blob: e8108bb90c517df2ab287ed174e76031836baa06 [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
import 'package:analyzer/dart/analysis/features.dart';
import 'package:analyzer/dart/ast/ast.dart';
import 'package:analyzer/dart/ast/token.dart';
import 'package:analyzer/dart/ast/visitor.dart';
import 'package:analyzer/dart/element/element.dart';
import 'package:analyzer/dart/element/nullability_suffix.dart';
import 'package:analyzer/dart/element/type.dart';
import 'package:analyzer/src/dart/ast/ast.dart';
import 'package:analyzer/src/dart/element/element.dart';
import 'package:analyzer/src/dart/element/member.dart' show ConstructorMember;
import 'package:analyzer/src/dart/element/type.dart';
import 'package:analyzer/src/dart/element/type_algebra.dart';
import 'package:analyzer/src/error/codes.dart';
import 'package:analyzer/src/generated/engine.dart';
import 'package:analyzer/src/generated/resolver.dart';
import 'package:analyzer/src/generated/utilities_dart.dart';
import 'package:analyzer/src/generated/variable_type_provider.dart';
import 'package:analyzer/src/task/strong/checker.dart'
show getExpressionType, getReadType;
import 'package:meta/meta.dart';
/**
* Instances of the class `StaticTypeAnalyzer` perform two type-related tasks. First, they
* compute the static type of every expression. Second, they look for any static type errors or
* warnings that might need to be generated. The requirements for the type analyzer are:
* <ol>
* * Every element that refers to types should be fully populated.
* * Every node representing an expression should be resolved to the Type of the expression.
* </ol>
*/
class StaticTypeAnalyzer extends SimpleAstVisitor<void> {
/**
* The resolver driving the resolution and type analysis.
*/
final ResolverVisitor _resolver;
/**
* The feature set that should be used to resolve types.
*/
final FeatureSet _featureSet;
/**
* The object providing access to the types defined by the language.
*/
TypeProvider _typeProvider;
/**
* The type system in use for static type analysis.
*/
Dart2TypeSystem _typeSystem;
/**
* The type representing the type 'dynamic'.
*/
DartType _dynamicType;
/**
* True if inference failures should be reported, otherwise false.
*/
bool _strictInference;
/**
* The type representing the class containing the nodes being analyzed,
* or `null` if the nodes are not within a class.
*/
DartType thisType;
/**
* The object providing promoted or declared types of variables.
*/
LocalVariableTypeProvider _localVariableTypeProvider;
/**
* Initialize a newly created static type analyzer to analyze types for the
* [_resolver] based on the
*
* @param resolver the resolver driving this participant
*/
StaticTypeAnalyzer(this._resolver, this._featureSet) {
_typeProvider = _resolver.typeProvider;
_typeSystem = _resolver.typeSystem;
_dynamicType = _typeProvider.dynamicType;
_localVariableTypeProvider = _resolver.localVariableTypeProvider;
AnalysisOptionsImpl analysisOptions =
_resolver.definingLibrary.context.analysisOptions;
_strictInference = analysisOptions.strictInference;
}
NullabilitySuffix get _noneOrStarSuffix {
return _nonNullableEnabled
? NullabilitySuffix.none
: NullabilitySuffix.star;
}
/**
* Return `true` if NNBD is enabled for this compilation unit.
*/
bool get _nonNullableEnabled => _featureSet.isEnabled(Feature.non_nullable);
/**
* Given a constructor name [node] and a type [type], record an inferred type
* for the constructor if in strong mode. This is used to fill in any
* inferred type parameters found by the resolver.
*/
void inferConstructorName(ConstructorName node, InterfaceType type) {
node.type.type = type;
if (type != _typeSystem.instantiateToBounds(type.element.type)) {
_resolver.inferenceContext.recordInference(node.parent, type);
}
}
/**
* Given a formal parameter list and a function type use the function type
* to infer types for any of the parameters which have implicit (missing)
* types. Returns true if inference has occurred.
*/
bool inferFormalParameterList(
FormalParameterList node, DartType functionType) {
bool inferred = false;
if (node != null && functionType is FunctionType) {
void inferType(ParameterElementImpl p, DartType inferredType) {
// Check that there is no declared type, and that we have not already
// inferred a type in some fashion.
if (p.hasImplicitType && (p.type == null || p.type.isDynamic)) {
inferredType = _typeSystem.upperBoundForType(inferredType);
if (inferredType.isDartCoreNull) {
inferredType = _typeProvider.objectType;
}
if (!inferredType.isDynamic) {
p.type = inferredType;
inferred = true;
}
}
}
List<ParameterElement> parameters = node.parameterElements;
{
Iterator<ParameterElement> positional =
parameters.where((p) => p.isPositional).iterator;
Iterator<ParameterElement> fnPositional =
functionType.parameters.where((p) => p.isPositional).iterator;
while (positional.moveNext() && fnPositional.moveNext()) {
inferType(positional.current, fnPositional.current.type);
}
}
{
Map<String, DartType> namedParameterTypes =
functionType.namedParameterTypes;
Iterable<ParameterElement> named = parameters.where((p) => p.isNamed);
for (ParameterElementImpl p in named) {
if (!namedParameterTypes.containsKey(p.name)) {
continue;
}
inferType(p, namedParameterTypes[p.name]);
}
}
}
return inferred;
}
DartType inferListType(ListLiteral node, {bool downwards: false}) {
DartType contextType = InferenceContext.getContext(node);
var element = _typeProvider.listElement;
var typeParameters = element.typeParameters;
var genericElementType = typeParameters[0].instantiate(
nullabilitySuffix: _noneOrStarSuffix,
);
List<DartType> elementTypes;
List<ParameterElement> parameters;
if (downwards) {
if (contextType == null) {
return null;
}
elementTypes = [];
parameters = [];
} else {
// Also use upwards information to infer the type.
elementTypes = node.elements
.map((element) => _computeElementType(element))
.where((t) => t != null)
.toList();
var syntheticParameter = ParameterElementImpl.synthetic(
'element', genericElementType, ParameterKind.POSITIONAL);
parameters = List.filled(elementTypes.length, syntheticParameter);
}
if (_strictInference && parameters.isEmpty && contextType == null) {
// We cannot infer the type of a collection literal with no elements, and
// no context type. If there are any elements, inference has not failed,
// as the types of those elements are considered resolved.
_resolver.errorReporter.reportErrorForNode(
HintCode.INFERENCE_FAILURE_ON_COLLECTION_LITERAL, node, ['List']);
}
var typeArguments = _typeSystem.inferGenericFunctionOrType(
typeParameters: typeParameters,
parameters: parameters,
declaredReturnType: element.thisType,
argumentTypes: elementTypes,
contextReturnType: contextType,
downwards: downwards,
isConst: node.isConst,
errorReporter: _resolver.errorReporter,
errorNode: node,
);
return element.instantiate(
typeArguments: typeArguments,
nullabilitySuffix: _noneOrStarSuffix,
);
}
ParameterizedType inferMapTypeDownwards(
SetOrMapLiteral node, DartType contextType) {
if (contextType == null) {
return null;
}
var element = _typeProvider.mapElement;
var typeArguments = _typeSystem.inferGenericFunctionOrType(
typeParameters: element.typeParameters,
parameters: const [],
declaredReturnType: element.thisType,
argumentTypes: const [],
contextReturnType: contextType,
downwards: true,
isConst: node.isConst,
errorReporter: _resolver.errorReporter,
errorNode: node,
);
return element.instantiate(
typeArguments: typeArguments,
nullabilitySuffix: _noneOrStarSuffix,
);
}
DartType inferSetTypeDownwards(SetOrMapLiteral node, DartType contextType) {
if (contextType == null) {
return null;
}
var element = _typeProvider.setElement;
var typeArguments = _typeSystem.inferGenericFunctionOrType(
typeParameters: element.typeParameters,
parameters: const [],
declaredReturnType: element.thisType,
argumentTypes: const [],
contextReturnType: contextType,
downwards: true,
isConst: node.isConst,
errorReporter: _resolver.errorReporter,
errorNode: node,
);
return element.instantiate(
typeArguments: typeArguments,
nullabilitySuffix: _noneOrStarSuffix,
);
}
/**
* The Dart Language Specification, 12.5: <blockquote>The static type of a string literal is
* `String`.</blockquote>
*/
@override
void visitAdjacentStrings(AdjacentStrings node) {
_recordStaticType(node, _nonNullable(_typeProvider.stringType));
}
/**
* The Dart Language Specification, 12.32: <blockquote>... the cast expression <i>e as T</i> ...
*
* It is a static warning if <i>T</i> does not denote a type available in the current lexical
* scope.
*
* The static type of a cast expression <i>e as T</i> is <i>T</i>.</blockquote>
*/
@override
void visitAsExpression(AsExpression node) {
_recordStaticType(node, _getType(node.type));
}
/**
* The Dart Language Specification, 12.18: <blockquote>... an assignment <i>a</i> of the form <i>v
* = e</i> ...
*
* It is a static type warning if the static type of <i>e</i> may not be assigned to the static
* type of <i>v</i>.
*
* The static type of the expression <i>v = e</i> is the static type of <i>e</i>.
*
* ... an assignment of the form <i>C.v = e</i> ...
*
* It is a static type warning if the static type of <i>e</i> may not be assigned to the static
* type of <i>C.v</i>.
*
* The static type of the expression <i>C.v = e</i> is the static type of <i>e</i>.
*
* ... an assignment of the form <i>e<sub>1</sub>.v = e<sub>2</sub></i> ...
*
* Let <i>T</i> be the static type of <i>e<sub>1</sub></i>. It is a static type warning if
* <i>T</i> does not have an accessible instance setter named <i>v=</i>. It is a static type
* warning if the static type of <i>e<sub>2</sub></i> may not be assigned to <i>T</i>.
*
* The static type of the expression <i>e<sub>1</sub>.v = e<sub>2</sub></i> is the static type of
* <i>e<sub>2</sub></i>.
*
* ... an assignment of the form <i>e<sub>1</sub>[e<sub>2</sub>] = e<sub>3</sub></i> ...
*
* The static type of the expression <i>e<sub>1</sub>[e<sub>2</sub>] = e<sub>3</sub></i> is the
* static type of <i>e<sub>3</sub></i>.
*
* A compound assignment of the form <i>v op= e</i> is equivalent to <i>v = v op e</i>. A compound
* assignment of the form <i>C.v op= e</i> is equivalent to <i>C.v = C.v op e</i>. A compound
* assignment of the form <i>e<sub>1</sub>.v op= e<sub>2</sub></i> is equivalent to <i>((x) => x.v
* = x.v op e<sub>2</sub>)(e<sub>1</sub>)</i> where <i>x</i> is a variable that is not used in
* <i>e<sub>2</sub></i>. A compound assignment of the form <i>e<sub>1</sub>[e<sub>2</sub>] op=
* e<sub>3</sub></i> is equivalent to <i>((a, i) => a[i] = a[i] op e<sub>3</sub>)(e<sub>1</sub>,
* e<sub>2</sub>)</i> where <i>a</i> and <i>i</i> are a variables that are not used in
* <i>e<sub>3</sub></i>.</blockquote>
*/
@override
void visitAssignmentExpression(AssignmentExpression node) {
TokenType operator = node.operator.type;
if (operator == TokenType.EQ) {
Expression rightHandSide = node.rightHandSide;
DartType staticType = _getStaticType(rightHandSide);
_recordStaticType(node, staticType);
} else if (operator == TokenType.QUESTION_QUESTION_EQ) {
if (_nonNullableEnabled) {
// The static type of a compound assignment using ??= with NNBD is the
// least upper bound of the static types of the LHS and RHS after
// promoting the LHS/ to non-null (as we know its value will not be used
// if null)
_analyzeLeastUpperBoundTypes(
node,
_typeSystem.promoteToNonNull(
_getExpressionType(node.leftHandSide, read: true)),
_getExpressionType(node.rightHandSide, read: true));
} else {
// The static type of a compound assignment using ??= before NNBD is the
// least upper bound of the static types of the LHS and RHS.
_analyzeLeastUpperBound(node, node.leftHandSide, node.rightHandSide,
read: true);
}
return;
} else if (operator == TokenType.AMPERSAND_AMPERSAND_EQ ||
operator == TokenType.BAR_BAR_EQ) {
_recordStaticType(node, _nonNullable(_typeProvider.boolType));
} else {
var operatorElement = node.staticElement;
var type = operatorElement?.returnType ?? _dynamicType;
type = _typeSystem.refineBinaryExpressionType(
_getStaticType(node.leftHandSide, read: true),
operator,
node.rightHandSide.staticType,
type,
_featureSet,
);
_recordStaticType(node, type);
var leftWriteType = _getStaticType(node.leftHandSide);
if (!_typeSystem.isAssignableTo(type, leftWriteType,
featureSet: _featureSet)) {
_resolver.errorReporter.reportTypeErrorForNode(
StaticTypeWarningCode.INVALID_ASSIGNMENT,
node.rightHandSide,
[type, leftWriteType],
);
}
}
_nullShortingTermination(node);
}
/**
* The Dart Language Specification, 16.29 (Await Expressions):
*
* The static type of [the expression "await e"] is flatten(T) where T is
* the static type of e.
*/
@override
void visitAwaitExpression(AwaitExpression node) {
// Await the Future. This results in whatever type is (ultimately) returned.
DartType awaitType(DartType awaitedType) {
if (awaitedType == null) {
return null;
}
if (awaitedType.isDartAsyncFutureOr) {
return awaitType((awaitedType as InterfaceType).typeArguments[0]);
}
return _typeSystem.flatten(awaitedType);
}
_recordStaticType(node, awaitType(_getStaticType(node.expression)));
}
/**
* The Dart Language Specification, 12.20: <blockquote>The static type of a logical boolean
* expression is `bool`.</blockquote>
*
* The Dart Language Specification, 12.21:<blockquote>A bitwise expression of the form
* <i>e<sub>1</sub> op e<sub>2</sub></i> is equivalent to the method invocation
* <i>e<sub>1</sub>.op(e<sub>2</sub>)</i>. A bitwise expression of the form <i>super op
* e<sub>2</sub></i> is equivalent to the method invocation
* <i>super.op(e<sub>2</sub>)</i>.</blockquote>
*
* The Dart Language Specification, 12.22: <blockquote>The static type of an equality expression
* is `bool`.</blockquote>
*
* The Dart Language Specification, 12.23: <blockquote>A relational expression of the form
* <i>e<sub>1</sub> op e<sub>2</sub></i> is equivalent to the method invocation
* <i>e<sub>1</sub>.op(e<sub>2</sub>)</i>. A relational expression of the form <i>super op
* e<sub>2</sub></i> is equivalent to the method invocation
* <i>super.op(e<sub>2</sub>)</i>.</blockquote>
*
* The Dart Language Specification, 12.24: <blockquote>A shift expression of the form
* <i>e<sub>1</sub> op e<sub>2</sub></i> is equivalent to the method invocation
* <i>e<sub>1</sub>.op(e<sub>2</sub>)</i>. A shift expression of the form <i>super op
* e<sub>2</sub></i> is equivalent to the method invocation
* <i>super.op(e<sub>2</sub>)</i>.</blockquote>
*
* The Dart Language Specification, 12.25: <blockquote>An additive expression of the form
* <i>e<sub>1</sub> op e<sub>2</sub></i> is equivalent to the method invocation
* <i>e<sub>1</sub>.op(e<sub>2</sub>)</i>. An additive expression of the form <i>super op
* e<sub>2</sub></i> is equivalent to the method invocation
* <i>super.op(e<sub>2</sub>)</i>.</blockquote>
*
* The Dart Language Specification, 12.26: <blockquote>A multiplicative expression of the form
* <i>e<sub>1</sub> op e<sub>2</sub></i> is equivalent to the method invocation
* <i>e<sub>1</sub>.op(e<sub>2</sub>)</i>. A multiplicative expression of the form <i>super op
* e<sub>2</sub></i> is equivalent to the method invocation
* <i>super.op(e<sub>2</sub>)</i>.</blockquote>
*/
@override
void visitBinaryExpression(BinaryExpression node) {
if (node.operator.type == TokenType.QUESTION_QUESTION) {
if (_nonNullableEnabled) {
// The static type of a compound assignment using ??= with NNBD is the
// least upper bound of the static types of the LHS and RHS after
// promoting the LHS/ to non-null (as we know its value will not be used
// if null)
_analyzeLeastUpperBoundTypes(
node,
_typeSystem.promoteToNonNull(
_getExpressionType(node.leftOperand, read: true)),
_getExpressionType(node.rightOperand, read: true));
} else {
// Without NNBD, evaluation of an if-null expression e of the form
// e1 ?? e2 is equivalent to the evaluation of the expression
// ((x) => x == null ? e2 : x)(e1). The static type of e is the least
// upper bound of the static type of e1 and the static type of e2.
_analyzeLeastUpperBound(node, node.leftOperand, node.rightOperand);
}
return;
}
DartType staticType = node.staticInvokeType?.returnType ?? _dynamicType;
if (node.leftOperand is! ExtensionOverride) {
staticType = _typeSystem.refineBinaryExpressionType(
node.leftOperand.staticType,
node.operator.type,
node.rightOperand.staticType,
staticType,
_featureSet);
}
_recordStaticType(node, staticType);
}
/**
* The Dart Language Specification, 12.4: <blockquote>The static type of a boolean literal is
* bool.</blockquote>
*/
@override
void visitBooleanLiteral(BooleanLiteral node) {
_recordStaticType(node, _nonNullable(_typeProvider.boolType));
}
/**
* The Dart Language Specification, 12.15.2: <blockquote>A cascaded method invocation expression
* of the form <i>e..suffix</i> is equivalent to the expression <i>(t) {t.suffix; return
* t;}(e)</i>.</blockquote>
*/
@override
void visitCascadeExpression(CascadeExpression node) {
_recordStaticType(node, _getStaticType(node.target));
}
/**
* The Dart Language Specification, 12.19: <blockquote> ... a conditional expression <i>c</i> of
* the form <i>e<sub>1</sub> ? e<sub>2</sub> : e<sub>3</sub></i> ...
*
* It is a static type warning if the type of e<sub>1</sub> may not be assigned to `bool`.
*
* The static type of <i>c</i> is the least upper bound of the static type of <i>e<sub>2</sub></i>
* and the static type of <i>e<sub>3</sub></i>.</blockquote>
*/
@override
void visitConditionalExpression(ConditionalExpression node) {
_analyzeLeastUpperBound(node, node.thenExpression, node.elseExpression);
}
@override
void visitDeclaredIdentifier(DeclaredIdentifier node) {
super.visitDeclaredIdentifier(node);
_inferForEachLoopVariableType(node);
}
/**
* The Dart Language Specification, 12.3: <blockquote>The static type of a literal double is
* double.</blockquote>
*/
@override
void visitDoubleLiteral(DoubleLiteral node) {
_recordStaticType(node, _nonNullable(_typeProvider.doubleType));
}
@override
void visitExtensionOverride(ExtensionOverride node) {
_resolver.extensionResolver.resolveOverride(node);
}
@override
void visitFunctionDeclaration(FunctionDeclaration node) {
FunctionExpression function = node.functionExpression;
ExecutableElementImpl functionElement =
node.declaredElement as ExecutableElementImpl;
if (node.parent is FunctionDeclarationStatement) {
// TypeResolverVisitor sets the return type for top-level functions, so
// we only need to handle local functions.
if (node.returnType == null) {
_inferLocalFunctionReturnType(node.functionExpression);
return;
}
functionElement.returnType =
_computeStaticReturnTypeOfFunctionDeclaration(node);
}
_recordStaticType(function, functionElement.type);
}
/**
* The Dart Language Specification, 12.9: <blockquote>The static type of a function literal of the
* form <i>(T<sub>1</sub> a<sub>1</sub>, &hellip;, T<sub>n</sub> a<sub>n</sub>, [T<sub>n+1</sub>
* x<sub>n+1</sub> = d1, &hellip;, T<sub>n+k</sub> x<sub>n+k</sub> = dk]) => e</i> is
* <i>(T<sub>1</sub>, &hellip;, Tn, [T<sub>n+1</sub> x<sub>n+1</sub>, &hellip;, T<sub>n+k</sub>
* x<sub>n+k</sub>]) &rarr; T<sub>0</sub></i>, where <i>T<sub>0</sub></i> is the static type of
* <i>e</i>. In any case where <i>T<sub>i</sub>, 1 &lt;= i &lt;= n</i>, is not specified, it is
* considered to have been specified as dynamic.
*
* The static type of a function literal of the form <i>(T<sub>1</sub> a<sub>1</sub>, &hellip;,
* T<sub>n</sub> a<sub>n</sub>, {T<sub>n+1</sub> x<sub>n+1</sub> : d1, &hellip;, T<sub>n+k</sub>
* x<sub>n+k</sub> : dk}) => e</i> is <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>, {T<sub>n+1</sub>
* x<sub>n+1</sub>, &hellip;, T<sub>n+k</sub> x<sub>n+k</sub>}) &rarr; T<sub>0</sub></i>, where
* <i>T<sub>0</sub></i> is the static type of <i>e</i>. In any case where <i>T<sub>i</sub>, 1
* &lt;= i &lt;= n</i>, is not specified, it is considered to have been specified as dynamic.
*
* The static type of a function literal of the form <i>(T<sub>1</sub> a<sub>1</sub>, &hellip;,
* T<sub>n</sub> a<sub>n</sub>, [T<sub>n+1</sub> x<sub>n+1</sub> = d1, &hellip;, T<sub>n+k</sub>
* x<sub>n+k</sub> = dk]) {s}</i> is <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>, [T<sub>n+1</sub>
* x<sub>n+1</sub>, &hellip;, T<sub>n+k</sub> x<sub>n+k</sub>]) &rarr; dynamic</i>. In any case
* where <i>T<sub>i</sub>, 1 &lt;= i &lt;= n</i>, is not specified, it is considered to have been
* specified as dynamic.
*
* The static type of a function literal of the form <i>(T<sub>1</sub> a<sub>1</sub>, &hellip;,
* T<sub>n</sub> a<sub>n</sub>, {T<sub>n+1</sub> x<sub>n+1</sub> : d1, &hellip;, T<sub>n+k</sub>
* x<sub>n+k</sub> : dk}) {s}</i> is <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>, {T<sub>n+1</sub>
* x<sub>n+1</sub>, &hellip;, T<sub>n+k</sub> x<sub>n+k</sub>}) &rarr; dynamic</i>. In any case
* where <i>T<sub>i</sub>, 1 &lt;= i &lt;= n</i>, is not specified, it is considered to have been
* specified as dynamic.</blockquote>
*/
@override
void visitFunctionExpression(FunctionExpression node) {
if (node.parent is FunctionDeclaration) {
// The function type will be resolved and set when we visit the parent
// node.
return;
}
_inferLocalFunctionReturnType(node);
}
/**
* The Dart Language Specification, 12.14.4: <blockquote>A function expression invocation <i>i</i>
* has the form <i>e<sub>f</sub>(a<sub>1</sub>, &hellip;, a<sub>n</sub>, x<sub>n+1</sub>:
* a<sub>n+1</sub>, &hellip;, x<sub>n+k</sub>: a<sub>n+k</sub>)</i>, where <i>e<sub>f</sub></i> is
* an expression.
*
* It is a static type warning if the static type <i>F</i> of <i>e<sub>f</sub></i> may not be
* assigned to a function type.
*
* If <i>F</i> is not a function type, the static type of <i>i</i> is dynamic. Otherwise the
* static type of <i>i</i> is the declared return type of <i>F</i>.</blockquote>
*/
@override
void visitFunctionExpressionInvocation(FunctionExpressionInvocation node) {
_inferGenericInvocationExpression(node);
DartType staticType =
_computeInvokeReturnType(node.staticInvokeType, isNullAware: false);
_recordStaticType(node, staticType);
}
/**
* The Dart Language Specification, 12.29: <blockquote>An assignable expression of the form
* <i>e<sub>1</sub>[e<sub>2</sub>]</i> is evaluated as a method invocation of the operator method
* <i>[]</i> on <i>e<sub>1</sub></i> with argument <i>e<sub>2</sub></i>.</blockquote>
*/
@override
void visitIndexExpression(IndexExpression node) {
DartType type;
if (node.inSetterContext()) {
var parameters = node.staticElement?.parameters;
if (parameters?.length == 2) {
type = parameters[1].type;
}
} else {
type = node.staticElement?.returnType;
}
type ??= _dynamicType;
_recordStaticType(node, type);
_nullShortingTermination(node);
}
/**
* The Dart Language Specification, 12.11.1: <blockquote>The static type of a new expression of
* either the form <i>new T.id(a<sub>1</sub>, &hellip;, a<sub>n</sub>)</i> or the form <i>new
* T(a<sub>1</sub>, &hellip;, a<sub>n</sub>)</i> is <i>T</i>.</blockquote>
*
* The Dart Language Specification, 12.11.2: <blockquote>The static type of a constant object
* expression of either the form <i>const T.id(a<sub>1</sub>, &hellip;, a<sub>n</sub>)</i> or the
* form <i>const T(a<sub>1</sub>, &hellip;, a<sub>n</sub>)</i> is <i>T</i>. </blockquote>
*/
@override
void visitInstanceCreationExpression(InstanceCreationExpression node) {
_inferInstanceCreationExpression(node);
_recordStaticType(node, node.constructorName.type.type);
}
/**
* <blockquote>
* An integer literal has static type \code{int}, unless the surrounding
* static context type is a type which \code{int} is not assignable to, and
* \code{double} is. In that case the static type of the integer literal is
* \code{double}.
* <blockquote>
*
* and
*
* <blockquote>
* If $e$ is an expression of the form \code{-$l$} where $l$ is an integer
* literal (\ref{numbers}) with numeric integer value $i$, then the static
* type of $e$ is the same as the static type of an integer literal with the
* same contexttype
* </blockquote>
*/
@override
void visitIntegerLiteral(IntegerLiteral node) {
// Check the parent context for negated integer literals.
var context = InferenceContext.getContext(
(node as IntegerLiteralImpl).immediatelyNegated ? node.parent : node);
if (context == null ||
_typeSystem.isAssignableTo(_typeProvider.intType, context,
featureSet: _featureSet) ||
!_typeSystem.isAssignableTo(_typeProvider.doubleType, context,
featureSet: _featureSet)) {
_recordStaticType(node, _nonNullable(_typeProvider.intType));
} else {
_recordStaticType(node, _nonNullable(_typeProvider.doubleType));
}
}
/**
* The Dart Language Specification, 12.31: <blockquote>It is a static warning if <i>T</i> does not
* denote a type available in the current lexical scope.
*
* The static type of an is-expression is `bool`.</blockquote>
*/
@override
void visitIsExpression(IsExpression node) {
_recordStaticType(node, _nonNullable(_typeProvider.boolType));
}
/**
* The Dart Language Specification, 12.6: <blockquote>The static type of a list literal of the
* form <i><b>const</b> &lt;E&gt;[e<sub>1</sub>, &hellip;, e<sub>n</sub>]</i> or the form
* <i>&lt;E&gt;[e<sub>1</sub>, &hellip;, e<sub>n</sub>]</i> is `List&lt;E&gt;`. The static
* type a list literal of the form <i><b>const</b> [e<sub>1</sub>, &hellip;, e<sub>n</sub>]</i> or
* the form <i>[e<sub>1</sub>, &hellip;, e<sub>n</sub>]</i> is `List&lt;dynamic&gt;`
* .</blockquote>
*/
@override
void visitListLiteral(ListLiteral node) {
TypeArgumentList typeArguments = node.typeArguments;
// If we have explicit arguments, use them.
if (typeArguments != null) {
DartType staticType = _dynamicType;
NodeList<TypeAnnotation> arguments = typeArguments.arguments;
if (arguments != null && arguments.length == 1) {
DartType argumentType = _getType(arguments[0]);
if (argumentType != null) {
staticType = argumentType;
}
}
_recordStaticType(
node, _nonNullable(_typeProvider.listType2(staticType)));
return;
}
DartType listDynamicType = _typeProvider.listType2(_dynamicType);
// If there are no type arguments, try to infer some arguments.
DartType inferred = inferListType(node);
if (inferred != listDynamicType) {
// TODO(jmesserly): this results in an "inferred" message even when we
// in fact had an error above, because it will still attempt to return
// a type. Perhaps we should record inference from TypeSystem if
// everything was successful?
// TODO(brianwilkerson) Determine whether we need to make the inferred
// type non-nullable here or whether it will already be non-nullable.
_resolver.inferenceContext.recordInference(node, inferred);
_recordStaticType(node, inferred);
return;
}
// If we have no type arguments and couldn't infer any, use dynamic.
_recordStaticType(node, listDynamicType);
}
/**
* The Dart Language Specification, 12.15.1: <blockquote>An ordinary method invocation <i>i</i>
* has the form <i>o.m(a<sub>1</sub>, &hellip;, a<sub>n</sub>, x<sub>n+1</sub>: a<sub>n+1</sub>,
* &hellip;, x<sub>n+k</sub>: a<sub>n+k</sub>)</i>.
*
* Let <i>T</i> be the static type of <i>o</i>. It is a static type warning if <i>T</i> does not
* have an accessible instance member named <i>m</i>. If <i>T.m</i> exists, it is a static warning
* if the type <i>F</i> of <i>T.m</i> may not be assigned to a function type.
*
* If <i>T.m</i> does not exist, or if <i>F</i> is not a function type, the static type of
* <i>i</i> is dynamic. Otherwise the static type of <i>i</i> is the declared return type of
* <i>F</i>.</blockquote>
*
* The Dart Language Specification, 11.15.3: <blockquote>A static method invocation <i>i</i> has
* the form <i>C.m(a<sub>1</sub>, &hellip;, a<sub>n</sub>, x<sub>n+1</sub>: a<sub>n+1</sub>,
* &hellip;, x<sub>n+k</sub>: a<sub>n+k</sub>)</i>.
*
* It is a static type warning if the type <i>F</i> of <i>C.m</i> may not be assigned to a
* function type.
*
* If <i>F</i> is not a function type, or if <i>C.m</i> does not exist, the static type of i is
* dynamic. Otherwise the static type of <i>i</i> is the declared return type of
* <i>F</i>.</blockquote>
*
* The Dart Language Specification, 11.15.4: <blockquote>A super method invocation <i>i</i> has
* the form <i>super.m(a<sub>1</sub>, &hellip;, a<sub>n</sub>, x<sub>n+1</sub>: a<sub>n+1</sub>,
* &hellip;, x<sub>n+k</sub>: a<sub>n+k</sub>)</i>.
*
* It is a static type warning if <i>S</i> does not have an accessible instance member named m. If
* <i>S.m</i> exists, it is a static warning if the type <i>F</i> of <i>S.m</i> may not be
* assigned to a function type.
*
* If <i>S.m</i> does not exist, or if <i>F</i> is not a function type, the static type of
* <i>i</i> is dynamic. Otherwise the static type of <i>i</i> is the declared return type of
* <i>F</i>.</blockquote>
*/
@override
void visitMethodInvocation(MethodInvocation node) {
_inferGenericInvocationExpression(node);
// Record static return type of the static element.
bool inferredStaticType = _inferMethodInvocationObject(node) ||
_inferMethodInvocationInlineJS(node);
if (!inferredStaticType) {
DartType staticStaticType = _computeInvokeReturnType(
node.staticInvokeType,
isNullAware: node.isNullAware);
_recordStaticType(node, staticStaticType);
}
}
@override
void visitNamedExpression(NamedExpression node) {
Expression expression = node.expression;
_recordStaticType(node, _getStaticType(expression));
}
/**
* The Dart Language Specification, 12.2: <blockquote>The static type of `null` is bottom.
* </blockquote>
*/
@override
void visitNullLiteral(NullLiteral node) {
_recordStaticType(node, _typeProvider.nullType);
}
@override
void visitParenthesizedExpression(ParenthesizedExpression node) {
Expression expression = node.expression;
_recordStaticType(node, _getStaticType(expression));
}
/**
* The Dart Language Specification, 12.28: <blockquote>A postfix expression of the form
* <i>v++</i>, where <i>v</i> is an identifier, is equivalent to <i>(){var r = v; v = r + 1;
* return r}()</i>.
*
* A postfix expression of the form <i>C.v++</i> is equivalent to <i>(){var r = C.v; C.v = r + 1;
* return r}()</i>.
*
* A postfix expression of the form <i>e1.v++</i> is equivalent to <i>(x){var r = x.v; x.v = r +
* 1; return r}(e1)</i>.
*
* A postfix expression of the form <i>e1[e2]++</i> is equivalent to <i>(a, i){var r = a[i]; a[i]
* = r + 1; return r}(e1, e2)</i>
*
* A postfix expression of the form <i>v--</i>, where <i>v</i> is an identifier, is equivalent to
* <i>(){var r = v; v = r - 1; return r}()</i>.
*
* A postfix expression of the form <i>C.v--</i> is equivalent to <i>(){var r = C.v; C.v = r - 1;
* return r}()</i>.
*
* A postfix expression of the form <i>e1.v--</i> is equivalent to <i>(x){var r = x.v; x.v = r -
* 1; return r}(e1)</i>.
*
* A postfix expression of the form <i>e1[e2]--</i> is equivalent to <i>(a, i){var r = a[i]; a[i]
* = r - 1; return r}(e1, e2)</i></blockquote>
*/
@override
void visitPostfixExpression(PostfixExpression node) {
Expression operand = node.operand;
TypeImpl staticType = _getStaticType(operand, read: true);
if (node.operator.type == TokenType.BANG) {
staticType = _typeSystem.promoteToNonNull(staticType);
} else {
// No need to check for `intVar++`, the result is `int`.
if (!staticType.isDartCoreInt) {
var operatorElement = node.staticElement;
var operatorReturnType = _computeStaticReturnType(operatorElement);
_checkForInvalidAssignmentIncDec(node, operand, operatorReturnType);
}
}
_recordStaticType(node, staticType);
}
/**
* See [visitSimpleIdentifier].
*/
@override
void visitPrefixedIdentifier(PrefixedIdentifier node) {
SimpleIdentifier prefixedIdentifier = node.identifier;
Element staticElement = prefixedIdentifier.staticElement;
if (staticElement is ExtensionElement) {
_setExtensionIdentifierType(node);
return;
}
DartType staticType = _dynamicType;
if (staticElement is ClassElement) {
if (_isNotTypeLiteral(node)) {
staticType = staticElement.type;
} else {
staticType = _nonNullable(_typeProvider.typeType);
}
} else if (staticElement is FunctionTypeAliasElement) {
if (_isNotTypeLiteral(node)) {
staticType = staticElement.type;
} else {
staticType = _nonNullable(_typeProvider.typeType);
}
} else if (staticElement is MethodElement) {
staticType = staticElement.type;
} else if (staticElement is PropertyAccessorElement) {
staticType = _getTypeOfProperty(staticElement);
} else if (staticElement is ExecutableElement) {
staticType = staticElement.type;
} else if (staticElement is TypeParameterElement) {
staticType = staticElement.type;
} else if (staticElement is VariableElement) {
staticType = staticElement.type;
}
staticType = _inferTearOff(node, node.identifier, staticType);
if (!_inferObjectAccess(node, staticType, prefixedIdentifier)) {
_recordStaticType(prefixedIdentifier, staticType);
_recordStaticType(node, staticType);
}
}
/**
* The Dart Language Specification, 12.27: <blockquote>A unary expression <i>u</i> of the form
* <i>op e</i> is equivalent to a method invocation <i>expression e.op()</i>. An expression of the
* form <i>op super</i> is equivalent to the method invocation <i>super.op()<i>.</blockquote>
*/
@override
void visitPrefixExpression(PrefixExpression node) {
TokenType operator = node.operator.type;
if (operator == TokenType.BANG) {
_recordStaticType(node, _nonNullable(_typeProvider.boolType));
} else {
// The other cases are equivalent to invoking a method.
ExecutableElement staticMethodElement = node.staticElement;
DartType staticType = _computeStaticReturnType(staticMethodElement);
if (operator == TokenType.MINUS_MINUS ||
operator == TokenType.PLUS_PLUS) {
Expression operand = node.operand;
var operandReadType = _getStaticType(operand, read: true);
if (operandReadType.isDartCoreInt) {
staticType = _nonNullable(_typeProvider.intType);
} else {
_checkForInvalidAssignmentIncDec(node, operand, staticType);
}
}
_recordStaticType(node, staticType);
}
}
/**
* The Dart Language Specification, 12.13: <blockquote> Property extraction allows for a member of
* an object to be concisely extracted from the object. If <i>o</i> is an object, and if <i>m</i>
* is the name of a method member of <i>o</i>, then
* * <i>o.m</i> is defined to be equivalent to: <i>(r<sub>1</sub>, &hellip;, r<sub>n</sub>,
* {p<sub>1</sub> : d<sub>1</sub>, &hellip;, p<sub>k</sub> : d<sub>k</sub>}){return
* o.m(r<sub>1</sub>, &hellip;, r<sub>n</sub>, p<sub>1</sub>: p<sub>1</sub>, &hellip;,
* p<sub>k</sub>: p<sub>k</sub>);}</i> if <i>m</i> has required parameters <i>r<sub>1</sub>,
* &hellip;, r<sub>n</sub></i>, and named parameters <i>p<sub>1</sub> &hellip; p<sub>k</sub></i>
* with defaults <i>d<sub>1</sub>, &hellip;, d<sub>k</sub></i>.
* * <i>(r<sub>1</sub>, &hellip;, r<sub>n</sub>, [p<sub>1</sub> = d<sub>1</sub>, &hellip;,
* p<sub>k</sub> = d<sub>k</sub>]){return o.m(r<sub>1</sub>, &hellip;, r<sub>n</sub>,
* p<sub>1</sub>, &hellip;, p<sub>k</sub>);}</i> if <i>m</i> has required parameters
* <i>r<sub>1</sub>, &hellip;, r<sub>n</sub></i>, and optional positional parameters
* <i>p<sub>1</sub> &hellip; p<sub>k</sub></i> with defaults <i>d<sub>1</sub>, &hellip;,
* d<sub>k</sub></i>.
* Otherwise, if <i>m</i> is the name of a getter member of <i>o</i> (declared implicitly or
* explicitly) then <i>o.m</i> evaluates to the result of invoking the getter. </blockquote>
*
* The Dart Language Specification, 12.17: <blockquote> ... a getter invocation <i>i</i> of the
* form <i>e.m</i> ...
*
* Let <i>T</i> be the static type of <i>e</i>. It is a static type warning if <i>T</i> does not
* have a getter named <i>m</i>.
*
* The static type of <i>i</i> is the declared return type of <i>T.m</i>, if <i>T.m</i> exists;
* otherwise the static type of <i>i</i> is dynamic.
*
* ... a getter invocation <i>i</i> of the form <i>C.m</i> ...
*
* It is a static warning if there is no class <i>C</i> in the enclosing lexical scope of
* <i>i</i>, or if <i>C</i> does not declare, implicitly or explicitly, a getter named <i>m</i>.
*
* The static type of <i>i</i> is the declared return type of <i>C.m</i> if it exists or dynamic
* otherwise.
*
* ... a top-level getter invocation <i>i</i> of the form <i>m</i>, where <i>m</i> is an
* identifier ...
*
* The static type of <i>i</i> is the declared return type of <i>m</i>.</blockquote>
*/
@override
void visitPropertyAccess(PropertyAccess node) {
SimpleIdentifier propertyName = node.propertyName;
Element staticElement = propertyName.staticElement;
DartType staticType = _dynamicType;
if (staticElement is MethodElement) {
staticType = staticElement.type;
} else if (staticElement is PropertyAccessorElement) {
staticType = _getTypeOfProperty(staticElement);
} else {
// TODO(brianwilkerson) Report this internal error.
}
staticType = _inferTearOff(node, node.propertyName, staticType);
if (!_inferObjectAccess(node, staticType, propertyName)) {
_recordStaticType(propertyName, staticType);
_recordStaticType(node, staticType);
_nullShortingTermination(node);
}
}
/**
* The Dart Language Specification, 12.9: <blockquote>The static type of a rethrow expression is
* bottom.</blockquote>
*/
@override
void visitRethrowExpression(RethrowExpression node) {
_recordStaticType(node, _typeProvider.bottomType);
}
@override
void visitSetOrMapLiteral(SetOrMapLiteral node) {
var typeArguments = node.typeArguments?.arguments;
// If we have type arguments, use them.
// TODO(paulberry): this logic seems redundant with
// ResolverVisitor._fromTypeArguments
if (typeArguments != null) {
if (typeArguments.length == 1) {
(node as SetOrMapLiteralImpl).becomeSet();
var elementType = _getType(typeArguments[0]) ?? _dynamicType;
_recordStaticType(
node, _nonNullable(_typeProvider.setType2(elementType)));
return;
} else if (typeArguments.length == 2) {
(node as SetOrMapLiteralImpl).becomeMap();
var keyType = _getType(typeArguments[0]) ?? _dynamicType;
var valueType = _getType(typeArguments[1]) ?? _dynamicType;
_recordStaticType(
node, _nonNullable(_typeProvider.mapType2(keyType, valueType)));
return;
}
// If we get here, then a nonsense number of type arguments were provided,
// so treat it as though no type arguments were provided.
}
DartType literalType = _inferSetOrMapLiteralType(node);
if (literalType.isDynamic) {
// The literal is ambiguous, and further analysis won't resolve the
// ambiguity. Leave it as neither a set nor a map.
} else if (literalType.element == _typeProvider.mapElement) {
(node as SetOrMapLiteralImpl).becomeMap();
} else {
assert(literalType.element == _typeProvider.setElement);
(node as SetOrMapLiteralImpl).becomeSet();
}
if (_strictInference &&
node.elements.isEmpty &&
InferenceContext.getContext(node) == null) {
// We cannot infer the type of a collection literal with no elements, and
// no context type. If there are any elements, inference has not failed,
// as the types of those elements are considered resolved.
_resolver.errorReporter.reportErrorForNode(
HintCode.INFERENCE_FAILURE_ON_COLLECTION_LITERAL,
node,
[node.isMap ? 'Map' : 'Set']);
}
// TODO(brianwilkerson) Decide whether the literalType needs to be made
// non-nullable here or whether that will have happened in
// _inferSetOrMapLiteralType.
_resolver.inferenceContext.recordInference(node, literalType);
_recordStaticType(node, literalType);
}
/**
* The Dart Language Specification, 12.30: <blockquote>Evaluation of an identifier expression
* <i>e</i> of the form <i>id</i> proceeds as follows:
*
* Let <i>d</i> be the innermost declaration in the enclosing lexical scope whose name is
* <i>id</i>. If no such declaration exists in the lexical scope, let <i>d</i> be the declaration
* of the inherited member named <i>id</i> if it exists.
* * If <i>d</i> is a class or type alias <i>T</i>, the value of <i>e</i> is the unique instance
* of class `Type` reifying <i>T</i>.
* * If <i>d</i> is a type parameter <i>T</i>, then the value of <i>e</i> is the value of the
* actual type argument corresponding to <i>T</i> that was passed to the generative constructor
* that created the current binding of this. We are assured that this is well defined, because if
* we were in a static member the reference to <i>T</i> would be a compile-time error.
* * If <i>d</i> is a library variable then:
* * If <i>d</i> is of one of the forms <i>var v = e<sub>i</sub>;</i>, <i>T v =
* e<sub>i</sub>;</i>, <i>final v = e<sub>i</sub>;</i>, <i>final T v = e<sub>i</sub>;</i>, and no
* value has yet been stored into <i>v</i> then the initializer expression <i>e<sub>i</sub></i> is
* evaluated. If, during the evaluation of <i>e<sub>i</sub></i>, the getter for <i>v</i> is
* referenced, a CyclicInitializationError is thrown. If the evaluation succeeded yielding an
* object <i>o</i>, let <i>r = o</i>, otherwise let <i>r = null</i>. In any case, <i>r</i> is
* stored into <i>v</i>. The value of <i>e</i> is <i>r</i>.
* * If <i>d</i> is of one of the forms <i>const v = e;</i> or <i>const T v = e;</i> the result
* of the getter is the value of the compile time constant <i>e</i>. Otherwise
* * <i>e</i> evaluates to the current binding of <i>id</i>.
* * If <i>d</i> is a local variable or formal parameter then <i>e</i> evaluates to the current
* binding of <i>id</i>.
* * If <i>d</i> is a static method, top level function or local function then <i>e</i>
* evaluates to the function defined by <i>d</i>.
* * If <i>d</i> is the declaration of a static variable or static getter declared in class
* <i>C</i>, then <i>e</i> is equivalent to the getter invocation <i>C.id</i>.
* * If <i>d</i> is the declaration of a top level getter, then <i>e</i> is equivalent to the
* getter invocation <i>id</i>.
* * Otherwise, if <i>e</i> occurs inside a top level or static function (be it function,
* method, getter, or setter) or variable initializer, evaluation of e causes a NoSuchMethodError
* to be thrown.
* * Otherwise <i>e</i> is equivalent to the property extraction <i>this.id</i>.
* </blockquote>
*/
@override
void visitSimpleIdentifier(SimpleIdentifier node) {
Element element = node.staticElement;
if (element is ExtensionElement) {
_setExtensionIdentifierType(node);
return;
}
DartType staticType = _dynamicType;
if (element is ClassElement) {
if (_isNotTypeLiteral(node)) {
staticType = element.type;
} else {
staticType = _nonNullable(_typeProvider.typeType);
}
} else if (element is FunctionTypeAliasElement) {
if (_isNotTypeLiteral(node)) {
staticType = element.type;
} else {
staticType = _nonNullable(_typeProvider.typeType);
}
} else if (element is MethodElement) {
staticType = element.type;
} else if (element is PropertyAccessorElement) {
staticType = _getTypeOfProperty(element);
} else if (element is ExecutableElement) {
staticType = element.type;
} else if (element is TypeParameterElement) {
staticType = _nonNullable(_typeProvider.typeType);
} else if (element is VariableElement) {
staticType = _localVariableTypeProvider.getType(node);
} else if (element is PrefixElement) {
var parent = node.parent;
if (parent is PrefixedIdentifier && parent.prefix == node ||
parent is MethodInvocation && parent.target == node) {
return;
}
staticType = _typeProvider.dynamicType;
} else if (element is DynamicElementImpl) {
staticType = _nonNullable(_typeProvider.typeType);
} else {
staticType = _dynamicType;
}
staticType = _inferTearOff(node, node, staticType);
_recordStaticType(node, staticType);
}
/**
* The Dart Language Specification, 12.5: <blockquote>The static type of a string literal is
* `String`.</blockquote>
*/
@override
void visitSimpleStringLiteral(SimpleStringLiteral node) {
_recordStaticType(node, _nonNullable(_typeProvider.stringType));
}
/**
* The Dart Language Specification, 12.5: <blockquote>The static type of a string literal is
* `String`.</blockquote>
*/
@override
void visitStringInterpolation(StringInterpolation node) {
_recordStaticType(node, _nonNullable(_typeProvider.stringType));
}
@override
void visitSuperExpression(SuperExpression node) {
if (thisType == null ||
node.thisOrAncestorOfType<ExtensionDeclaration>() != null) {
// TODO(brianwilkerson) Report this error if it hasn't already been
// reported.
_recordStaticType(node, _dynamicType);
} else {
_recordStaticType(node, thisType);
}
}
@override
void visitSymbolLiteral(SymbolLiteral node) {
_recordStaticType(node, _nonNullable(_typeProvider.symbolType));
}
/**
* The Dart Language Specification, 12.10: <blockquote>The static type of `this` is the
* interface of the immediately enclosing class.</blockquote>
*/
@override
void visitThisExpression(ThisExpression node) {
if (thisType == null) {
// TODO(brianwilkerson) Report this error if it hasn't already been
// reported.
_recordStaticType(node, _dynamicType);
} else {
_recordStaticType(node, thisType);
}
}
/**
* The Dart Language Specification, 12.8: <blockquote>The static type of a throw expression is
* bottom.</blockquote>
*/
@override
void visitThrowExpression(ThrowExpression node) {
_recordStaticType(node, _typeProvider.bottomType);
}
@override
void visitVariableDeclaration(VariableDeclaration node) {
_inferLocalVariableType(node, node.initializer);
}
/**
* Set the static type of [node] to be the least upper bound of the static
* types of subexpressions [expr1] and [expr2].
*/
void _analyzeLeastUpperBound(
Expression node, Expression expr1, Expression expr2,
{bool read: false}) {
DartType staticType1 = _getExpressionType(expr1, read: read);
DartType staticType2 = _getExpressionType(expr2, read: read);
_analyzeLeastUpperBoundTypes(node, staticType1, staticType2);
}
/**
* Set the static type of [node] to be the least upper bound of the static
* types [staticType1] and [staticType2].
*/
void _analyzeLeastUpperBoundTypes(
Expression node, DartType staticType1, DartType staticType2) {
if (staticType1 == null) {
// TODO(brianwilkerson) Determine whether this can still happen.
staticType1 = _dynamicType;
}
if (staticType2 == null) {
// TODO(brianwilkerson) Determine whether this can still happen.
staticType2 = _dynamicType;
}
DartType staticType =
_typeSystem.getLeastUpperBound(staticType1, staticType2) ??
_dynamicType;
_recordStaticType(node, staticType);
}
/// Check that the result [type] of a prefix or postfix `++` or `--`
/// expression is assignable to the write type of the [operand].
void _checkForInvalidAssignmentIncDec(
AstNode node, Expression operand, DartType type) {
var operandWriteType = _getStaticType(operand);
if (!_typeSystem.isAssignableTo(type, operandWriteType,
featureSet: _featureSet)) {
_resolver.errorReporter.reportTypeErrorForNode(
StaticTypeWarningCode.INVALID_ASSIGNMENT,
node,
[type, operandWriteType],
);
}
}
DartType _computeElementType(CollectionElement element) {
if (element is ForElement) {
return _computeElementType(element.body);
} else if (element is IfElement) {
DartType thenType = _computeElementType(element.thenElement);
if (element.elseElement == null) {
return thenType;
}
DartType elseType = _computeElementType(element.elseElement);
return _typeSystem.leastUpperBound(thenType, elseType);
} else if (element is Expression) {
return element.staticType;
} else if (element is MapLiteralEntry) {
// This error will be reported elsewhere.
return _typeProvider.dynamicType;
} else if (element is SpreadElement) {
DartType expressionType = element.expression.staticType;
bool isNull = expressionType.isDartCoreNull;
if (!isNull && expressionType is InterfaceType) {
if (_typeSystem.isSubtypeOf(
expressionType, _typeProvider.iterableObjectType)) {
InterfaceType iterableType = (expressionType as InterfaceTypeImpl)
.asInstanceOf(_typeProvider.iterableElement);
return iterableType.typeArguments[0];
}
} else if (expressionType.isDynamic) {
return expressionType;
} else if (isNull && element.isNullAware) {
return expressionType;
}
// TODO(brianwilkerson) Report this as an error.
return _typeProvider.dynamicType;
}
throw StateError('Unhandled element type ${element.runtimeType}');
}
/**
* Compute the return type of the method or function represented by the given
* type that is being invoked.
*/
DartType /*!*/ _computeInvokeReturnType(DartType type,
{@required bool isNullAware}) {
TypeImpl /*!*/ returnType;
if (type is InterfaceType) {
MethodElement callMethod = type.lookUpMethod(
FunctionElement.CALL_METHOD_NAME, _resolver.definingLibrary);
returnType = callMethod?.type?.returnType ?? _dynamicType;
} else if (type is FunctionType) {
returnType = type.returnType ?? _dynamicType;
} else {
returnType = _dynamicType;
}
if (isNullAware && _nonNullableEnabled) {
returnType = _typeSystem.makeNullable(returnType);
}
return returnType;
}
/**
* Given a function body and its return type, compute the return type of
* the entire function, taking into account whether the function body
* is `sync*`, `async` or `async*`.
*
* See also [FunctionBody.isAsynchronous], [FunctionBody.isGenerator].
*/
DartType _computeReturnTypeOfFunction(FunctionBody body, DartType type) {
if (body.isGenerator) {
InterfaceType generatedType = body.isAsynchronous
? _typeProvider.streamType2(type)
: _typeProvider.iterableType2(type);
return _nonNullable(generatedType);
} else if (body.isAsynchronous) {
if (type.isDartAsyncFutureOr) {
type = (type as InterfaceType).typeArguments[0];
}
DartType futureType =
_typeProvider.futureType2(_typeSystem.flatten(type));
return _nonNullable(futureType);
} else {
return type;
}
}
/**
* Compute the static return type of the method or function represented by the given element.
*
* @param element the element representing the method or function invoked by the given node
* @return the static return type that was computed
*/
DartType _computeStaticReturnType(Element element) {
if (element is PropertyAccessorElement) {
//
// This is a function invocation expression disguised as something else.
// We are invoking a getter and then invoking the returned function.
//
FunctionType propertyType = element.type;
if (propertyType != null) {
return _computeInvokeReturnType(propertyType.returnType,
isNullAware: false);
}
} else if (element is ExecutableElement) {
return _computeInvokeReturnType(element.type, isNullAware: false);
}
return _dynamicType;
}
/**
* Given a function declaration, compute the return static type of the function. The return type
* of functions with a block body is `dynamicType`, with an expression body it is the type
* of the expression.
*
* @param node the function expression whose static return type is to be computed
* @return the static return type that was computed
*/
DartType _computeStaticReturnTypeOfFunctionDeclaration(
FunctionDeclaration node) {
TypeAnnotation returnType = node.returnType;
if (returnType == null) {
return _dynamicType;
}
return returnType.type;
}
/**
* If the given element name can be mapped to the name of a class defined within the given
* library, return the type specified by the argument.
*
* @param library the library in which the specified type would be defined
* @param elementName the name of the element for which a type is being sought
* @param nameMap an optional map used to map the element name to a type name
* @return the type specified by the first argument in the argument list
*/
DartType _getElementNameAsType(
LibraryElement library, String elementName, Map<String, String> nameMap) {
if (elementName != null) {
if (nameMap != null) {
elementName = nameMap[elementName.toLowerCase()];
}
ClassElement returnType = library.getType(elementName);
if (returnType != null) {
if (returnType.typeParameters.isNotEmpty) {
// Caller can't deal with unbound type parameters, so substitute
// `dynamic`.
return returnType.type.instantiate(
returnType.typeParameters.map((_) => _dynamicType).toList());
}
return returnType.type;
}
}
return null;
}
/**
* Gets the definite type of expression, which can be used in cases where
* the most precise type is desired, for example computing the least upper
* bound.
*
* See [getExpressionType] for more information. Without strong mode, this is
* equivalent to [_getStaticType].
*/
DartType _getExpressionType(Expression expr, {bool read: false}) =>
getExpressionType(expr, _typeSystem, _typeProvider, read: read);
/**
* If the given argument list contains at least one argument, and if the argument is a simple
* string literal, return the String value of the argument.
*
* @param argumentList the list of arguments from which a string value is to be extracted
* @return the string specified by the first argument in the argument list
*/
String _getFirstArgumentAsString(ArgumentList argumentList) {
NodeList<Expression> arguments = argumentList.arguments;
if (arguments.isNotEmpty) {
Expression argument = arguments[0];
if (argument is SimpleStringLiteral) {
return argument.value;
}
}
return null;
}
/**
* Return the static type of the given [expression].
*/
DartType _getStaticType(Expression expression, {bool read: false}) {
DartType type;
if (read) {
type = getReadType(expression);
} else {
type = expression.staticType;
}
if (type == null) {
// TODO(brianwilkerson) Determine the conditions for which the static type
// is null.
return _dynamicType;
}
return type;
}
/**
* Return the type represented by the given type [annotation].
*/
DartType _getType(TypeAnnotation annotation) {
DartType type = annotation.type;
if (type == null) {
//TODO(brianwilkerson) Determine the conditions for which the type is
// null.
return _dynamicType;
}
return type;
}
/**
* Return the type that should be recorded for a node that resolved to the given accessor.
*
* @param accessor the accessor that the node resolved to
* @return the type that should be recorded for a node that resolved to the given accessor
*/
DartType _getTypeOfProperty(PropertyAccessorElement accessor) {
FunctionType functionType = accessor.type;
if (functionType == null) {
// TODO(brianwilkerson) Report this internal error. This happens when we
// are analyzing a reference to a property before we have analyzed the
// declaration of the property or when the property does not have a
// defined type.
return _dynamicType;
}
if (accessor.isSetter) {
List<DartType> parameterTypes = functionType.normalParameterTypes;
if (parameterTypes != null && parameterTypes.isNotEmpty) {
return parameterTypes[0];
}
PropertyAccessorElement getter = accessor.variable.getter;
if (getter != null) {
functionType = getter.type;
if (functionType != null) {
return functionType.returnType;
}
}
return _dynamicType;
}
return functionType.returnType;
}
_InferredCollectionElementTypeInformation _inferCollectionElementType(
CollectionElement element) {
if (element is ForElement) {
return _inferCollectionElementType(element.body);
} else if (element is IfElement) {
_InferredCollectionElementTypeInformation thenType =
_inferCollectionElementType(element.thenElement);
if (element.elseElement == null) {
return thenType;
}
_InferredCollectionElementTypeInformation elseType =
_inferCollectionElementType(element.elseElement);
return _InferredCollectionElementTypeInformation.forIfElement(
_typeSystem, thenType, elseType);
} else if (element is Expression) {
return _InferredCollectionElementTypeInformation(
elementType: element.staticType, keyType: null, valueType: null);
} else if (element is MapLiteralEntry) {
return _InferredCollectionElementTypeInformation(
elementType: null,
keyType: element.key.staticType,
valueType: element.value.staticType);
} else if (element is SpreadElement) {
DartType expressionType = element.expression.staticType;
bool isNull = expressionType.isDartCoreNull;
if (!isNull && expressionType is InterfaceType) {
if (_typeSystem.isSubtypeOf(
expressionType, _typeProvider.iterableObjectType)) {
InterfaceType iterableType = (expressionType as InterfaceTypeImpl)
.asInstanceOf(_typeProvider.iterableElement);
return _InferredCollectionElementTypeInformation(
elementType: iterableType.typeArguments[0],
keyType: null,
valueType: null);
} else if (_typeSystem.isSubtypeOf(
expressionType, _typeProvider.mapObjectObjectType)) {
InterfaceType mapType = (expressionType as InterfaceTypeImpl)
.asInstanceOf(_typeProvider.mapElement);
List<DartType> typeArguments = mapType.typeArguments;
return _InferredCollectionElementTypeInformation(
elementType: null,
keyType: typeArguments[0],
valueType: typeArguments[1]);
}
} else if (expressionType.isDynamic) {
return _InferredCollectionElementTypeInformation(
elementType: expressionType,
keyType: expressionType,
valueType: expressionType);
} else if (isNull && element.isNullAware) {
return _InferredCollectionElementTypeInformation(
elementType: expressionType,
keyType: expressionType,
valueType: expressionType);
}
return _InferredCollectionElementTypeInformation(
elementType: null, keyType: null, valueType: null);
} else {
throw StateError('Unknown element type ${element.runtimeType}');
}
}
/**
* Given a declared identifier from a foreach loop, attempt to infer
* a type for it if one is not already present. Inference is based
* on the type of the iterator or stream over which the foreach loop
* is defined.
*/
void _inferForEachLoopVariableType(DeclaredIdentifier loopVariable) {
if (loopVariable != null && loopVariable.type == null) {
AstNode parent = loopVariable.parent;
Token awaitKeyword;
Expression iterable;
if (parent is ForEachPartsWithDeclaration) {
AstNode parentParent = parent.parent;
if (parentParent is ForStatementImpl) {
awaitKeyword = parentParent.awaitKeyword;
} else if (parentParent is ForElement) {
awaitKeyword = parentParent.awaitKeyword;
} else {
return;
}
iterable = parent.iterable;
} else {
return;
}
if (iterable != null) {
LocalVariableElementImpl element = loopVariable.declaredElement;
DartType iterableType = iterable.staticType;
iterableType = iterableType.resolveToBound(_typeProvider.objectType);
ClassElement iteratedElement = (awaitKeyword == null)
? _typeProvider.iterableElement
: _typeProvider.streamElement;
InterfaceType iteratedType = iterableType is InterfaceTypeImpl
? iterableType.asInstanceOf(iteratedElement)
: null;
if (element != null && iteratedType != null) {
DartType elementType = iteratedType.typeArguments.single;
element.type = elementType;
loopVariable.identifier.staticType = elementType;
}
}
}
}
/**
* Given a possibly generic invocation like `o.m(args)` or `(f)(args)` try to
* infer the instantiated generic function type.
*
* This takes into account both the context type, as well as information from
* the argument types.
*/
void _inferGenericInvocationExpression(InvocationExpression node) {
ArgumentList arguments = node.argumentList;
var type = node.function.staticType;
var freshType = _getFreshType(type);
FunctionType inferred = _inferGenericInvoke(
node, freshType, node.typeArguments, arguments, node.function);
if (inferred != null && inferred != node.staticInvokeType) {
// Fix up the parameter elements based on inferred method.
arguments.correspondingStaticParameters =
ResolverVisitor.resolveArgumentsToParameters(
arguments, inferred.parameters, null);
node.staticInvokeType = inferred;
}
}
/**
* Given a possibly generic invocation or instance creation, such as
* `o.m(args)` or `(f)(args)` or `new T(args)` try to infer the instantiated
* generic function type.
*
* This takes into account both the context type, as well as information from
* the argument types.
*/
FunctionType _inferGenericInvoke(
Expression node,
DartType fnType,
TypeArgumentList typeArguments,
ArgumentList argumentList,
AstNode errorNode,
{bool isConst: false}) {
if (typeArguments == null &&
fnType is FunctionType &&
fnType.typeFormals.isNotEmpty) {
// Get the parameters that correspond to the uninstantiated generic.
List<ParameterElement> rawParameters =
ResolverVisitor.resolveArgumentsToParameters(
argumentList, fnType.parameters, null);
List<ParameterElement> params = <ParameterElement>[];
List<DartType> argTypes = <DartType>[];
for (int i = 0, length = rawParameters.length; i < length; i++) {
ParameterElement parameter = rawParameters[i];
if (parameter != null) {
params.add(parameter);
argTypes.add(argumentList.arguments[i].staticType);
}
}
var typeArgs = _typeSystem.inferGenericFunctionOrType(
typeParameters: fnType.typeFormals,
parameters: params,
declaredReturnType: fnType.returnType,
argumentTypes: argTypes,
contextReturnType: InferenceContext.getContext(node),
isConst: isConst,
errorReporter: _resolver.errorReporter,
errorNode: errorNode,
);
if (node is InvocationExpressionImpl) {
node.typeArgumentTypes = typeArgs;
}
if (typeArgs != null) {
return fnType.instantiate(typeArgs);
}
return fnType;
}
// There is currently no other place where we set type arguments
// for FunctionExpressionInvocation(s), so set it here, if not inferred.
if (node is FunctionExpressionInvocationImpl) {
if (typeArguments != null) {
var typeArgs = typeArguments.arguments.map((n) => n.type).toList();
node.typeArgumentTypes = typeArgs;
} else {
node.typeArgumentTypes = const <DartType>[];
}
}
return null;
}
/**
* Given an instance creation of a possibly generic type, infer the type
* arguments using the current context type as well as the argument types.
*/
void _inferInstanceCreationExpression(InstanceCreationExpression node) {
ConstructorName constructor = node.constructorName;
ConstructorElement originalElement = constructor.staticElement;
// If the constructor is generic, we'll have a ConstructorMember that
// substitutes in type arguments (possibly `dynamic`) from earlier in
// resolution.
//
// Otherwise we'll have a ConstructorElement, and we can skip inference
// because there's nothing to infer in a non-generic type.
if (originalElement is! ConstructorMember) {
return;
}
// TODO(leafp): Currently, we may re-infer types here, since we
// sometimes resolve multiple times. We should really check that we
// have not already inferred something. However, the obvious ways to
// check this don't work, since we may have been instantiated
// to bounds in an earlier phase, and we *do* want to do inference
// in that case.
// Get back to the uninstantiated generic constructor.
// TODO(jmesserly): should we store this earlier in resolution?
// Or look it up, instead of jumping backwards through the Member?
var rawElement = (originalElement as ConstructorMember).baseElement;
FunctionType constructorType = constructorToGenericFunctionType(rawElement);
ArgumentList arguments = node.argumentList;
FunctionType inferred = _inferGenericInvoke(node, constructorType,
constructor.type.typeArguments, arguments, node.constructorName,
isConst: node.isConst);
if (inferred != null && inferred != originalElement.type) {
// Fix up the parameter elements based on inferred method.
arguments.correspondingStaticParameters =
ResolverVisitor.resolveArgumentsToParameters(
arguments, inferred.parameters, null);
inferConstructorName(constructor, inferred.returnType);
// Update the static element as well. This is used in some cases, such as
// computing constant values. It is stored in two places.
constructor.staticElement =
ConstructorMember.from(rawElement, inferred.returnType);
node.staticElement = constructor.staticElement;
}
}
/**
* Infers the return type of a local function, either a lambda or
* (in strong mode) a local function declaration.
*/
void _inferLocalFunctionReturnType(FunctionExpression node) {
ExecutableElementImpl functionElement =
node.declaredElement as ExecutableElementImpl;
FunctionBody body = node.body;
DartType computedType = InferenceContext.getContext(body) ?? _dynamicType;
computedType = _computeReturnTypeOfFunction(body, computedType);
functionElement.returnType = computedType;
_recordStaticType(node, functionElement.type);
_resolver.inferenceContext.recordInference(node, functionElement.type);
}
/**
* Given a local variable declaration and its initializer, attempt to infer
* a type for the local variable declaration based on the initializer.
* Inference is only done if an explicit type is not present, and if
* inferring a type improves the type.
*/
void _inferLocalVariableType(
VariableDeclaration node, Expression initializer) {
AstNode parent = node.parent;
if (initializer != null) {
if (parent is VariableDeclarationList && parent.type == null) {
DartType type = initializer.staticType;
if (type != null && !type.isBottom && !type.isDartCoreNull) {
VariableElement element = node.declaredElement;
if (element is LocalVariableElementImpl) {
element.type = initializer.staticType;
node.name.staticType = initializer.staticType;
}
}
}
} else if (_strictInference) {
if (parent is VariableDeclarationList && parent.type == null) {
_resolver.errorReporter.reportTypeErrorForNode(
HintCode.INFERENCE_FAILURE_ON_UNINITIALIZED_VARIABLE,
node,
[node.name.name],
);
}
}
}
/**
* Given a method invocation [node], attempt to infer a better
* type for the result if it is an inline JS invocation
*/
// TODO(jmesserly): we should remove this, and infer type from context, rather
// than try to understand the dart2js type grammar.
// (At the very least, we should lookup type name in the correct scope.)
bool _inferMethodInvocationInlineJS(MethodInvocation node) {
Element e = node.methodName.staticElement;
if (e is FunctionElement &&
e.library.source.uri.toString() == 'dart:_foreign_helper' &&
e.name == 'JS') {
String typeStr = _getFirstArgumentAsString(node.argumentList);
DartType returnType = null;
if (typeStr == '-dynamic') {
returnType = _typeProvider.bottomType;
} else {
var components = typeStr.split('|');
if (components.remove('Null')) {
typeStr = components.join('|');
}
returnType = _getElementNameAsType(
_typeProvider.objectType.element.library, typeStr, null);
}
if (returnType != null) {
_recordStaticType(node, returnType);
return true;
}
}
return false;
}
/**
* Given a method invocation [node], attempt to infer a better
* type for the result if the target is dynamic and the method
* being called is one of the object methods.
*/
// TODO(jmesserly): we should move this logic to ElementResolver.
// If we do it here, we won't have correct parameter elements set on the
// node's argumentList. (This likely affects only explicit calls to
// `Object.noSuchMethod`.)
bool _inferMethodInvocationObject(MethodInvocation node) {
// If we have a call like `toString()` or `libraryPrefix.toString()` don't
// infer it.
Expression target = node.realTarget;
if (target == null ||
target is SimpleIdentifier && target.staticElement is PrefixElement) {
return false;
}
// Object methods called on dynamic targets can have their types improved.
String name = node.methodName.name;
MethodElement inferredElement =
_typeProvider.objectType.element.getMethod(name);
if (inferredElement == null || inferredElement.isStatic) {
return false;
}
DartType inferredType = inferredElement.type;
DartType nodeType = node.staticInvokeType;
if (nodeType != null &&
nodeType.isDynamic &&
inferredType is FunctionType &&
inferredType.parameters.isEmpty &&
node.argumentList.arguments.isEmpty &&
_typeProvider.nonSubtypableTypes.contains(inferredType.returnType)) {
node.staticInvokeType = inferredType;
_recordStaticType(node, inferredType.returnType);
return true;
}
return false;
}
/**
* Given a property access [node] with static type [nodeType],
* and [id] is the property name being accessed, infer a type for the
* access itself and its constituent components if the access is to one of the
* methods or getters of the built in 'Object' type, and if the result type is
* a sealed type. Returns true if inference succeeded.
*/
bool _inferObjectAccess(
Expression node, DartType nodeType, SimpleIdentifier id) {
// If we have an access like `libraryPrefix.hashCode` don't infer it.
if (node is PrefixedIdentifier &&
node.prefix.staticElement is PrefixElement) {
return false;
}
// Search for Object accesses.
String name = id.name;
PropertyAccessorElement inferredElement =
_typeProvider.objectType.element.getGetter(name);
if (inferredElement == null || inferredElement.isStatic) {
return false;
}
DartType inferredType = inferredElement.type.returnType;
if (nodeType != null &&
nodeType.isDynamic &&
inferredType != null &&
_typeProvider.nonSubtypableTypes.contains(inferredType)) {
_recordStaticType(id, inferredType);
_recordStaticType(node, inferredType);
return true;
}
return false;
}
DartType _inferSetOrMapLiteralType(SetOrMapLiteral literal) {
var literalImpl = literal as SetOrMapLiteralImpl;
DartType contextType = literalImpl.contextType;
literalImpl.contextType = null; // Not needed anymore.
NodeList<CollectionElement> elements = literal.elements;
List<_InferredCollectionElementTypeInformation> inferredTypes = [];
bool canBeAMap = true;
bool mustBeAMap = false;
bool canBeASet = true;
bool mustBeASet = false;
for (CollectionElement element in elements) {
_InferredCollectionElementTypeInformation inferredType =
_inferCollectionElementType(element);
inferredTypes.add(inferredType);
canBeAMap = canBeAMap && inferredType.canBeAMap;
mustBeAMap = mustBeAMap || inferredType.mustBeAMap;
canBeASet = canBeASet && inferredType.canBeASet;
mustBeASet = mustBeASet || inferredType.mustBeASet;
}
if (canBeASet && mustBeASet) {
return _toSetType(literal, contextType, inferredTypes);
} else if (canBeAMap && mustBeAMap) {
return _toMapType(literal, contextType, inferredTypes);
}
// Note: according to the spec, the following computations should be based
// on the greatest closure of the context type (unless the context type is
// `?`). In practice, we can just use the context type directly, because
// the only way the greatest closure of the context type could possibly have
// a different subtype relationship to `Iterable<Object>` and
// `Map<Object, Object>` is if the context type is `?`.
bool contextProvidesAmbiguityResolutionClues =
contextType != null && contextType is! UnknownInferredType;
bool contextIsIterable = contextProvidesAmbiguityResolutionClues &&
_typeSystem.isSubtypeOf(contextType, _typeProvider.iterableObjectType);
bool contextIsMap = contextProvidesAmbiguityResolutionClues &&
_typeSystem.isSubtypeOf(contextType, _typeProvider.mapObjectObjectType);
if (contextIsIterable && !contextIsMap) {
return _toSetType(literal, contextType, inferredTypes);
} else if ((contextIsMap && !contextIsIterable) || elements.isEmpty) {
return _toMapType(literal, contextType, inferredTypes);
} else {
// Ambiguous. We're not going to get any more information to resolve the
// ambiguity. We don't want to make an arbitrary decision at this point
// because it will interfere with future type inference (see
// dartbug.com/36210), so we return a type of `dynamic`.
if (mustBeAMap && mustBeASet) {
_resolver.errorReporter.reportErrorForNode(
CompileTimeErrorCode.AMBIGUOUS_SET_OR_MAP_LITERAL_BOTH, literal);
} else {
_resolver.errorReporter.reportErrorForNode(
CompileTimeErrorCode.AMBIGUOUS_SET_OR_MAP_LITERAL_EITHER, literal);
}
return _typeProvider.dynamicType;
}
}
/**
* Given an uninstantiated generic function type, referenced by the
* [identifier] in the tear-off [expression], try to infer the instantiated
* generic function type from the surrounding context.
*/
DartType _inferTearOff(
Expression expression,
SimpleIdentifier identifier,
DartType tearOffType,
) {
var context = InferenceContext.getContext(expression);
if (context is FunctionType && tearOffType is FunctionType) {
var typeArguments = _typeSystem.inferFunctionTypeInstantiation(
context,
tearOffType,
errorReporter: _resolver.errorReporter,
errorNode: expression,
);
(identifier as SimpleIdentifierImpl).tearOffTypeArgumentTypes =
typeArguments;
if (typeArguments.isNotEmpty) {
return tearOffType.instantiate(typeArguments);
}
}
return tearOffType;
}
/**
* Return `true` if the given [node] is not a type literal.
*/
bool _isNotTypeLiteral(Identifier node) {
AstNode parent = node.parent;
return parent is TypeName ||
(parent is PrefixedIdentifier &&
(parent.parent is TypeName || identical(parent.prefix, node))) ||
(parent is PropertyAccess &&
identical(parent.target, node) &&
parent.operator.type == TokenType.PERIOD) ||
(parent is MethodInvocation &&
identical(node, parent.target) &&
parent.operator.type == TokenType.PERIOD);
}
/**
* Return the non-nullable variant of the [type] if NNBD is enabled, otherwise
* return the type itself.
*/
DartType _nonNullable(DartType type) {
if (_nonNullableEnabled) {
return _typeSystem.promoteToNonNull(type);
}
return type;
}
/// If we reached a null-shorting termination, and the [node] has null
/// shorting, make the type of the [node] nullable.
void _nullShortingTermination(Expression node) {
if (!_nonNullableEnabled) return;
var parent = node.parent;
if (parent is AssignmentExpression && parent.leftHandSide == node) {
return;
}
if (parent is PropertyAccess) {
return;
}
if (_hasNullShorting(node)) {
var type = node.staticType;
node.staticType = _typeSystem.makeNullable(type);
}
}
/**
* Record that the static type of the given node is the given type.
*
* @param expression the node whose type is to be recorded
* @param type the static type of the node
*/
void _recordStaticType(Expression expression, DartType type) {
if (type == null) {
expression.staticType = _dynamicType;
} else {
expression.staticType = type;
}
}
void _setExtensionIdentifierType(Identifier node) {
if (node is SimpleIdentifier && node.inDeclarationContext()) {
return;
}
var parent = node.parent;
if (parent is PrefixedIdentifier && parent.identifier == node) {
node = parent;
parent = node.parent;
}
if (parent is CommentReference ||
parent is ExtensionOverride && parent.extensionName == node ||
parent is MethodInvocation && parent.target == node ||
parent is PrefixedIdentifier && parent.prefix == node ||
parent is PropertyAccess && parent.target == node) {
return;
}
_resolver.errorReporter.reportErrorForNode(
CompileTimeErrorCode.EXTENSION_AS_EXPRESSION,
node,
[node.name],
);
if (node is PrefixedIdentifier) {
node.identifier.staticType = _dynamicType;
node.staticType = _dynamicType;
} else if (node is SimpleIdentifier) {
node.staticType = _dynamicType;
}
}
DartType _toMapType(SetOrMapLiteral node, DartType contextType,
List<_InferredCollectionElementTypeInformation> inferredTypes) {
DartType dynamicType = _typeProvider.dynamicType;
var element = _typeProvider.mapElement;
var typeParameters = element.typeParameters;
var genericKeyType = typeParameters[0].instantiate(
nullabilitySuffix: _noneOrStarSuffix,
);
var genericValueType = typeParameters[1].instantiate(
nullabilitySuffix: _noneOrStarSuffix,
);
var parameters = List<ParameterElement>(2 * inferredTypes.length);
var argumentTypes = List<DartType>(2 * inferredTypes.length);
for (var i = 0; i < inferredTypes.length; i++) {
parameters[2 * i + 0] = ParameterElementImpl.synthetic(
'key', genericKeyType, ParameterKind.POSITIONAL);
parameters[2 * i + 1] = ParameterElementImpl.synthetic(
'value', genericValueType, ParameterKind.POSITIONAL);
argumentTypes[2 * i + 0] = inferredTypes[i].keyType ?? dynamicType;
argumentTypes[2 * i + 1] = inferredTypes[i].valueType ?? dynamicType;
}
var typeArguments = _typeSystem.inferGenericFunctionOrType(
typeParameters: typeParameters,
parameters: parameters,
declaredReturnType: element.thisType,
argumentTypes: argumentTypes,
contextReturnType: contextType,
);
return element.instantiate(
typeArguments: typeArguments,
nullabilitySuffix: _noneOrStarSuffix,
);
}
DartType _toSetType(SetOrMapLiteral node, DartType contextType,
List<_InferredCollectionElementTypeInformation> inferredTypes) {
DartType dynamicType = _typeProvider.dynamicType;
var element = _typeProvider.setElement;
var typeParameters = element.typeParameters;
var genericElementType = typeParameters[0].instantiate(
nullabilitySuffix: _noneOrStarSuffix,
);
var parameters = List<ParameterElement>(inferredTypes.length);
var argumentTypes = List<DartType>(inferredTypes.length);
for (var i = 0; i < inferredTypes.length; i++) {
parameters[i] = ParameterElementImpl.synthetic(
'element', genericElementType, ParameterKind.POSITIONAL);
argumentTypes[i] = inferredTypes[i].elementType ?? dynamicType;
}
var typeArguments = _typeSystem.inferGenericFunctionOrType(
typeParameters: typeParameters,
parameters: parameters,
declaredReturnType: element.thisType,
argumentTypes: argumentTypes,
contextReturnType: contextType,
);
return element.instantiate(
typeArguments: typeArguments,
nullabilitySuffix: _noneOrStarSuffix,
);
}
/**
* Given a constructor for a generic type, returns the equivalent generic
* function type that we could use to forward to the constructor, or for a
* non-generic type simply returns the constructor type.
*
* For example given the type `class C<T> { C(T arg); }`, the generic function
* type is `<T>(T) -> C<T>`.
*/
static FunctionType constructorToGenericFunctionType(
ConstructorElement constructor) {
// TODO(jmesserly): it may be worth making this available from the
// constructor. It's nice if our inference code can operate uniformly on
// function types.
ClassElement cls = constructor.enclosingElement;
FunctionType type = constructor.type;
if (cls.typeParameters.isEmpty) {
return type;
}
// Create a synthetic function type using the class type parameters,
// and then rename it with fresh variables.
var name = cls.name;
if (constructor.name != null) {
name += '.' + constructor.name;
}
var function = new FunctionElementImpl(name, -1);
function.enclosingElement = cls.enclosingElement;
function.isSynthetic = true;
function.returnType = type.returnType;
function.shareTypeParameters(cls.typeParameters);
function.shareParameters(type.parameters);
function.type = new FunctionTypeImpl(function);
return new FunctionTypeImpl.fresh(function.type);
}
static DartType _getFreshType(DartType type) {
if (type is FunctionType) {
var parameters = getFreshTypeParameters(type.typeFormals);
return parameters.applyToFunctionType(type);
} else {
return type;
}
}
/// Return `true` if the [node] has null-aware shorting, e.g. `foo?.bar`.
static bool _hasNullShorting(Expression node) {
if (node is AssignmentExpression) {
return _hasNullShorting(node.leftHandSide);
}
if (node is IndexExpression) {
return node.isNullAware || _hasNullShorting(node.target);
}
if (node is PropertyAccess) {
return node.isNullAware || _hasNullShorting(node.target);
}
return false;
}
}
class _InferredCollectionElementTypeInformation {
final DartType elementType;
final DartType keyType;
final DartType valueType;
_InferredCollectionElementTypeInformation(
{this.elementType, this.keyType, this.valueType});
factory _InferredCollectionElementTypeInformation.forIfElement(
TypeSystem typeSystem,
_InferredCollectionElementTypeInformation thenInfo,
_InferredCollectionElementTypeInformation elseInfo) {
if (thenInfo.isDynamic) {
DartType dynamic = thenInfo.elementType;
return _InferredCollectionElementTypeInformation(
elementType: _dynamicOrNull(elseInfo.elementType, dynamic),
keyType: _dynamicOrNull(elseInfo.keyType, dynamic),
valueType: _dynamicOrNull(elseInfo.valueType, dynamic));
} else if (elseInfo.isDynamic) {
DartType dynamic = elseInfo.elementType;
return _InferredCollectionElementTypeInformation(
elementType: _dynamicOrNull(thenInfo.elementType, dynamic),
keyType: _dynamicOrNull(thenInfo.keyType, dynamic),
valueType: _dynamicOrNull(thenInfo.valueType, dynamic));
}
return _InferredCollectionElementTypeInformation(
elementType: _leastUpperBoundOfTypes(
typeSystem, thenInfo.elementType, elseInfo.elementType),
keyType: _leastUpperBoundOfTypes(
typeSystem, thenInfo.keyType, elseInfo.keyType),
valueType: _leastUpperBoundOfTypes(
typeSystem, thenInfo.valueType, elseInfo.valueType));
}
bool get canBeAMap => keyType != null || valueType != null;
bool get canBeASet => elementType != null;
bool get isDynamic =>
elementType != null &&
elementType.isDynamic &&
keyType != null &&
keyType.isDynamic &&
valueType != null &&
valueType.isDynamic;
bool get mustBeAMap => canBeAMap && elementType == null;
bool get mustBeASet => canBeASet && keyType == null && valueType == null;
@override
String toString() {
return '($elementType, $keyType, $valueType)';
}
static DartType _dynamicOrNull(DartType type, DartType dynamic) {
if (type == null) {
return null;
}
return dynamic;
}
static DartType _leastUpperBoundOfTypes(
TypeSystem typeSystem, DartType first, DartType second) {
if (first == null) {
return second;
} else if (second == null) {
return first;
} else {
return typeSystem.leastUpperBound(first, second);
}
}
}