterable<Object> elements) {
for (Object element in elements) {
if (_validKey(element)) {
super._remove(element, _hasher(element));
}
}
}
HashSet<E> _newSet() =>
new _LinkedCustomHashSet<E>(_equality, _hasher, _validKey);
}
class _LinkedHashSetIterator<E> implements Iterator<E> {
final _LinkedHashSet _set;
final int _modificationCount;
var _next;
E _current;
_LinkedHashSetIterator(_LinkedHashSet hashSet)
: _set = hashSet,
_modificationCount = hashSet._modificationCount,
_next = hashSet._nextEntry;
bool moveNext() {
if (_modificationCount != _set._modificationCount) {
throw new ConcurrentModificationError(_set);
}
if (identical(_set, _next)) {
_current = null;
return false;
}
_LinkedHashSetEntry entry = _next;
_current = entry.key;
_next = entry._nextEntry;
return true;
}
E get current => _current;
}