| // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include <setjmp.h> // NOLINT |
| #include <stdlib.h> |
| |
| #include "vm/globals.h" |
| #if defined(TARGET_ARCH_ARM) |
| |
| // Only build the simulator if not compiling for real ARM hardware. |
| #if defined(USING_SIMULATOR) |
| |
| #include "vm/simulator.h" |
| |
| #include "vm/assembler.h" |
| #include "vm/constants_arm.h" |
| #include "vm/cpu.h" |
| #include "vm/disassembler.h" |
| #include "vm/lockers.h" |
| #include "vm/native_arguments.h" |
| #include "vm/stack_frame.h" |
| #include "vm/os_thread.h" |
| |
| namespace dart { |
| |
| DEFINE_FLAG(uint64_t, trace_sim_after, ULLONG_MAX, |
| "Trace simulator execution after instruction count reached."); |
| DEFINE_FLAG(uint64_t, stop_sim_at, ULLONG_MAX, |
| "Instruction address or instruction count to stop simulator at."); |
| |
| |
| // This macro provides a platform independent use of sscanf. The reason for |
| // SScanF not being implemented in a platform independent way through |
| // OS in the same way as SNPrint is that the Windows C Run-Time |
| // Library does not provide vsscanf. |
| #define SScanF sscanf // NOLINT |
| |
| |
| // SimulatorSetjmpBuffer are linked together, and the last created one |
| // is referenced by the Simulator. When an exception is thrown, the exception |
| // runtime looks at where to jump and finds the corresponding |
| // SimulatorSetjmpBuffer based on the stack pointer of the exception handler. |
| // The runtime then does a Longjmp on that buffer to return to the simulator. |
| class SimulatorSetjmpBuffer { |
| public: |
| int Setjmp() { return setjmp(buffer_); } |
| void Longjmp() { |
| // "This" is now the last setjmp buffer. |
| simulator_->set_last_setjmp_buffer(this); |
| longjmp(buffer_, 1); |
| } |
| |
| explicit SimulatorSetjmpBuffer(Simulator* sim) { |
| simulator_ = sim; |
| link_ = sim->last_setjmp_buffer(); |
| sim->set_last_setjmp_buffer(this); |
| sp_ = static_cast<uword>(sim->get_register(SP)); |
| } |
| |
| ~SimulatorSetjmpBuffer() { |
| ASSERT(simulator_->last_setjmp_buffer() == this); |
| simulator_->set_last_setjmp_buffer(link_); |
| } |
| |
| SimulatorSetjmpBuffer* link() { return link_; } |
| |
| uword sp() { return sp_; } |
| |
| private: |
| uword sp_; |
| Simulator* simulator_; |
| SimulatorSetjmpBuffer* link_; |
| jmp_buf buffer_; |
| |
| friend class Simulator; |
| }; |
| |
| |
| // The SimulatorDebugger class is used by the simulator while debugging |
| // simulated ARM code. |
| class SimulatorDebugger { |
| public: |
| explicit SimulatorDebugger(Simulator* sim); |
| ~SimulatorDebugger(); |
| |
| void Stop(Instr* instr, const char* message); |
| void Debug(); |
| char* ReadLine(const char* prompt); |
| |
| private: |
| Simulator* sim_; |
| |
| bool GetValue(char* desc, uint32_t* value); |
| bool GetFValue(char* desc, float* value); |
| bool GetDValue(char* desc, double* value); |
| |
| static intptr_t GetApproximateTokenIndex(const Code& code, uword pc); |
| |
| static void PrintDartFrame(uword pc, uword fp, uword sp, |
| const Function& function, |
| intptr_t token_pos, |
| bool is_optimized, |
| bool is_inlined); |
| void PrintBacktrace(); |
| |
| // Set or delete a breakpoint. Returns true if successful. |
| bool SetBreakpoint(Instr* breakpc); |
| bool DeleteBreakpoint(Instr* breakpc); |
| |
| // Undo and redo all breakpoints. This is needed to bracket disassembly and |
| // execution to skip past breakpoints when run from the debugger. |
| void UndoBreakpoints(); |
| void RedoBreakpoints(); |
| }; |
| |
| |
| SimulatorDebugger::SimulatorDebugger(Simulator* sim) { |
| sim_ = sim; |
| } |
| |
| |
| SimulatorDebugger::~SimulatorDebugger() { |
| } |
| |
| |
| void SimulatorDebugger::Stop(Instr* instr, const char* message) { |
| OS::Print("Simulator hit %s\n", message); |
| Debug(); |
| } |
| |
| |
| static Register LookupCpuRegisterByName(const char* name) { |
| static const char* kNames[] = { |
| "r0", "r1", "r2", "r3", |
| "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r11", |
| "r12", "r13", "r14", "r15", |
| "pc", "lr", "sp", "ip", |
| "fp", "pp", "ctx" |
| }; |
| static const Register kRegisters[] = { |
| R0, R1, R2, R3, |
| R4, R5, R6, R7, |
| R8, R9, R10, R11, |
| R12, R13, R14, R15, |
| PC, LR, SP, IP, |
| FP, R10, R9 |
| }; |
| ASSERT(ARRAY_SIZE(kNames) == ARRAY_SIZE(kRegisters)); |
| for (unsigned i = 0; i < ARRAY_SIZE(kNames); i++) { |
| if (strcmp(kNames[i], name) == 0) { |
| return kRegisters[i]; |
| } |
| } |
| return kNoRegister; |
| } |
| |
| |
| static SRegister LookupSRegisterByName(const char* name) { |
| int reg_nr = -1; |
| bool ok = SScanF(name, "s%d", ®_nr); |
| if (ok && (0 <= reg_nr) && (reg_nr < kNumberOfSRegisters)) { |
| return static_cast<SRegister>(reg_nr); |
| } |
| return kNoSRegister; |
| } |
| |
| |
| static DRegister LookupDRegisterByName(const char* name) { |
| int reg_nr = -1; |
| bool ok = SScanF(name, "d%d", ®_nr); |
| if (ok && (0 <= reg_nr) && (reg_nr < kNumberOfDRegisters)) { |
| return static_cast<DRegister>(reg_nr); |
| } |
| return kNoDRegister; |
| } |
| |
| |
| bool SimulatorDebugger::GetValue(char* desc, uint32_t* value) { |
| Register reg = LookupCpuRegisterByName(desc); |
| if (reg != kNoRegister) { |
| if (reg == PC) { |
| *value = sim_->get_pc(); |
| } else { |
| *value = sim_->get_register(reg); |
| } |
| return true; |
| } |
| if (desc[0] == '*') { |
| uint32_t addr; |
| if (GetValue(desc + 1, &addr)) { |
| if (Simulator::IsIllegalAddress(addr)) { |
| return false; |
| } |
| *value = *(reinterpret_cast<uint32_t*>(addr)); |
| return true; |
| } |
| } |
| bool retval = SScanF(desc, "0x%x", value) == 1; |
| if (!retval) { |
| retval = SScanF(desc, "%x", value) == 1; |
| } |
| return retval; |
| } |
| |
| |
| bool SimulatorDebugger::GetFValue(char* desc, float* value) { |
| SRegister sreg = LookupSRegisterByName(desc); |
| if (sreg != kNoSRegister) { |
| *value = sim_->get_sregister(sreg); |
| return true; |
| } |
| if (desc[0] == '*') { |
| uint32_t addr; |
| if (GetValue(desc + 1, &addr)) { |
| if (Simulator::IsIllegalAddress(addr)) { |
| return false; |
| } |
| *value = *(reinterpret_cast<float*>(addr)); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| |
| bool SimulatorDebugger::GetDValue(char* desc, double* value) { |
| DRegister dreg = LookupDRegisterByName(desc); |
| if (dreg != kNoDRegister) { |
| *value = sim_->get_dregister(dreg); |
| return true; |
| } |
| if (desc[0] == '*') { |
| uint32_t addr; |
| if (GetValue(desc + 1, &addr)) { |
| if (Simulator::IsIllegalAddress(addr)) { |
| return false; |
| } |
| *value = *(reinterpret_cast<double*>(addr)); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| |
| intptr_t SimulatorDebugger::GetApproximateTokenIndex(const Code& code, |
| uword pc) { |
| intptr_t token_pos = -1; |
| uword pc_offset = pc - code.EntryPoint(); |
| const PcDescriptors& descriptors = |
| PcDescriptors::Handle(code.pc_descriptors()); |
| PcDescriptors::Iterator iter(descriptors, RawPcDescriptors::kAnyKind); |
| while (iter.MoveNext()) { |
| if (iter.PcOffset() == pc_offset) { |
| return iter.TokenPos(); |
| } else if ((token_pos <= 0) && (iter.PcOffset() > pc_offset)) { |
| token_pos = iter.TokenPos(); |
| } |
| } |
| return token_pos; |
| } |
| |
| |
| void SimulatorDebugger::PrintDartFrame(uword pc, uword fp, uword sp, |
| const Function& function, |
| intptr_t token_pos, |
| bool is_optimized, |
| bool is_inlined) { |
| const Script& script = Script::Handle(function.script()); |
| const String& func_name = String::Handle(function.QualifiedUserVisibleName()); |
| const String& url = String::Handle(script.url()); |
| intptr_t line = -1; |
| intptr_t column = -1; |
| if (token_pos >= 0) { |
| script.GetTokenLocation(token_pos, &line, &column); |
| } |
| OS::Print("pc=0x%" Px " fp=0x%" Px " sp=0x%" Px " %s%s (%s:%" Pd |
| ":%" Pd ")\n", |
| pc, fp, sp, |
| is_optimized ? (is_inlined ? "inlined " : "optimized ") : "", |
| func_name.ToCString(), |
| url.ToCString(), |
| line, column); |
| } |
| |
| |
| void SimulatorDebugger::PrintBacktrace() { |
| StackFrameIterator frames(sim_->get_register(FP), |
| sim_->get_register(SP), |
| sim_->get_pc(), |
| StackFrameIterator::kDontValidateFrames); |
| StackFrame* frame = frames.NextFrame(); |
| ASSERT(frame != NULL); |
| Function& function = Function::Handle(); |
| Function& inlined_function = Function::Handle(); |
| Code& code = Code::Handle(); |
| Code& unoptimized_code = Code::Handle(); |
| while (frame != NULL) { |
| if (frame->IsDartFrame()) { |
| code = frame->LookupDartCode(); |
| function = code.function(); |
| if (code.is_optimized()) { |
| // For optimized frames, extract all the inlined functions if any |
| // into the stack trace. |
| InlinedFunctionsIterator it(code, frame->pc()); |
| while (!it.Done()) { |
| // Print each inlined frame with its pc in the corresponding |
| // unoptimized frame. |
| inlined_function = it.function(); |
| unoptimized_code = it.code(); |
| uword unoptimized_pc = it.pc(); |
| it.Advance(); |
| if (!it.Done()) { |
| PrintDartFrame(unoptimized_pc, frame->fp(), frame->sp(), |
| inlined_function, |
| GetApproximateTokenIndex(unoptimized_code, |
| unoptimized_pc), |
| true, true); |
| } |
| } |
| // Print the optimized inlining frame below. |
| } |
| PrintDartFrame(frame->pc(), frame->fp(), frame->sp(), |
| function, |
| GetApproximateTokenIndex(code, frame->pc()), |
| code.is_optimized(), false); |
| } else { |
| OS::Print("pc=0x%" Px " fp=0x%" Px " sp=0x%" Px " %s frame\n", |
| frame->pc(), frame->fp(), frame->sp(), |
| frame->IsEntryFrame() ? "entry" : |
| frame->IsExitFrame() ? "exit" : |
| frame->IsStubFrame() ? "stub" : "invalid"); |
| } |
| frame = frames.NextFrame(); |
| } |
| } |
| |
| |
| bool SimulatorDebugger::SetBreakpoint(Instr* breakpc) { |
| // Check if a breakpoint can be set. If not return without any side-effects. |
| if (sim_->break_pc_ != NULL) { |
| return false; |
| } |
| |
| // Set the breakpoint. |
| sim_->break_pc_ = breakpc; |
| sim_->break_instr_ = breakpc->InstructionBits(); |
| // Not setting the breakpoint instruction in the code itself. It will be set |
| // when the debugger shell continues. |
| return true; |
| } |
| |
| |
| bool SimulatorDebugger::DeleteBreakpoint(Instr* breakpc) { |
| if (sim_->break_pc_ != NULL) { |
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| } |
| |
| sim_->break_pc_ = NULL; |
| sim_->break_instr_ = 0; |
| return true; |
| } |
| |
| |
| void SimulatorDebugger::UndoBreakpoints() { |
| if (sim_->break_pc_ != NULL) { |
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| } |
| } |
| |
| |
| void SimulatorDebugger::RedoBreakpoints() { |
| if (sim_->break_pc_ != NULL) { |
| sim_->break_pc_->SetInstructionBits(Instr::kSimulatorBreakpointInstruction); |
| } |
| } |
| |
| |
| void SimulatorDebugger::Debug() { |
| intptr_t last_pc = -1; |
| bool done = false; |
| |
| #define COMMAND_SIZE 63 |
| #define ARG_SIZE 255 |
| |
| #define STR(a) #a |
| #define XSTR(a) STR(a) |
| |
| char cmd[COMMAND_SIZE + 1]; |
| char arg1[ARG_SIZE + 1]; |
| char arg2[ARG_SIZE + 1]; |
| |
| // make sure to have a proper terminating character if reaching the limit |
| cmd[COMMAND_SIZE] = 0; |
| arg1[ARG_SIZE] = 0; |
| arg2[ARG_SIZE] = 0; |
| |
| // Undo all set breakpoints while running in the debugger shell. This will |
| // make them invisible to all commands. |
| UndoBreakpoints(); |
| |
| while (!done) { |
| if (last_pc != sim_->get_pc()) { |
| last_pc = sim_->get_pc(); |
| if (Simulator::IsIllegalAddress(last_pc)) { |
| OS::Print("pc is out of bounds: 0x%" Px "\n", last_pc); |
| } else { |
| Disassembler::Disassemble(last_pc, last_pc + Instr::kInstrSize); |
| } |
| } |
| char* line = ReadLine("sim> "); |
| if (line == NULL) { |
| FATAL("ReadLine failed"); |
| } else { |
| // Use sscanf to parse the individual parts of the command line. At the |
| // moment no command expects more than two parameters. |
| int args = SScanF(line, |
| "%" XSTR(COMMAND_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s", |
| cmd, arg1, arg2); |
| if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { |
| OS::Print("c/cont -- continue execution\n" |
| "disasm -- disassemble instrs at current pc location\n" |
| " other variants are:\n" |
| " disasm <address>\n" |
| " disasm <address> <number_of_instructions>\n" |
| " by default 10 instrs are disassembled\n" |
| "del -- delete breakpoints\n" |
| "flags -- print flag values\n" |
| "gdb -- transfer control to gdb\n" |
| "h/help -- print this help string\n" |
| "break <address> -- set break point at specified address\n" |
| "p/print <reg or icount or value or *addr> -- print integer\n" |
| "ps/printsingle <sreg or *addr> -- print float value\n" |
| "pd/printdouble <dreg or *addr> -- print double value\n" |
| "po/printobject <*reg or *addr> -- print object\n" |
| "si/stepi -- single step an instruction\n" |
| "trace -- toggle execution tracing mode\n" |
| "bt -- print backtrace\n" |
| "unstop -- if current pc is a stop instr make it a nop\n" |
| "q/quit -- Quit the debugger and exit the program\n"); |
| } else if ((strcmp(cmd, "quit") == 0) || (strcmp(cmd, "q") == 0)) { |
| OS::Print("Quitting\n"); |
| OS::Exit(0); |
| } else if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { |
| sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc())); |
| } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { |
| // Execute the one instruction we broke at with breakpoints disabled. |
| sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc())); |
| // Leave the debugger shell. |
| done = true; |
| } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { |
| if (args == 2) { |
| uint32_t value; |
| if (strcmp(arg1, "icount") == 0) { |
| const uint64_t icount = sim_->get_icount(); |
| OS::Print("icount: %" Pu64 " 0x%" Px64 "\n", icount, icount); |
| } else if (GetValue(arg1, &value)) { |
| OS::Print("%s: %u 0x%x\n", arg1, value, value); |
| } else { |
| OS::Print("%s unrecognized\n", arg1); |
| } |
| } else { |
| OS::Print("print <reg or icount or value or *addr>\n"); |
| } |
| } else if ((strcmp(cmd, "ps") == 0) || |
| (strcmp(cmd, "printsingle") == 0)) { |
| if (args == 2) { |
| float fvalue; |
| if (GetFValue(arg1, &fvalue)) { |
| uint32_t value = bit_cast<uint32_t, float>(fvalue); |
| OS::Print("%s: 0%u 0x%x %.8g\n", arg1, value, value, fvalue); |
| } else { |
| OS::Print("%s unrecognized\n", arg1); |
| } |
| } else { |
| OS::Print("printfloat <sreg or *addr>\n"); |
| } |
| } else if ((strcmp(cmd, "pd") == 0) || |
| (strcmp(cmd, "printdouble") == 0)) { |
| if (args == 2) { |
| double dvalue; |
| if (GetDValue(arg1, &dvalue)) { |
| uint64_t long_value = bit_cast<uint64_t, double>(dvalue); |
| OS::Print("%s: %llu 0x%llx %.8g\n", |
| arg1, long_value, long_value, dvalue); |
| } else { |
| OS::Print("%s unrecognized\n", arg1); |
| } |
| } else { |
| OS::Print("printdouble <dreg or *addr>\n"); |
| } |
| } else if ((strcmp(cmd, "po") == 0) || |
| (strcmp(cmd, "printobject") == 0)) { |
| if (args == 2) { |
| uint32_t value; |
| // Make the dereferencing '*' optional. |
| if (((arg1[0] == '*') && GetValue(arg1 + 1, &value)) || |
| GetValue(arg1, &value)) { |
| if (Isolate::Current()->heap()->Contains(value)) { |
| OS::Print("%s: \n", arg1); |
| #if defined(DEBUG) |
| const Object& obj = Object::Handle( |
| reinterpret_cast<RawObject*>(value)); |
| obj.Print(); |
| #endif // defined(DEBUG) |
| } else { |
| OS::Print("0x%x is not an object reference\n", value); |
| } |
| } else { |
| OS::Print("%s unrecognized\n", arg1); |
| } |
| } else { |
| OS::Print("printobject <*reg or *addr>\n"); |
| } |
| } else if (strcmp(cmd, "disasm") == 0) { |
| uint32_t start = 0; |
| uint32_t end = 0; |
| if (args == 1) { |
| start = sim_->get_pc(); |
| end = start + (10 * Instr::kInstrSize); |
| } else if (args == 2) { |
| if (GetValue(arg1, &start)) { |
| // No length parameter passed, assume 10 instructions. |
| if (Simulator::IsIllegalAddress(start)) { |
| // If start isn't a valid address, warn and use PC instead. |
| OS::Print("First argument yields invalid address: 0x%x\n", start); |
| OS::Print("Using PC instead\n"); |
| start = sim_->get_pc(); |
| } |
| end = start + (10 * Instr::kInstrSize); |
| } |
| } else { |
| uint32_t length; |
| if (GetValue(arg1, &start) && GetValue(arg2, &length)) { |
| if (Simulator::IsIllegalAddress(start)) { |
| // If start isn't a valid address, warn and use PC instead. |
| OS::Print("First argument yields invalid address: 0x%x\n", start); |
| OS::Print("Using PC instead\n"); |
| start = sim_->get_pc(); |
| } |
| end = start + (length * Instr::kInstrSize); |
| } |
| } |
| if ((start > 0) && (end > start)) { |
| Disassembler::Disassemble(start, end); |
| } else { |
| OS::Print("disasm [<address> [<number_of_instructions>]]\n"); |
| } |
| } else if (strcmp(cmd, "gdb") == 0) { |
| OS::Print("relinquishing control to gdb\n"); |
| OS::DebugBreak(); |
| OS::Print("regaining control from gdb\n"); |
| } else if (strcmp(cmd, "break") == 0) { |
| if (args == 2) { |
| uint32_t addr; |
| if (GetValue(arg1, &addr)) { |
| if (!SetBreakpoint(reinterpret_cast<Instr*>(addr))) { |
| OS::Print("setting breakpoint failed\n"); |
| } |
| } else { |
| OS::Print("%s unrecognized\n", arg1); |
| } |
| } else { |
| OS::Print("break <addr>\n"); |
| } |
| } else if (strcmp(cmd, "del") == 0) { |
| if (!DeleteBreakpoint(NULL)) { |
| OS::Print("deleting breakpoint failed\n"); |
| } |
| } else if (strcmp(cmd, "flags") == 0) { |
| OS::Print("APSR: "); |
| OS::Print("N flag: %d; ", sim_->n_flag_); |
| OS::Print("Z flag: %d; ", sim_->z_flag_); |
| OS::Print("C flag: %d; ", sim_->c_flag_); |
| OS::Print("V flag: %d\n", sim_->v_flag_); |
| OS::Print("FPSCR: "); |
| OS::Print("N flag: %d; ", sim_->fp_n_flag_); |
| OS::Print("Z flag: %d; ", sim_->fp_z_flag_); |
| OS::Print("C flag: %d; ", sim_->fp_c_flag_); |
| OS::Print("V flag: %d\n", sim_->fp_v_flag_); |
| } else if (strcmp(cmd, "unstop") == 0) { |
| intptr_t stop_pc = sim_->get_pc() - Instr::kInstrSize; |
| Instr* stop_instr = reinterpret_cast<Instr*>(stop_pc); |
| if (stop_instr->IsSvc() || stop_instr->IsBkpt()) { |
| stop_instr->SetInstructionBits(Instr::kNopInstruction); |
| } else { |
| OS::Print("Not at debugger stop.\n"); |
| } |
| } else if (strcmp(cmd, "trace") == 0) { |
| if (FLAG_trace_sim_after == ULLONG_MAX) { |
| FLAG_trace_sim_after = sim_->get_icount(); |
| OS::Print("execution tracing on\n"); |
| } else { |
| FLAG_trace_sim_after = ULLONG_MAX; |
| OS::Print("execution tracing off\n"); |
| } |
| } else if (strcmp(cmd, "bt") == 0) { |
| PrintBacktrace(); |
| } else { |
| OS::Print("Unknown command: %s\n", cmd); |
| } |
| } |
| delete[] line; |
| } |
| |
| // Add all the breakpoints back to stop execution and enter the debugger |
| // shell when hit. |
| RedoBreakpoints(); |
| |
| #undef COMMAND_SIZE |
| #undef ARG_SIZE |
| |
| #undef STR |
| #undef XSTR |
| } |
| |
| |
| char* SimulatorDebugger::ReadLine(const char* prompt) { |
| char* result = NULL; |
| char line_buf[256]; |
| intptr_t offset = 0; |
| bool keep_going = true; |
| OS::Print("%s", prompt); |
| while (keep_going) { |
| if (fgets(line_buf, sizeof(line_buf), stdin) == NULL) { |
| // fgets got an error. Just give up. |
| if (result != NULL) { |
| delete[] result; |
| } |
| return NULL; |
| } |
| intptr_t len = strlen(line_buf); |
| if (len > 1 && |
| line_buf[len - 2] == '\\' && |
| line_buf[len - 1] == '\n') { |
| // When we read a line that ends with a "\" we remove the escape and |
| // append the remainder. |
| line_buf[len - 2] = '\n'; |
| line_buf[len - 1] = 0; |
| len -= 1; |
| } else if ((len > 0) && (line_buf[len - 1] == '\n')) { |
| // Since we read a new line we are done reading the line. This |
| // will exit the loop after copying this buffer into the result. |
| keep_going = false; |
| } |
| if (result == NULL) { |
| // Allocate the initial result and make room for the terminating '\0' |
| result = new char[len + 1]; |
| if (result == NULL) { |
| // OOM, so cannot readline anymore. |
| return NULL; |
| } |
| } else { |
| // Allocate a new result with enough room for the new addition. |
| intptr_t new_len = offset + len + 1; |
| char* new_result = new char[new_len]; |
| if (new_result == NULL) { |
| // OOM, free the buffer allocated so far and return NULL. |
| delete[] result; |
| return NULL; |
| } else { |
| // Copy the existing input into the new array and set the new |
| // array as the result. |
| memmove(new_result, result, offset); |
| delete[] result; |
| result = new_result; |
| } |
| } |
| // Copy the newly read line into the result. |
| memmove(result + offset, line_buf, len); |
| offset += len; |
| } |
| ASSERT(result != NULL); |
| result[offset] = '\0'; |
| return result; |
| } |
| |
| |
| // Synchronization primitives support. |
| Mutex* Simulator::exclusive_access_lock_ = NULL; |
| Simulator::AddressTag Simulator::exclusive_access_state_[kNumAddressTags] = |
| {{NULL, 0}}; |
| int Simulator::next_address_tag_ = 0; |
| |
| |
| void Simulator::InitOnce() { |
| // Setup exclusive access state lock. |
| exclusive_access_lock_ = new Mutex(); |
| } |
| |
| |
| Simulator::Simulator() { |
| // Setup simulator support first. Some of this information is needed to |
| // setup the architecture state. |
| // We allocate the stack here, the size is computed as the sum of |
| // the size specified by the user and the buffer space needed for |
| // handling stack overflow exceptions. To be safe in potential |
| // stack underflows we also add some underflow buffer space. |
| stack_ = new char[(Isolate::GetSpecifiedStackSize() + |
| Isolate::kStackSizeBuffer + |
| kSimulatorStackUnderflowSize)]; |
| pc_modified_ = false; |
| icount_ = 0; |
| break_pc_ = NULL; |
| break_instr_ = 0; |
| last_setjmp_buffer_ = NULL; |
| top_exit_frame_info_ = 0; |
| |
| // Setup architecture state. |
| // All registers are initialized to zero to start with. |
| for (int i = 0; i < kNumberOfCpuRegisters; i++) { |
| registers_[i] = 0; |
| } |
| n_flag_ = false; |
| z_flag_ = false; |
| c_flag_ = false; |
| v_flag_ = false; |
| |
| // The sp is initialized to point to the bottom (high address) of the |
| // allocated stack area. |
| registers_[SP] = StackTop(); |
| // The lr and pc are initialized to a known bad value that will cause an |
| // access violation if the simulator ever tries to execute it. |
| registers_[PC] = kBadLR; |
| registers_[LR] = kBadLR; |
| |
| // All double-precision registers are initialized to zero. |
| for (int i = 0; i < kNumberOfDRegisters; i++) { |
| dregisters_[i] = 0; |
| } |
| // Since VFP registers are overlapping, single-precision registers should |
| // already be initialized. |
| ASSERT(2*kNumberOfDRegisters >= kNumberOfSRegisters); |
| for (int i = 0; i < kNumberOfSRegisters; i++) { |
| ASSERT(sregisters_[i] == 0.0); |
| } |
| fp_n_flag_ = false; |
| fp_z_flag_ = false; |
| fp_c_flag_ = false; |
| fp_v_flag_ = false; |
| } |
| |
| |
| Simulator::~Simulator() { |
| delete[] stack_; |
| Isolate* isolate = Isolate::Current(); |
| if (isolate != NULL) { |
| isolate->set_simulator(NULL); |
| } |
| } |
| |
| |
| // When the generated code calls an external reference we need to catch that in |
| // the simulator. The external reference will be a function compiled for the |
| // host architecture. We need to call that function instead of trying to |
| // execute it with the simulator. We do that by redirecting the external |
| // reference to a svc (supervisor call) instruction that is handled by |
| // the simulator. We write the original destination of the jump just at a known |
| // offset from the svc instruction so the simulator knows what to call. |
| class Redirection { |
| public: |
| uword address_of_svc_instruction() { |
| return reinterpret_cast<uword>(&svc_instruction_); |
| } |
| |
| uword external_function() const { return external_function_; } |
| |
| Simulator::CallKind call_kind() const { return call_kind_; } |
| |
| int argument_count() const { return argument_count_; } |
| |
| static Redirection* Get(uword external_function, |
| Simulator::CallKind call_kind, |
| int argument_count) { |
| Redirection* current; |
| for (current = list_; current != NULL; current = current->next_) { |
| if (current->external_function_ == external_function) return current; |
| } |
| return new Redirection(external_function, call_kind, argument_count); |
| } |
| |
| static Redirection* FromSvcInstruction(Instr* svc_instruction) { |
| char* addr_of_svc = reinterpret_cast<char*>(svc_instruction); |
| char* addr_of_redirection = |
| addr_of_svc - OFFSET_OF(Redirection, svc_instruction_); |
| return reinterpret_cast<Redirection*>(addr_of_redirection); |
| } |
| |
| static uword FunctionForRedirect(uword address_of_svc) { |
| Redirection* current; |
| for (current = list_; current != NULL; current = current->next_) { |
| if (current->address_of_svc_instruction() == address_of_svc) { |
| return current->external_function_; |
| } |
| } |
| return 0; |
| } |
| |
| private: |
| Redirection(uword external_function, |
| Simulator::CallKind call_kind, |
| int argument_count) |
| : external_function_(external_function), |
| call_kind_(call_kind), |
| argument_count_(argument_count), |
| svc_instruction_(Instr::kSimulatorRedirectInstruction) { |
| // Atomically prepend this element to the front of the global list. |
| // Note: Since elements are never removed, there is no ABA issue. |
| Redirection* list_head = list_; |
| do { |
| next_ = list_head; |
| list_head = reinterpret_cast<Redirection*>( |
| AtomicOperations::CompareAndSwapWord( |
| reinterpret_cast<uword*>(&list_), |
| reinterpret_cast<uword>(next_), |
| reinterpret_cast<uword>(this))); |
| } while (list_head != next_); |
| } |
| |
| uword external_function_; |
| Simulator::CallKind call_kind_; |
| int argument_count_; |
| uint32_t svc_instruction_; |
| Redirection* next_; |
| static Redirection* list_; |
| }; |
| |
| |
| Redirection* Redirection::list_ = NULL; |
| |
| |
| uword Simulator::RedirectExternalReference(uword function, |
| CallKind call_kind, |
| int argument_count) { |
| Redirection* redirection = |
| Redirection::Get(function, call_kind, argument_count); |
| return redirection->address_of_svc_instruction(); |
| } |
| |
| |
| uword Simulator::FunctionForRedirect(uword redirect) { |
| return Redirection::FunctionForRedirect(redirect); |
| } |
| |
| |
| // Get the active Simulator for the current isolate. |
| Simulator* Simulator::Current() { |
| Simulator* simulator = Isolate::Current()->simulator(); |
| if (simulator == NULL) { |
| simulator = new Simulator(); |
| Isolate::Current()->set_simulator(simulator); |
| } |
| return simulator; |
| } |
| |
| |
| // Sets the register in the architecture state. It will also deal with updating |
| // Simulator internal state for special registers such as PC. |
| void Simulator::set_register(Register reg, int32_t value) { |
| ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters)); |
| if (reg == PC) { |
| pc_modified_ = true; |
| } |
| registers_[reg] = value; |
| } |
| |
| |
| // Get the register from the architecture state. This function does handle |
| // the special case of accessing the PC register. |
| int32_t Simulator::get_register(Register reg) const { |
| ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters)); |
| return registers_[reg] + ((reg == PC) ? Instr::kPCReadOffset : 0); |
| } |
| |
| |
| // Raw access to the PC register. |
| void Simulator::set_pc(int32_t value) { |
| pc_modified_ = true; |
| registers_[PC] = value; |
| } |
| |
| |
| // Raw access to the PC register without the special adjustment when reading. |
| int32_t Simulator::get_pc() const { |
| return registers_[PC]; |
| } |
| |
| |
| // Accessors for VFP register state. |
| void Simulator::set_sregister(SRegister reg, float value) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT((reg >= 0) && (reg < kNumberOfSRegisters)); |
| sregisters_[reg] = bit_cast<int32_t, float>(value); |
| } |
| |
| |
| float Simulator::get_sregister(SRegister reg) const { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT((reg >= 0) && (reg < kNumberOfSRegisters)); |
| return bit_cast<float, int32_t>(sregisters_[reg]); |
| } |
| |
| |
| void Simulator::set_dregister(DRegister reg, double value) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT((reg >= 0) && (reg < kNumberOfDRegisters)); |
| dregisters_[reg] = bit_cast<int64_t, double>(value); |
| } |
| |
| |
| double Simulator::get_dregister(DRegister reg) const { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT((reg >= 0) && (reg < kNumberOfDRegisters)); |
| return bit_cast<double, int64_t>(dregisters_[reg]); |
| } |
| |
| |
| void Simulator::set_qregister(QRegister reg, const simd_value_t& value) { |
| ASSERT(TargetCPUFeatures::neon_supported()); |
| ASSERT((reg >= 0) && (reg < kNumberOfQRegisters)); |
| qregisters_[reg].data_[0] = value.data_[0]; |
| qregisters_[reg].data_[1] = value.data_[1]; |
| qregisters_[reg].data_[2] = value.data_[2]; |
| qregisters_[reg].data_[3] = value.data_[3]; |
| } |
| |
| |
| void Simulator::get_qregister(QRegister reg, simd_value_t* value) const { |
| ASSERT(TargetCPUFeatures::neon_supported()); |
| // TODO(zra): Replace this test with an assert after we support |
| // 16 Q registers. |
| if ((reg >= 0) && (reg < kNumberOfQRegisters)) { |
| *value = qregisters_[reg]; |
| } |
| } |
| |
| |
| void Simulator::set_sregister_bits(SRegister reg, int32_t value) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT((reg >= 0) && (reg < kNumberOfSRegisters)); |
| sregisters_[reg] = value; |
| } |
| |
| |
| int32_t Simulator::get_sregister_bits(SRegister reg) const { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT((reg >= 0) && (reg < kNumberOfSRegisters)); |
| return sregisters_[reg]; |
| } |
| |
| |
| void Simulator::set_dregister_bits(DRegister reg, int64_t value) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT((reg >= 0) && (reg < kNumberOfDRegisters)); |
| dregisters_[reg] = value; |
| } |
| |
| |
| int64_t Simulator::get_dregister_bits(DRegister reg) const { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT((reg >= 0) && (reg < kNumberOfDRegisters)); |
| return dregisters_[reg]; |
| } |
| |
| |
| void Simulator::HandleIllegalAccess(uword addr, Instr* instr) { |
| uword fault_pc = get_pc(); |
| // The debugger will not be able to single step past this instruction, but |
| // it will be possible to disassemble the code and inspect registers. |
| char buffer[128]; |
| snprintf(buffer, sizeof(buffer), |
| "illegal memory access at 0x%" Px ", pc=0x%" Px "\n", |
| addr, fault_pc); |
| SimulatorDebugger dbg(this); |
| dbg.Stop(instr, buffer); |
| // The debugger will return control in non-interactive mode. |
| FATAL("Cannot continue execution after illegal memory access."); |
| } |
| |
| |
| // Processor versions prior to ARMv7 could not do unaligned reads and writes. |
| // On some ARM platforms an interrupt is caused. On others it does a funky |
| // rotation thing. However, from version v7, unaligned access is supported. |
| // Note that simulator runs have the runtime system running directly on the host |
| // system and only generated code is executed in the simulator. Since the host |
| // is typically IA32 we will get the correct ARMv7-like behaviour on unaligned |
| // accesses, but we should actually not generate code accessing unaligned data, |
| // so we still want to know and abort if we encounter such code. |
| void Simulator::UnalignedAccess(const char* msg, uword addr, Instr* instr) { |
| // The debugger will not be able to single step past this instruction, but |
| // it will be possible to disassemble the code and inspect registers. |
| char buffer[64]; |
| snprintf(buffer, sizeof(buffer), |
| "unaligned %s at 0x%" Px ", pc=%p\n", msg, addr, instr); |
| SimulatorDebugger dbg(this); |
| dbg.Stop(instr, buffer); |
| // The debugger will return control in non-interactive mode. |
| FATAL("Cannot continue execution after unaligned access."); |
| } |
| |
| |
| void Simulator::UnimplementedInstruction(Instr* instr) { |
| char buffer[64]; |
| snprintf(buffer, sizeof(buffer), "Unimplemented instruction: pc=%p\n", instr); |
| SimulatorDebugger dbg(this); |
| dbg.Stop(instr, buffer); |
| FATAL("Cannot continue execution after unimplemented instruction."); |
| } |
| |
| |
| intptr_t Simulator::ReadW(uword addr, Instr* instr) { |
| if ((addr & 3) == 0) { |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| return *ptr; |
| } |
| UnalignedAccess("read", addr, instr); |
| return 0; |
| } |
| |
| |
| void Simulator::WriteW(uword addr, intptr_t value, Instr* instr) { |
| if ((addr & 3) == 0) { |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| *ptr = value; |
| return; |
| } |
| UnalignedAccess("write", addr, instr); |
| } |
| |
| |
| uint16_t Simulator::ReadHU(uword addr, Instr* instr) { |
| if ((addr & 1) == 0) { |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| return *ptr; |
| } |
| UnalignedAccess("unsigned halfword read", addr, instr); |
| return 0; |
| } |
| |
| |
| int16_t Simulator::ReadH(uword addr, Instr* instr) { |
| if ((addr & 1) == 0) { |
| int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| return *ptr; |
| } |
| UnalignedAccess("signed halfword read", addr, instr); |
| return 0; |
| } |
| |
| |
| void Simulator::WriteH(uword addr, uint16_t value, Instr* instr) { |
| if ((addr & 1) == 0) { |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| *ptr = value; |
| return; |
| } |
| UnalignedAccess("halfword write", addr, instr); |
| } |
| |
| |
| uint8_t Simulator::ReadBU(uword addr) { |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| return *ptr; |
| } |
| |
| |
| int8_t Simulator::ReadB(uword addr) { |
| int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| return *ptr; |
| } |
| |
| |
| void Simulator::WriteB(uword addr, uint8_t value) { |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| *ptr = value; |
| } |
| |
| |
| // Synchronization primitives support. |
| void Simulator::SetExclusiveAccess(uword addr) { |
| Thread* thread = Thread::Current(); |
| ASSERT(thread != NULL); |
| DEBUG_ASSERT(exclusive_access_lock_->IsOwnedByCurrentThread()); |
| int i = 0; |
| // Find an entry for this thread in the exclusive access state. |
| while ((i < kNumAddressTags) && |
| (exclusive_access_state_[i].thread != thread)) { |
| i++; |
| } |
| // Round-robin replacement of previously used entries. |
| if (i == kNumAddressTags) { |
| i = next_address_tag_; |
| if (++next_address_tag_ == kNumAddressTags) { |
| next_address_tag_ = 0; |
| } |
| exclusive_access_state_[i].thread = thread; |
| } |
| // Remember the address being reserved. |
| exclusive_access_state_[i].addr = addr; |
| } |
| |
| |
| bool Simulator::HasExclusiveAccessAndOpen(uword addr) { |
| Thread* thread = Thread::Current(); |
| ASSERT(thread != NULL); |
| ASSERT(addr != 0); |
| DEBUG_ASSERT(exclusive_access_lock_->IsOwnedByCurrentThread()); |
| bool result = false; |
| for (int i = 0; i < kNumAddressTags; i++) { |
| if (exclusive_access_state_[i].thread == thread) { |
| // Check whether the current thread's address reservation matches. |
| if (exclusive_access_state_[i].addr == addr) { |
| result = true; |
| } |
| exclusive_access_state_[i].addr = 0; |
| } else if (exclusive_access_state_[i].addr == addr) { |
| // Other threads with matching address lose their reservations. |
| exclusive_access_state_[i].addr = 0; |
| } |
| } |
| return result; |
| } |
| |
| |
| void Simulator::ClearExclusive() { |
| MutexLocker ml(exclusive_access_lock_); |
| // Remove the reservation for this thread. |
| SetExclusiveAccess(NULL); |
| } |
| |
| |
| intptr_t Simulator::ReadExclusiveW(uword addr, Instr* instr) { |
| MutexLocker ml(exclusive_access_lock_); |
| SetExclusiveAccess(addr); |
| return ReadW(addr, instr); |
| } |
| |
| |
| intptr_t Simulator::WriteExclusiveW(uword addr, intptr_t value, Instr* instr) { |
| MutexLocker ml(exclusive_access_lock_); |
| bool write_allowed = HasExclusiveAccessAndOpen(addr); |
| if (write_allowed) { |
| WriteW(addr, value, instr); |
| return 0; // Success. |
| } |
| return 1; // Failure. |
| } |
| |
| |
| uword Simulator::CompareExchange(uword* address, |
| uword compare_value, |
| uword new_value) { |
| MutexLocker ml(exclusive_access_lock_); |
| // We do not get a reservation as it would be guaranteed to be found when |
| // writing below. No other thread is able to make a reservation while we |
| // hold the lock. |
| uword value = *address; |
| if (value == compare_value) { |
| *address = new_value; |
| // Same effect on exclusive access state as a successful STREX. |
| HasExclusiveAccessAndOpen(reinterpret_cast<uword>(address)); |
| } else { |
| // Same effect on exclusive access state as an LDREX. |
| SetExclusiveAccess(reinterpret_cast<uword>(address)); |
| } |
| return value; |
| } |
| |
| |
| // Returns the top of the stack area to enable checking for stack pointer |
| // validity. |
| uword Simulator::StackTop() const { |
| // To be safe in potential stack underflows we leave some buffer above and |
| // set the stack top. |
| return StackBase() + |
| (Isolate::GetSpecifiedStackSize() + Isolate::kStackSizeBuffer); |
| } |
| |
| |
| bool Simulator::IsTracingExecution() const { |
| return icount_ > FLAG_trace_sim_after; |
| } |
| |
| |
| // Unsupported instructions use Format to print an error and stop execution. |
| void Simulator::Format(Instr* instr, const char* format) { |
| OS::Print("Simulator found unsupported instruction:\n 0x%p: %s\n", |
| instr, |
| format); |
| UNIMPLEMENTED(); |
| } |
| |
| |
| // Checks if the current instruction should be executed based on its |
| // condition bits. |
| bool Simulator::ConditionallyExecute(Instr* instr) { |
| switch (instr->ConditionField()) { |
| case EQ: return z_flag_; |
| case NE: return !z_flag_; |
| case CS: return c_flag_; |
| case CC: return !c_flag_; |
| case MI: return n_flag_; |
| case PL: return !n_flag_; |
| case VS: return v_flag_; |
| case VC: return !v_flag_; |
| case HI: return c_flag_ && !z_flag_; |
| case LS: return !c_flag_ || z_flag_; |
| case GE: return n_flag_ == v_flag_; |
| case LT: return n_flag_ != v_flag_; |
| case GT: return !z_flag_ && (n_flag_ == v_flag_); |
| case LE: return z_flag_ || (n_flag_ != v_flag_); |
| case AL: return true; |
| default: UNREACHABLE(); |
| } |
| return false; |
| } |
| |
| |
| // Calculate and set the Negative and Zero flags. |
| void Simulator::SetNZFlags(int32_t val) { |
| n_flag_ = (val < 0); |
| z_flag_ = (val == 0); |
| } |
| |
| |
| // Set the Carry flag. |
| void Simulator::SetCFlag(bool val) { |
| c_flag_ = val; |
| } |
| |
| |
| // Set the oVerflow flag. |
| void Simulator::SetVFlag(bool val) { |
| v_flag_ = val; |
| } |
| |
| |
| // Calculate C flag value for additions (and subtractions with adjusted args). |
| bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) { |
| uint64_t uleft = static_cast<uint32_t>(left); |
| uint64_t uright = static_cast<uint32_t>(right); |
| uint64_t ucarry = static_cast<uint32_t>(carry); |
| return ((uleft + uright + ucarry) >> 32) != 0; |
| } |
| |
| |
| // Calculate V flag value for additions (and subtractions with adjusted args). |
| bool Simulator::OverflowFrom(int32_t left, int32_t right, int32_t carry) { |
| int64_t result = static_cast<int64_t>(left) + right + carry; |
| return (result >> 31) != (result >> 32); |
| } |
| |
| |
| // Addressing Mode 1 - Data-processing operands: |
| // Get the value based on the shifter_operand with register. |
| int32_t Simulator::GetShiftRm(Instr* instr, bool* carry_out) { |
| Shift shift = instr->ShiftField(); |
| int shift_amount = instr->ShiftAmountField(); |
| int32_t result = get_register(instr->RmField()); |
| if (instr->Bit(4) == 0) { |
| // by immediate |
| if ((shift == ROR) && (shift_amount == 0)) { |
| UnimplementedInstruction(instr); |
| } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) { |
| shift_amount = 32; |
| } |
| switch (shift) { |
| case ASR: { |
| if (shift_amount == 0) { |
| if (result < 0) { |
| result = 0xffffffff; |
| *carry_out = true; |
| } else { |
| result = 0; |
| *carry_out = false; |
| } |
| } else { |
| result >>= (shift_amount - 1); |
| *carry_out = (result & 1) == 1; |
| result >>= 1; |
| } |
| break; |
| } |
| |
| case LSL: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else { |
| result <<= (shift_amount - 1); |
| *carry_out = (result < 0); |
| result <<= 1; |
| } |
| break; |
| } |
| |
| case LSR: { |
| if (shift_amount == 0) { |
| result = 0; |
| *carry_out = c_flag_; |
| } else { |
| uint32_t uresult = static_cast<uint32_t>(result); |
| uresult >>= (shift_amount - 1); |
| *carry_out = (uresult & 1) == 1; |
| uresult >>= 1; |
| result = static_cast<int32_t>(uresult); |
| } |
| break; |
| } |
| |
| case ROR: { |
| UnimplementedInstruction(instr); |
| break; |
| } |
| |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else { |
| // by register |
| Register rs = instr->RsField(); |
| shift_amount = get_register(rs) &0xff; |
| switch (shift) { |
| case ASR: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else if (shift_amount < 32) { |
| result >>= (shift_amount - 1); |
| *carry_out = (result & 1) == 1; |
| result >>= 1; |
| } else { |
| ASSERT(shift_amount >= 32); |
| if (result < 0) { |
| *carry_out = true; |
| result = 0xffffffff; |
| } else { |
| *carry_out = false; |
| result = 0; |
| } |
| } |
| break; |
| } |
| |
| case LSL: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else if (shift_amount < 32) { |
| result <<= (shift_amount - 1); |
| *carry_out = (result < 0); |
| result <<= 1; |
| } else if (shift_amount == 32) { |
| *carry_out = (result & 1) == 1; |
| result = 0; |
| } else { |
| ASSERT(shift_amount > 32); |
| *carry_out = false; |
| result = 0; |
| } |
| break; |
| } |
| |
| case LSR: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else if (shift_amount < 32) { |
| uint32_t uresult = static_cast<uint32_t>(result); |
| uresult >>= (shift_amount - 1); |
| *carry_out = (uresult & 1) == 1; |
| uresult >>= 1; |
| result = static_cast<int32_t>(uresult); |
| } else if (shift_amount == 32) { |
| *carry_out = (result < 0); |
| result = 0; |
| } else { |
| *carry_out = false; |
| result = 0; |
| } |
| break; |
| } |
| |
| case ROR: { |
| UnimplementedInstruction(instr); |
| break; |
| } |
| |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| return result; |
| } |
| |
| |
| // Addressing Mode 1 - Data-processing operands: |
| // Get the value based on the shifter_operand with immediate. |
| int32_t Simulator::GetImm(Instr* instr, bool* carry_out) { |
| int rotate = instr->RotateField() * 2; |
| int immed8 = instr->Immed8Field(); |
| int imm = (immed8 >> rotate) | (immed8 << (32 - rotate)); |
| *carry_out = (rotate == 0) ? c_flag_ : (imm < 0); |
| return imm; |
| } |
| |
| |
| static int count_bits(int bit_vector) { |
| int count = 0; |
| while (bit_vector != 0) { |
| if ((bit_vector & 1) != 0) { |
| count++; |
| } |
| bit_vector >>= 1; |
| } |
| return count; |
| } |
| |
| |
| // Addressing Mode 4 - Load and Store Multiple |
| void Simulator::HandleRList(Instr* instr, bool load) { |
| Register rn = instr->RnField(); |
| int32_t rn_val = get_register(rn); |
| int rlist = instr->RlistField(); |
| int num_regs = count_bits(rlist); |
| |
| uword address = 0; |
| uword end_address = 0; |
| switch (instr->PUField()) { |
| case 0: { |
| // Print("da"); |
| address = rn_val - (num_regs * 4) + 4; |
| end_address = rn_val + 4; |
| rn_val = rn_val - (num_regs * 4); |
| break; |
| } |
| case 1: { |
| // Print("ia"); |
| address = rn_val; |
| end_address = rn_val + (num_regs * 4); |
| rn_val = rn_val + (num_regs * 4); |
| break; |
| } |
| case 2: { |
| // Print("db"); |
| address = rn_val - (num_regs * 4); |
| end_address = rn_val; |
| rn_val = address; |
| break; |
| } |
| case 3: { |
| // Print("ib"); |
| address = rn_val + 4; |
| end_address = rn_val + (num_regs * 4) + 4; |
| rn_val = rn_val + (num_regs * 4); |
| break; |
| } |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| if (IsIllegalAddress(address)) { |
| HandleIllegalAccess(address, instr); |
| } else { |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| int reg = 0; |
| while (rlist != 0) { |
| if ((rlist & 1) != 0) { |
| if (load) { |
| set_register(static_cast<Register>(reg), ReadW(address, instr)); |
| } else { |
| WriteW(address, get_register(static_cast<Register>(reg)), instr); |
| } |
| address += 4; |
| } |
| reg++; |
| rlist >>= 1; |
| } |
| ASSERT(end_address == address); |
| } |
| } |
| |
| |
| // Calls into the Dart runtime are based on this interface. |
| typedef void (*SimulatorRuntimeCall)(NativeArguments arguments); |
| |
| // Calls to leaf Dart runtime functions are based on this interface. |
| typedef int32_t (*SimulatorLeafRuntimeCall)( |
| int32_t r0, int32_t r1, int32_t r2, int32_t r3); |
| |
| // Calls to leaf float Dart runtime functions are based on this interface. |
| typedef double (*SimulatorLeafFloatRuntimeCall)(double d0, double d1); |
| |
| // Calls to native Dart functions are based on this interface. |
| typedef void (*SimulatorBootstrapNativeCall)(NativeArguments* arguments); |
| typedef void (*SimulatorNativeCall)(NativeArguments* arguments, uword target); |
| |
| |
| void Simulator::SupervisorCall(Instr* instr) { |
| int svc = instr->SvcField(); |
| switch (svc) { |
| case Instr::kSimulatorRedirectCode: { |
| SimulatorSetjmpBuffer buffer(this); |
| |
| if (!setjmp(buffer.buffer_)) { |
| int32_t saved_lr = get_register(LR); |
| Redirection* redirection = Redirection::FromSvcInstruction(instr); |
| uword external = redirection->external_function(); |
| if (IsTracingExecution()) { |
| OS::Print("Call to host function at 0x%" Pd "\n", external); |
| } |
| |
| if ((redirection->call_kind() == kRuntimeCall) || |
| (redirection->call_kind() == kBootstrapNativeCall) || |
| (redirection->call_kind() == kNativeCall)) { |
| // Set the top_exit_frame_info of this simulator to the native stack. |
| set_top_exit_frame_info(Isolate::GetCurrentStackPointer()); |
| } |
| if (redirection->call_kind() == kRuntimeCall) { |
| NativeArguments arguments; |
| ASSERT(sizeof(NativeArguments) == 4*kWordSize); |
| arguments.thread_ = reinterpret_cast<Thread*>(get_register(R0)); |
| arguments.argc_tag_ = get_register(R1); |
| arguments.argv_ = reinterpret_cast<RawObject*(*)[]>(get_register(R2)); |
| arguments.retval_ = reinterpret_cast<RawObject**>(get_register(R3)); |
| SimulatorRuntimeCall target = |
| reinterpret_cast<SimulatorRuntimeCall>(external); |
| target(arguments); |
| set_register(R0, icount_); // Zap result register from void function. |
| set_register(R1, icount_); |
| } else if (redirection->call_kind() == kLeafRuntimeCall) { |
| ASSERT((0 <= redirection->argument_count()) && |
| (redirection->argument_count() <= 4)); |
| int32_t r0 = get_register(R0); |
| int32_t r1 = get_register(R1); |
| int32_t r2 = get_register(R2); |
| int32_t r3 = get_register(R3); |
| SimulatorLeafRuntimeCall target = |
| reinterpret_cast<SimulatorLeafRuntimeCall>(external); |
| r0 = target(r0, r1, r2, r3); |
| set_register(R0, r0); // Set returned result from function. |
| set_register(R1, icount_); // Zap unused result register. |
| } else if (redirection->call_kind() == kLeafFloatRuntimeCall) { |
| ASSERT((0 <= redirection->argument_count()) && |
| (redirection->argument_count() <= 2)); |
| SimulatorLeafFloatRuntimeCall target = |
| reinterpret_cast<SimulatorLeafFloatRuntimeCall>(external); |
| if (TargetCPUFeatures::hardfp_supported()) { |
| // If we're doing "hardfp", the double arguments are already in the |
| // floating point registers. |
| double d0 = get_dregister(D0); |
| double d1 = get_dregister(D1); |
| d0 = target(d0, d1); |
| set_dregister(D0, d0); |
| } else { |
| // If we're not doing "hardfp", we must be doing "soft" or "softfp", |
| // So take the double arguments from the integer registers. |
| uint32_t r0 = get_register(R0); |
| int32_t r1 = get_register(R1); |
| uint32_t r2 = get_register(R2); |
| int32_t r3 = get_register(R3); |
| int64_t a0 = Utils::LowHighTo64Bits(r0, r1); |
| int64_t a1 = Utils::LowHighTo64Bits(r2, r3); |
| double d0 = bit_cast<double, int64_t>(a0); |
| double d1 = bit_cast<double, int64_t>(a1); |
| d0 = target(d0, d1); |
| a0 = bit_cast<int64_t, double>(d0); |
| r0 = Utils::Low32Bits(a0); |
| r1 = Utils::High32Bits(a0); |
| set_register(R0, r0); |
| set_register(R1, r1); |
| } |
| } else if (redirection->call_kind() == kBootstrapNativeCall) { |
| ASSERT(redirection->argument_count() == 1); |
| NativeArguments* arguments; |
| arguments = reinterpret_cast<NativeArguments*>(get_register(R0)); |
| SimulatorBootstrapNativeCall target = |
| reinterpret_cast<SimulatorBootstrapNativeCall>(external); |
| target(arguments); |
| set_register(R0, icount_); // Zap result register from void function. |
| } else { |
| ASSERT(redirection->call_kind() == kNativeCall); |
| NativeArguments* arguments; |
| arguments = reinterpret_cast<NativeArguments*>(get_register(R0)); |
| uword target_func = get_register(R1); |
| SimulatorNativeCall target = |
| reinterpret_cast<SimulatorNativeCall>(external); |
| target(arguments, target_func); |
| set_register(R0, icount_); // Zap result register from void function. |
| set_register(R1, icount_); |
| } |
| set_top_exit_frame_info(0); |
| |
| // Zap caller-saved registers, since the actual runtime call could have |
| // used them. |
| set_register(R2, icount_); |
| set_register(R3, icount_); |
| set_register(IP, icount_); |
| set_register(LR, icount_); |
| if (TargetCPUFeatures::vfp_supported()) { |
| double zap_dvalue = static_cast<double>(icount_); |
| // Do not zap D0, as it may contain a float result. |
| for (int i = D1; i <= D7; i++) { |
| set_dregister(static_cast<DRegister>(i), zap_dvalue); |
| } |
| // The above loop also zaps overlapping registers S2-S15. |
| // Registers D8-D15 (overlapping with S16-S31) are preserved. |
| #if defined(VFPv3_D32) |
| for (int i = D16; i <= D31; i++) { |
| set_dregister(static_cast<DRegister>(i), zap_dvalue); |
| } |
| #endif |
| } |
| |
| // Return. |
| set_pc(saved_lr); |
| } else { |
| // Coming via long jump from a throw. Continue to exception handler. |
| set_top_exit_frame_info(0); |
| } |
| |
| break; |
| } |
| case Instr::kSimulatorBreakCode: { |
| SimulatorDebugger dbg(this); |
| dbg.Stop(instr, "breakpoint"); |
| break; |
| } |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| |
| // Handle execution based on instruction types. |
| |
| // Instruction types 0 and 1 are both rolled into one function because they |
| // only differ in the handling of the shifter_operand. |
| void Simulator::DecodeType01(Instr* instr) { |
| if (!instr->IsDataProcessing()) { |
| // miscellaneous, multiply, sync primitives, extra loads and stores. |
| if (instr->IsMiscellaneous()) { |
| switch (instr->Bits(4, 3)) { |
| case 1: { |
| if (instr->Bits(21, 2) == 0x3) { |
| // Format(instr, "clz'cond 'rd, 'rm"); |
| Register rm = instr->RmField(); |
| Register rd = instr->RdField(); |
| int32_t rm_val = get_register(rm); |
| int32_t rd_val = 0; |
| if (rm_val != 0) { |
| while (rm_val > 0) { |
| rd_val++; |
| rm_val <<= 1; |
| } |
| } else { |
| rd_val = 32; |
| } |
| set_register(rd, rd_val); |
| } else { |
| ASSERT(instr->Bits(21, 2) == 0x1); |
| // Format(instr, "bx'cond 'rm"); |
| Register rm = instr->RmField(); |
| int32_t rm_val = get_register(rm); |
| set_pc(rm_val); |
| } |
| break; |
| } |
| case 3: { |
| ASSERT(instr->Bits(21, 2) == 0x1); |
| // Format(instr, "blx'cond 'rm"); |
| Register rm = instr->RmField(); |
| int32_t rm_val = get_register(rm); |
| intptr_t pc = get_pc(); |
| set_register(LR, pc + Instr::kInstrSize); |
| set_pc(rm_val); |
| break; |
| } |
| case 7: { |
| if ((instr->Bits(21, 2) == 0x1) && (instr->ConditionField() == AL)) { |
| // Format(instr, "bkpt #'imm12_4"); |
| SimulatorDebugger dbg(this); |
| int32_t imm = instr->BkptField(); |
| if (imm == Instr::kStopMessageCode) { |
| const char* message = *reinterpret_cast<const char**>( |
| reinterpret_cast<intptr_t>(instr) - Instr::kInstrSize); |
| set_pc(get_pc() + Instr::kInstrSize); |
| dbg.Stop(instr, message); |
| } else { |
| char buffer[32]; |
| snprintf(buffer, sizeof(buffer), "bkpt #0x%x", imm); |
| set_pc(get_pc() + Instr::kInstrSize); |
| dbg.Stop(instr, buffer); |
| } |
| } else { |
| // Format(instr, "smc'cond"); |
| UnimplementedInstruction(instr); |
| } |
| break; |
| } |
| default: { |
| UnimplementedInstruction(instr); |
| break; |
| } |
| } |
| } else if (instr->IsMultiplyOrSyncPrimitive()) { |
| if (instr->Bit(24) == 0) { |
| // multiply instructions. |
| Register rn = instr->RnField(); |
| Register rd = instr->RdField(); |
| Register rs = instr->RsField(); |
| Register rm = instr->RmField(); |
| int32_t rm_val = get_register(rm); |
| int32_t rs_val = get_register(rs); |
| int32_t rd_val = 0; |
| switch (instr->Bits(21, 3)) { |
| case 1: |
| // Registers rd, rn, rm, ra are encoded as rn, rm, rs, rd. |
| // Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd"); |
| case 3: { |
| // Registers rd, rn, rm, ra are encoded as rn, rm, rs, rd. |
| // Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd"); |
| rd_val = get_register(rd); |
| // fall through |
| } |
| case 0: { |
| // Registers rd, rn, rm are encoded as rn, rm, rs. |
| // Format(instr, "mul'cond's 'rn, 'rm, 'rs"); |
| int32_t alu_out = rm_val * rs_val; |
| if (instr->Bits(21, 3) == 3) { // mls |
| if (TargetCPUFeatures::arm_version() != ARMv7) { |
| UnimplementedInstruction(instr); |
| break; |
| } |
| alu_out = -alu_out; |
| } |
| alu_out += rd_val; |
| set_register(rn, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| } |
| break; |
| } |
| case 4: |
| // Registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
| // Format(instr, "umull'cond's 'rd, 'rn, 'rm, 'rs"); |
| case 6: { |
| // Registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
| // Format(instr, "smull'cond's 'rd, 'rn, 'rm, 'rs"); |
| int64_t result; |
| if (instr->Bits(21, 3) == 4) { // umull |
| uint64_t left_op = static_cast<uint32_t>(rm_val); |
| uint64_t right_op = static_cast<uint32_t>(rs_val); |
| result = left_op * right_op; // Unsigned multiplication. |
| } else { // smull |
| int64_t left_op = static_cast<int32_t>(rm_val); |
| int64_t right_op = static_cast<int32_t>(rs_val); |
| result = left_op * right_op; // Signed multiplication. |
| } |
| int32_t hi_res = Utils::High32Bits(result); |
| int32_t lo_res = Utils::Low32Bits(result); |
| set_register(rd, lo_res); |
| set_register(rn, hi_res); |
| if (instr->HasS()) { |
| if (lo_res != 0) { |
| // Collapse bits 0..31 into bit 32 so that 32-bit Z check works. |
| hi_res |= 1; |
| } |
| ASSERT((result == 0) == (hi_res == 0)); // Z bit |
| ASSERT(((result & (1LL << 63)) != 0) == (hi_res < 0)); // N bit |
| SetNZFlags(hi_res); |
| } |
| break; |
| } |
| case 2: |
| // Registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
| // Format(instr, "umaal'cond's 'rd, 'rn, 'rm, 'rs"); |
| if (TargetCPUFeatures::arm_version() == ARMv5TE) { |
| // umaal is only in ARMv6 and above. |
| UnimplementedInstruction(instr); |
| } |
| case 5: |
| // Registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
| // Format(instr, "umlal'cond's 'rd, 'rn, 'rm, 'rs"); |
| case 7: { |
| // Registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
| // Format(instr, "smlal'cond's 'rd, 'rn, 'rm, 'rs"); |
| int32_t rd_lo_val = get_register(rd); |
| int32_t rd_hi_val = get_register(rn); |
| uint32_t accum_lo = static_cast<uint32_t>(rd_lo_val); |
| int32_t accum_hi = static_cast<int32_t>(rd_hi_val); |
| int64_t accum = Utils::LowHighTo64Bits(accum_lo, accum_hi); |
| int64_t result; |
| if (instr->Bits(21, 3) == 5) { // umlal |
| uint64_t left_op = static_cast<uint32_t>(rm_val); |
| uint64_t right_op = static_cast<uint32_t>(rs_val); |
| result = accum + left_op * right_op; // Unsigned multiplication. |
| } else if (instr->Bits(21, 3) == 7) { // smlal |
| int64_t left_op = static_cast<int32_t>(rm_val); |
| int64_t right_op = static_cast<int32_t>(rs_val); |
| result = accum + left_op * right_op; // Signed multiplication. |
| } else { |
| ASSERT(instr->Bits(21, 3) == 2); // umaal |
| ASSERT(!instr->HasS()); |
| uint64_t left_op = static_cast<uint32_t>(rm_val); |
| uint64_t right_op = static_cast<uint32_t>(rs_val); |
| result = left_op * right_op + // Unsigned multiplication. |
| static_cast<uint32_t>(rd_lo_val) + |
| static_cast<uint32_t>(rd_hi_val); |
| } |
| int32_t hi_res = Utils::High32Bits(result); |
| int32_t lo_res = Utils::Low32Bits(result); |
| set_register(rd, lo_res); |
| set_register(rn, hi_res); |
| if (instr->HasS()) { |
| if (lo_res != 0) { |
| // Collapse bits 0..31 into bit 32 so that 32-bit Z check works. |
| hi_res |= 1; |
| } |
| ASSERT((result == 0) == (hi_res == 0)); // Z bit |
| ASSERT(((result & (1LL << 63)) != 0) == (hi_res < 0)); // N bit |
| SetNZFlags(hi_res); |
| } |
| break; |
| } |
| default: { |
| UnimplementedInstruction(instr); |
| break; |
| } |
| } |
| } else { |
| if (TargetCPUFeatures::arm_version() == ARMv5TE) { |
| UnimplementedInstruction(instr); |
| return; |
| } |
| // synchronization primitives |
| Register rd = instr->RdField(); |
| Register rn = instr->RnField(); |
| uword addr = get_register(rn); |
| switch (instr->Bits(20, 4)) { |
| case 8: { |
| // Format(instr, "strex'cond 'rd, 'rm, ['rn]"); |
| if (IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| Register rm = instr->RmField(); |
| set_register(rd, WriteExclusiveW(addr, get_register(rm), instr)); |
| } |
| break; |
| } |
| case 9: { |
| // Format(instr, "ldrex'cond 'rd, ['rn]"); |
| if (IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| set_register(rd, ReadExclusiveW(addr, instr)); |
| } |
| break; |
| } |
| default: { |
| UnimplementedInstruction(instr); |
| break; |
| } |
| } |
| } |
| } else if (instr->Bit(25) == 1) { |
| // 16-bit immediate loads, msr (immediate), and hints |
| switch (instr->Bits(20, 5)) { |
| case 16: |
| case 20: { |
| if (TargetCPUFeatures::arm_version() == ARMv7) { |
| uint16_t imm16 = instr->MovwField(); |
| Register rd = instr->RdField(); |
| if (instr->Bit(22) == 0) { |
| // Format(instr, "movw'cond 'rd, #'imm4_12"); |
| set_register(rd, imm16); |
| } else { |
| // Format(instr, "movt'cond 'rd, #'imm4_12"); |
| set_register(rd, (get_register(rd) & 0xffff) | (imm16 << 16)); |
| } |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| break; |
| } |
| case 18: { |
| if ((instr->Bits(16, 4) == 0) && (instr->Bits(0, 8) == 0)) { |
| // Format(instr, "nop'cond"); |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| break; |
| } |
| default: { |
| UnimplementedInstruction(instr); |
| break; |
| } |
| } |
| } else { |
| // extra load/store instructions |
| Register rd = instr->RdField(); |
| Register rn = instr->RnField(); |
| int32_t rn_val = get_register(rn); |
| uword addr = 0; |
| bool write_back = false; |
| if (instr->Bit(22) == 0) { |
| Register rm = instr->RmField(); |
| int32_t rm_val = get_register(rm); |
| switch (instr->PUField()) { |
| case 0: { |
| // Format(instr, "'memop'cond'x 'rd2, ['rn], -'rm"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val -= rm_val; |
| write_back = true; |
| break; |
| } |
| case 1: { |
| // Format(instr, "'memop'cond'x 'rd2, ['rn], +'rm"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val += rm_val; |
| write_back = true; |
| break; |
| } |
| case 2: { |
| // Format(instr, "'memop'cond'x 'rd2, ['rn, -'rm]'w"); |
| rn_val -= rm_val; |
| addr = rn_val; |
| write_back = instr->HasW(); |
| break; |
| } |
| case 3: { |
| // Format(instr, "'memop'cond'x 'rd2, ['rn, +'rm]'w"); |
| rn_val += rm_val; |
| addr = rn_val; |
| write_back = instr->HasW(); |
| break; |
| } |
| default: { |
| // The PU field is a 2-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else { |
| int32_t imm_val = (instr->ImmedHField() << 4) | instr->ImmedLField(); |
| switch (instr->PUField()) { |
| case 0: { |
| // Format(instr, "'memop'cond'x 'rd2, ['rn], #-'off8"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val -= imm_val; |
| write_back = true; |
| break; |
| } |
| case 1: { |
| // Format(instr, "'memop'cond'x 'rd2, ['rn], #+'off8"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val += imm_val; |
| write_back = true; |
| break; |
| } |
| case 2: { |
| // Format(instr, "'memop'cond'x 'rd2, ['rn, #-'off8]'w"); |
| rn_val -= imm_val; |
| addr = rn_val; |
| write_back = instr->HasW(); |
| break; |
| } |
| case 3: { |
| // Format(instr, "'memop'cond'x 'rd2, ['rn, #+'off8]'w"); |
| rn_val += imm_val; |
| addr = rn_val; |
| write_back = instr->HasW(); |
| break; |
| } |
| default: { |
| // The PU field is a 2-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| if (IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| if (write_back) { |
| set_register(rn, rn_val); |
| } |
| if (!instr->HasSign()) { |
| if (instr->HasL()) { |
| uint16_t val = ReadHU(addr, instr); |
| set_register(rd, val); |
| } else { |
| uint16_t val = get_register(rd); |
| WriteH(addr, val, instr); |
| } |
| } else if (instr->HasL()) { |
| if (instr->HasH()) { |
| int16_t val = ReadH(addr, instr); |
| set_register(rd, val); |
| } else { |
| int8_t val = ReadB(addr); |
| set_register(rd, val); |
| } |
| } else if ((rd & 1) == 0) { |
| Register rd1 = static_cast<Register>(rd | 1); |
| ASSERT(rd1 < kNumberOfCpuRegisters); |
| if (instr->HasH()) { |
| int32_t val_low = get_register(rd); |
| int32_t val_high = get_register(rd1); |
| WriteW(addr, val_low, instr); |
| WriteW(addr + 4, val_high, instr); |
| } else { |
| int32_t val_low = ReadW(addr, instr); |
| int32_t val_high = ReadW(addr + 4, instr); |
| set_register(rd, val_low); |
| set_register(rd1, val_high); |
| } |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } |
| } |
| } else { |
| Register rd = instr->RdField(); |
| Register rn = instr->RnField(); |
| int32_t rn_val = get_register(rn); |
| int32_t shifter_operand = 0; |
| bool shifter_carry_out = 0; |
| if (instr->TypeField() == 0) { |
| shifter_operand = GetShiftRm(instr, &shifter_carry_out); |
| } else { |
| ASSERT(instr->TypeField() == 1); |
| shifter_operand = GetImm(instr, &shifter_carry_out); |
| } |
| int32_t carry_in; |
| int32_t alu_out; |
| |
| switch (instr->OpcodeField()) { |
| case AND: { |
| // Format(instr, "and'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "and'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val & shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case EOR: { |
| // Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "eor'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val ^ shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case SUB: { |
| // Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "sub'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val - shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(rn_val, ~shifter_operand, 1)); |
| SetVFlag(OverflowFrom(rn_val, ~shifter_operand, 1)); |
| } |
| break; |
| } |
| |
| case RSB: { |
| // Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "rsb'cond's 'rd, 'rn, 'imm"); |
| alu_out = shifter_operand - rn_val; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(shifter_operand, ~rn_val, 1)); |
| SetVFlag(OverflowFrom(shifter_operand, ~rn_val, 1)); |
| } |
| break; |
| } |
| |
| case ADD: { |
| // Format(instr, "add'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "add'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val + shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(rn_val, shifter_operand, 0)); |
| SetVFlag(OverflowFrom(rn_val, shifter_operand, 0)); |
| } |
| break; |
| } |
| |
| case ADC: { |
| // Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "adc'cond's 'rd, 'rn, 'imm"); |
| carry_in = c_flag_ ? 1 : 0; |
| alu_out = rn_val + shifter_operand + carry_in; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(rn_val, shifter_operand, carry_in)); |
| SetVFlag(OverflowFrom(rn_val, shifter_operand, carry_in)); |
| } |
| break; |
| } |
| |
| case SBC: { |
| // Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "sbc'cond's 'rd, 'rn, 'imm"); |
| carry_in = c_flag_ ? 1 : 0; |
| alu_out = rn_val + ~shifter_operand + carry_in; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(rn_val, ~shifter_operand, carry_in)); |
| SetVFlag(OverflowFrom(rn_val, ~shifter_operand, carry_in)); |
| } |
| break; |
| } |
| |
| case RSC: { |
| // Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "rsc'cond's 'rd, 'rn, 'imm"); |
| carry_in = c_flag_ ? 1 : 0; |
| alu_out = shifter_operand + ~rn_val + carry_in; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(shifter_operand, ~rn_val, carry_in)); |
| SetVFlag(OverflowFrom(shifter_operand, ~rn_val, carry_in)); |
| } |
| break; |
| } |
| |
| case TST: { |
| if (instr->HasS()) { |
| // Format(instr, "tst'cond 'rn, 'shift_rm"); |
| // Format(instr, "tst'cond 'rn, 'imm"); |
| alu_out = rn_val & shifter_operand; |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| break; |
| } |
| |
| case TEQ: { |
| if (instr->HasS()) { |
| // Format(instr, "teq'cond 'rn, 'shift_rm"); |
| // Format(instr, "teq'cond 'rn, 'imm"); |
| alu_out = rn_val ^ shifter_operand; |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| break; |
| } |
| |
| case CMP: { |
| if (instr->HasS()) { |
| // Format(instr, "cmp'cond 'rn, 'shift_rm"); |
| // Format(instr, "cmp'cond 'rn, 'imm"); |
| alu_out = rn_val - shifter_operand; |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(rn_val, ~shifter_operand, 1)); |
| SetVFlag(OverflowFrom(rn_val, ~shifter_operand, 1)); |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| break; |
| } |
| |
| case CMN: { |
| if (instr->HasS()) { |
| // Format(instr, "cmn'cond 'rn, 'shift_rm"); |
| // Format(instr, "cmn'cond 'rn, 'imm"); |
| alu_out = rn_val + shifter_operand; |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(rn_val, shifter_operand, 0)); |
| SetVFlag(OverflowFrom(rn_val, shifter_operand, 0)); |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| break; |
| } |
| |
| case ORR: { |
| // Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "orr'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val | shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case MOV: { |
| // Format(instr, "mov'cond's 'rd, 'shift_rm"); |
| // Format(instr, "mov'cond's 'rd, 'imm"); |
| alu_out = shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case BIC: { |
| // Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "bic'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val & ~shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case MVN: { |
| // Format(instr, "mvn'cond's 'rd, 'shift_rm"); |
| // Format(instr, "mvn'cond's 'rd, 'imm"); |
| alu_out = ~shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| } |
| |
| |
| void Simulator::DecodeType2(Instr* instr) { |
| Register rd = instr->RdField(); |
| Register rn = instr->RnField(); |
| int32_t rn_val = get_register(rn); |
| int32_t im_val = instr->Offset12Field(); |
| uword addr = 0; |
| bool write_back = false; |
| switch (instr->PUField()) { |
| case 0: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val -= im_val; |
| write_back = true; |
| break; |
| } |
| case 1: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val += im_val; |
| write_back = true; |
| break; |
| } |
| case 2: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w"); |
| rn_val -= im_val; |
| addr = rn_val; |
| write_back = instr->HasW(); |
| break; |
| } |
| case 3: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w"); |
| rn_val += im_val; |
| addr = rn_val; |
| write_back = instr->HasW(); |
| break; |
| } |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| if (IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| if (write_back) { |
| set_register(rn, rn_val); |
| } |
| if (instr->HasB()) { |
| if (instr->HasL()) { |
| unsigned char val = ReadBU(addr); |
| set_register(rd, val); |
| } else { |
| unsigned char val = get_register(rd); |
| WriteB(addr, val); |
| } |
| } else { |
| if (instr->HasL()) { |
| set_register(rd, ReadW(addr, instr)); |
| } else { |
| WriteW(addr, get_register(rd), instr); |
| } |
| } |
| } |
| } |
| |
| |
| void Simulator::DoDivision(Instr* instr) { |
| const Register rd = instr->DivRdField(); |
| const Register rn = instr->DivRnField(); |
| const Register rm = instr->DivRmField(); |
| |
| if (!TargetCPUFeatures::integer_division_supported()) { |
| UnimplementedInstruction(instr); |
| return; |
| } |
| |
| // ARMv7-a does not trap on divide-by-zero. The destination register is just |
| // set to 0. |
| if (get_register(rm) == 0) { |
| set_register(rd, 0); |
| return; |
| } |
| |
| if (instr->Bit(21) == 1) { |
| // unsigned division. |
| uint32_t rn_val = static_cast<uint32_t>(get_register(rn)); |
| uint32_t rm_val = static_cast<uint32_t>(get_register(rm)); |
| uint32_t result = rn_val / rm_val; |
| set_register(rd, static_cast<int32_t>(result)); |
| } else { |
| // signed division. |
| int32_t rn_val = get_register(rn); |
| int32_t rm_val = get_register(rm); |
| int32_t result; |
| if ((rn_val == static_cast<int32_t>(0x80000000)) && |
| (rm_val == static_cast<int32_t>(0xffffffff))) { |
| result = 0x80000000; |
| } else { |
| result = rn_val / rm_val; |
| } |
| set_register(rd, result); |
| } |
| } |
| |
| |
| void Simulator::DecodeType3(Instr* instr) { |
| if (instr->IsDivision()) { |
| DoDivision(instr); |
| return; |
| } |
| Register rd = instr->RdField(); |
| Register rn = instr->RnField(); |
| int32_t rn_val = get_register(rn); |
| bool shifter_carry_out = 0; |
| int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out); |
| uword addr = 0; |
| bool write_back = false; |
| switch (instr->PUField()) { |
| case 0: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val -= shifter_operand; |
| write_back = true; |
| break; |
| } |
| case 1: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val += shifter_operand; |
| write_back = true; |
| break; |
| } |
| case 2: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w"); |
| rn_val -= shifter_operand; |
| addr = rn_val; |
| write_back = instr->HasW(); |
| break; |
| } |
| case 3: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w"); |
| rn_val += shifter_operand; |
| addr = rn_val; |
| write_back = instr->HasW(); |
| break; |
| } |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| if (IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| if (write_back) { |
| set_register(rn, rn_val); |
| } |
| if (instr->HasB()) { |
| if (instr->HasL()) { |
| unsigned char val = ReadBU(addr); |
| set_register(rd, val); |
| } else { |
| unsigned char val = get_register(rd); |
| WriteB(addr, val); |
| } |
| } else { |
| if (instr->HasL()) { |
| set_register(rd, ReadW(addr, instr)); |
| } else { |
| WriteW(addr, get_register(rd), instr); |
| } |
| } |
| } |
| } |
| |
| |
| void Simulator::DecodeType4(Instr* instr) { |
| ASSERT(instr->Bit(22) == 0); // only allowed to be set in privileged mode |
| if (instr->HasL()) { |
| // Format(instr, "ldm'cond'pu 'rn'w, 'rlist"); |
| HandleRList(instr, true); |
| } else { |
| // Format(instr, "stm'cond'pu 'rn'w, 'rlist"); |
| HandleRList(instr, false); |
| } |
| } |
| |
| |
| void Simulator::DecodeType5(Instr* instr) { |
| // Format(instr, "b'l'cond 'target"); |
| int off = (instr->SImmed24Field() << 2) + 8; |
| intptr_t pc = get_pc(); |
| if (instr->HasLink()) { |
| set_register(LR, pc + Instr::kInstrSize); |
| } |
| set_pc(pc+off); |
| } |
| |
| |
| void Simulator::DecodeType6(Instr* instr) { |
| if (instr->IsVFPDoubleTransfer()) { |
| Register rd = instr->RdField(); |
| Register rn = instr->RnField(); |
| if (instr->Bit(8) == 0) { |
| SRegister sm = instr->SmField(); |
| SRegister sm1 = static_cast<SRegister>(sm + 1); |
| ASSERT(sm1 < kNumberOfSRegisters); |
| if (instr->Bit(20) == 1) { |
| // Format(instr, "vmovrrs'cond 'rd, 'rn, {'sm', 'sm1}"); |
| set_register(rd, get_sregister_bits(sm)); |
| set_register(rn, get_sregister_bits(sm1)); |
| } else { |
| // Format(instr, "vmovsrr'cond {'sm, 'sm1}, 'rd', 'rn"); |
| set_sregister_bits(sm, get_register(rd)); |
| set_sregister_bits(sm1, get_register(rn)); |
| } |
| } else { |
| DRegister dm = instr->DmField(); |
| if (instr->Bit(20) == 1) { |
| // Format(instr, "vmovrrd'cond 'rd, 'rn, 'dm"); |
| int64_t dm_val = get_dregister_bits(dm); |
| set_register(rd, Utils::Low32Bits(dm_val)); |
| set_register(rn, Utils::High32Bits(dm_val)); |
| } else { |
| // Format(instr, "vmovdrr'cond 'dm, 'rd, 'rn"); |
| int64_t dm_val = Utils::LowHighTo64Bits(get_register(rd), |
| get_register(rn)); |
| set_dregister_bits(dm, dm_val); |
| } |
| } |
| } else if (instr-> IsVFPLoadStore()) { |
| Register rn = instr->RnField(); |
| int32_t addr = get_register(rn); |
| int32_t imm_val = instr->Bits(0, 8) << 2; |
| if (instr->Bit(23) == 1) { |
| addr += imm_val; |
| } else { |
| addr -= imm_val; |
| } |
| if (IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| if (instr->Bit(8) == 0) { |
| SRegister sd = instr->SdField(); |
| if (instr->Bit(20) == 1) { // vldrs |
| // Format(instr, "vldrs'cond 'sd, ['rn, #+'off10]"); |
| // Format(instr, "vldrs'cond 'sd, ['rn, #-'off10]"); |
| set_sregister_bits(sd, ReadW(addr, instr)); |
| } else { // vstrs |
| // Format(instr, "vstrs'cond 'sd, ['rn, #+'off10]"); |
| // Format(instr, "vstrs'cond 'sd, ['rn, #-'off10]"); |
| WriteW(addr, get_sregister_bits(sd), instr); |
| } |
| } else { |
| DRegister dd = instr->DdField(); |
| if (instr->Bit(20) == 1) { // vldrd |
| // Format(instr, "vldrd'cond 'dd, ['rn, #+'off10]"); |
| // Format(instr, "vldrd'cond 'dd, ['rn, #-'off10]"); |
| int64_t dd_val = Utils::LowHighTo64Bits(ReadW(addr, instr), |
| ReadW(addr + 4, instr)); |
| set_dregister_bits(dd, dd_val); |
| } else { // vstrd |
| // Format(instr, "vstrd'cond 'dd, ['rn, #+'off10]"); |
| // Format(instr, "vstrd'cond 'dd, ['rn, #-'off10]"); |
| int64_t dd_val = get_dregister_bits(dd); |
| WriteW(addr, Utils::Low32Bits(dd_val), instr); |
| WriteW(addr + 4, Utils::High32Bits(dd_val), instr); |
| } |
| } |
| } |
| } else if (instr->IsVFPMultipleLoadStore()) { |
| Register rn = instr->RnField(); |
| int32_t addr = get_register(rn); |
| int32_t imm_val = instr->Bits(0, 8); |
| if (instr->Bit(23) == 0) { |
| addr -= (imm_val << 2); |
| } |
| if (instr->HasW()) { |
| if (instr->Bit(23) == 1) { |
| set_register(rn, addr + (imm_val << 2)); |
| } else { |
| set_register(rn, addr); // already subtracted from addr |
| } |
| } |
| if (IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| if (instr->Bit(8) == 0) { |
| int32_t regs_cnt = imm_val; |
| int32_t start = instr->Bit(22) | (instr->Bits(12, 4) << 1); |
| for (int i = start; i < start + regs_cnt; i++) { |
| SRegister sd = static_cast<SRegister>(i); |
| if (instr->Bit(20) == 1) { |
| // Format(instr, "vldms'cond'pu 'rn'w, 'slist"); |
| set_sregister_bits(sd, ReadW(addr, instr)); |
| } else { |
| // Format(instr, "vstms'cond'pu 'rn'w, 'slist"); |
| WriteW(addr, get_sregister_bits(sd), instr); |
| } |
| addr += 4; |
| } |
| } else { |
| int32_t regs_cnt = imm_val >> 1; |
| int32_t start = (instr->Bit(22) << 4) | instr->Bits(12, 4); |
| if ((regs_cnt <= 16) && (start + regs_cnt <= kNumberOfDRegisters)) { |
| for (int i = start; i < start + regs_cnt; i++) { |
| DRegister dd = static_cast<DRegister>(i); |
| if (instr->Bit(20) == 1) { |
| // Format(instr, "vldmd'cond'pu 'rn'w, 'dlist"); |
| int64_t dd_val = Utils::LowHighTo64Bits(ReadW(addr, instr), |
| ReadW(addr + 4, instr)); |
| set_dregister_bits(dd, dd_val); |
| } else { |
| // Format(instr, "vstmd'cond'pu 'rn'w, 'dlist"); |
| int64_t dd_val = get_dregister_bits(dd); |
| WriteW(addr, Utils::Low32Bits(dd_val), instr); |
| WriteW(addr + 4, Utils::High32Bits(dd_val), instr); |
| } |
| addr += 8; |
| } |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } |
| } |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } |
| |
| |
| void Simulator::DecodeType7(Instr* instr) { |
| if (instr->Bit(24) == 1) { |
| // Format(instr, "svc #'svc"); |
| SupervisorCall(instr); |
| } else if (instr->IsVFPDataProcessingOrSingleTransfer()) { |
| if (instr->Bit(4) == 0) { |
| // VFP Data Processing |
| SRegister sd; |
| SRegister sn; |
| SRegister sm; |
| DRegister dd; |
| DRegister dn; |
| DRegister dm; |
| if (instr->Bit(8) == 0) { |
| sd = instr->SdField(); |
| sn = instr->SnField(); |
| sm = instr->SmField(); |
| dd = kNoDRegister; |
| dn = kNoDRegister; |
| dm = kNoDRegister; |
| } else { |
| sd = kNoSRegister; |
| sn = kNoSRegister; |
| sm = kNoSRegister; |
| dd = instr->DdField(); |
| dn = instr->DnField(); |
| dm = instr->DmField(); |
| } |
| switch (instr->Bits(20, 4) & 0xb) { |
| case 1: // vnmla, vnmls, vnmul |
| default: { |
| UnimplementedInstruction(instr); |
| break; |
| } |
| case 0: { // vmla, vmls floating-point |
| if (instr->Bit(8) == 0) { |
| float addend = get_sregister(sn) * get_sregister(sm); |
| float sd_val = get_sregister(sd); |
| if (instr->Bit(6) == 0) { |
| // Format(instr, "vmlas'cond 'sd, 'sn, 'sm"); |
| } else { |
| // Format(instr, "vmlss'cond 'sd, 'sn, 'sm"); |
| addend = -addend; |
| } |
| set_sregister(sd, sd_val + addend); |
| } else { |
| double addend = get_dregister(dn) * get_dregister(dm); |
| double dd_val = get_dregister(dd); |
| if (instr->Bit(6) == 0) { |
| // Format(instr, "vmlad'cond 'dd, 'dn, 'dm"); |
| } else { |
| // Format(instr, "vmlsd'cond 'dd, 'dn, 'dm"); |
| addend = -addend; |
| } |
| set_dregister(dd, dd_val + addend); |
| } |
| break; |
| } |
| case 2: { // vmul |
| if (instr->Bit(8) == 0) { |
| // Format(instr, "vmuls'cond 'sd, 'sn, 'sm"); |
| set_sregister(sd, get_sregister(sn) * get_sregister(sm)); |
| } else { |
| // Format(instr, "vmuld'cond 'dd, 'dn, 'dm"); |
| set_dregister(dd, get_dregister(dn) * get_dregister(dm)); |
| } |
| break; |
| } |
| case 8: { // vdiv |
| if (instr->Bit(8) == 0) { |
| // Format(instr, "vdivs'cond 'sd, 'sn, 'sm"); |
| set_sregister(sd, get_sregister(sn) / get_sregister(sm)); |
| } else { |
| // Format(instr, "vdivd'cond 'dd, 'dn, 'dm"); |
| set_dregister(dd, get_dregister(dn) / get_dregister(dm)); |
| } |
| break; |
| } |
| case 3: { // vadd, vsub floating-point |
| if (instr->Bit(8) == 0) { |
| if (instr->Bit(6) == 0) { |
| // Format(instr, "vadds'cond 'sd, 'sn, 'sm"); |
| set_sregister(sd, get_sregister(sn) + get_sregister(sm)); |
| } else { |
| // Format(instr, "vsubs'cond 'sd, 'sn, 'sm"); |
| set_sregister(sd, get_sregister(sn) - get_sregister(sm)); |
| } |
| } else { |
| if (instr->Bit(6) == 0) { |
| // Format(instr, "vaddd'cond 'dd, 'dn, 'dm"); |
| set_dregister(dd, get_dregister(dn) + get_dregister(dm)); |
| } else { |
| // Format(instr, "vsubd'cond 'dd, 'dn, 'dm"); |
| set_dregister(dd, get_dregister(dn) - get_dregister(dm)); |
| } |
| } |
| break; |
| } |
| case 0xb: { // Other VFP data-processing instructions |
| if (instr->Bit(6) == 0) { // vmov immediate |
| if (instr->Bit(8) == 0) { |
| // Format(instr, "vmovs'cond 'sd, #'immf"); |
| set_sregister(sd, instr->ImmFloatField()); |
| } else { |
| // Format(instr, "vmovd'cond 'dd, #'immd"); |
| set_dregister(dd, instr->ImmDoubleField()); |
| } |
| break; |
| } |
| switch (instr->Bits(16, 4)) { |
| case 0: { // vmov immediate, vmov register, vabs |
| switch (instr->Bits(6, 2)) { |
| case 1: { // vmov register |
| if (instr->Bit(8) == 0) { |
| // Format(instr, "vmovs'cond 'sd, 'sm"); |
| set_sregister(sd, get_sregister(sm)); |
| } else { |
| // Format(instr, "vmovd'cond 'dd, 'dm"); |
| set_dregister(dd, get_dregister(dm)); |
| } |
| break; |
| } |
| case 3: { // vabs |
| if (instr->Bit(8) == 0) { |
| // Format(instr, "vabss'cond 'sd, 'sm"); |
| set_sregister(sd, fabsf(get_sregister(sm))); |
| } else { |
| // Format(instr, "vabsd'cond 'dd, 'dm"); |
| set_dregister(dd, fabs(get_dregister(dm))); |
| } |
| break; |
| } |
| default: { |
| UnimplementedInstruction(instr); |
| break; |
| } |
| } |
| break; |
| } |
| case 1: { // vneg, vsqrt |
| switch (instr->Bits(6, 2)) { |
| case 1: { // vneg |
| if (instr->Bit(8) == 0) { |
| // Format(instr, "vnegs'cond 'sd, 'sm"); |
| set_sregister(sd, -get_sregister(sm)); |
| } else { |
| // Format(instr, "vnegd'cond 'dd, 'dm"); |
| set_dregister(dd, -get_dregister(dm)); |
| } |
| break; |
| } |
| case 3: { // vsqrt |
| if (instr->Bit(8) == 0) { |
| // Format(instr, "vsqrts'cond 'sd, 'sm"); |
| set_sregister(sd, sqrtf(get_sregister(sm))); |
| } else { |
| // Format(instr, "vsqrtd'cond 'dd, 'dm"); |
| set_dregister(dd, sqrt(get_dregister(dm))); |
| } |
| break; |
| } |
| default: { |
| UnimplementedInstruction(instr); |
| break; |
| } |
| } |
| break; |
| } |
| case 4: // vcmp, vcmpe |
| case 5: { // vcmp #0.0, vcmpe #0.0 |
| if (instr->Bit(7) == 1) { // vcmpe |
| UnimplementedInstruction(instr); |
| } else { |
| fp_n_flag_ = false; |
| fp_z_flag_ = false; |
| fp_c_flag_ = false; |
| fp_v_flag_ = false; |
| if (instr->Bit(8) == 0) { // vcmps |
| float sd_val = get_sregister(sd); |
| float sm_val; |
| |