blob: 659f31f53c653dfa1aa9c28fc895ea76c6012e4d [file] [log] [blame]
// Copyright (c) 2015, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
/// Note: the VM concatenates all patch files into a single patch file. This
/// file is the first patch in "dart:async" which contains all the imports used
/// by patches of that library. We plan to change this when we have a shared
/// front end and simply use parts.
import "dart:_internal" show VMLibraryHooks, patch;
/// These are the additional parts of this patch library:
// part "deferred_load_patch.dart";
// part "schedule_microtask_patch.dart";
// part "timer_patch.dart";
// Equivalent of calling FATAL from C++ code.
_fatal(msg) native "DartAsync_fatal";
// We need to pass the value as first argument and leave the second and third
// arguments empty (used for error handling).
dynamic Function(dynamic) _asyncThenWrapperHelper(
dynamic Function(dynamic) continuation) {
// Any function that is used as an asynchronous callback must be registered
// in the current Zone. Normally, this is done by the future when a
// callback is registered (for example with `.then` or `.catchError`). In our
// case we want to reuse the same callback multiple times and therefore avoid
// the multiple registrations. For our internal futures (`_Future`) we can
// use the shortcut-version of `.then`, and skip the registration. However,
// that means that the continuation must be registered by us.
//
// Furthermore, we know that the root-zone doesn't actually do anything and
// we can therefore skip the registration call for it.
//
// Note, that the continuation accepts up to three arguments. If the current
// zone is the root zone, we don't wrap the continuation, and a bad
// `Future` implementation could potentially invoke the callback with the
// wrong number of arguments.
if (Zone.current == Zone.root) return continuation;
return Zone.current.registerUnaryCallback<dynamic, dynamic>(continuation);
}
// We need to pass the exception and stack trace objects as second and third
// parameter to the continuation.
dynamic Function(Object, StackTrace) _asyncErrorWrapperHelper(
dynamic Function(dynamic, dynamic, StackTrace) continuation) {
// See comments of `_asyncThenWrapperHelper`.
dynamic errorCallback(Object e, StackTrace s) => continuation(null, e, s);
if (Zone.current == Zone.root) return errorCallback;
return Zone.current
.registerBinaryCallback<dynamic, Object, StackTrace>(errorCallback);
}
/// Registers the [thenCallback] and [errorCallback] on the given [object].
///
/// If [object] is not a future, then it is wrapped into one.
///
/// Returns the result of registering with `.then`.
Future _awaitHelper(var object, dynamic Function(dynamic) thenCallback,
dynamic Function(dynamic, StackTrace) errorCallback, Function awaiter) {
late _Future future;
if (object is! Future) {
future = new _Future().._setValue(object);
} else if (object is _Future) {
future = object;
} else {
return object.then(thenCallback, onError: errorCallback);
}
// `object` is a `_Future`.
//
// Since the callbacks have been registered in the current zone (see
// [_asyncThenWrapperHelper] and [_asyncErrorWrapperHelper]), we can avoid
// another registration and directly invoke the no-zone-registration `.then`.
//
// We can only do this for our internal futures (the default implementation of
// all futures that are constructed by the `dart:async` library).
return future._thenAwait<dynamic>(thenCallback, errorCallback);
}
@pragma("vm:entry-point", "call")
void _asyncStarMoveNextHelper(var stream) {
if (stream is! _StreamImpl) {
return;
}
// stream is a _StreamImpl.
final generator = stream._generator;
if (generator == null) {
// No generator registered, this isn't an async* Stream.
return;
}
_moveNextDebuggerStepCheck(generator);
}
// _AsyncStarStreamController is used by the compiler to implement
// async* generator functions.
@pragma("vm:entry-point")
class _AsyncStarStreamController<T> {
@pragma("vm:entry-point")
StreamController<T> controller;
Function asyncStarBody;
bool isAdding = false;
bool onListenReceived = false;
bool isScheduled = false;
bool isSuspendedAtYield = false;
_Future? cancellationFuture = null;
Stream<T> get stream {
final Stream<T> local = controller.stream;
if (local is _StreamImpl<T>) {
local._generator = asyncStarBody;
}
return local;
}
void runBody() {
isScheduled = false;
isSuspendedAtYield = false;
asyncStarBody();
}
void scheduleGenerator() {
if (isScheduled || controller.isPaused || isAdding) {
return;
}
isScheduled = true;
scheduleMicrotask(runBody);
}
// Adds element to stream, returns true if the caller should terminate
// execution of the generator.
//
// TODO(hausner): Per spec, the generator should be suspended before
// exiting when the stream is closed. We could add a getter like this:
// get isCancelled => controller.hasListener;
// The generator would translate a 'yield e' statement to
// controller.add(e);
// suspend;
// if (controller.isCancelled) return;
bool add(T event) {
if (!onListenReceived) _fatal("yield before stream is listened to");
if (isSuspendedAtYield) _fatal("unexpected yield");
// If stream is cancelled, tell caller to exit the async generator.
if (!controller.hasListener) {
return true;
}
controller.add(event);
scheduleGenerator();
isSuspendedAtYield = true;
return false;
}
// Adds the elements of stream into this controller's stream.
// The generator will be scheduled again when all of the
// elements of the added stream have been consumed.
// Returns true if the caller should terminate
// execution of the generator.
bool addStream(Stream<T> stream) {
if (!onListenReceived) _fatal("yield before stream is listened to");
// If stream is cancelled, tell caller to exit the async generator.
if (!controller.hasListener) return true;
isAdding = true;
var whenDoneAdding = controller.addStream(stream, cancelOnError: false);
whenDoneAdding.then((_) {
isAdding = false;
scheduleGenerator();
if (!isScheduled) isSuspendedAtYield = true;
});
return false;
}
void addError(Object error, StackTrace stackTrace) {
// TODO(40614): Remove once non-nullability is sound.
ArgumentError.checkNotNull(error, "error");
final future = cancellationFuture;
if ((future != null) && future._mayComplete) {
// If the stream has been cancelled, complete the cancellation future
// with the error.
future._completeError(error, stackTrace);
return;
}
// If stream is cancelled, tell caller to exit the async generator.
if (!controller.hasListener) return;
controller.addError(error, stackTrace);
// No need to schedule the generator body here. This code is only
// called from the catch clause of the implicit try-catch-finally
// around the generator body. That is, we are on the error path out
// of the generator and do not need to run the generator again.
}
close() {
final future = cancellationFuture;
if ((future != null) && future._mayComplete) {
// If the stream has been cancelled, complete the cancellation future
// with the error.
future._completeWithValue(null);
}
controller.close();
}
_AsyncStarStreamController(this.asyncStarBody)
: controller = new StreamController() {
controller.onListen = this.onListen;
controller.onResume = this.onResume;
controller.onCancel = this.onCancel;
}
onListen() {
assert(!onListenReceived);
onListenReceived = true;
scheduleGenerator();
}
onResume() {
if (isSuspendedAtYield) {
scheduleGenerator();
}
}
onCancel() {
if (controller.isClosed) {
return null;
}
if (cancellationFuture == null) {
cancellationFuture = new _Future();
// Only resume the generator if it is suspended at a yield.
// Cancellation does not affect an async generator that is
// suspended at an await.
if (isSuspendedAtYield) {
scheduleGenerator();
}
}
return cancellationFuture;
}
}
@patch
void _rethrow(Object error, StackTrace stackTrace) native "Async_rethrow";
@patch
class _StreamImpl<T> {
/// The closure implementing the async-generator body that is creating events
/// for this stream.
Function? _generator;
}
@pragma("vm:entry-point", "call")
void _completeOnAsyncReturn(_Future _future, Object? value, bool is_sync) {
// The first awaited expression is invoked sync. so complete is async. to
// allow then and error handlers to be attached.
// async_jump_var=0 is prior to first await, =1 is first await.
if (!is_sync || value is Future) {
_future._asyncComplete(value);
} else {
_future._completeWithValue(value);
}
}
@pragma("vm:entry-point", "call")
void _completeOnAsyncError(
_Future _future, Object e, StackTrace st, bool is_sync) {
if (!is_sync) {
_future._asyncCompleteError(e, st);
} else {
_future._completeError(e, st);
}
}
/// Returns a [StackTrace] object containing the synchronous prefix for this
/// asynchronous method.
//
// This method is recognized. It performs a runtime call if
// FLAG_causal_async_stacks is enabled or returns `null` otherwise.
@pragma("vm:prefer-inline")
Object _asyncStackTraceHelper(Function async_op)
native "StackTrace_asyncStackTraceHelper";
// This method is asm intrinsified.
@pragma("vm:entry-point", "call")
void _clearAsyncThreadStackTrace()
native "StackTrace_clearAsyncThreadStackTrace";
// This method is asm intrinsified.
@pragma("vm:entry-point", "call")
void _setAsyncThreadStackTrace(StackTrace stackTrace)
native "StackTrace_setAsyncThreadStackTrace";
void _moveNextDebuggerStepCheck(Function async_op)
native "AsyncStarMoveNext_debuggerStepCheck";