| // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/globals.h" |
| #if defined(TARGET_OS_LINUX) |
| |
| #include "vm/os.h" |
| |
| #include <errno.h> // NOLINT |
| #include <limits.h> // NOLINT |
| #include <malloc.h> // NOLINT |
| #include <time.h> // NOLINT |
| #include <sys/resource.h> // NOLINT |
| #include <sys/time.h> // NOLINT |
| #include <sys/types.h> // NOLINT |
| #include <sys/syscall.h> // NOLINT |
| #include <sys/stat.h> // NOLINT |
| #include <fcntl.h> // NOLINT |
| #include <unistd.h> // NOLINT |
| |
| #include "platform/utils.h" |
| #include "vm/code_observers.h" |
| #include "vm/dart.h" |
| #include "vm/debuginfo.h" |
| #include "vm/isolate.h" |
| #include "vm/lockers.h" |
| #include "vm/os_thread.h" |
| #include "vm/vtune.h" |
| #include "vm/zone.h" |
| |
| |
| namespace dart { |
| |
| // Linux CodeObservers. |
| |
| DEFINE_FLAG(bool, generate_gdb_symbols, false, |
| "Generate symbols of generated dart functions for debugging with GDB"); |
| DEFINE_FLAG(bool, generate_perf_events_symbols, false, |
| "Generate events symbols for profiling with perf"); |
| DEFINE_FLAG(bool, generate_perf_jitdump, false, |
| "Writes jitdump data for profiling with perf annotate"); |
| |
| |
| class PerfCodeObserver : public CodeObserver { |
| public: |
| PerfCodeObserver() : out_file_(NULL) { |
| Dart_FileOpenCallback file_open = Isolate::file_open_callback(); |
| if (file_open == NULL) { |
| return; |
| } |
| intptr_t pid = getpid(); |
| char* filename = OS::SCreate(NULL, "/tmp/perf-%" Pd ".map", pid); |
| out_file_ = (*file_open)(filename, true); |
| free(filename); |
| } |
| |
| ~PerfCodeObserver() { |
| Dart_FileCloseCallback file_close = Isolate::file_close_callback(); |
| if ((file_close == NULL) || (out_file_ == NULL)) { |
| return; |
| } |
| (*file_close)(out_file_); |
| } |
| |
| virtual bool IsActive() const { |
| return FLAG_generate_perf_events_symbols && (out_file_ != NULL); |
| } |
| |
| virtual void Notify(const char* name, |
| uword base, |
| uword prologue_offset, |
| uword size, |
| bool optimized) { |
| Dart_FileWriteCallback file_write = Isolate::file_write_callback(); |
| if ((file_write == NULL) || (out_file_ == NULL)) { |
| return; |
| } |
| const char* marker = optimized ? "*" : ""; |
| char* buffer = OS::SCreate(Thread::Current()->zone(), |
| "%" Px " %" Px " %s%s\n", base, size, marker, name); |
| { |
| MutexLocker ml(CodeObservers::mutex()); |
| (*file_write)(buffer, strlen(buffer), out_file_); |
| } |
| } |
| |
| private: |
| void* out_file_; |
| |
| DISALLOW_COPY_AND_ASSIGN(PerfCodeObserver); |
| }; |
| |
| |
| class GdbCodeObserver : public CodeObserver { |
| public: |
| GdbCodeObserver() { } |
| |
| virtual bool IsActive() const { |
| return FLAG_generate_gdb_symbols; |
| } |
| |
| virtual void Notify(const char* name, |
| uword base, |
| uword prologue_offset, |
| uword size, |
| bool optimized) { |
| if (prologue_offset > 0) { |
| // In order to ensure that gdb sees the first instruction of a function |
| // as the prologue sequence we register two symbols for the cases when |
| // the prologue sequence is not the first instruction: |
| // <name>_entry is used for code preceding the prologue sequence. |
| // <name> for rest of the code (first instruction is prologue sequence). |
| char* pname = OS::SCreate(Thread::Current()->zone(), |
| "%s_%s", name, "entry"); |
| DebugInfo::RegisterSection(pname, base, size); |
| DebugInfo::RegisterSection(name, |
| (base + prologue_offset), |
| (size - prologue_offset)); |
| } else { |
| DebugInfo::RegisterSection(name, base, size); |
| } |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(GdbCodeObserver); |
| }; |
| |
| |
| #define CLOCKFD 3 |
| #define FD_TO_CLOCKID(fd) ((~(clockid_t) (fd) << 3) | CLOCKFD) // NOLINT |
| |
| class JitdumpCodeObserver : public CodeObserver { |
| public: |
| JitdumpCodeObserver() { |
| ASSERT(FLAG_generate_perf_jitdump); |
| out_file_ = NULL; |
| clock_fd_ = -1; |
| clock_id_ = kInvalidClockId; |
| code_sequence_ = 0; |
| Dart_FileOpenCallback file_open = Isolate::file_open_callback(); |
| Dart_FileWriteCallback file_write = Isolate::file_write_callback(); |
| Dart_FileCloseCallback file_close = Isolate::file_close_callback(); |
| if ((file_open == NULL) || (file_write == NULL) || (file_close == NULL)) { |
| return; |
| } |
| // The Jitdump code observer writes all jitted code into the file |
| // 'perf.jitdump' in the current working directory. We open the file once |
| // on initialization and close it when the VM is going down. |
| { |
| // Open the file. |
| const char* filename = "perf.jitdump"; |
| out_file_ = (*file_open)(filename, true); |
| ASSERT(out_file_ != NULL); |
| // Write the jit dump header. |
| WriteHeader(); |
| } |
| // perf uses an internal clock and because our output is merged with data |
| // collected by perf our timestamps must be consistent. Using |
| // the posix-clock-module (/dev/trace_clock) as our time source ensures |
| // we are consistent with the perf timestamps. |
| clock_id_ = kInvalidClockId; |
| clock_fd_ = open("/dev/trace_clock", O_RDONLY); |
| if (clock_fd_ >= 0) { |
| clock_id_ = FD_TO_CLOCKID(clock_fd_); |
| } |
| } |
| |
| ~JitdumpCodeObserver() { |
| Dart_FileCloseCallback file_close = Isolate::file_close_callback(); |
| if (file_close == NULL) { |
| return; |
| } |
| ASSERT(out_file_ != NULL); |
| (*file_close)(out_file_); |
| if (clock_fd_ >= 0) { |
| close(clock_fd_); |
| } |
| } |
| |
| virtual bool IsActive() const { |
| return FLAG_generate_perf_jitdump && (out_file_ != NULL); |
| } |
| |
| virtual void Notify(const char* name, |
| uword base, |
| uword prologue_offset, |
| uword size, |
| bool optimized) { |
| WriteCodeLoad(name, base, prologue_offset, size, optimized); |
| } |
| |
| private: |
| static const uint32_t kJitHeaderMagic = 0x4A695444; |
| static const uint32_t kJitHeaderMagicSw = 0x4454694A; |
| static const uint32_t kJitHeaderVersion = 0x1; |
| static const uint32_t kElfMachIA32 = 3; |
| static const uint32_t kElfMachX64 = 62; |
| static const uint32_t kElfMachARM = 40; |
| // TODO(zra): Find the right ARM64 constant. |
| static const uint32_t kElfMachARM64 = 40; |
| static const uint32_t kElfMachMIPS = 10; |
| static const int kInvalidClockId = -1; |
| |
| struct jitheader { |
| uint32_t magic; /* characters "jItD" */ |
| uint32_t version; /* header version */ |
| uint32_t total_size; /* total size of header */ |
| uint32_t elf_mach; /* elf mach target */ |
| uint32_t pad1; /* reserved */ |
| uint32_t pid; /* JIT process id */ |
| uint64_t timestamp; /* timestamp */ |
| }; |
| |
| /* record prefix (mandatory in each record) */ |
| struct jr_prefix { |
| uint32_t id; |
| uint32_t total_size; |
| uint64_t timestamp; |
| }; |
| |
| enum jit_record_type { |
| JIT_CODE_LOAD = 0, |
| /* JIT_CODE_MOVE = 1, */ |
| /* JIT_CODE_DEBUG_INFO = 2, */ |
| /* JIT_CODE_CLOSE = 3, */ |
| JIT_CODE_MAX = 4, |
| }; |
| |
| struct jr_code_load { |
| struct jr_prefix prefix; |
| uint32_t pid; |
| uint32_t tid; |
| uint64_t vma; |
| uint64_t code_addr; |
| uint64_t code_size; |
| uint64_t code_index; |
| }; |
| |
| const char* GenerateCodeName(const char* name, bool optimized) { |
| const char* marker = optimized ? "*" : ""; |
| return OS::SCreate(Thread::Current()->zone(), "%s%s", marker, name); |
| } |
| |
| uint32_t GetElfMach() { |
| #if defined(TARGET_ARCH_IA32) |
| return kElfMachIA32; |
| #elif defined(TARGET_ARCH_X64) |
| return kElfMachX64; |
| #elif defined(TARGET_ARCH_ARM) |
| return kElfMachARM; |
| #elif defined(TARGET_ARCH_ARM64) |
| return kElfMachARM64; |
| #elif defined(TARGET_ARCH_MIPS) |
| return kElfMachMIPS; |
| #else |
| #error Unknown architecture. |
| #endif |
| } |
| |
| pid_t gettid() { |
| // libc doesn't wrap the Linux-specific gettid system call. |
| // Note that this thread id is not the same as the posix thread id. |
| return syscall(SYS_gettid); |
| } |
| |
| uint64_t GetKernelTimeNanos() { |
| if (clock_id_ != kInvalidClockId) { |
| struct timespec ts; |
| int r = clock_gettime(clock_id_, &ts); |
| ASSERT(r == 0); |
| uint64_t nanos = static_cast<uint64_t>(ts.tv_sec) * |
| static_cast<uint64_t>(kNanosecondsPerSecond); |
| nanos += static_cast<uint64_t>(ts.tv_nsec); |
| return nanos; |
| } else { |
| return OS::GetCurrentTimeMicros() * kNanosecondsPerMicrosecond; |
| } |
| } |
| |
| void WriteHeader() { |
| Dart_FileWriteCallback file_write = Isolate::file_write_callback(); |
| ASSERT(file_write != NULL); |
| ASSERT(out_file_ != NULL); |
| jitheader header; |
| header.magic = kJitHeaderMagic; |
| header.version = kJitHeaderVersion; |
| header.total_size = sizeof(jitheader); |
| header.pad1 = 0x0; |
| header.elf_mach = GetElfMach(); |
| header.pid = getpid(); |
| header.timestamp = GetKernelTimeNanos(); |
| { |
| MutexLocker ml(CodeObservers::mutex()); |
| (*file_write)(&header, sizeof(header), out_file_); |
| } |
| } |
| |
| void WriteCodeLoad(const char* name, uword base, uword prologue_offset, |
| uword code_size, bool optimized) { |
| Dart_FileWriteCallback file_write = Isolate::file_write_callback(); |
| ASSERT(file_write != NULL); |
| ASSERT(out_file_ != NULL); |
| |
| const char* code_name = GenerateCodeName(name, optimized); |
| const intptr_t code_name_size = strlen(code_name) + 1; |
| uint8_t* code_pointer = reinterpret_cast<uint8_t*>(base); |
| |
| jr_code_load code_load; |
| code_load.prefix.id = JIT_CODE_LOAD; |
| code_load.prefix.total_size = |
| sizeof(code_load) + code_name_size + code_size; |
| code_load.prefix.timestamp = GetKernelTimeNanos(); |
| code_load.pid = getpid(); |
| code_load.tid = gettid(); |
| code_load.vma = 0x0; // Our addresses are absolute. |
| code_load.code_addr = base; |
| code_load.code_size = code_size; |
| |
| { |
| MutexLocker ml(CodeObservers::mutex()); |
| // Set this field under the index. |
| code_load.code_index = code_sequence_++; |
| // Write structures. |
| (*file_write)(&code_load, sizeof(code_load), out_file_); |
| (*file_write)(code_name, code_name_size, out_file_); |
| (*file_write)(code_pointer, code_size, out_file_); |
| } |
| } |
| |
| void* out_file_; |
| int clock_fd_; |
| int clock_id_; |
| uint64_t code_sequence_; |
| DISALLOW_COPY_AND_ASSIGN(JitdumpCodeObserver); |
| }; |
| |
| |
| const char* OS::Name() { |
| return "linux"; |
| } |
| |
| |
| intptr_t OS::ProcessId() { |
| return static_cast<intptr_t>(getpid()); |
| } |
| |
| |
| static bool LocalTime(int64_t seconds_since_epoch, tm* tm_result) { |
| time_t seconds = static_cast<time_t>(seconds_since_epoch); |
| if (seconds != seconds_since_epoch) return false; |
| struct tm* error_code = localtime_r(&seconds, tm_result); |
| return error_code != NULL; |
| } |
| |
| |
| const char* OS::GetTimeZoneName(int64_t seconds_since_epoch) { |
| tm decomposed; |
| bool succeeded = LocalTime(seconds_since_epoch, &decomposed); |
| // If unsuccessful, return an empty string like V8 does. |
| return (succeeded && (decomposed.tm_zone != NULL)) ? decomposed.tm_zone : ""; |
| } |
| |
| |
| int OS::GetTimeZoneOffsetInSeconds(int64_t seconds_since_epoch) { |
| tm decomposed; |
| bool succeeded = LocalTime(seconds_since_epoch, &decomposed); |
| // Even if the offset was 24 hours it would still easily fit into 32 bits. |
| // If unsuccessful, return zero like V8 does. |
| return succeeded ? static_cast<int>(decomposed.tm_gmtoff) : 0; |
| } |
| |
| |
| int OS::GetLocalTimeZoneAdjustmentInSeconds() { |
| // TODO(floitsch): avoid excessive calls to tzset? |
| tzset(); |
| // Even if the offset was 24 hours it would still easily fit into 32 bits. |
| // Note that Unix and Dart disagree on the sign. |
| return static_cast<int>(-timezone); |
| } |
| |
| |
| int64_t OS::GetCurrentTimeMillis() { |
| return GetCurrentTimeMicros() / 1000; |
| } |
| |
| |
| int64_t OS::GetCurrentTimeMicros() { |
| // gettimeofday has microsecond resolution. |
| struct timeval tv; |
| if (gettimeofday(&tv, NULL) < 0) { |
| UNREACHABLE(); |
| return 0; |
| } |
| return (static_cast<int64_t>(tv.tv_sec) * 1000000) + tv.tv_usec; |
| } |
| |
| |
| int64_t OS::GetCurrentTraceMicros() { |
| struct timespec ts; |
| if (clock_gettime(CLOCK_MONOTONIC, &ts) != 0) { |
| UNREACHABLE(); |
| return 0; |
| } |
| // Convert to microseconds. |
| int64_t result = ts.tv_sec; |
| result *= kMicrosecondsPerSecond; |
| result += (ts.tv_nsec / kNanosecondsPerMicrosecond); |
| return result; |
| } |
| |
| |
| void* OS::AlignedAllocate(intptr_t size, intptr_t alignment) { |
| const int kMinimumAlignment = 16; |
| ASSERT(Utils::IsPowerOfTwo(alignment)); |
| ASSERT(alignment >= kMinimumAlignment); |
| void* p = memalign(alignment, size); |
| if (p == NULL) { |
| UNREACHABLE(); |
| } |
| return p; |
| } |
| |
| |
| void OS::AlignedFree(void* ptr) { |
| free(ptr); |
| } |
| |
| |
| // TODO(5411554): May need to hoist these architecture dependent code |
| // into a architecture specific file e.g: os_ia32_linux.cc |
| intptr_t OS::ActivationFrameAlignment() { |
| #if defined(TARGET_ARCH_IA32) || \ |
| defined(TARGET_ARCH_X64) || \ |
| defined(TARGET_ARCH_ARM64) |
| const int kMinimumAlignment = 16; |
| #elif defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_MIPS) |
| const int kMinimumAlignment = 8; |
| #else |
| #error Unsupported architecture. |
| #endif |
| intptr_t alignment = kMinimumAlignment; |
| // TODO(5411554): Allow overriding default stack alignment for |
| // testing purposes. |
| // Flags::DebugIsInt("stackalign", &alignment); |
| ASSERT(Utils::IsPowerOfTwo(alignment)); |
| ASSERT(alignment >= kMinimumAlignment); |
| return alignment; |
| } |
| |
| |
| intptr_t OS::PreferredCodeAlignment() { |
| #if defined(TARGET_ARCH_IA32) || \ |
| defined(TARGET_ARCH_X64) || \ |
| defined(TARGET_ARCH_ARM64) |
| const int kMinimumAlignment = 32; |
| #elif defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_MIPS) |
| const int kMinimumAlignment = 16; |
| #else |
| #error Unsupported architecture. |
| #endif |
| intptr_t alignment = kMinimumAlignment; |
| // TODO(5411554): Allow overriding default code alignment for |
| // testing purposes. |
| // Flags::DebugIsInt("codealign", &alignment); |
| ASSERT(Utils::IsPowerOfTwo(alignment)); |
| ASSERT(alignment >= kMinimumAlignment); |
| ASSERT(alignment <= OS::kMaxPreferredCodeAlignment); |
| return alignment; |
| } |
| |
| |
| bool OS::AllowStackFrameIteratorFromAnotherThread() { |
| return false; |
| } |
| |
| |
| int OS::NumberOfAvailableProcessors() { |
| return sysconf(_SC_NPROCESSORS_ONLN); |
| } |
| |
| |
| void OS::Sleep(int64_t millis) { |
| int64_t micros = millis * kMicrosecondsPerMillisecond; |
| SleepMicros(micros); |
| } |
| |
| |
| void OS::SleepMicros(int64_t micros) { |
| struct timespec req; // requested. |
| struct timespec rem; // remainder. |
| int64_t seconds = micros / kMicrosecondsPerSecond; |
| micros = micros - seconds * kMicrosecondsPerSecond; |
| int64_t nanos = micros * kNanosecondsPerMicrosecond; |
| req.tv_sec = seconds; |
| req.tv_nsec = nanos; |
| while (true) { |
| int r = nanosleep(&req, &rem); |
| if (r == 0) { |
| break; |
| } |
| // We should only ever see an interrupt error. |
| ASSERT(errno == EINTR); |
| // Copy remainder into requested and repeat. |
| req = rem; |
| } |
| } |
| |
| |
| // TODO(regis, iposva): When this function is no longer called from the |
| // CodeImmutability test in object_test.cc, it will be called only from the |
| // simulator, which means that only the Intel implementation is needed. |
| void OS::DebugBreak() { |
| __builtin_trap(); |
| } |
| |
| |
| char* OS::StrNDup(const char* s, intptr_t n) { |
| return strndup(s, n); |
| } |
| |
| |
| void OS::Print(const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| VFPrint(stdout, format, args); |
| va_end(args); |
| } |
| |
| |
| void OS::VFPrint(FILE* stream, const char* format, va_list args) { |
| vfprintf(stream, format, args); |
| fflush(stream); |
| } |
| |
| |
| int OS::SNPrint(char* str, size_t size, const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| int retval = VSNPrint(str, size, format, args); |
| va_end(args); |
| return retval; |
| } |
| |
| |
| int OS::VSNPrint(char* str, size_t size, const char* format, va_list args) { |
| int retval = vsnprintf(str, size, format, args); |
| if (retval < 0) { |
| FATAL1("Fatal error in OS::VSNPrint with format '%s'", format); |
| } |
| return retval; |
| } |
| |
| |
| char* OS::SCreate(Zone* zone, const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| char* buffer = VSCreate(zone, format, args); |
| va_end(args); |
| return buffer; |
| } |
| |
| |
| char* OS::VSCreate(Zone* zone, const char* format, va_list args) { |
| // Measure. |
| va_list measure_args; |
| va_copy(measure_args, args); |
| intptr_t len = VSNPrint(NULL, 0, format, measure_args); |
| va_end(measure_args); |
| |
| char* buffer; |
| if (zone) { |
| buffer = zone->Alloc<char>(len + 1); |
| } else { |
| buffer = reinterpret_cast<char*>(malloc(len + 1)); |
| } |
| ASSERT(buffer != NULL); |
| |
| // Print. |
| va_list print_args; |
| va_copy(print_args, args); |
| VSNPrint(buffer, len + 1, format, print_args); |
| va_end(print_args); |
| return buffer; |
| } |
| |
| |
| bool OS::StringToInt64(const char* str, int64_t* value) { |
| ASSERT(str != NULL && strlen(str) > 0 && value != NULL); |
| int32_t base = 10; |
| char* endptr; |
| int i = 0; |
| if (str[0] == '-') { |
| i = 1; |
| } |
| if ((str[i] == '0') && |
| (str[i + 1] == 'x' || str[i + 1] == 'X') && |
| (str[i + 2] != '\0')) { |
| base = 16; |
| } |
| errno = 0; |
| *value = strtoll(str, &endptr, base); |
| return ((errno == 0) && (endptr != str) && (*endptr == 0)); |
| } |
| |
| |
| void OS::RegisterCodeObservers() { |
| if (FLAG_generate_perf_events_symbols) { |
| CodeObservers::Register(new PerfCodeObserver); |
| } |
| if (FLAG_generate_gdb_symbols) { |
| CodeObservers::Register(new GdbCodeObserver); |
| } |
| if (FLAG_generate_perf_jitdump) { |
| CodeObservers::Register(new JitdumpCodeObserver); |
| } |
| #if defined(DART_VTUNE_SUPPORT) |
| CodeObservers::Register(new VTuneCodeObserver); |
| #endif |
| } |
| |
| |
| void OS::PrintErr(const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| VFPrint(stderr, format, args); |
| va_end(args); |
| } |
| |
| |
| void OS::InitOnce() { |
| // TODO(5411554): For now we check that initonce is called only once, |
| // Once there is more formal mechanism to call InitOnce we can move |
| // this check there. |
| static bool init_once_called = false; |
| ASSERT(init_once_called == false); |
| init_once_called = true; |
| } |
| |
| |
| void OS::Shutdown() { |
| } |
| |
| |
| void OS::Abort() { |
| abort(); |
| } |
| |
| |
| void OS::Exit(int code) { |
| exit(code); |
| } |
| |
| } // namespace dart |
| |
| #endif // defined(TARGET_OS_LINUX) |