blob: 0f2f1445b6664f06e1f325e38488f9172d68639a [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
import 'dart:collection';
import 'package:analyzer/dart/analysis/declared_variables.dart';
import 'package:analyzer/dart/ast/ast.dart';
import 'package:analyzer/dart/ast/standard_ast_factory.dart';
import 'package:analyzer/dart/ast/token.dart';
import 'package:analyzer/dart/ast/visitor.dart';
import 'package:analyzer/dart/constant/value.dart';
import 'package:analyzer/dart/element/element.dart';
import 'package:analyzer/dart/element/nullability_suffix.dart';
import 'package:analyzer/dart/element/type.dart';
import 'package:analyzer/error/error.dart';
import 'package:analyzer/error/listener.dart';
import 'package:analyzer/src/dart/analysis/experiments.dart';
import 'package:analyzer/src/dart/constant/potentially_constant.dart';
import 'package:analyzer/src/dart/constant/utilities.dart';
import 'package:analyzer/src/dart/constant/value.dart';
import 'package:analyzer/src/dart/element/element.dart';
import 'package:analyzer/src/dart/element/member.dart';
import 'package:analyzer/src/error/codes.dart';
import 'package:analyzer/src/generated/engine.dart';
import 'package:analyzer/src/generated/engine.dart'
show AnalysisEngine, RecordingErrorListener;
import 'package:analyzer/src/generated/resolver.dart' show TypeProvider;
import 'package:analyzer/src/generated/type_system.dart'
show Dart2TypeSystem, TypeSystem;
import 'package:analyzer/src/task/api/model.dart';
/// Helper class encapsulating the methods for evaluating constants and
/// constant instance creation expressions.
class ConstantEvaluationEngine {
/// Parameter to "fromEnvironment" methods that denotes the default value.
static String _DEFAULT_VALUE_PARAM = "defaultValue";
/// Source of RegExp matching declarable operator names.
/// From sdk/lib/internal/symbol.dart.
static String _OPERATOR_RE =
"(?:[\\-+*/%&|^]|\\[\\]=?|==|~/?|<[<=]?|>[>=]?|unary-)";
/// Source of RegExp matching Dart reserved words.
/// From sdk/lib/internal/symbol.dart.
static String _RESERVED_WORD_RE =
"(?:assert|break|c(?:a(?:se|tch)|lass|on(?:st|tinue))|"
"d(?:efault|o)|e(?:lse|num|xtends)|f(?:alse|inal(?:ly)?|or)|"
"i[fns]|n(?:ew|ull)|ret(?:hrow|urn)|s(?:uper|witch)|t(?:h(?:is|row)|"
"r(?:ue|y))|v(?:ar|oid)|w(?:hile|ith))";
/// Source of RegExp matching any public identifier.
/// From sdk/lib/internal/symbol.dart.
static String _PUBLIC_IDENTIFIER_RE =
"(?!$_RESERVED_WORD_RE\\b(?!\\\$))[a-zA-Z\$][\\w\$]*";
/// RegExp that validates a non-empty non-private symbol.
/// From sdk/lib/internal/symbol.dart.
static RegExp _PUBLIC_SYMBOL_PATTERN = new RegExp(
"^(?:$_OPERATOR_RE\$|$_PUBLIC_IDENTIFIER_RE(?:=?\$|[.](?!\$)))+?\$");
/// The type provider used to access the known types.
final TypeProvider typeProvider;
/// The type system. This is used to guess the types of constants when their
/// exact value is unknown.
final TypeSystem typeSystem;
/// The set of variables declared on the command line using '-D'.
final DeclaredVariables _declaredVariables;
/// Return the object representing the state of active experiments.
final ExperimentStatus experimentStatus;
/// Validator used to verify correct dependency analysis when running unit
/// tests.
final ConstantEvaluationValidator validator;
/// Initialize a newly created [ConstantEvaluationEngine]. The [typeProvider]
/// is used to access known types. [_declaredVariables] is the set of
/// variables declared on the command line using '-D'. The [validator], if
/// given, is used to verify correct dependency analysis when running unit
/// tests.
ConstantEvaluationEngine(TypeProvider typeProvider, this._declaredVariables,
{ConstantEvaluationValidator validator,
ExperimentStatus experimentStatus,
TypeSystem typeSystem,
// TODO(brianwilkerson) Remove the unused parameter `forAnalysisDriver`.
@deprecated bool forAnalysisDriver})
: typeProvider = typeProvider,
validator =
validator ?? new ConstantEvaluationValidator_ForProduction(),
typeSystem = typeSystem ?? new Dart2TypeSystem(typeProvider),
experimentStatus = experimentStatus ?? new ExperimentStatus();
/// Check that the arguments to a call to fromEnvironment() are correct. The
/// [arguments] are the AST nodes of the arguments. The [argumentValues] are
/// the values of the unnamed arguments. The [namedArgumentValues] are the
/// values of the named arguments. The [expectedDefaultValueType] is the
/// allowed type of the "defaultValue" parameter (if present). Note:
/// "defaultValue" is always allowed to be null. Return `true` if the
/// arguments are correct, `false` if there is an error.
bool checkFromEnvironmentArguments(
NodeList<Expression> arguments,
List<DartObjectImpl> argumentValues,
Map<String, DartObjectImpl> namedArgumentValues,
InterfaceType expectedDefaultValueType) {
int argumentCount = arguments.length;
if (argumentCount < 1 || argumentCount > 2) {
return false;
}
if (arguments[0] is NamedExpression) {
return false;
}
if (argumentValues[0].type != typeProvider.stringType) {
return false;
}
if (argumentCount == 2) {
Expression secondArgument = arguments[1];
if (secondArgument is NamedExpression) {
if (!(secondArgument.name.label.name == _DEFAULT_VALUE_PARAM)) {
return false;
}
ParameterizedType defaultValueType =
namedArgumentValues[_DEFAULT_VALUE_PARAM].type;
if (!(defaultValueType == expectedDefaultValueType ||
defaultValueType == typeProvider.nullType)) {
return false;
}
} else {
return false;
}
}
return true;
}
/// Check that the arguments to a call to Symbol() are correct. The
/// [arguments] are the AST nodes of the arguments. The [argumentValues] are
/// the values of the unnamed arguments. The [namedArgumentValues] are the
/// values of the named arguments. Return `true` if the arguments are correct,
/// `false` if there is an error.
bool checkSymbolArguments(
NodeList<Expression> arguments,
List<DartObjectImpl> argumentValues,
Map<String, DartObjectImpl> namedArgumentValues) {
if (arguments.length != 1) {
return false;
}
if (arguments[0] is NamedExpression) {
return false;
}
if (argumentValues[0].type != typeProvider.stringType) {
return false;
}
String name = argumentValues[0].toStringValue();
return isValidPublicSymbol(name);
}
/// Compute the constant value associated with the given [constant].
void computeConstantValue(ConstantEvaluationTarget constant) {
validator.beforeComputeValue(constant);
if (constant is ParameterElementImpl) {
if (constant.isOptional) {
Expression defaultValue = constant.constantInitializer;
if (defaultValue != null) {
RecordingErrorListener errorListener = new RecordingErrorListener();
ErrorReporter errorReporter =
new ErrorReporter(errorListener, constant.source);
DartObjectImpl dartObject =
defaultValue.accept(new ConstantVisitor(this, errorReporter));
constant.evaluationResult =
new EvaluationResultImpl(dartObject, errorListener.errors);
} else {
constant.evaluationResult =
EvaluationResultImpl(typeProvider.nullObject);
}
}
} else if (constant is VariableElementImpl) {
Expression constantInitializer = constant.constantInitializer;
if (constantInitializer != null) {
RecordingErrorListener errorListener = new RecordingErrorListener();
ErrorReporter errorReporter =
new ErrorReporter(errorListener, constant.source);
DartObjectImpl dartObject = constantInitializer
.accept(new ConstantVisitor(this, errorReporter));
// Only check the type for truly const declarations (don't check final
// fields with initializers, since their types may be generic. The type
// of the final field will be checked later, when the constructor is
// invoked).
if (dartObject != null && constant.isConst) {
if (!runtimeTypeMatch(dartObject, constant.type)) {
errorReporter.reportErrorForElement(
CheckedModeCompileTimeErrorCode.VARIABLE_TYPE_MISMATCH,
constant,
[dartObject.type, constant.type]);
}
}
constant.evaluationResult =
new EvaluationResultImpl(dartObject, errorListener.errors);
}
} else if (constant is ConstructorElementImpl) {
if (constant.isConst) {
// No evaluation needs to be done; constructor declarations are only in
// the dependency graph to ensure that any constants referred to in
// initializer lists and parameter defaults are evaluated before
// invocations of the constructor.
constant.isConstantEvaluated = true;
}
} else if (constant is ElementAnnotationImpl) {
Annotation constNode = constant.annotationAst;
Element element = constant.element;
if (element is PropertyAccessorElement &&
element.variable is VariableElementImpl) {
// The annotation is a reference to a compile-time constant variable.
// Just copy the evaluation result.
VariableElementImpl variableElement =
element.variable as VariableElementImpl;
if (variableElement.evaluationResult != null) {
constant.evaluationResult = variableElement.evaluationResult;
} else {
// This could happen in the event that the annotation refers to a
// non-constant. The error is detected elsewhere, so just silently
// ignore it here.
constant.evaluationResult = new EvaluationResultImpl(null);
}
} else if (element is ConstructorElement &&
element.isConst &&
constNode.arguments != null) {
RecordingErrorListener errorListener = new RecordingErrorListener();
ErrorReporter errorReporter =
new ErrorReporter(errorListener, constant.source);
ConstantVisitor constantVisitor =
new ConstantVisitor(this, errorReporter);
DartObjectImpl result = evaluateConstructorCall(
constNode,
constNode.arguments.arguments,
element,
constantVisitor,
errorReporter);
constant.evaluationResult =
new EvaluationResultImpl(result, errorListener.errors);
} else {
// This may happen for invalid code (e.g. failing to pass arguments
// to an annotation which references a const constructor). The error
// is detected elsewhere, so just silently ignore it here.
constant.evaluationResult = new EvaluationResultImpl(null);
}
} else if (constant is VariableElement) {
// constant is a VariableElement but not a VariableElementImpl. This can
// happen sometimes in the case of invalid user code (for example, a
// constant expression that refers to a non-static field inside a generic
// class will wind up referring to a FieldMember). The error is detected
// elsewhere, so just silently ignore it here.
} else {
// Should not happen.
assert(false);
AnalysisEngine.instance.logger
.logError("Constant value computer trying to compute "
"the value of a node of type ${constant.runtimeType}");
return;
}
}
/// Determine which constant elements need to have their values computed
/// prior to computing the value of [constant], and report them using
/// [callback].
void computeDependencies(
ConstantEvaluationTarget constant, ReferenceFinderCallback callback) {
ReferenceFinder referenceFinder = new ReferenceFinder(callback);
if (constant is ConstructorElement) {
constant = getConstructorImpl(constant);
}
if (constant is VariableElementImpl) {
Expression initializer = constant.constantInitializer;
if (initializer != null) {
initializer.accept(referenceFinder);
}
} else if (constant is ConstructorElementImpl) {
if (constant.isConst) {
ConstructorElement redirectedConstructor =
getConstRedirectedConstructor(constant);
if (redirectedConstructor != null) {
ConstructorElement redirectedConstructorBase =
getConstructorImpl(redirectedConstructor);
callback(redirectedConstructorBase);
return;
} else if (constant.isFactory) {
// Factory constructor, but getConstRedirectedConstructor returned
// null. This can happen if we're visiting one of the special
// external const factory constructors in the SDK, or if the code
// contains errors (such as delegating to a non-const constructor, or
// delegating to a constructor that can't be resolved). In any of
// these cases, we'll evaluate calls to this constructor without
// having to refer to any other constants. So we don't need to report
// any dependencies.
return;
}
bool defaultSuperInvocationNeeded = true;
List<ConstructorInitializer> initializers =
constant.constantInitializers;
if (initializers != null) {
for (ConstructorInitializer initializer in initializers) {
if (initializer is SuperConstructorInvocation ||
initializer is RedirectingConstructorInvocation) {
defaultSuperInvocationNeeded = false;
}
initializer.accept(referenceFinder);
}
}
if (defaultSuperInvocationNeeded) {
// No explicit superconstructor invocation found, so we need to
// manually insert a reference to the implicit superconstructor.
InterfaceType superclass =
(constant.returnType as InterfaceType).superclass;
if (superclass != null && !superclass.isObject) {
ConstructorElement unnamedConstructor =
getConstructorImpl(superclass.element.unnamedConstructor);
if (unnamedConstructor != null) {
callback(unnamedConstructor);
}
}
}
for (FieldElement field in constant.enclosingElement.fields) {
// Note: non-static const isn't allowed but we handle it anyway so
// that we won't be confused by incorrect code.
if ((field.isFinal || field.isConst) &&
!field.isStatic &&
field.initializer != null) {
callback(field);
}
}
for (ParameterElement parameterElement in constant.parameters) {
callback(parameterElement);
}
}
} else if (constant is ElementAnnotationImpl) {
Annotation constNode = constant.annotationAst;
Element element = constant.element;
if (element is PropertyAccessorElement &&
element.variable is VariableElementImpl) {
// The annotation is a reference to a compile-time constant variable,
// so it depends on the variable.
callback(element.variable);
} else if (element is ConstructorElementImpl) {
// The annotation is a constructor invocation, so it depends on the
// constructor.
callback(element);
} else {
// This could happen in the event of invalid code. The error will be
// reported at constant evaluation time.
}
if (constNode == null) {
// We cannot determine what element the annotation is on, nor the offset
// of the annotation, so there's not a lot of information in this
// message, but it's better than getting an exception.
// https://github.com/dart-lang/sdk/issues/26811
AnalysisEngine.instance.logger.logInformation(
'No annotationAst for $constant in ${constant.compilationUnit}');
} else if (constNode.arguments != null) {
constNode.arguments.accept(referenceFinder);
}
} else if (constant is VariableElement) {
// constant is a VariableElement but not a VariableElementImpl. This can
// happen sometimes in the case of invalid user code (for example, a
// constant expression that refers to a non-static field inside a generic
// class will wind up referring to a FieldMember). So just don't bother
// computing any dependencies.
} else {
// Should not happen.
assert(false);
AnalysisEngine.instance.logger
.logError("Constant value computer trying to compute "
"the value of a node of type ${constant.runtimeType}");
}
}
/// Evaluate a call to fromEnvironment() on the bool, int, or String class.
/// The [environmentValue] is the value fetched from the environment. The
/// [builtInDefaultValue] is the value that should be used as the default if
/// no "defaultValue" argument appears in [namedArgumentValues]. The
/// [namedArgumentValues] are the values of the named parameters passed to
/// fromEnvironment(). Return a [DartObjectImpl] object corresponding to the
/// evaluated result.
DartObjectImpl computeValueFromEnvironment(
DartObject environmentValue,
DartObjectImpl builtInDefaultValue,
Map<String, DartObjectImpl> namedArgumentValues) {
DartObjectImpl value = environmentValue as DartObjectImpl;
if (value.isUnknown || value.isNull) {
// The name either doesn't exist in the environment or we couldn't parse
// the corresponding value.
// If the code supplied an explicit default, use it.
if (namedArgumentValues.containsKey(_DEFAULT_VALUE_PARAM)) {
value = namedArgumentValues[_DEFAULT_VALUE_PARAM];
} else if (value.isNull) {
// The code didn't supply an explicit default.
// The name exists in the environment but we couldn't parse the
// corresponding value.
// So use the built-in default value, because this is what the VM does.
value = builtInDefaultValue;
} else {
// The code didn't supply an explicit default.
// The name doesn't exist in the environment.
// The VM would use the built-in default value, but we don't want to do
// that for analysis because it's likely to lead to cascading errors.
// So just leave [value] in the unknown state.
}
}
return value;
}
DartObjectImpl evaluateConstructorCall(
AstNode node,
List<Expression> arguments,
ConstructorElement constructor,
ConstantVisitor constantVisitor,
ErrorReporter errorReporter,
{ConstructorInvocation invocation}) {
if (!constructor.isConst) {
errorReporter.reportErrorForNode(
CompileTimeErrorCode.CONST_WITH_NON_CONST, node);
return null;
}
if (!getConstructorImpl(constructor).isCycleFree) {
// It's not safe to evaluate this constructor, so bail out.
// TODO(paulberry): ensure that a reasonable error message is produced
// in this case, as well as other cases involving constant expression
// circularities (e.g. "compile-time constant expression depends on
// itself")
return new DartObjectImpl.validWithUnknownValue(constructor.returnType);
}
int argumentCount = arguments.length;
var argumentValues = new List<DartObjectImpl>(argumentCount);
Map<String, NamedExpression> namedNodes;
Map<String, DartObjectImpl> namedValues;
for (int i = 0; i < argumentCount; i++) {
Expression argument = arguments[i];
if (argument is NamedExpression) {
namedNodes ??= new HashMap<String, NamedExpression>();
namedValues ??= new HashMap<String, DartObjectImpl>();
String name = argument.name.label.name;
namedNodes[name] = argument;
namedValues[name] = constantVisitor._valueOf(argument.expression);
} else {
var argumentValue = constantVisitor._valueOf(argument);
argumentValues[i] = argumentValue;
}
}
namedNodes ??= const {};
namedValues ??= const {};
if (invocation == null) {
invocation = new ConstructorInvocation(
constructor,
argumentValues,
namedValues,
);
}
constructor = followConstantRedirectionChain(constructor);
InterfaceType definingClass = constructor.returnType as InterfaceType;
if (constructor.isFactory) {
// We couldn't find a non-factory constructor.
// See if it's because we reached an external const factory constructor
// that we can emulate.
if (constructor.name == "fromEnvironment") {
if (!checkFromEnvironmentArguments(
arguments, argumentValues, namedValues, definingClass)) {
errorReporter.reportErrorForNode(
CompileTimeErrorCode.CONST_EVAL_THROWS_EXCEPTION, node);
return null;
}
String variableName =
argumentCount < 1 ? null : argumentValues[0].toStringValue();
if (definingClass == typeProvider.boolType) {
DartObject valueFromEnvironment;
valueFromEnvironment =
_declaredVariables.getBool(typeProvider, variableName);
return computeValueFromEnvironment(
valueFromEnvironment,
new DartObjectImpl(typeProvider.boolType, BoolState.FALSE_STATE),
namedValues);
} else if (definingClass == typeProvider.intType) {
DartObject valueFromEnvironment;
valueFromEnvironment =
_declaredVariables.getInt(typeProvider, variableName);
return computeValueFromEnvironment(
valueFromEnvironment,
new DartObjectImpl(typeProvider.nullType, NullState.NULL_STATE),
namedValues);
} else if (definingClass == typeProvider.stringType) {
DartObject valueFromEnvironment;
valueFromEnvironment =
_declaredVariables.getString(typeProvider, variableName);
return computeValueFromEnvironment(
valueFromEnvironment,
new DartObjectImpl(typeProvider.nullType, NullState.NULL_STATE),
namedValues);
}
} else if (constructor.name == "" &&
definingClass == typeProvider.symbolType &&
argumentCount == 1) {
if (!checkSymbolArguments(arguments, argumentValues, namedValues)) {
errorReporter.reportErrorForNode(
CompileTimeErrorCode.CONST_EVAL_THROWS_EXCEPTION, node);
return null;
}
String argumentValue = argumentValues[0].toStringValue();
return new DartObjectImpl(
definingClass, new SymbolState(argumentValue));
}
// Either it's an external const factory constructor that we can't
// emulate, or an error occurred (a cycle, or a const constructor trying
// to delegate to a non-const constructor).
// In the former case, the best we can do is consider it an unknown value.
// In the latter case, the error has already been reported, so considering
// it an unknown value will suppress further errors.
return new DartObjectImpl.validWithUnknownValue(definingClass);
}
ConstructorElementImpl constructorBase = getConstructorImpl(constructor);
validator.beforeGetConstantInitializers(constructorBase);
List<ConstructorInitializer> initializers =
constructorBase.constantInitializers;
if (initializers == null) {
// This can happen in some cases where there are compile errors in the
// code being analyzed (for example if the code is trying to create a
// const instance using a non-const constructor, or the node we're
// visiting is involved in a cycle). The error has already been reported,
// so consider it an unknown value to suppress further errors.
return new DartObjectImpl.validWithUnknownValue(definingClass);
}
var fieldMap = new HashMap<String, DartObjectImpl>();
// The errors reported while computing values for field initializers, or
// default values for the constructor parameters, cannot be reported
// into the current ErrorReporter, because they usually happen in a
// different source. But they still should cause a constant evaluation
// error for the current node.
var externalErrorListener = new BooleanErrorListener();
var externalErrorReporter =
new ErrorReporter(externalErrorListener, constructor.source);
// Start with final fields that are initialized at their declaration site.
List<FieldElement> fields = constructor.enclosingElement.fields;
for (int i = 0; i < fields.length; i++) {
FieldElement field = fields[i];
if ((field.isFinal || field.isConst) &&
!field.isStatic &&
field is ConstFieldElementImpl) {
validator.beforeGetFieldEvaluationResult(field);
DartObjectImpl fieldValue = field.evaluationResult?.value;
// It is possible that the evaluation result is null.
// This happens for example when we have duplicate fields.
// class Test {final x = 1; final x = 2; const Test();}
if (fieldValue == null) {
continue;
}
// Match the value and the type.
DartType fieldType =
FieldMember.from(field, constructor.returnType).type;
if (fieldValue != null && !runtimeTypeMatch(fieldValue, fieldType)) {
errorReporter.reportErrorForNode(
CheckedModeCompileTimeErrorCode
.CONST_CONSTRUCTOR_FIELD_TYPE_MISMATCH,
node,
[fieldValue.type, field.name, fieldType]);
}
fieldMap[field.name] = fieldValue;
}
}
// Now evaluate the constructor declaration.
Map<String, DartObjectImpl> parameterMap =
new HashMap<String, DartObjectImpl>();
List<ParameterElement> parameters = constructor.parameters;
int parameterCount = parameters.length;
for (int i = 0; i < parameterCount; i++) {
ParameterElement parameter = parameters[i];
ParameterElement baseParameter = parameter;
while (baseParameter is ParameterMember) {
baseParameter = (baseParameter as ParameterMember).baseElement;
}
DartObjectImpl argumentValue = null;
AstNode errorTarget = null;
if (baseParameter.isNamed) {
argumentValue = namedValues[baseParameter.name];
errorTarget = namedNodes[baseParameter.name];
} else if (i < argumentCount) {
argumentValue = argumentValues[i];
errorTarget = arguments[i];
}
if (errorTarget == null) {
// No argument node that we can direct error messages to, because we
// are handling an optional parameter that wasn't specified. So just
// direct error messages to the constructor call.
errorTarget = node;
}
if (argumentValue == null && baseParameter is ParameterElementImpl) {
// The parameter is an optional positional parameter for which no value
// was provided, so use the default value.
validator.beforeGetParameterDefault(baseParameter);
EvaluationResultImpl evaluationResult = baseParameter.evaluationResult;
if (evaluationResult == null) {
// No default was provided, so the default value is null.
argumentValue = typeProvider.nullObject;
} else if (evaluationResult.value != null) {
argumentValue = evaluationResult.value;
}
}
if (argumentValue != null) {
if (!runtimeTypeMatch(argumentValue, parameter.type)) {
errorReporter.reportErrorForNode(
CheckedModeCompileTimeErrorCode
.CONST_CONSTRUCTOR_PARAM_TYPE_MISMATCH,
errorTarget,
[argumentValue.type, parameter.type]);
}
if (baseParameter.isInitializingFormal) {
FieldElement field = (parameter as FieldFormalParameterElement).field;
if (field != null) {
DartType fieldType = field.type;
if (fieldType != parameter.type) {
// We've already checked that the argument can be assigned to the
// parameter; we also need to check that it can be assigned to
// the field.
if (!runtimeTypeMatch(argumentValue, fieldType)) {
errorReporter.reportErrorForNode(
CheckedModeCompileTimeErrorCode
.CONST_CONSTRUCTOR_PARAM_TYPE_MISMATCH,
errorTarget,
[argumentValue.type, fieldType]);
}
}
String fieldName = field.name;
if (fieldMap.containsKey(fieldName)) {
errorReporter.reportErrorForNode(
CompileTimeErrorCode.CONST_EVAL_THROWS_EXCEPTION, node);
}
fieldMap[fieldName] = argumentValue;
}
}
String name = baseParameter.name;
parameterMap[name] = argumentValue;
}
}
ConstantVisitor initializerVisitor = new ConstantVisitor(
this, externalErrorReporter,
lexicalEnvironment: parameterMap);
String superName = null;
NodeList<Expression> superArguments = null;
for (var i = 0; i < initializers.length; i++) {
var initializer = initializers[i];
if (initializer is ConstructorFieldInitializer) {
Expression initializerExpression = initializer.expression;
DartObjectImpl evaluationResult =
initializerExpression?.accept(initializerVisitor);
if (evaluationResult != null) {
String fieldName = initializer.fieldName.name;
if (fieldMap.containsKey(fieldName)) {
errorReporter.reportErrorForNode(
CompileTimeErrorCode.CONST_EVAL_THROWS_EXCEPTION, node);
}
fieldMap[fieldName] = evaluationResult;
PropertyAccessorElement getter = definingClass.getGetter(fieldName);
if (getter != null) {
PropertyInducingElement field = getter.variable;
if (!runtimeTypeMatch(evaluationResult, field.type)) {
errorReporter.reportErrorForNode(
CheckedModeCompileTimeErrorCode
.CONST_CONSTRUCTOR_FIELD_TYPE_MISMATCH,
node,
[evaluationResult.type, fieldName, field.type]);
}
}
} else {
errorReporter.reportErrorForNode(
CompileTimeErrorCode.CONST_EVAL_THROWS_EXCEPTION, node);
}
} else if (initializer is SuperConstructorInvocation) {
SimpleIdentifier name = initializer.constructorName;
if (name != null) {
superName = name.name;
}
superArguments = initializer.argumentList.arguments;
} else if (initializer is RedirectingConstructorInvocation) {
// This is a redirecting constructor, so just evaluate the constructor
// it redirects to.
ConstructorElement constructor = initializer.staticElement;
if (constructor != null && constructor.isConst) {
// Instantiate the constructor with the in-scope type arguments.
constructor = ConstructorMember.from(constructor, definingClass);
DartObjectImpl result = evaluateConstructorCall(
node,
initializer.argumentList.arguments,
constructor,
initializerVisitor,
externalErrorReporter,
invocation: invocation);
if (externalErrorListener.errorReported) {
errorReporter.reportErrorForNode(
CompileTimeErrorCode.CONST_EVAL_THROWS_EXCEPTION, node);
}
return result;
}
} else if (initializer is AssertInitializer) {
Expression condition = initializer.condition;
if (condition == null) {
errorReporter.reportErrorForNode(
CompileTimeErrorCode.CONST_EVAL_THROWS_EXCEPTION, node);
}
DartObjectImpl evaluationResult = condition.accept(initializerVisitor);
if (evaluationResult == null ||
!evaluationResult.isBool ||
evaluationResult.toBoolValue() == false) {
errorReporter.reportErrorForNode(
CompileTimeErrorCode.CONST_EVAL_THROWS_EXCEPTION, node);
return null;
}
}
}
// Evaluate explicit or implicit call to super().
InterfaceType superclass = definingClass.superclass;
if (superclass != null && !superclass.isObject) {
ConstructorElement superConstructor =
superclass.lookUpConstructor(superName, constructor.library);
if (superConstructor != null) {
if (superArguments == null) {
superArguments = astFactory.nodeList<Expression>(null);
}
evaluateSuperConstructorCall(node, fieldMap, superConstructor,
superArguments, initializerVisitor, externalErrorReporter);
}
}
if (externalErrorListener.errorReported) {
errorReporter.reportErrorForNode(
CompileTimeErrorCode.CONST_EVAL_THROWS_EXCEPTION, node);
}
return new DartObjectImpl(
definingClass, new GenericState(fieldMap, invocation: invocation));
}
void evaluateSuperConstructorCall(
AstNode node,
Map<String, DartObjectImpl> fieldMap,
ConstructorElement superConstructor,
List<Expression> superArguments,
ConstantVisitor initializerVisitor,
ErrorReporter errorReporter) {
if (superConstructor != null && superConstructor.isConst) {
DartObjectImpl evaluationResult = evaluateConstructorCall(node,
superArguments, superConstructor, initializerVisitor, errorReporter);
if (evaluationResult != null) {
fieldMap[GenericState.SUPERCLASS_FIELD] = evaluationResult;
}
}
}
/// Attempt to follow the chain of factory redirections until a constructor is
/// reached which is not a const factory constructor. Return the constant
/// constructor which terminates the chain of factory redirections, if the
/// chain terminates. If there is a problem (e.g. a redirection can't be
/// found, or a cycle is encountered), the chain will be followed as far as
/// possible and then a const factory constructor will be returned.
ConstructorElement followConstantRedirectionChain(
ConstructorElement constructor) {
HashSet<ConstructorElement> constructorsVisited =
new HashSet<ConstructorElement>();
while (true) {
ConstructorElement redirectedConstructor =
getConstRedirectedConstructor(constructor);
if (redirectedConstructor == null) {
break;
} else {
ConstructorElement constructorBase = getConstructorImpl(constructor);
constructorsVisited.add(constructorBase);
ConstructorElement redirectedConstructorBase =
getConstructorImpl(redirectedConstructor);
if (constructorsVisited.contains(redirectedConstructorBase)) {
// Cycle in redirecting factory constructors--this is not allowed
// and is checked elsewhere--see
// [ErrorVerifier.checkForRecursiveFactoryRedirect()]).
break;
}
}
constructor = redirectedConstructor;
}
return constructor;
}
/// Generate an error indicating that the given [constant] is not a valid
/// compile-time constant because it references at least one of the constants
/// in the given [cycle], each of which directly or indirectly references the
/// constant.
void generateCycleError(Iterable<ConstantEvaluationTarget> cycle,
ConstantEvaluationTarget constant) {
if (constant is VariableElement) {
RecordingErrorListener errorListener = new RecordingErrorListener();
ErrorReporter errorReporter =
new ErrorReporter(errorListener, constant.source);
// TODO(paulberry): It would be really nice if we could extract enough
// information from the 'cycle' argument to provide the user with a
// description of the cycle.
errorReporter.reportErrorForElement(
CompileTimeErrorCode.RECURSIVE_COMPILE_TIME_CONSTANT, constant, []);
(constant as VariableElementImpl).evaluationResult =
new EvaluationResultImpl(null, errorListener.errors);
} else if (constant is ConstructorElement) {
// We don't report cycle errors on constructor declarations since there
// is nowhere to put the error information.
} else {
// Should not happen. Formal parameter defaults and annotations should
// never appear as part of a cycle because they can't be referred to.
assert(false);
AnalysisEngine.instance.logger
.logError("Constant value computer trying to report a cycle error "
"for a node of type ${constant.runtimeType}");
}
}
/// If [constructor] redirects to another const constructor, return the
/// const constructor it redirects to. Otherwise return `null`.
ConstructorElement getConstRedirectedConstructor(
ConstructorElement constructor) {
if (!constructor.isFactory) {
return null;
}
if (constructor.enclosingElement == typeProvider.symbolElement) {
// The dart:core.Symbol has a const factory constructor that redirects
// to dart:_internal.Symbol. That in turn redirects to an external
// const constructor, which we won't be able to evaluate.
// So stop following the chain of redirections at dart:core.Symbol, and
// let [evaluateInstanceCreationExpression] handle it specially.
return null;
}
ConstructorElement redirectedConstructor =
constructor.redirectedConstructor;
if (redirectedConstructor == null) {
// This can happen if constructor is an external factory constructor.
return null;
}
if (!redirectedConstructor.isConst) {
// Delegating to a non-const constructor--this is not allowed (and
// is checked elsewhere--see
// [ErrorVerifier.checkForRedirectToNonConstConstructor()]).
return null;
}
return redirectedConstructor;
}
/// Check if the object [obj] matches the type [type] according to runtime
/// type checking rules.
bool runtimeTypeMatch(DartObjectImpl obj, DartType type) {
if (obj.isNull) {
return true;
}
var objType = obj.type;
if (objType.isDartCoreInt && type.isDartCoreDouble) {
// Work around dartbug.com/35993 by allowing `int` to be used in a place
// where `double` is expected.
//
// Note that this is not technically correct, because it allows code like
// this:
// const Object x = 1;
// const double y = x;
//
// TODO(paulberry): remove this workaround once dartbug.com/33441 is
// fixed.
return true;
}
// TODO(scheglov ) Switch to using this, but not now, dartbug.com/33441
if (typeSystem.isSubtypeOf(objType, type)) {
return true;
}
return objType.isSubtypeOf(type);
}
/// Determine whether the given string is a valid name for a public symbol
/// (i.e. whether it is allowed for a call to the Symbol constructor).
static bool isValidPublicSymbol(String name) =>
name.isEmpty || name == "void" || _PUBLIC_SYMBOL_PATTERN.hasMatch(name);
}
/// Interface for [AnalysisTarget]s for which constant evaluation can be
/// performed.
abstract class ConstantEvaluationTarget extends AnalysisTarget {
/// Return the [AnalysisContext] which should be used to evaluate this
/// constant.
AnalysisContext get context;
/// Return whether this constant is evaluated.
bool get isConstantEvaluated;
}
/// Interface used by unit tests to verify correct dependency analysis during
/// constant evaluation.
abstract class ConstantEvaluationValidator {
/// This method is called just before computing the constant value associated
/// with [constant]. Unit tests will override this method to introduce
/// additional error checking.
void beforeComputeValue(ConstantEvaluationTarget constant);
/// This method is called just before getting the constant initializers
/// associated with the [constructor]. Unit tests will override this method to
/// introduce additional error checking.
void beforeGetConstantInitializers(ConstructorElement constructor);
/// This method is called just before retrieving an evaluation result from an
/// element. Unit tests will override it to introduce additional error
/// checking.
void beforeGetEvaluationResult(ConstantEvaluationTarget constant);
/// This method is called just before getting the constant value of a field
/// with an initializer. Unit tests will override this method to introduce
/// additional error checking.
void beforeGetFieldEvaluationResult(FieldElementImpl field);
/// This method is called just before getting a parameter's default value.
/// Unit tests will override this method to introduce additional error
/// checking.
void beforeGetParameterDefault(ParameterElement parameter);
}
/// Implementation of [ConstantEvaluationValidator] used in production; does no
/// validation.
class ConstantEvaluationValidator_ForProduction
implements ConstantEvaluationValidator {
@override
void beforeComputeValue(ConstantEvaluationTarget constant) {}
@override
void beforeGetConstantInitializers(ConstructorElement constructor) {}
@override
void beforeGetEvaluationResult(ConstantEvaluationTarget constant) {}
@override
void beforeGetFieldEvaluationResult(FieldElementImpl field) {}
@override
void beforeGetParameterDefault(ParameterElement parameter) {}
}
/// A visitor used to evaluate constant expressions to produce their
/// compile-time value.
class ConstantVisitor extends UnifyingAstVisitor<DartObjectImpl> {
/// The evaluation engine used to access the feature set, type system, and
/// type provider.
final ConstantEvaluationEngine evaluationEngine;
final Map<String, DartObjectImpl> _lexicalEnvironment;
/// Error reporter that we use to report errors accumulated while computing
/// the constant.
final ErrorReporter _errorReporter;
/// Helper class used to compute constant values.
DartObjectComputer _dartObjectComputer;
/// Initialize a newly created constant visitor. The [evaluationEngine] is
/// used to evaluate instance creation expressions. The [lexicalEnvironment]
/// is a map containing values which should override identifiers, or `null` if
/// no overriding is necessary. The [_errorReporter] is used to report errors
/// found during evaluation. The [validator] is used by unit tests to verify
/// correct dependency analysis.
ConstantVisitor(this.evaluationEngine, this._errorReporter,
{Map<String, DartObjectImpl> lexicalEnvironment})
: _lexicalEnvironment = lexicalEnvironment {
this._dartObjectComputer =
new DartObjectComputer(_errorReporter, evaluationEngine);
}
/// Return the object representing the state of active experiments.
ExperimentStatus get experimentStatus => evaluationEngine.experimentStatus;
/// Convenience getter to gain access to the [evaluationEngine]'s type system.
TypeSystem get typeSystem => evaluationEngine.typeSystem;
/// Convenience getter to gain access to the [evaluationEngine]'s type
/// provider.
TypeProvider get _typeProvider => evaluationEngine.typeProvider;
/// Given a [type] that may contain free type variables, evaluate them against
/// the current lexical environment and return the substituted type.
DartType evaluateType(DartType type) {
if (type is TypeParameterType) {
return null;
}
if (type is ParameterizedType) {
List<DartType> typeArguments;
for (int i = 0; i < type.typeArguments.length; i++) {
DartType ta = type.typeArguments[i];
DartType t = evaluateType(ta);
if (!identical(t, ta)) {
if (typeArguments == null) {
typeArguments = type.typeArguments.toList(growable: false);
}
typeArguments[i] = t;
}
}
if (typeArguments == null) return type;
return type.substitute2(typeArguments, type.typeArguments);
}
return type;
}
/// Given a [type], returns the constant value that contains that type value.
DartObjectImpl typeConstant(DartType type) {
return new DartObjectImpl(_typeProvider.typeType, new TypeState(type));
}
@override
DartObjectImpl visitAdjacentStrings(AdjacentStrings node) {
DartObjectImpl result = null;
for (StringLiteral string in node.strings) {
if (result == null) {
result = string.accept(this);
} else {
result =
_dartObjectComputer.concatenate(node, result, string.accept(this));
}
}
return result;
}
@override
DartObjectImpl visitAsExpression(AsExpression node) {
if (experimentStatus.constant_update_2018) {
DartObjectImpl expressionResult = node.expression.accept(this);
DartObjectImpl typeResult = node.type.accept(this);
return _dartObjectComputer.castToType(node, expressionResult, typeResult);
}
// TODO(brianwilkerson) Figure out which error to report.
_error(node, null);
return null;
}
@override
DartObjectImpl visitBinaryExpression(BinaryExpression node) {
TokenType operatorType = node.operator.type;
DartObjectImpl leftResult = node.leftOperand.accept(this);
// evaluate lazy operators
if (operatorType == TokenType.AMPERSAND_AMPERSAND) {
return _dartObjectComputer.lazyAnd(
node, leftResult, () => node.rightOperand.accept(this));
} else if (operatorType == TokenType.BAR_BAR) {
return _dartObjectComputer.lazyOr(
node, leftResult, () => node.rightOperand.accept(this));
} else if (operatorType == TokenType.QUESTION_QUESTION) {
if (experimentStatus.constant_update_2018) {
return _dartObjectComputer.lazyQuestionQuestion(
node, leftResult, () => node.rightOperand.accept(this));
} else {
return _dartObjectComputer.eagerQuestionQuestion(
node, leftResult, node.rightOperand.accept(this));
}
}
// evaluate eager operators
DartObjectImpl rightResult = node.rightOperand.accept(this);
if (operatorType == TokenType.AMPERSAND) {
return _dartObjectComputer.eagerAnd(
node, leftResult, rightResult, experimentStatus.constant_update_2018);
} else if (operatorType == TokenType.BANG_EQ) {
return _dartObjectComputer.notEqual(node, leftResult, rightResult);
} else if (operatorType == TokenType.BAR) {
return _dartObjectComputer.eagerOr(
node, leftResult, rightResult, experimentStatus.constant_update_2018);
} else if (operatorType == TokenType.CARET) {
return _dartObjectComputer.eagerXor(
node, leftResult, rightResult, experimentStatus.constant_update_2018);
} else if (operatorType == TokenType.EQ_EQ) {
if (experimentStatus.constant_update_2018) {
return _dartObjectComputer.lazyEqualEqual(
node, leftResult, rightResult);
}
return _dartObjectComputer.equalEqual(node, leftResult, rightResult);
} else if (operatorType == TokenType.GT) {
return _dartObjectComputer.greaterThan(node, leftResult, rightResult);
} else if (operatorType == TokenType.GT_EQ) {
return _dartObjectComputer.greaterThanOrEqual(
node, leftResult, rightResult);
} else if (operatorType == TokenType.GT_GT) {
return _dartObjectComputer.shiftRight(node, leftResult, rightResult);
} else if (operatorType == TokenType.GT_GT_GT) {
return _dartObjectComputer.logicalShiftRight(
node, leftResult, rightResult);
} else if (operatorType == TokenType.LT) {
return _dartObjectComputer.lessThan(node, leftResult, rightResult);
} else if (operatorType == TokenType.LT_EQ) {
return _dartObjectComputer.lessThanOrEqual(node, leftResult, rightResult);
} else if (operatorType == TokenType.LT_LT) {
return _dartObjectComputer.shiftLeft(node, leftResult, rightResult);
} else if (operatorType == TokenType.MINUS) {
return _dartObjectComputer.minus(node, leftResult, rightResult);
} else if (operatorType == TokenType.PERCENT) {
return _dartObjectComputer.remainder(node, leftResult, rightResult);
} else if (operatorType == TokenType.PLUS) {
return _dartObjectComputer.add(node, leftResult, rightResult);
} else if (operatorType == TokenType.STAR) {
return _dartObjectComputer.times(node, leftResult, rightResult);
} else if (operatorType == TokenType.SLASH) {
return _dartObjectComputer.divide(node, leftResult, rightResult);
} else if (operatorType == TokenType.TILDE_SLASH) {
return _dartObjectComputer.integerDivide(node, leftResult, rightResult);
} else {
// TODO(brianwilkerson) Figure out which error to report.
_error(node, null);
return null;
}
}
@override
DartObjectImpl visitBooleanLiteral(BooleanLiteral node) =>
new DartObjectImpl(_typeProvider.boolType, BoolState.from(node.value));
@override
DartObjectImpl visitConditionalExpression(ConditionalExpression node) {
Expression condition = node.condition;
DartObjectImpl conditionResult = condition.accept(this);
if (experimentStatus.constant_update_2018) {
if (conditionResult == null) {
return conditionResult;
} else if (!conditionResult.isBool) {
_errorReporter.reportErrorForNode(
CompileTimeErrorCode.CONST_EVAL_TYPE_BOOL, condition);
return null;
}
conditionResult = _dartObjectComputer.applyBooleanConversion(
condition, conditionResult);
if (conditionResult == null) {
return conditionResult;
}
if (conditionResult.toBoolValue() == true) {
_reportNotPotentialConstants(node.elseExpression);
return node.thenExpression.accept(this);
} else if (conditionResult.toBoolValue() == false) {
_reportNotPotentialConstants(node.thenExpression);
return node.elseExpression.accept(this);
}
// We used to return an object with a known type and an unknown value, but
// we can't do that without evaluating both the 'then' and 'else'
// expressions, and we're not suppose to do that under lazy semantics. I'm
// not sure which failure mode is worse.
return null;
}
DartObjectImpl thenResult = node.thenExpression.accept(this);
DartObjectImpl elseResult = node.elseExpression.accept(this);
if (conditionResult == null) {
return conditionResult;
} else if (!conditionResult.isBool) {
_errorReporter.reportErrorForNode(
CompileTimeErrorCode.CONST_EVAL_TYPE_BOOL, condition);
return null;
} else if (thenResult == null) {
return thenResult;
} else if (elseResult == null) {
return elseResult;
}
conditionResult =
_dartObjectComputer.applyBooleanConversion(condition, conditionResult);
if (conditionResult == null) {
return conditionResult;
}
if (conditionResult.toBoolValue() == true) {
return thenResult;
} else if (conditionResult.toBoolValue() == false) {
return elseResult;
}
ParameterizedType thenType = thenResult.type;
ParameterizedType elseType = elseResult.type;
return new DartObjectImpl.validWithUnknownValue(
typeSystem.getLeastUpperBound(thenType, elseType) as ParameterizedType);
}
@override
DartObjectImpl visitDoubleLiteral(DoubleLiteral node) =>
new DartObjectImpl(_typeProvider.doubleType, new DoubleState(node.value));
@override
DartObjectImpl visitInstanceCreationExpression(
InstanceCreationExpression node) {
if (!node.isConst) {
// TODO(brianwilkerson) Figure out which error to report.
_error(node, null);
return null;
}
ConstructorElement constructor = node.staticElement;
if (constructor == null) {
// Couldn't resolve the constructor so we can't compute a value. No
// problem - the error has already been reported.
return null;
}
return evaluationEngine.evaluateConstructorCall(
node, node.argumentList.arguments, constructor, this, _errorReporter);
}
@override
DartObjectImpl visitIntegerLiteral(IntegerLiteral node) {
if (node.staticType == _typeProvider.doubleType) {
return new DartObjectImpl(
_typeProvider.doubleType, new DoubleState(node.value?.toDouble()));
}
return new DartObjectImpl(_typeProvider.intType, new IntState(node.value));
}
@override
DartObjectImpl visitInterpolationExpression(InterpolationExpression node) {
DartObjectImpl result = node.expression.accept(this);
if (result != null && !result.isBoolNumStringOrNull) {
_error(node, CompileTimeErrorCode.CONST_EVAL_TYPE_BOOL_NUM_STRING);
return null;
}
return _dartObjectComputer.performToString(node, result);
}
@override
DartObjectImpl visitInterpolationString(InterpolationString node) =>
new DartObjectImpl(_typeProvider.stringType, new StringState(node.value));
@override
DartObjectImpl visitIsExpression(IsExpression node) {
if (experimentStatus.constant_update_2018) {
DartObjectImpl expressionResult = node.expression.accept(this);
DartObjectImpl typeResult = node.type.accept(this);
return _dartObjectComputer.typeTest(node, expressionResult, typeResult);
}
// TODO(brianwilkerson) Figure out which error to report.
_error(node, null);
return null;
}
@override
DartObjectImpl visitListLiteral(ListLiteral node) {
if (!node.isConst) {
_errorReporter.reportErrorForNode(
CompileTimeErrorCode.MISSING_CONST_IN_LIST_LITERAL, node);
return null;
}
bool errorOccurred = false;
List<DartObjectImpl> list = [];
for (CollectionElement element in node.elements) {
errorOccurred = errorOccurred | _addElementsToList(list, element);
}
if (errorOccurred) {
return null;
}
DartType nodeType = node.staticType;
DartType elementType =
nodeType is InterfaceType && nodeType.typeArguments.isNotEmpty
? nodeType.typeArguments[0]
: _typeProvider.dynamicType;
InterfaceType listType = _typeProvider.listType2(elementType);
return new DartObjectImpl(listType, new ListState(list));
}
@override
DartObjectImpl visitMethodInvocation(MethodInvocation node) {
Element element = node.methodName.staticElement;
if (element is FunctionElement) {
if (element.name == "identical") {
NodeList<Expression> arguments = node.argumentList.arguments;
if (arguments.length == 2) {
Element enclosingElement = element.enclosingElement;
if (enclosingElement is CompilationUnitElement) {
LibraryElement library = enclosingElement.library;
if (library.isDartCore) {
DartObjectImpl leftArgument = arguments[0].accept(this);
DartObjectImpl rightArgument = arguments[1].accept(this);
return _dartObjectComputer.isIdentical(
node, leftArgument, rightArgument);
}
}
}
}
}
// TODO(brianwilkerson) Figure out which error to report.
_error(node, null);
return null;
}
@override
DartObjectImpl visitNamedExpression(NamedExpression node) =>
node.expression.accept(this);
@override
DartObjectImpl visitNode(AstNode node) {
// TODO(brianwilkerson) Figure out which error to report.
_error(node, null);
return null;
}
@override
DartObjectImpl visitNullLiteral(NullLiteral node) => _typeProvider.nullObject;
@override
DartObjectImpl visitParenthesizedExpression(ParenthesizedExpression node) =>
node.expression.accept(this);
@override
DartObjectImpl visitPrefixedIdentifier(PrefixedIdentifier node) {
SimpleIdentifier prefixNode = node.prefix;
Element prefixElement = prefixNode.staticElement;
// String.length
if (prefixElement is! PrefixElement && prefixElement is! ClassElement) {
DartObjectImpl prefixResult = node.prefix.accept(this);
if (_isStringLength(prefixResult, node.identifier)) {
return prefixResult.stringLength(_typeProvider);
}
}
// importPrefix.CONST
if (prefixElement is! PrefixElement) {
DartObjectImpl prefixResult = prefixNode.accept(this);
if (prefixResult == null) {
// The error has already been reported.
return null;
}
}
// validate prefixed identifier
return _getConstantValue(node, node.staticElement);
}
@override
DartObjectImpl visitPrefixExpression(PrefixExpression node) {
DartObjectImpl operand = node.operand.accept(this);
if (operand != null && operand.isNull) {
_error(node, CompileTimeErrorCode.CONST_EVAL_THROWS_EXCEPTION);
return null;
}
if (node.operator.type == TokenType.BANG) {
return _dartObjectComputer.logicalNot(node, operand);
} else if (node.operator.type == TokenType.TILDE) {
return _dartObjectComputer.bitNot(node, operand);
} else if (node.operator.type == TokenType.MINUS) {
return _dartObjectComputer.negated(node, operand);
} else {
// TODO(brianwilkerson) Figure out which error to report.
_error(node, null);
return null;
}
}
@override
DartObjectImpl visitPropertyAccess(PropertyAccess node) {
if (node.target != null) {
DartObjectImpl prefixResult = node.target.accept(this);
if (_isStringLength(prefixResult, node.propertyName)) {
return prefixResult.stringLength(_typeProvider);
}
}
return _getConstantValue(node, node.propertyName.staticElement);
}
@override
DartObjectImpl visitSetOrMapLiteral(SetOrMapLiteral node) {
// Note: due to dartbug.com/33441, it's possible that a set/map literal
// resynthesized from a summary will have neither its `isSet` or `isMap`
// boolean set to `true`. We work around the problem by assuming such
// literals are maps.
// TODO(paulberry): when dartbug.com/33441 is fixed, add an assertion here
// to verify that `node.isSet == !node.isMap`.
bool isMap = !node.isSet;
if (isMap) {
if (!node.isConst) {
_errorReporter.reportErrorForNode(
CompileTimeErrorCode.MISSING_CONST_IN_MAP_LITERAL, node);
return null;
}
bool errorOccurred = false;
Map<DartObjectImpl, DartObjectImpl> map = {};
for (CollectionElement element in node.elements) {
errorOccurred = errorOccurred | _addElementsToMap(map, element);
}
if (errorOccurred) {
return null;
}
DartType keyType = _typeProvider.dynamicType;
DartType valueType = _typeProvider.dynamicType;
DartType nodeType = node.staticType;
if (nodeType is InterfaceType) {
var typeArguments = nodeType.typeArguments;
if (typeArguments.length >= 2) {
keyType = typeArguments[0];
valueType = typeArguments[1];
}
}
InterfaceType mapType = _typeProvider.mapType2(keyType, valueType);
return new DartObjectImpl(mapType, new MapState(map));
} else {
if (!node.isConst) {
_errorReporter.reportErrorForNode(
CompileTimeErrorCode.MISSING_CONST_IN_SET_LITERAL, node);
return null;
}
bool errorOccurred = false;
Set<DartObjectImpl> set = new Set<DartObjectImpl>();
for (CollectionElement element in node.elements) {
errorOccurred = errorOccurred | _addElementsToSet(set, element);
}
if (errorOccurred) {
return null;
}
DartType nodeType = node.staticType;
DartType elementType =
nodeType is InterfaceType && nodeType.typeArguments.isNotEmpty
? nodeType.typeArguments[0]
: _typeProvider.dynamicType;
InterfaceType setType = _typeProvider.setType2(elementType);
return new DartObjectImpl(setType, new SetState(set));
}
}
@override
DartObjectImpl visitSimpleIdentifier(SimpleIdentifier node) {
if (_lexicalEnvironment != null &&
_lexicalEnvironment.containsKey(node.name)) {
return _lexicalEnvironment[node.name];
}
return _getConstantValue(node, node.staticElement);
}
@override
DartObjectImpl visitSimpleStringLiteral(SimpleStringLiteral node) =>
new DartObjectImpl(_typeProvider.stringType, new StringState(node.value));
@override
DartObjectImpl visitStringInterpolation(StringInterpolation node) {
DartObjectImpl result = null;
bool first = true;
for (InterpolationElement element in node.elements) {
if (first) {
result = element.accept(this);
first = false;
} else {
result =
_dartObjectComputer.concatenate(node, result, element.accept(this));
}
}
return result;
}
@override
DartObjectImpl visitSymbolLiteral(SymbolLiteral node) {
StringBuffer buffer = new StringBuffer();
List<Token> components = node.components;
for (int i = 0; i < components.length; i++) {
if (i > 0) {
buffer.writeCharCode(0x2E);
}
buffer.write(components[i].lexeme);
}
return new DartObjectImpl(
_typeProvider.symbolType, new SymbolState(buffer.toString()));
}
DartObjectImpl visitTypeAnnotation(TypeAnnotation node) {
DartType type = evaluateType(node.type);
if (type == null) {
return super.visitTypeName(node);
}
return typeConstant(type);
}
@override
DartObjectImpl visitTypeName(TypeName node) => visitTypeAnnotation(node);
/// Add the entries produced by evaluating the given collection [element] to
/// the given [list]. Return `true` if the evaluation of one or more of the
/// elements failed.
bool _addElementsToList(List<DartObject> list, CollectionElement element) {
if (element is IfElement) {
bool conditionValue = _evaluateCondition(element.condition);
if (conditionValue == null) {
return true;
} else if (conditionValue) {
return _addElementsToList(list, element.thenElement);
} else if (element.elseElement != null) {
return _addElementsToList(list, element.elseElement);
}
return false;
} else if (element is Expression) {
DartObjectImpl value = element.accept(this);
if (value == null) {
return true;
}
list.add(value);
return false;
} else if (element is SpreadElement) {
DartObjectImpl elementResult = element.expression.accept(this);
List<DartObject> value = elementResult?.toListValue();
if (value == null) {
return true;
}
list.addAll(value);
return false;
}
// This error should have been reported elsewhere.
return true;
}
/// Add the entries produced by evaluating the given map [element] to the
/// given [map]. Return `true` if the evaluation of one or more of the entries
/// failed.
bool _addElementsToMap(
Map<DartObjectImpl, DartObjectImpl> map, CollectionElement element) {
if (element is IfElement) {
bool conditionValue = _evaluateCondition(element.condition);
if (conditionValue == null) {
return true;
} else if (conditionValue) {
return _addElementsToMap(map, element.thenElement);
} else if (element.elseElement != null) {
return _addElementsToMap(map, element.elseElement);
}
return false;
} else if (element is MapLiteralEntry) {
DartObjectImpl keyResult = element.key.accept(this);
DartObjectImpl valueResult = element.value.accept(this);
if (keyResult == null || valueResult == null) {
return true;
}
map[keyResult] = valueResult;
return false;
} else if (element is SpreadElement) {
DartObjectImpl elementResult = element.expression.accept(this);
Map<DartObject, DartObject> value = elementResult?.toMapValue();
if (value == null) {
return true;
}
map.addAll(value);
return false;
}
// This error should have been reported elsewhere.
return true;
}
/// Add the entries produced by evaluating the given collection [element] to
/// the given [set]. Return `true` if the evaluation of one or more of the
/// elements failed.
bool _addElementsToSet(Set<DartObject> set, CollectionElement element) {
if (element is IfElement) {
bool conditionValue = _evaluateCondition(element.condition);
if (conditionValue == null) {
return true;
} else if (conditionValue) {
return _addElementsToSet(set, element.thenElement);
} else if (element.elseElement != null) {
return _addElementsToSet(set, element.elseElement);
}
return false;
} else if (element is Expression) {
DartObjectImpl value = element.accept(this);
if (value == null) {
return true;
}
set.add(value);
return false;
} else if (element is SpreadElement) {
DartObjectImpl elementResult = element.expression.accept(this);
Set<DartObject> value = elementResult?.toSetValue();
if (value == null) {
return true;
}
set.addAll(value);
return false;
}
// This error should have been reported elsewhere.
return true;
}
/// Create an error associated with the given [node]. The error will have the
/// given error [code].
void _error(AstNode node, ErrorCode code) {
if (code == null) {
var parent = node?.parent;
var parent2 = parent?.parent;
if (parent is ArgumentList &&
parent2 is InstanceCreationExpression &&
parent2.isConst) {
code = CompileTimeErrorCode.CONST_WITH_NON_CONSTANT_ARGUMENT;
} else {
code = CompileTimeErrorCode.INVALID_CONSTANT;
}
}
_errorReporter.reportErrorForNode(
code ?? CompileTimeErrorCode.INVALID_CONSTANT, node);
}
/// Evaluate the given [condition] with the assumption that it must be a
/// `bool`.
bool _evaluateCondition(Expression condition) {
DartObjectImpl conditionResult = condition.accept(this);
bool conditionValue = conditionResult?.toBoolValue();
if (conditionValue == null) {
if (conditionResult?.type != _typeProvider.boolType) {
// TODO(brianwilkerson) Figure out why the static type is sometimes null.
DartType staticType = condition.staticType;
if (staticType == null ||
typeSystem.isAssignableTo(staticType, _typeProvider.boolType)) {
// If the static type is not assignable, then we will have already
// reported this error.
// TODO(mfairhurst) get the FeatureSet to suppress this for nnbd too.
_errorReporter.reportErrorForNode(
CompileTimeErrorCode.CONST_EVAL_THROWS_EXCEPTION, condition);
}
}
}
return conditionValue;
}
/// Return the constant value of the static constant represented by the given
/// [element]. The [node] is the node to be used if an error needs to be
/// reported.
DartObjectImpl _getConstantValue(Expression node, Element element) {
Element variableElement =
element is PropertyAccessorElement ? element.variable : element;
if (variableElement is VariableElementImpl) {
// We access values of constant variables here in two cases: when we
// compute values of other constant variables, or when we compute values
// and errors for other constant expressions. In either case we have
// already computed values of all dependencies first (or detect a cycle),
// so the value has already been computed and we can just return it.
EvaluationResultImpl value = variableElement.evaluationResult;
if (variableElement.isConst && value != null) {
return value.value;
}
} else if (variableElement is ExecutableElement) {
ExecutableElement function = element;
if (function.isStatic) {
var functionType = node.staticType;
return DartObjectImpl(functionType, FunctionState(function));
}
} else if (variableElement is ClassElement) {
var type = variableElement.instantiate(
typeArguments: variableElement.typeParameters
.map((t) => _typeProvider.dynamicType)
.toList(),
nullabilitySuffix: NullabilitySuffix.star,
);
return DartObjectImpl(_typeProvider.typeType, TypeState(type));
} else if (variableElement is DynamicElementImpl) {
return DartObjectImpl(
_typeProvider.typeType,
TypeState(_typeProvider.dynamicType),
);
} else if (variableElement is FunctionTypeAliasElement) {
var type = variableElement.instantiate2(
typeArguments: variableElement.typeParameters
.map((t) => _typeProvider.dynamicType)
.toList(),
nullabilitySuffix: NullabilitySuffix.star,
);
return DartObjectImpl(_typeProvider.typeType, TypeState(type));
} else if (variableElement is NeverElementImpl) {
return DartObjectImpl(
_typeProvider.typeType,
TypeState(_typeProvider.neverType),
);
} else if (variableElement is TypeParameterElement) {
// Constants may not refer to type parameters.
}
// TODO(brianwilkerson) Figure out which error to report.
_error(node, null);
return null;
}
/// Return `true` if the given [targetResult] represents a string and the
/// [identifier] is "length".
bool _isStringLength(
DartObjectImpl targetResult, SimpleIdentifier identifier) {
if (targetResult == null || targetResult.type != _typeProvider.stringType) {
return false;
}
return identifier.name == 'length';
}
void _reportNotPotentialConstants(AstNode node) {
var notPotentiallyConstants = getNotPotentiallyConstants(node);
if (notPotentiallyConstants.isEmpty) return;
for (var notConst in notPotentiallyConstants) {
_errorReporter.reportErrorForNode(
CompileTimeErrorCode.INVALID_CONSTANT,
notConst,
);
}
}
/// Return the value of the given [expression], or a representation of 'null'
/// if the expression cannot be evaluated.
DartObjectImpl _valueOf(Expression expression) {
DartObjectImpl expressionValue = expression.accept(this);
if (expressionValue != null) {
return expressionValue;
}
return _typeProvider.nullObject;
}
}
/// A utility class that contains methods for manipulating instances of a Dart
/// class and for collecting errors during evaluation.
class DartObjectComputer {
/// The error reporter that we are using to collect errors.
final ErrorReporter _errorReporter;
/// The evaluation engine used to access the type system, and type provider.
final ConstantEvaluationEngine _evaluationEngine;
DartObjectComputer(this._errorReporter, this._evaluationEngine);
/// Convenience getter to gain access to the [evaluationEngine]'s type
/// provider.
TypeProvider get _typeProvider => _evaluationEngine.typeProvider;
/// Convenience getter to gain access to the [evaluationEngine]'s type system.
TypeSystem get _typeSystem => _evaluationEngine.typeSystem;
DartObjectImpl add(BinaryExpression node, DartObjectImpl leftOperand,
DartObjectImpl rightOperand) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.add(_typeProvider, rightOperand);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
return null;
}
}
return null;
}
/// Return the result of applying boolean conversion to the
/// [evaluationResult]. The [node] is the node against which errors should be
/// reported.
DartObjectImpl applyBooleanConversion(
AstNode node, DartObjectImpl evaluationResult) {
if (evaluationResult != null) {
try {
return evaluationResult.convertToBool(_typeProvider);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl bitNot(Expression node, DartObjectImpl evaluationResult) {
if (evaluationResult != null) {
try {
return evaluationResult.bitNot(_typeProvider);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl castToType(
AsExpression node, DartObjectImpl expression, DartObjectImpl type) {
if (expression != null && type != null) {
try {
return expression.castToType(_typeProvider, _typeSystem, type);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl concatenate(Expression node, DartObjectImpl leftOperand,
DartObjectImpl rightOperand) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.concatenate(_typeProvider, rightOperand);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl divide(BinaryExpression node, DartObjectImpl leftOperand,
DartObjectImpl rightOperand) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.divide(_typeProvider, rightOperand);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl eagerAnd(BinaryExpression node, DartObjectImpl leftOperand,
DartObjectImpl rightOperand, bool allowBool) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.eagerAnd(_typeProvider, rightOperand, allowBool);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl eagerOr(BinaryExpression node, DartObjectImpl leftOperand,
DartObjectImpl rightOperand, bool allowBool) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.eagerOr(_typeProvider, rightOperand, allowBool);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl eagerQuestionQuestion(Expression node,
DartObjectImpl leftOperand, DartObjectImpl rightOperand) {
if (leftOperand != null && rightOperand != null) {
if (leftOperand.isNull) {
return rightOperand;
}
return leftOperand;
}
return null;
}
DartObjectImpl eagerXor(BinaryExpression node, DartObjectImpl leftOperand,
DartObjectImpl rightOperand, bool allowBool) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.eagerXor(_typeProvider, rightOperand, allowBool);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl equalEqual(Expression node, DartObjectImpl leftOperand,
DartObjectImpl rightOperand) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.equalEqual(_typeProvider, rightOperand);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl greaterThan(BinaryExpression node, DartObjectImpl leftOperand,
DartObjectImpl rightOperand) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.greaterThan(_typeProvider, rightOperand);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl greaterThanOrEqual(BinaryExpression node,
DartObjectImpl leftOperand, DartObjectImpl rightOperand) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.greaterThanOrEqual(_typeProvider, rightOperand);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl integerDivide(BinaryExpression node,
DartObjectImpl leftOperand, DartObjectImpl rightOperand) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.integerDivide(_typeProvider, rightOperand);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl isIdentical(Expression node, DartObjectImpl leftOperand,
DartObjectImpl rightOperand) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.isIdentical(_typeProvider, rightOperand);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl lazyAnd(BinaryExpression node, DartObjectImpl leftOperand,
DartObjectImpl rightOperandComputer()) {
if (leftOperand != null) {
try {
return leftOperand.lazyAnd(_typeProvider, rightOperandComputer);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl lazyEqualEqual(Expression node, DartObjectImpl leftOperand,
DartObjectImpl rightOperand) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.lazyEqualEqual(_typeProvider, rightOperand);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl lazyOr(BinaryExpression node, DartObjectImpl leftOperand,
DartObjectImpl rightOperandComputer()) {
if (leftOperand != null) {
try {
return leftOperand.lazyOr(_typeProvider, rightOperandComputer);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl lazyQuestionQuestion(Expression node,
DartObjectImpl leftOperand, DartObjectImpl rightOperandComputer()) {
if (leftOperand != null) {
if (leftOperand.isNull) {
return rightOperandComputer();
}
return leftOperand;
}
return null;
}
DartObjectImpl lessThan(BinaryExpression node, DartObjectImpl leftOperand,
DartObjectImpl rightOperand) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.lessThan(_typeProvider, rightOperand);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl lessThanOrEqual(BinaryExpression node,
DartObjectImpl leftOperand, DartObjectImpl rightOperand) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.lessThanOrEqual(_typeProvider, rightOperand);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl logicalNot(Expression node, DartObjectImpl evaluationResult) {
if (evaluationResult != null) {
try {
return evaluationResult.logicalNot(_typeProvider);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl logicalShiftRight(BinaryExpression node,
DartObjectImpl leftOperand, DartObjectImpl rightOperand) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.logicalShiftRight(_typeProvider, rightOperand);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl minus(BinaryExpression node, DartObjectImpl leftOperand,
DartObjectImpl rightOperand) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.minus(_typeProvider, rightOperand);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl negated(Expression node, DartObjectImpl evaluationResult) {
if (evaluationResult != null) {
try {
return evaluationResult.negated(_typeProvider);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl notEqual(BinaryExpression node, DartObjectImpl leftOperand,
DartObjectImpl rightOperand) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.notEqual(_typeProvider, rightOperand);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl performToString(
AstNode node, DartObjectImpl evaluationResult) {
if (evaluationResult != null) {
try {
return evaluationResult.performToString(_typeProvider);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl remainder(BinaryExpression node, DartObjectImpl leftOperand,
DartObjectImpl rightOperand) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.remainder(_typeProvider, rightOperand);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl shiftLeft(BinaryExpression node, DartObjectImpl leftOperand,
DartObjectImpl rightOperand) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.shiftLeft(_typeProvider, rightOperand);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl shiftRight(BinaryExpression node, DartObjectImpl leftOperand,
DartObjectImpl rightOperand) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.shiftRight(_typeProvider, rightOperand);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
/// Return the result of invoking the 'length' getter on the
/// [evaluationResult]. The [node] is the node against which errors should be
/// reported.
EvaluationResultImpl stringLength(
Expression node, EvaluationResultImpl evaluationResult) {
if (evaluationResult.value != null) {
try {
return new EvaluationResultImpl(
evaluationResult.value.stringLength(_typeProvider));
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return new EvaluationResultImpl(null);
}
DartObjectImpl times(BinaryExpression node, DartObjectImpl leftOperand,
DartObjectImpl rightOperand) {
if (leftOperand != null && rightOperand != null) {
try {
return leftOperand.times(_typeProvider, rightOperand);
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
DartObjectImpl typeTest(
IsExpression node, DartObjectImpl expression, DartObjectImpl type) {
if (expression != null && type != null) {
try {
DartObjectImpl result =
expression.hasType(_typeProvider, _typeSystem, type);
if (node.notOperator != null) {
return result.logicalNot(_typeProvider);
}
return result;
} on EvaluationException catch (exception) {
_errorReporter.reportErrorForNode(exception.errorCode, node);
}
}
return null;
}
}
/// The result of attempting to evaluate an expression.
class EvaluationResult {
// TODO(brianwilkerson) Merge with EvaluationResultImpl
/// The value of the expression.
final DartObject value;
/// The errors that should be reported for the expression(s) that were
/// evaluated.
final List<AnalysisError> _errors;
/// Initialize a newly created result object with the given [value] and set of
/// [_errors]. Clients should use one of the factory methods: [forErrors] and
/// [forValue].
EvaluationResult(this.value, this._errors);
/// Return a list containing the errors that should be reported for the
/// expression(s) that were evaluated. If there are no such errors, the list
/// will be empty. The list can be empty even if the expression is not a valid
/// compile time constant if the errors would have been reported by other
/// parts of the analysis engine.
List<AnalysisError> get errors => _errors ?? AnalysisError.NO_ERRORS;
/// Return `true` if the expression is a compile-time constant expression that
/// would not throw an exception when evaluated.
bool get isValid => _errors == null;
/// Return an evaluation result representing the result of evaluating an
/// expression that is not a compile-time constant because of the given
/// [errors].
static EvaluationResult forErrors(List<AnalysisError> errors) =>
new EvaluationResult(null, errors);
/// Return an evaluation result representing the result of evaluating an
/// expression that is a compile-time constant that evaluates to the given
/// [value].
static EvaluationResult forValue(DartObject value) =>
new EvaluationResult(value, null);
}
/// The result of attempting to evaluate a expression.
class EvaluationResultImpl {
/// The errors encountered while trying to evaluate the compile time constant.
/// These errors may or may not have prevented the expression from being a
/// valid compile time constant.
List<AnalysisError> _errors;
/// The value of the expression, or `null` if the value couldn't be computed
/// due to errors.
final DartObjectImpl value;
EvaluationResultImpl(this.value, [List<AnalysisError> errors]) {
this._errors = errors ?? <AnalysisError>[];
}
List<AnalysisError> get errors => _errors;
bool equalValues(TypeProvider typeProvider, EvaluationResultImpl result) {
if (this.value != null) {
if (result.value == null) {
return false;
}
return value == result.value;
} else {
return false;
}
}
@override
String toString() {
if (value == null) {
return "error";
}
return value.toString();
}
}