blob: 9233d9f6098eeea779d77400adfcec1087429c2f [file] [log] [blame]
// Copyright (c) 2015, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
/// A library to work with graphs. It contains a couple algorithms, including
/// Tarjan's algorithm to compute strongly connected components in a graph and
/// Cooper et al's dominator algorithm.
///
/// Portions of the code in this library was adapted from
/// `package:analyzer/src/generated/collection_utilities.dart`.
// TODO(sigmund): move this into a shared place, like quiver?
library dart2js_info.src.graph;
import 'dart:math' as math;
abstract class Graph<N> {
Iterable<N> get nodes;
bool get isEmpty;
int get nodeCount;
Iterable<N> targetsOf(N source);
Iterable<N> sourcesOf(N source);
/// Run a topological sort of the graph. Since the graph may contain cycles,
/// this results in a list of strongly connected components rather than a list
/// of nodes. The nodes in each strongly connected components only have edges
/// that point to nodes in the same component or earlier components.
List<List<N>> computeTopologicalSort() {
_SccFinder<N> finder = _SccFinder<N>(this);
return finder.computeTopologicalSort();
}
/// Whether [source] can transitively reach [target].
bool containsPath(N source, N target) {
Set<N> seen = <N>{};
bool helper(N node) {
if (identical(node, target)) return true;
if (!seen.add(node)) return false;
return targetsOf(node).any(helper);
}
return helper(source);
}
/// Returns all nodes reachable from [root] in post order.
Iterable<N> postOrder(N root) sync* {
var seen = <N>{};
Iterable<N> helper(N n) sync* {
if (!seen.add(n)) return;
for (var x in targetsOf(n)) {
yield* helper(x);
}
yield n;
}
yield* helper(root);
}
/// Returns an iterable of all nodes reachable from [root] in preorder.
Iterable<N> preOrder(N root) sync* {
var seen = <N>{};
var stack = <N>[root];
while (stack.isNotEmpty) {
var next = stack.removeLast();
if (!seen.contains(next)) {
seen.add(next);
yield next;
stack.addAll(targetsOf(next));
}
}
}
/// Returns a list of nodes that form a cycle containing the given node. If
/// the node is not part of a cycle in this graph, then a list containing only
/// the node itself will be returned.
List<N> findCycleContaining(N node) {
assert(node != null);
_SccFinder<N> finder = _SccFinder<N>(this);
return finder._componentContaining(node);
}
/// Returns a dominator tree starting from root. This is a new graph, with the
/// same nodes as this graph, but where edges exist between a node and the
/// nodes it immediately dominates. For example, this graph:
///
/// root
/// / \
/// a b
/// | / \
/// c d e
/// \ / \ /
/// f g
///
/// Produces this tree:
///
/// root
/// /| \
/// a | b
/// | | /|\
/// c | d | e
/// | |
/// f g
///
/// Internally we compute dominators using (Cooper, Harvey, and Kennedy's
/// algorithm)[http://www.cs.rice.edu/~keith/EMBED/dom.pdf].
Graph<N> dominatorTree(N root) {
var iDom = (_DominatorFinder(this)..run(root)).immediateDominators;
var graph = EdgeListGraph<N>();
for (N node in iDom.keys) {
if (node != root) graph.addEdge(iDom[node], node);
}
return graph;
}
}
class EdgeListGraph<N> extends Graph<N> {
/// Edges in the graph.
final Map<N, Set<N>> _edges = <N, Set<N>>{};
/// The reverse of _edges.
final Map<N, Set<N>> _revEdges = <N, Set<N>>{};
@override
Iterable<N> get nodes => _edges.keys;
@override
bool get isEmpty => _edges.isEmpty;
@override
int get nodeCount => _edges.length;
final _empty = <N>{};
@override
Iterable<N> targetsOf(N source) => _edges[source] ?? _empty;
@override
Iterable<N> sourcesOf(N source) => _revEdges[source] ?? _empty;
void addEdge(N source, N target) {
assert(source != null);
assert(target != null);
addNode(source);
addNode(target);
_edges[source].add(target);
_revEdges[target].add(source);
}
void addNode(N node) {
assert(node != null);
_edges.putIfAbsent(node, () => <N>{});
_revEdges.putIfAbsent(node, () => <N>{});
}
/// Remove the edge from the given [source] node to the given [target] node.
/// If there was no such edge then the graph will be unmodified: the number of
/// edges will be the same and the set of nodes will be the same (neither node
/// will either be added or removed).
void removeEdge(N source, N target) {
_edges[source]?.remove(target);
}
/// Remove the given node from this graph. As a consequence, any edges for
/// which that node was either a head or a tail will also be removed.
void removeNode(N node) {
_edges.remove(node);
var sources = _revEdges[node];
if (sources == null) return;
for (var source in sources) {
_edges[source].remove(node);
}
}
/// Remove all of the given nodes from this graph. As a consequence, any edges
/// for which those nodes were either a head or a tail will also be removed.
void removeAllNodes(List<N> nodes) => nodes.forEach(removeNode);
}
/// Used by the [SccFinder] to maintain information about the nodes that have
/// been examined. There is an instance of this class per node in the graph.
class _NodeInfo<N> {
/// Depth of the node corresponding to this info.
int index = 0;
/// Depth of the first node in a cycle.
int lowlink = 0;
/// Whether the corresponding node is on the stack. Used to remove the need
/// for searching a collection for the node each time the question needs to be
/// asked.
bool onStack = false;
/// Component that contains the corresponding node.
List<N> component;
_NodeInfo(int depth)
: index = depth,
lowlink = depth,
onStack = false;
}
/// Implements Tarjan's Algorithm for finding the strongly connected components
/// in a graph.
class _SccFinder<N> {
/// The graph to process.
final Graph<N> _graph;
/// The index used to uniquely identify the depth of nodes.
int _index = 0;
/// Nodes that are being visited in order to identify components.
final List<N> _stack = <N>[];
/// Information associated with each node.
final Map<N, _NodeInfo<N>> _info = <N, _NodeInfo<N>>{};
/// All strongly connected components found, in topological sort order (each
/// node in a strongly connected component only has edges that point to nodes
/// in the same component or earlier components).
final List<List<N>> _allComponents = <List<N>>[];
_SccFinder(this._graph);
/// Return a list containing the nodes that are part of the strongly connected
/// component that contains the given node.
List<N> _componentContaining(N node) => _strongConnect(node).component;
/// Run Tarjan's algorithm and return the resulting list of strongly connected
/// components. The list is in topological sort order (each node in a strongly
/// connected component only has edges that point to nodes in the same
/// component or earlier components).
List<List<N>> computeTopologicalSort() {
for (N node in _graph.nodes) {
var nodeInfo = _info[node];
if (nodeInfo == null) _strongConnect(node);
}
return _allComponents;
}
/// Remove and return the top-most element from the stack.
N _pop() {
N node = _stack.removeAt(_stack.length - 1);
_info[node].onStack = false;
return node;
}
/// Add the given node to the stack.
void _push(N node) {
_info[node].onStack = true;
_stack.add(node);
}
/// Compute the strongly connected component that contains the given node as
/// well as any components containing nodes that are reachable from the given
/// component.
_NodeInfo<N> _strongConnect(N v) {
// Set the depth index for v to the smallest unused index
var vInfo = _NodeInfo<N>(_index++);
_info[v] = vInfo;
_push(v);
for (N w in _graph.targetsOf(v)) {
var wInfo = _info[w];
if (wInfo == null) {
// Successor w has not yet been visited; recurse on it
wInfo = _strongConnect(w);
vInfo.lowlink = math.min(vInfo.lowlink, wInfo.lowlink);
} else if (wInfo.onStack) {
// Successor w is in stack S and hence in the current SCC
vInfo.lowlink = math.min(vInfo.lowlink, wInfo.index);
}
}
// If v is a root node, pop the stack and generate an SCC
if (vInfo.lowlink == vInfo.index) {
var component = <N>[];
N w;
do {
w = _pop();
component.add(w);
_info[w].component = component;
} while (!identical(w, v));
_allComponents.add(component);
}
return vInfo;
}
}
/// Computes dominators using (Cooper, Harvey, and Kennedy's
/// algorithm)[http://www.cs.rice.edu/~keith/EMBED/dom.pdf].
class _DominatorFinder<N> {
final Graph<N> _graph;
Map<N, N> immediateDominators = {};
Map<N, int> postOrderId = {};
_DominatorFinder(this._graph);
run(N root) {
immediateDominators[root] = root;
bool changed = true;
int i = 0;
var nodesInPostOrder = _graph.postOrder(root).toList();
for (var n in nodesInPostOrder) {
postOrderId[n] = i++;
}
var nodesInReversedPostOrder = nodesInPostOrder.reversed;
while (changed) {
changed = false;
for (var n in nodesInReversedPostOrder) {
if (n == root) continue;
bool first = true;
N idom;
for (var p in _graph.sourcesOf(n)) {
if (immediateDominators[p] != null) {
if (first) {
idom = p;
first = false;
} else {
idom = _intersect(p, idom);
}
}
}
if (immediateDominators[n] != idom) {
immediateDominators[n] = idom;
changed = true;
}
}
}
}
N _intersect(N b1, N b2) {
var finger1 = b1;
var finger2 = b2;
while (finger1 != finger2) {
while (postOrderId[finger1] < postOrderId[finger2]) {
finger1 = immediateDominators[finger1];
}
while (postOrderId[finger2] < postOrderId[finger1]) {
finger2 = immediateDominators[finger2];
}
}
return finger1;
}
}