| // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #ifndef PLATFORM_GLOBALS_H_ |
| #define PLATFORM_GLOBALS_H_ |
| |
| // __STDC_FORMAT_MACROS has to be defined before including <inttypes.h> to |
| // enable platform independent printf format specifiers. |
| #ifndef __STDC_FORMAT_MACROS |
| #define __STDC_FORMAT_MACROS |
| #endif |
| |
| #if defined(_WIN32) |
| // Cut down on the amount of stuff that gets included via windows.h. |
| #define WIN32_LEAN_AND_MEAN |
| #define NOMINMAX |
| #define NOKERNEL |
| #define NOUSER |
| #define NOSERVICE |
| #define NOSOUND |
| #define NOMCX |
| #define _UNICODE |
| #define UNICODE |
| #include <windows.h> |
| #include <winsock2.h> |
| #include <Rpc.h> |
| #include <shellapi.h> |
| #endif |
| |
| #if !defined(_WIN32) |
| #include <arpa/inet.h> |
| #include <inttypes.h> |
| #include <stdint.h> |
| #include <unistd.h> |
| #endif |
| |
| #include <float.h> |
| #include <limits.h> |
| #include <math.h> |
| #include <stdarg.h> |
| #include <stddef.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/types.h> |
| |
| #if defined(_WIN32) |
| #include "platform/c99_support_win.h" |
| #include "platform/inttypes_support_win.h" |
| #include "platform/floating_point_win.h" |
| #endif |
| |
| #if !defined(_WIN32) |
| #include "platform/floating_point.h" |
| #endif |
| |
| |
| // Target OS detection. |
| // for more information on predefined macros: |
| // - http://msdn.microsoft.com/en-us/library/b0084kay.aspx |
| // - with gcc, run: "echo | gcc -E -dM -" |
| #if defined(__ANDROID__) |
| #define TARGET_OS_ANDROID 1 |
| #elif defined(__linux__) || defined(__FreeBSD__) |
| #define TARGET_OS_LINUX 1 |
| #elif defined(__APPLE__) |
| #define TARGET_OS_MACOS 1 |
| #elif defined(_WIN32) |
| #define TARGET_OS_WINDOWS 1 |
| #else |
| #error Automatic target os detection failed. |
| #endif |
| |
| struct simd128_value_t { |
| float storage[4]; |
| simd128_value_t& readFrom(const float* v) { |
| storage[0] = v[0]; |
| storage[1] = v[1]; |
| storage[2] = v[2]; |
| storage[3] = v[3]; |
| return *this; |
| } |
| simd128_value_t& readFrom(const uint32_t* v) { |
| const float* vv = reinterpret_cast<const float*>(v); |
| storage[0] = vv[0]; |
| storage[1] = vv[1]; |
| storage[2] = vv[2]; |
| storage[3] = vv[3]; |
| return *this; |
| } |
| simd128_value_t& readFrom(const simd128_value_t* v) { |
| *this = *v; |
| return *this; |
| } |
| void writeTo(float* v) { |
| v[0] = storage[0]; |
| v[1] = storage[1]; |
| v[2] = storage[2]; |
| v[3] = storage[3]; |
| } |
| void writeTo(uint32_t* v) { |
| float* vv = reinterpret_cast<float*>(v); |
| vv[0] = storage[0]; |
| vv[1] = storage[1]; |
| vv[2] = storage[2]; |
| vv[3] = storage[3]; |
| } |
| void writeTo(simd128_value_t* v) { |
| *v = *this; |
| } |
| }; |
| |
| // Processor architecture detection. For more info on what's defined, see: |
| // http://msdn.microsoft.com/en-us/library/b0084kay.aspx |
| // http://www.agner.org/optimize/calling_conventions.pdf |
| // or with gcc, run: "echo | gcc -E -dM -" |
| #if defined(_M_X64) || defined(__x86_64__) |
| #define HOST_ARCH_X64 1 |
| #define ARCH_IS_64_BIT 1 |
| #define kFpuRegisterSize 16 |
| typedef simd128_value_t fpu_register_t; |
| #elif defined(_M_IX86) || defined(__i386__) |
| #define HOST_ARCH_IA32 1 |
| #define ARCH_IS_32_BIT 1 |
| #if defined(TARGET_ARCH_MIPS) |
| #define kFpuRegisterSize 8 |
| typedef double fpu_register_t; |
| #else |
| #define kFpuRegisterSize 16 |
| typedef simd128_value_t fpu_register_t; |
| #endif |
| #elif defined(__ARMEL__) |
| #define HOST_ARCH_ARM 1 |
| #define ARCH_IS_32_BIT 1 |
| #define kFpuRegisterSize 16 |
| typedef struct { |
| union { |
| uint32_t u; |
| float f; |
| } data_[4]; |
| } simd_value_t; |
| typedef simd_value_t fpu_register_t; |
| #define simd_value_safe_load(addr) \ |
| (*reinterpret_cast<simd_value_t *>(addr)) |
| #define simd_value_safe_store(addr, value) \ |
| do { \ |
| reinterpret_cast<simd_value_t *>(addr)->data_[0] = value.data_[0]; \ |
| reinterpret_cast<simd_value_t *>(addr)->data_[1] = value.data_[1]; \ |
| reinterpret_cast<simd_value_t *>(addr)->data_[2] = value.data_[2]; \ |
| reinterpret_cast<simd_value_t *>(addr)->data_[3] = value.data_[3]; \ |
| } while (0) |
| |
| #elif defined(__MIPSEL__) |
| #define HOST_ARCH_MIPS 1 |
| #define ARCH_IS_32_BIT 1 |
| #define kFpuRegisterSize 8 |
| typedef double fpu_register_t; |
| #else |
| #error Architecture was not detected as supported by Dart. |
| #endif |
| |
| // DART_FORCE_INLINE strongly hints to the compiler that a function should |
| // be inlined. Your function is not guaranteed to be inlined but this is |
| // stronger than just using "inline". |
| // See: http://msdn.microsoft.com/en-us/library/z8y1yy88.aspx for an |
| // explanation of some the cases when a function can never be inlined. |
| #ifdef _MSC_VER |
| #define DART_FORCE_INLINE __forceinline |
| #elif __GNUC__ |
| #define DART_FORCE_INLINE inline __attribute__((always_inline)) |
| #else |
| #error Automatic compiler detection failed. |
| #endif |
| |
| #if !defined(TARGET_ARCH_MIPS) |
| #if !defined(TARGET_ARCH_ARM) |
| #if !defined(TARGET_ARCH_X64) |
| #if !defined(TARGET_ARCH_IA32) |
| // No target architecture specified pick the one matching the host architecture. |
| #if defined(HOST_ARCH_MIPS) |
| #define TARGET_ARCH_MIPS 1 |
| #elif defined(HOST_ARCH_ARM) |
| #define TARGET_ARCH_ARM 1 |
| #elif defined(HOST_ARCH_X64) |
| #define TARGET_ARCH_X64 1 |
| #elif defined(HOST_ARCH_IA32) |
| #define TARGET_ARCH_IA32 1 |
| #else |
| #error Automatic target architecture detection failed. |
| #endif |
| #endif |
| #endif |
| #endif |
| #endif |
| |
| // Verify that host and target architectures match, we cannot |
| // have a 64 bit Dart VM generating 32 bit code or vice-versa. |
| #if defined(TARGET_ARCH_X64) |
| #if !defined(ARCH_IS_64_BIT) |
| #error Mismatched Host/Target architectures. |
| #endif |
| #elif defined(TARGET_ARCH_IA32) || \ |
| defined(TARGET_ARCH_ARM) || \ |
| defined(TARGET_ARCH_MIPS) |
| #if !defined(ARCH_IS_32_BIT) |
| #error Mismatched Host/Target architectures. |
| #endif |
| #endif |
| |
| |
| // Short form printf format specifiers |
| #define Pd PRIdPTR |
| #define Pu PRIuPTR |
| #define Px PRIxPTR |
| #define Pd64 PRId64 |
| #define Pu64 PRIu64 |
| #define Px64 PRIx64 |
| |
| |
| // Suffixes for 64-bit integer literals. |
| #ifdef _MSC_VER |
| #define DART_INT64_C(x) x##I64 |
| #define DART_UINT64_C(x) x##UI64 |
| #else |
| #define DART_INT64_C(x) x##LL |
| #define DART_UINT64_C(x) x##ULL |
| #endif |
| |
| |
| // The following macro works on both 32 and 64-bit platforms. |
| // Usage: instead of writing 0x1234567890123456ULL |
| // write DART_2PART_UINT64_C(0x12345678,90123456); |
| #define DART_2PART_UINT64_C(a, b) \ |
| (((static_cast<uint64_t>(a) << 32) + 0x##b##u)) |
| |
| // Integer constants. |
| const int32_t kMinInt32 = 0x80000000; |
| const int32_t kMaxInt32 = 0x7FFFFFFF; |
| const uint32_t kMaxUint32 = 0xFFFFFFFF; |
| const int64_t kMinInt64 = DART_INT64_C(0x8000000000000000); |
| const int64_t kMaxInt64 = DART_INT64_C(0x7FFFFFFFFFFFFFFF); |
| const uint64_t kMaxUint64 = DART_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF); |
| |
| // Types for native machine words. Guaranteed to be able to hold pointers and |
| // integers. |
| typedef intptr_t word; |
| typedef uintptr_t uword; |
| |
| // Byte sizes. |
| const int kWordSize = sizeof(word); |
| const int kDoubleSize = sizeof(double); // NOLINT |
| const int kFloatSize = sizeof(float); // NOLINT |
| const int kSimd128Size = sizeof(simd128_value_t); // NOLINT |
| #ifdef ARCH_IS_32_BIT |
| const int kWordSizeLog2 = 2; |
| const uword kUwordMax = kMaxUint32; |
| #else |
| const int kWordSizeLog2 = 3; |
| const uword kUwordMax = kMaxUint64; |
| #endif |
| |
| // Bit sizes. |
| const int kBitsPerByte = 8; |
| const int kBitsPerByteLog2 = 3; |
| const int kBitsPerWord = kWordSize * kBitsPerByte; |
| |
| // System-wide named constants. |
| const intptr_t KB = 1024; |
| const intptr_t KBLog2 = 10; |
| const intptr_t MB = KB * KB; |
| const intptr_t MBLog2 = KBLog2 + KBLog2; |
| const intptr_t GB = MB * KB; |
| const intptr_t GBLog2 = MBLog2 + KBLog2; |
| |
| const intptr_t kIntptrOne = 1; |
| const intptr_t kIntptrMin = (kIntptrOne << (kBitsPerWord - 1)); |
| const intptr_t kIntptrMax = ~kIntptrMin; |
| |
| // Time constants. |
| const int kMillisecondsPerSecond = 1000; |
| const int kMicrosecondsPerMillisecond = 1000; |
| const int kMicrosecondsPerSecond = (kMicrosecondsPerMillisecond * |
| kMillisecondsPerSecond); |
| const int kNanosecondsPerMicrosecond = 1000; |
| const int kNanosecondsPerMillisecond = (kNanosecondsPerMicrosecond * |
| kMicrosecondsPerMillisecond); |
| const int kNanosecondsPerSecond = (kNanosecondsPerMicrosecond * |
| kMicrosecondsPerSecond); |
| |
| // A macro to disallow the copy constructor and operator= functions. |
| // This should be used in the private: declarations for a class. |
| #define DISALLOW_COPY_AND_ASSIGN(TypeName) \ |
| private: \ |
| TypeName(const TypeName&); \ |
| void operator=(const TypeName&) |
| |
| |
| // A macro to disallow all the implicit constructors, namely the default |
| // constructor, copy constructor and operator= functions. This should be |
| // used in the private: declarations for a class that wants to prevent |
| // anyone from instantiating it. This is especially useful for classes |
| // containing only static methods. |
| #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ |
| private: \ |
| TypeName(); \ |
| DISALLOW_COPY_AND_ASSIGN(TypeName) |
| |
| |
| // Macro to disallow allocation in the C++ heap. This should be used |
| // in the private section for a class. Don't use UNREACHABLE here to |
| // avoid circular dependencies between platform/globals.h and |
| // platform/assert.h. |
| #define DISALLOW_ALLOCATION() \ |
| public: \ |
| void operator delete(void* pointer) { \ |
| fprintf(stderr, "unreachable code\n"); \ |
| abort(); \ |
| } \ |
| private: \ |
| void* operator new(size_t size); |
| |
| |
| // The USE(x) template is used to silence C++ compiler warnings issued |
| // for unused variables. |
| template <typename T> |
| static inline void USE(T) { } |
| |
| |
| // Use implicit_cast as a safe version of static_cast or const_cast |
| // for upcasting in the type hierarchy (i.e. casting a pointer to Foo |
| // to a pointer to SuperclassOfFoo or casting a pointer to Foo to |
| // a const pointer to Foo). |
| // When you use implicit_cast, the compiler checks that the cast is safe. |
| // Such explicit implicit_casts are necessary in surprisingly many |
| // situations where C++ demands an exact type match instead of an |
| // argument type convertable to a target type. |
| // |
| // The From type can be inferred, so the preferred syntax for using |
| // implicit_cast is the same as for static_cast etc.: |
| // |
| // implicit_cast<ToType>(expr) |
| // |
| // implicit_cast would have been part of the C++ standard library, |
| // but the proposal was submitted too late. It will probably make |
| // its way into the language in the future. |
| template<typename To, typename From> |
| inline To implicit_cast(From const &f) { |
| return f; |
| } |
| |
| |
| // Use like this: down_cast<T*>(foo); |
| template<typename To, typename From> // use like this: down_cast<T*>(foo); |
| inline To down_cast(From* f) { // so we only accept pointers |
| // Ensures that To is a sub-type of From *. This test is here only |
| // for compile-time type checking, and has no overhead in an |
| // optimized build at run-time, as it will be optimized away completely. |
| if (false) { |
| implicit_cast<From, To>(0); |
| } |
| return static_cast<To>(f); |
| } |
| |
| |
| // The type-based aliasing rule allows the compiler to assume that |
| // pointers of different types (for some definition of different) |
| // never alias each other. Thus the following code does not work: |
| // |
| // float f = foo(); |
| // int fbits = *(int*)(&f); |
| // |
| // The compiler 'knows' that the int pointer can't refer to f since |
| // the types don't match, so the compiler may cache f in a register, |
| // leaving random data in fbits. Using C++ style casts makes no |
| // difference, however a pointer to char data is assumed to alias any |
| // other pointer. This is the 'memcpy exception'. |
| // |
| // The bit_cast function uses the memcpy exception to move the bits |
| // from a variable of one type to a variable of another type. Of |
| // course the end result is likely to be implementation dependent. |
| // Most compilers (gcc-4.2 and MSVC 2005) will completely optimize |
| // bit_cast away. |
| // |
| // There is an additional use for bit_cast. Recent gccs will warn when |
| // they see casts that may result in breakage due to the type-based |
| // aliasing rule. If you have checked that there is no breakage you |
| // can use bit_cast to cast one pointer type to another. This confuses |
| // gcc enough that it can no longer see that you have cast one pointer |
| // type to another thus avoiding the warning. |
| template <class D, class S> |
| inline D bit_cast(const S& source) { |
| // Compile time assertion: sizeof(D) == sizeof(S). A compile error |
| // here means your D and S have different sizes. |
| typedef char VerifySizesAreEqual[sizeof(D) == sizeof(S) ? 1 : -1]; |
| |
| D destination; |
| // This use of memcpy is safe: source and destination cannot overlap. |
| memcpy(&destination, &source, sizeof(destination)); |
| return destination; |
| } |
| |
| |
| // Similar to bit_cast, but allows copying from types of unrelated |
| // sizes. This method was introduced to enable the strict aliasing |
| // optimizations of GCC 4.4. Basically, GCC mindlessly relies on |
| // obscure details in the C++ standard that make reinterpret_cast |
| // virtually useless. |
| template<class D, class S> |
| inline D bit_copy(const S& source) { |
| D destination; |
| // This use of memcpy is safe: source and destination cannot overlap. |
| memcpy(&destination, |
| reinterpret_cast<const void*>(&source), |
| sizeof(destination)); |
| return destination; |
| } |
| |
| |
| // On Windows the reentrent version of strtok is called |
| // strtok_s. Unify on the posix name strtok_r. |
| #if defined(TARGET_OS_WINDOWS) |
| #define snprintf _snprintf |
| #define strtok_r strtok_s |
| #endif |
| |
| #if !defined(TARGET_OS_WINDOWS) |
| #if !defined(TEMP_FAILURE_RETRY) |
| // TEMP_FAILURE_RETRY is defined in unistd.h on some platforms. The |
| // definition below is copied from Linux and adapted to avoid lint |
| // errors (type long int changed to int64_t and do/while split on |
| // separate lines with body in {}s). |
| #define TEMP_FAILURE_RETRY(expression) \ |
| ({ int64_t __result; \ |
| do { \ |
| __result = static_cast<int64_t>(expression); \ |
| } while (__result == -1L && errno == EINTR); \ |
| __result; }) |
| #endif // !defined(TEMP_FAILURE_RETRY) |
| |
| // This is a version of TEMP_FAILURE_RETRY which does not use the value |
| // returned from the expression. |
| #define VOID_TEMP_FAILURE_RETRY(expression) \ |
| (static_cast<void>(TEMP_FAILURE_RETRY(expression))) |
| |
| #endif // !defined(TARGET_OS_WINDOWS) |
| |
| #if defined(TARGET_OS_LINUX) || defined(TARGET_OS_MACOS) |
| // Tell the compiler to do printf format string checking if the |
| // compiler supports it; see the 'format' attribute in |
| // <http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Function-Attributes.html>. |
| // |
| // N.B.: As the GCC manual states, "[s]ince non-static C++ methods |
| // have an implicit 'this' argument, the arguments of such methods |
| // should be counted from two, not one." |
| #define PRINTF_ATTRIBUTE(string_index, first_to_check) \ |
| __attribute__((__format__(__printf__, string_index, first_to_check))) |
| #else |
| #define PRINTF_ATTRIBUTE(string_index, first_to_check) |
| #endif |
| |
| #endif // PLATFORM_GLOBALS_H_ |