blob: d11f9b2c9a3cc49cdb294b38d082212e73692c56 [file] [log] [blame]
// This code was auto-generated, is not intended to be edited, and is subject to
// significant change. Please see the README file for more information.
library engine.resolver;
import 'dart:collection';
import 'java_core.dart';
import 'java_engine.dart';
import 'instrumentation.dart';
import 'source.dart';
import 'error.dart';
import 'scanner.dart' as sc;
import 'utilities_dart.dart';
import 'ast.dart';
import 'parser.dart' show Parser, ParserErrorCode;
import 'sdk.dart' show DartSdk, SdkLibrary;
import 'element.dart';
import 'html.dart' as ht;
import 'engine.dart';
import 'constant.dart';
/**
* Instances of the class `CompilationUnitBuilder` build an element model for a single
* compilation unit.
*
* @coverage dart.engine.resolver
*/
class CompilationUnitBuilder {
/**
* Build the compilation unit element for the given source.
*
* @param source the source describing the compilation unit
* @param unit the AST structure representing the compilation unit
* @return the compilation unit element that was built
* @throws AnalysisException if the analysis could not be performed
*/
CompilationUnitElementImpl buildCompilationUnit(Source source2, CompilationUnit unit) {
if (unit == null) {
return null;
}
ElementHolder holder = new ElementHolder();
ElementBuilder builder = new ElementBuilder(holder);
unit.accept(builder);
CompilationUnitElementImpl element = new CompilationUnitElementImpl(source2.shortName);
element.accessors = holder.accessors;
element.functions = holder.functions;
element.source = source2;
element.typeAliases = holder.typeAliases;
element.types = holder.types;
element.topLevelVariables = holder.topLevelVariables;
unit.element = element;
return element;
}
}
/**
* Instances of the class `ElementBuilder` traverse an AST structure and build the element
* model representing the AST structure.
*
* @coverage dart.engine.resolver
*/
class ElementBuilder extends RecursiveASTVisitor<Object> {
/**
* The element holder associated with the element that is currently being built.
*/
ElementHolder _currentHolder;
/**
* A flag indicating whether a variable declaration is in the context of a field declaration.
*/
bool _inFieldContext = false;
/**
* A flag indicating whether a variable declaration is within the body of a method or function.
*/
bool _inFunction = false;
/**
* A flag indicating whether the class currently being visited can be used as a mixin.
*/
bool _isValidMixin = false;
/**
* A collection holding the function types defined in a class that need to have their type
* arguments set to the types of the type parameters for the class, or `null` if we are not
* currently processing nodes within a class.
*/
List<FunctionTypeImpl> _functionTypesToFix = null;
/**
* Initialize a newly created element builder to build the elements for a compilation unit.
*
* @param initialHolder the element holder associated with the compilation unit being built
*/
ElementBuilder(ElementHolder initialHolder) {
_currentHolder = initialHolder;
}
Object visitBlock(Block node) {
bool wasInField = _inFieldContext;
_inFieldContext = false;
try {
node.visitChildren(this);
} finally {
_inFieldContext = wasInField;
}
return null;
}
Object visitCatchClause(CatchClause node) {
SimpleIdentifier exceptionParameter = node.exceptionParameter;
if (exceptionParameter != null) {
LocalVariableElementImpl exception = new LocalVariableElementImpl(exceptionParameter);
_currentHolder.addLocalVariable(exception);
exceptionParameter.staticElement = exception;
SimpleIdentifier stackTraceParameter = node.stackTraceParameter;
if (stackTraceParameter != null) {
LocalVariableElementImpl stackTrace = new LocalVariableElementImpl(stackTraceParameter);
_currentHolder.addLocalVariable(stackTrace);
stackTraceParameter.staticElement = stackTrace;
}
}
return super.visitCatchClause(node);
}
Object visitClassDeclaration(ClassDeclaration node) {
ElementHolder holder = new ElementHolder();
_isValidMixin = true;
_functionTypesToFix = new List<FunctionTypeImpl>();
visitChildren(holder, node);
SimpleIdentifier className = node.name;
ClassElementImpl element = new ClassElementImpl(className);
List<TypeVariableElement> typeVariables = holder.typeVariables;
List<Type2> typeArguments = createTypeVariableTypes(typeVariables);
InterfaceTypeImpl interfaceType = new InterfaceTypeImpl.con1(element);
interfaceType.typeArguments = typeArguments;
element.type = interfaceType;
List<ConstructorElement> constructors = holder.constructors;
if (constructors.length == 0) {
constructors = createDefaultConstructors(interfaceType);
}
element.abstract = node.abstractKeyword != null;
element.accessors = holder.accessors;
element.constructors = constructors;
element.fields = holder.fields;
element.methods = holder.methods;
element.typeVariables = typeVariables;
element.validMixin = _isValidMixin;
for (FunctionTypeImpl functionType in _functionTypesToFix) {
functionType.typeArguments = typeArguments;
}
_functionTypesToFix = null;
_currentHolder.addType(element);
className.staticElement = element;
holder.validate();
return null;
}
Object visitClassTypeAlias(ClassTypeAlias node) {
ElementHolder holder = new ElementHolder();
_functionTypesToFix = new List<FunctionTypeImpl>();
visitChildren(holder, node);
SimpleIdentifier className = node.name;
ClassElementImpl element = new ClassElementImpl(className);
element.abstract = node.abstractKeyword != null;
element.typedef = true;
List<TypeVariableElement> typeVariables = holder.typeVariables;
element.typeVariables = typeVariables;
List<Type2> typeArguments = createTypeVariableTypes(typeVariables);
InterfaceTypeImpl interfaceType = new InterfaceTypeImpl.con1(element);
interfaceType.typeArguments = typeArguments;
element.type = interfaceType;
element.constructors = createDefaultConstructors(interfaceType);
for (FunctionTypeImpl functionType in _functionTypesToFix) {
functionType.typeArguments = typeArguments;
}
_functionTypesToFix = null;
_currentHolder.addType(element);
className.staticElement = element;
holder.validate();
return null;
}
Object visitConstructorDeclaration(ConstructorDeclaration node) {
_isValidMixin = false;
ElementHolder holder = new ElementHolder();
bool wasInFunction = _inFunction;
_inFunction = true;
try {
visitChildren(holder, node);
} finally {
_inFunction = wasInFunction;
}
SimpleIdentifier constructorName = node.name;
ConstructorElementImpl element = new ConstructorElementImpl(constructorName);
if (node.factoryKeyword != null) {
element.factory = true;
}
element.functions = holder.functions;
element.labels = holder.labels;
element.localVariables = holder.localVariables;
element.parameters = holder.parameters;
element.const2 = node.constKeyword != null;
_currentHolder.addConstructor(element);
node.element = element;
if (constructorName == null) {
Identifier returnType = node.returnType;
if (returnType != null) {
element.nameOffset = returnType.offset;
}
} else {
constructorName.staticElement = element;
}
holder.validate();
return null;
}
Object visitDeclaredIdentifier(DeclaredIdentifier node) {
SimpleIdentifier variableName = node.identifier;
sc.Token keyword = node.keyword;
LocalVariableElementImpl element = new LocalVariableElementImpl(variableName);
ForEachStatement statement = node.parent as ForEachStatement;
int declarationEnd = node.offset + node.length;
int statementEnd = statement.offset + statement.length;
element.setVisibleRange(declarationEnd, statementEnd - declarationEnd - 1);
element.const3 = matches(keyword, sc.Keyword.CONST);
element.final2 = matches(keyword, sc.Keyword.FINAL);
_currentHolder.addLocalVariable(element);
variableName.staticElement = element;
return super.visitDeclaredIdentifier(node);
}
Object visitDefaultFormalParameter(DefaultFormalParameter node) {
ElementHolder holder = new ElementHolder();
visit(holder, node.defaultValue);
FunctionElementImpl initializer = new FunctionElementImpl();
initializer.functions = holder.functions;
initializer.labels = holder.labels;
initializer.localVariables = holder.localVariables;
initializer.parameters = holder.parameters;
SimpleIdentifier parameterName = node.parameter.identifier;
ParameterElementImpl parameter;
if (node.parameter is FieldFormalParameter) {
parameter = new DefaultFieldFormalParameterElementImpl(parameterName);
} else {
parameter = new DefaultParameterElementImpl(parameterName);
}
parameter.const3 = node.isConst;
parameter.final2 = node.isFinal;
parameter.initializer = initializer;
parameter.parameterKind = node.kind;
Expression defaultValue = node.defaultValue;
if (defaultValue != null) {
parameter.setDefaultValueRange(defaultValue.offset, defaultValue.length);
}
FunctionBody body = getFunctionBody(node);
if (body != null) {
parameter.setVisibleRange(body.offset, body.length);
}
_currentHolder.addParameter(parameter);
parameterName.staticElement = parameter;
node.parameter.accept(this);
holder.validate();
return null;
}
Object visitFieldDeclaration(FieldDeclaration node) {
bool wasInField = _inFieldContext;
_inFieldContext = true;
try {
node.visitChildren(this);
} finally {
_inFieldContext = wasInField;
}
return null;
}
Object visitFieldFormalParameter(FieldFormalParameter node) {
if (node.parent is! DefaultFormalParameter) {
SimpleIdentifier parameterName = node.identifier;
FieldFormalParameterElementImpl parameter = new FieldFormalParameterElementImpl(parameterName);
parameter.const3 = node.isConst;
parameter.final2 = node.isFinal;
parameter.parameterKind = node.kind;
_currentHolder.addParameter(parameter);
parameterName.staticElement = parameter;
}
ElementHolder holder = new ElementHolder();
visitChildren(holder, node);
((node.element as ParameterElementImpl)).parameters = holder.parameters;
holder.validate();
return null;
}
Object visitFunctionDeclaration(FunctionDeclaration node) {
FunctionExpression expression = node.functionExpression;
if (expression != null) {
ElementHolder holder = new ElementHolder();
bool wasInFunction = _inFunction;
_inFunction = true;
try {
visitChildren(holder, expression);
} finally {
_inFunction = wasInFunction;
}
sc.Token property = node.propertyKeyword;
if (property == null) {
SimpleIdentifier functionName = node.name;
FunctionElementImpl element = new FunctionElementImpl.con1(functionName);
element.functions = holder.functions;
element.labels = holder.labels;
element.localVariables = holder.localVariables;
element.parameters = holder.parameters;
if (_inFunction) {
Block enclosingBlock = node.getAncestor(Block);
if (enclosingBlock != null) {
int functionEnd = node.offset + node.length;
int blockEnd = enclosingBlock.offset + enclosingBlock.length;
element.setVisibleRange(functionEnd, blockEnd - functionEnd - 1);
}
}
_currentHolder.addFunction(element);
expression.element = element;
functionName.staticElement = element;
} else {
SimpleIdentifier propertyNameNode = node.name;
if (propertyNameNode == null) {
return null;
}
String propertyName = propertyNameNode.name;
FieldElementImpl field = _currentHolder.getField(propertyName) as FieldElementImpl;
if (field == null) {
field = new FieldElementImpl.con2(node.name.name);
field.final2 = true;
field.static = true;
_currentHolder.addField(field);
}
if (matches(property, sc.Keyword.GET)) {
PropertyAccessorElementImpl getter = new PropertyAccessorElementImpl.con1(propertyNameNode);
getter.functions = holder.functions;
getter.labels = holder.labels;
getter.localVariables = holder.localVariables;
getter.variable = field;
getter.getter = true;
getter.static = true;
field.getter = getter;
_currentHolder.addAccessor(getter);
propertyNameNode.staticElement = getter;
} else {
PropertyAccessorElementImpl setter = new PropertyAccessorElementImpl.con1(propertyNameNode);
setter.functions = holder.functions;
setter.labels = holder.labels;
setter.localVariables = holder.localVariables;
setter.parameters = holder.parameters;
setter.variable = field;
setter.setter = true;
setter.static = true;
field.setter = setter;
field.final2 = false;
_currentHolder.addAccessor(setter);
propertyNameNode.staticElement = setter;
}
}
holder.validate();
}
return null;
}
Object visitFunctionExpression(FunctionExpression node) {
ElementHolder holder = new ElementHolder();
bool wasInFunction = _inFunction;
_inFunction = true;
try {
visitChildren(holder, node);
} finally {
_inFunction = wasInFunction;
}
FunctionElementImpl element = new FunctionElementImpl.con2(node.beginToken.offset);
element.functions = holder.functions;
element.labels = holder.labels;
element.localVariables = holder.localVariables;
element.parameters = holder.parameters;
if (_inFunction) {
Block enclosingBlock = node.getAncestor(Block);
if (enclosingBlock != null) {
int functionEnd = node.offset + node.length;
int blockEnd = enclosingBlock.offset + enclosingBlock.length;
element.setVisibleRange(functionEnd, blockEnd - functionEnd - 1);
}
}
FunctionTypeImpl type = new FunctionTypeImpl.con1(element);
if (_functionTypesToFix != null) {
_functionTypesToFix.add(type);
}
element.type = type;
_currentHolder.addFunction(element);
node.element = element;
holder.validate();
return null;
}
Object visitFunctionTypeAlias(FunctionTypeAlias node) {
ElementHolder holder = new ElementHolder();
visitChildren(holder, node);
SimpleIdentifier aliasName = node.name;
List<ParameterElement> parameters = holder.parameters;
List<TypeVariableElement> typeVariables = holder.typeVariables;
FunctionTypeAliasElementImpl element = new FunctionTypeAliasElementImpl(aliasName);
element.parameters = parameters;
element.typeVariables = typeVariables;
FunctionTypeImpl type = new FunctionTypeImpl.con2(element);
type.typeArguments = createTypeVariableTypes(typeVariables);
element.type = type;
_currentHolder.addTypeAlias(element);
aliasName.staticElement = element;
holder.validate();
return null;
}
Object visitFunctionTypedFormalParameter(FunctionTypedFormalParameter node) {
if (node.parent is! DefaultFormalParameter) {
SimpleIdentifier parameterName = node.identifier;
ParameterElementImpl parameter = new ParameterElementImpl.con1(parameterName);
parameter.parameterKind = node.kind;
_currentHolder.addParameter(parameter);
parameterName.staticElement = parameter;
}
ElementHolder holder = new ElementHolder();
visitChildren(holder, node);
((node.element as ParameterElementImpl)).parameters = holder.parameters;
holder.validate();
return null;
}
Object visitLabeledStatement(LabeledStatement node) {
bool onSwitchStatement = node.statement is SwitchStatement;
for (Label label in node.labels) {
SimpleIdentifier labelName = label.label;
LabelElementImpl element = new LabelElementImpl(labelName, onSwitchStatement, false);
_currentHolder.addLabel(element);
labelName.staticElement = element;
}
return super.visitLabeledStatement(node);
}
Object visitMethodDeclaration(MethodDeclaration node) {
ElementHolder holder = new ElementHolder();
bool wasInFunction = _inFunction;
_inFunction = true;
try {
visitChildren(holder, node);
} finally {
_inFunction = wasInFunction;
}
bool isStatic = node.isStatic;
sc.Token property = node.propertyKeyword;
if (property == null) {
SimpleIdentifier methodName = node.name;
String nameOfMethod = methodName.name;
if (nameOfMethod == sc.TokenType.MINUS.lexeme && node.parameters.parameters.length == 0) {
nameOfMethod = "unary-";
}
MethodElementImpl element = new MethodElementImpl.con2(nameOfMethod, methodName.offset);
element.abstract = node.isAbstract;
element.functions = holder.functions;
element.labels = holder.labels;
element.localVariables = holder.localVariables;
element.parameters = holder.parameters;
element.static = isStatic;
_currentHolder.addMethod(element);
methodName.staticElement = element;
} else {
SimpleIdentifier propertyNameNode = node.name;
String propertyName = propertyNameNode.name;
FieldElementImpl field = _currentHolder.getField(propertyName) as FieldElementImpl;
if (field == null) {
field = new FieldElementImpl.con2(node.name.name);
field.final2 = true;
field.static = isStatic;
_currentHolder.addField(field);
}
if (matches(property, sc.Keyword.GET)) {
PropertyAccessorElementImpl getter = new PropertyAccessorElementImpl.con1(propertyNameNode);
getter.functions = holder.functions;
getter.labels = holder.labels;
getter.localVariables = holder.localVariables;
getter.variable = field;
getter.abstract = node.body is EmptyFunctionBody && node.externalKeyword == null;
getter.getter = true;
getter.static = isStatic;
field.getter = getter;
_currentHolder.addAccessor(getter);
propertyNameNode.staticElement = getter;
} else {
PropertyAccessorElementImpl setter = new PropertyAccessorElementImpl.con1(propertyNameNode);
setter.functions = holder.functions;
setter.labels = holder.labels;
setter.localVariables = holder.localVariables;
setter.parameters = holder.parameters;
setter.variable = field;
setter.abstract = node.body is EmptyFunctionBody && !matches(node.externalKeyword, sc.Keyword.EXTERNAL);
setter.setter = true;
setter.static = isStatic;
field.setter = setter;
field.final2 = false;
_currentHolder.addAccessor(setter);
propertyNameNode.staticElement = setter;
}
}
holder.validate();
return null;
}
Object visitSimpleFormalParameter(SimpleFormalParameter node) {
if (node.parent is! DefaultFormalParameter) {
SimpleIdentifier parameterName = node.identifier;
ParameterElementImpl parameter = new ParameterElementImpl.con1(parameterName);
parameter.const3 = node.isConst;
parameter.final2 = node.isFinal;
parameter.parameterKind = node.kind;
_currentHolder.addParameter(parameter);
parameterName.staticElement = parameter;
}
return super.visitSimpleFormalParameter(node);
}
Object visitSuperExpression(SuperExpression node) {
_isValidMixin = false;
return super.visitSuperExpression(node);
}
Object visitSwitchCase(SwitchCase node) {
for (Label label in node.labels) {
SimpleIdentifier labelName = label.label;
LabelElementImpl element = new LabelElementImpl(labelName, false, true);
_currentHolder.addLabel(element);
labelName.staticElement = element;
}
return super.visitSwitchCase(node);
}
Object visitSwitchDefault(SwitchDefault node) {
for (Label label in node.labels) {
SimpleIdentifier labelName = label.label;
LabelElementImpl element = new LabelElementImpl(labelName, false, true);
_currentHolder.addLabel(element);
labelName.staticElement = element;
}
return super.visitSwitchDefault(node);
}
Object visitTypeParameter(TypeParameter node) {
SimpleIdentifier parameterName = node.name;
TypeVariableElementImpl element = new TypeVariableElementImpl(parameterName);
TypeVariableTypeImpl type = new TypeVariableTypeImpl(element);
element.type = type;
_currentHolder.addTypeVariable(element);
parameterName.staticElement = element;
return super.visitTypeParameter(node);
}
Object visitVariableDeclaration(VariableDeclaration node) {
sc.Token keyword = ((node.parent as VariableDeclarationList)).keyword;
bool isConst = matches(keyword, sc.Keyword.CONST);
bool isFinal = matches(keyword, sc.Keyword.FINAL);
bool hasInitializer = node.initializer != null;
VariableElementImpl element;
if (_inFieldContext) {
SimpleIdentifier fieldName = node.name;
FieldElementImpl field;
if (isConst && hasInitializer) {
field = new ConstFieldElementImpl(fieldName);
} else {
field = new FieldElementImpl.con1(fieldName);
}
element = field;
_currentHolder.addField(field);
fieldName.staticElement = field;
} else if (_inFunction) {
SimpleIdentifier variableName = node.name;
LocalVariableElementImpl variable;
if (isConst && hasInitializer) {
variable = new ConstLocalVariableElementImpl(variableName);
} else {
variable = new LocalVariableElementImpl(variableName);
}
element = variable;
Block enclosingBlock = node.getAncestor(Block);
int functionEnd = node.offset + node.length;
int blockEnd = enclosingBlock.offset + enclosingBlock.length;
variable.setVisibleRange(functionEnd, blockEnd - functionEnd - 1);
_currentHolder.addLocalVariable(variable);
variableName.staticElement = element;
} else {
SimpleIdentifier variableName = node.name;
TopLevelVariableElementImpl variable;
if (isConst && hasInitializer) {
variable = new ConstTopLevelVariableElementImpl(variableName);
} else {
variable = new TopLevelVariableElementImpl.con1(variableName);
}
element = variable;
_currentHolder.addTopLevelVariable(variable);
variableName.staticElement = element;
}
element.const3 = isConst;
element.final2 = isFinal;
if (hasInitializer) {
ElementHolder holder = new ElementHolder();
bool wasInFieldContext = _inFieldContext;
_inFieldContext = false;
try {
visit(holder, node.initializer);
} finally {
_inFieldContext = wasInFieldContext;
}
FunctionElementImpl initializer = new FunctionElementImpl();
initializer.functions = holder.functions;
initializer.labels = holder.labels;
initializer.localVariables = holder.localVariables;
initializer.synthetic = true;
element.initializer = initializer;
holder.validate();
}
if (element is PropertyInducingElementImpl) {
PropertyInducingElementImpl variable = element as PropertyInducingElementImpl;
if (_inFieldContext) {
((variable as FieldElementImpl)).static = matches(((node.parent.parent as FieldDeclaration)).staticKeyword, sc.Keyword.STATIC);
}
PropertyAccessorElementImpl getter = new PropertyAccessorElementImpl.con2(variable);
getter.getter = true;
getter.static = variable.isStatic;
_currentHolder.addAccessor(getter);
variable.getter = getter;
if (!isFinal) {
PropertyAccessorElementImpl setter = new PropertyAccessorElementImpl.con2(variable);
setter.setter = true;
setter.static = variable.isStatic;
ParameterElementImpl parameter = new ParameterElementImpl.con2("_${variable.name}", variable.nameOffset);
parameter.synthetic = true;
parameter.parameterKind = ParameterKind.REQUIRED;
setter.parameters = <ParameterElement> [parameter];
_currentHolder.addAccessor(setter);
variable.setter = setter;
}
}
return null;
}
/**
* Creates the [ConstructorElement]s array with the single default constructor element.
*
* @param interfaceType the interface type for which to create a default constructor
* @return the [ConstructorElement]s array with the single default constructor element
*/
List<ConstructorElement> createDefaultConstructors(InterfaceTypeImpl interfaceType) {
ConstructorElementImpl constructor = new ConstructorElementImpl(null);
constructor.synthetic = true;
constructor.returnType = interfaceType;
FunctionTypeImpl type = new FunctionTypeImpl.con1(constructor);
_functionTypesToFix.add(type);
constructor.type = type;
return <ConstructorElement> [constructor];
}
/**
* Create the types associated with the given type variables, setting the type of each type
* variable, and return an array of types corresponding to the given variables.
*
* @param typeVariables the type variables for which types are to be created
* @return
*/
List<Type2> createTypeVariableTypes(List<TypeVariableElement> typeVariables) {
int typeVariableCount = typeVariables.length;
List<Type2> typeArguments = new List<Type2>(typeVariableCount);
for (int i = 0; i < typeVariableCount; i++) {
TypeVariableElementImpl typeVariable = typeVariables[i] as TypeVariableElementImpl;
TypeVariableTypeImpl typeArgument = new TypeVariableTypeImpl(typeVariable);
typeVariable.type = typeArgument;
typeArguments[i] = typeArgument;
}
return typeArguments;
}
/**
* Return the body of the function that contains the given parameter, or `null` if no
* function body could be found.
*
* @param node the parameter contained in the function whose body is to be returned
* @return the body of the function that contains the given parameter
*/
FunctionBody getFunctionBody(FormalParameter node) {
ASTNode parent = node.parent;
while (parent != null) {
if (parent is FunctionExpression) {
return ((parent as FunctionExpression)).body;
} else if (parent is MethodDeclaration) {
return ((parent as MethodDeclaration)).body;
}
parent = parent.parent;
}
return null;
}
/**
* Return `true` if the given token is a token for the given keyword.
*
* @param token the token being tested
* @param keyword the keyword being tested for
* @return `true` if the given token is a token for the given keyword
*/
bool matches(sc.Token token, sc.Keyword keyword2) => token != null && identical(token.type, sc.TokenType.KEYWORD) && identical(((token as sc.KeywordToken)).keyword, keyword2);
/**
* Make the given holder be the current holder while visiting the given node.
*
* @param holder the holder that will gather elements that are built while visiting the children
* @param node the node to be visited
*/
void visit(ElementHolder holder, ASTNode node) {
if (node != null) {
ElementHolder previousHolder = _currentHolder;
_currentHolder = holder;
try {
node.accept(this);
} finally {
_currentHolder = previousHolder;
}
}
}
/**
* Make the given holder be the current holder while visiting the children of the given node.
*
* @param holder the holder that will gather elements that are built while visiting the children
* @param node the node whose children are to be visited
*/
void visitChildren(ElementHolder holder, ASTNode node) {
if (node != null) {
ElementHolder previousHolder = _currentHolder;
_currentHolder = holder;
try {
node.visitChildren(this);
} finally {
_currentHolder = previousHolder;
}
}
}
}
/**
* Instances of the class `ElementHolder` hold on to elements created while traversing an AST
* structure so that they can be accessed when creating their enclosing element.
*
* @coverage dart.engine.resolver
*/
class ElementHolder {
List<PropertyAccessorElement> _accessors;
List<ConstructorElement> _constructors;
List<FieldElement> _fields;
List<FunctionElement> _functions;
List<LabelElement> _labels;
List<VariableElement> _localVariables;
List<MethodElement> _methods;
List<ParameterElement> _parameters;
List<VariableElement> _topLevelVariables;
List<ClassElement> _types;
List<FunctionTypeAliasElement> _typeAliases;
List<TypeVariableElement> _typeVariables;
void addAccessor(PropertyAccessorElement element) {
if (_accessors == null) {
_accessors = new List<PropertyAccessorElement>();
}
_accessors.add(element);
}
void addConstructor(ConstructorElement element) {
if (_constructors == null) {
_constructors = new List<ConstructorElement>();
}
_constructors.add(element);
}
void addField(FieldElement element) {
if (_fields == null) {
_fields = new List<FieldElement>();
}
_fields.add(element);
}
void addFunction(FunctionElement element) {
if (_functions == null) {
_functions = new List<FunctionElement>();
}
_functions.add(element);
}
void addLabel(LabelElement element) {
if (_labels == null) {
_labels = new List<LabelElement>();
}
_labels.add(element);
}
void addLocalVariable(LocalVariableElement element) {
if (_localVariables == null) {
_localVariables = new List<VariableElement>();
}
_localVariables.add(element);
}
void addMethod(MethodElement element) {
if (_methods == null) {
_methods = new List<MethodElement>();
}
_methods.add(element);
}
void addParameter(ParameterElement element) {
if (_parameters == null) {
_parameters = new List<ParameterElement>();
}
_parameters.add(element);
}
void addTopLevelVariable(TopLevelVariableElement element) {
if (_topLevelVariables == null) {
_topLevelVariables = new List<VariableElement>();
}
_topLevelVariables.add(element);
}
void addType(ClassElement element) {
if (_types == null) {
_types = new List<ClassElement>();
}
_types.add(element);
}
void addTypeAlias(FunctionTypeAliasElement element) {
if (_typeAliases == null) {
_typeAliases = new List<FunctionTypeAliasElement>();
}
_typeAliases.add(element);
}
void addTypeVariable(TypeVariableElement element) {
if (_typeVariables == null) {
_typeVariables = new List<TypeVariableElement>();
}
_typeVariables.add(element);
}
List<PropertyAccessorElement> get accessors {
if (_accessors == null) {
return PropertyAccessorElementImpl.EMPTY_ARRAY;
}
List<PropertyAccessorElement> result = new List.from(_accessors);
_accessors = null;
return result;
}
List<ConstructorElement> get constructors {
if (_constructors == null) {
return ConstructorElementImpl.EMPTY_ARRAY;
}
List<ConstructorElement> result = new List.from(_constructors);
_constructors = null;
return result;
}
FieldElement getField(String fieldName) {
if (_fields == null) {
return null;
}
for (FieldElement field in _fields) {
if (field.name == fieldName) {
return field;
}
}
return null;
}
List<FieldElement> get fields {
if (_fields == null) {
return FieldElementImpl.EMPTY_ARRAY;
}
List<FieldElement> result = new List.from(_fields);
_fields = null;
return result;
}
List<FunctionElement> get functions {
if (_functions == null) {
return FunctionElementImpl.EMPTY_ARRAY;
}
List<FunctionElement> result = new List.from(_functions);
_functions = null;
return result;
}
List<LabelElement> get labels {
if (_labels == null) {
return LabelElementImpl.EMPTY_ARRAY;
}
List<LabelElement> result = new List.from(_labels);
_labels = null;
return result;
}
List<LocalVariableElement> get localVariables {
if (_localVariables == null) {
return LocalVariableElementImpl.EMPTY_ARRAY;
}
List<LocalVariableElement> result = new List.from(_localVariables);
_localVariables = null;
return result;
}
List<MethodElement> get methods {
if (_methods == null) {
return MethodElementImpl.EMPTY_ARRAY;
}
List<MethodElement> result = new List.from(_methods);
_methods = null;
return result;
}
List<ParameterElement> get parameters {
if (_parameters == null) {
return ParameterElementImpl.EMPTY_ARRAY;
}
List<ParameterElement> result = new List.from(_parameters);
_parameters = null;
return result;
}
List<TopLevelVariableElement> get topLevelVariables {
if (_topLevelVariables == null) {
return TopLevelVariableElementImpl.EMPTY_ARRAY;
}
List<TopLevelVariableElement> result = new List.from(_topLevelVariables);
_topLevelVariables = null;
return result;
}
List<FunctionTypeAliasElement> get typeAliases {
if (_typeAliases == null) {
return FunctionTypeAliasElementImpl.EMPTY_ARRAY;
}
List<FunctionTypeAliasElement> result = new List.from(_typeAliases);
_typeAliases = null;
return result;
}
List<ClassElement> get types {
if (_types == null) {
return ClassElementImpl.EMPTY_ARRAY;
}
List<ClassElement> result = new List.from(_types);
_types = null;
return result;
}
List<TypeVariableElement> get typeVariables {
if (_typeVariables == null) {
return TypeVariableElementImpl.EMPTY_ARRAY;
}
List<TypeVariableElement> result = new List.from(_typeVariables);
_typeVariables = null;
return result;
}
void validate() {
JavaStringBuilder builder = new JavaStringBuilder();
if (_accessors != null) {
builder.append(_accessors.length);
builder.append(" accessors");
}
if (_constructors != null) {
if (builder.length > 0) {
builder.append("; ");
}
builder.append(_constructors.length);
builder.append(" constructors");
}
if (_fields != null) {
if (builder.length > 0) {
builder.append("; ");
}
builder.append(_fields.length);
builder.append(" fields");
}
if (_functions != null) {
if (builder.length > 0) {
builder.append("; ");
}
builder.append(_functions.length);
builder.append(" functions");
}
if (_labels != null) {
if (builder.length > 0) {
builder.append("; ");
}
builder.append(_labels.length);
builder.append(" labels");
}
if (_localVariables != null) {
if (builder.length > 0) {
builder.append("; ");
}
builder.append(_localVariables.length);
builder.append(" local variables");
}
if (_methods != null) {
if (builder.length > 0) {
builder.append("; ");
}
builder.append(_methods.length);
builder.append(" methods");
}
if (_parameters != null) {
if (builder.length > 0) {
builder.append("; ");
}
builder.append(_parameters.length);
builder.append(" parameters");
}
if (_topLevelVariables != null) {
if (builder.length > 0) {
builder.append("; ");
}
builder.append(_topLevelVariables.length);
builder.append(" top-level variables");
}
if (_types != null) {
if (builder.length > 0) {
builder.append("; ");
}
builder.append(_types.length);
builder.append(" types");
}
if (_typeAliases != null) {
if (builder.length > 0) {
builder.append("; ");
}
builder.append(_typeAliases.length);
builder.append(" type aliases");
}
if (_typeVariables != null) {
if (builder.length > 0) {
builder.append("; ");
}
builder.append(_typeVariables.length);
builder.append(" type variables");
}
if (builder.length > 0) {
AnalysisEngine.instance.logger.logError("Failed to capture elements: ${builder.toString()}");
}
}
}
/**
* Instances of the class `HtmlUnitBuilder` build an element model for a single HTML unit.
*/
class HtmlUnitBuilder implements ht.XmlVisitor<Object> {
static String _APPLICATION_DART_IN_DOUBLE_QUOTES = "\"application/dart\"";
static String _APPLICATION_DART_IN_SINGLE_QUOTES = "'application/dart'";
static String _SCRIPT = "script";
static String _SRC = "src";
static String _TYPE = "type";
/**
* The analysis context in which the element model will be built.
*/
InternalAnalysisContext _context;
/**
* The error listener to which errors will be reported.
*/
RecordingErrorListener _errorListener;
/**
* The modification time of the source for which an element is being built.
*/
int _modificationStamp = 0;
/**
* The line information associated with the source for which an element is being built, or
* `null` if we are not building an element.
*/
LineInfo _lineInfo;
/**
* The HTML element being built.
*/
HtmlElementImpl _htmlElement;
/**
* The elements in the path from the HTML unit to the current tag node.
*/
List<ht.XmlTagNode> _parentNodes;
/**
* The script elements being built.
*/
List<HtmlScriptElement> _scripts;
/**
* A set of the libraries that were resolved while resolving the HTML unit.
*/
Set<Library> _resolvedLibraries = new Set<Library>();
/**
* Initialize a newly created HTML unit builder.
*
* @param context the analysis context in which the element model will be built
*/
HtmlUnitBuilder(InternalAnalysisContext context) {
this._context = context;
this._errorListener = new RecordingErrorListener();
}
/**
* Build the HTML element for the given source.
*
* @param source the source describing the compilation unit
* @return the HTML element that was built
* @throws AnalysisException if the analysis could not be performed
*/
HtmlElementImpl buildHtmlElement(Source source) => buildHtmlElement2(source, source.modificationStamp, _context.parseHtmlUnit(source));
/**
* Build the HTML element for the given source.
*
* @param source the source describing the compilation unit
* @param modificationStamp the modification time of the source for which an element is being
* built
* @param unit the AST structure representing the HTML
* @throws AnalysisException if the analysis could not be performed
*/
HtmlElementImpl buildHtmlElement2(Source source2, int modificationStamp2, ht.HtmlUnit unit) {
this._modificationStamp = modificationStamp2;
_lineInfo = _context.computeLineInfo(source2);
HtmlElementImpl result = new HtmlElementImpl(_context, source2.shortName);
result.source = source2;
_htmlElement = result;
unit.accept(this);
_htmlElement = null;
unit.element = result;
return result;
}
/**
* Return the listener to which analysis errors will be reported.
*
* @return the listener to which analysis errors will be reported
*/
RecordingErrorListener get errorListener => _errorListener;
/**
* Return an array containing information about all of the libraries that were resolved.
*
* @return an array containing the libraries that were resolved
*/
Set<Library> get resolvedLibraries => _resolvedLibraries;
Object visitHtmlUnit(ht.HtmlUnit node) {
_parentNodes = new List<ht.XmlTagNode>();
_scripts = new List<HtmlScriptElement>();
try {
node.visitChildren(this);
_htmlElement.scripts = new List.from(_scripts);
} finally {
_scripts = null;
_parentNodes = null;
}
return null;
}
Object visitXmlAttributeNode(ht.XmlAttributeNode node) => null;
Object visitXmlTagNode(ht.XmlTagNode node) {
if (_parentNodes.contains(node)) {
JavaStringBuilder builder = new JavaStringBuilder();
builder.append("Found circularity in XML nodes: ");
bool first = true;
for (ht.XmlTagNode pathNode in _parentNodes) {
if (first) {
first = false;
} else {
builder.append(", ");
}
String tagName = pathNode.tag.lexeme;
if (identical(pathNode, node)) {
builder.append("*");
builder.append(tagName);
builder.append("*");
} else {
builder.append(tagName);
}
}
AnalysisEngine.instance.logger.logError(builder.toString());
return null;
}
_parentNodes.add(node);
try {
if (isScriptNode(node)) {
Source htmlSource = _htmlElement.source;
ht.XmlAttributeNode scriptAttribute = getScriptSourcePath(node);
String scriptSourcePath = scriptAttribute == null ? null : scriptAttribute.text;
if (identical(node.attributeEnd.type, ht.TokenType.GT) && scriptSourcePath == null) {
EmbeddedHtmlScriptElementImpl script = new EmbeddedHtmlScriptElementImpl(node);
String contents = node.content;
int attributeEnd = node.attributeEnd.end;
LineInfo_Location location = _lineInfo.getLocation(attributeEnd);
sc.StringScanner scanner = new sc.StringScanner(htmlSource, contents, _errorListener);
scanner.setSourceStart(location.lineNumber, location.columnNumber, attributeEnd);
sc.Token firstToken = scanner.tokenize();
List<int> lineStarts = scanner.lineStarts;
Parser parser = new Parser(htmlSource, _errorListener);
CompilationUnit unit = parser.parseCompilationUnit(firstToken);
unit.lineInfo = new LineInfo(lineStarts);
try {
LibraryResolver resolver = new LibraryResolver(_context);
LibraryElementImpl library = resolver.resolveEmbeddedLibrary(htmlSource, _modificationStamp, unit, true) as LibraryElementImpl;
script.scriptLibrary = library;
_resolvedLibraries.addAll(resolver.resolvedLibraries);
_errorListener.addAll(resolver.errorListener);
} on AnalysisException catch (exception) {
AnalysisEngine.instance.logger.logError3(exception);
}
_scripts.add(script);
} else {
ExternalHtmlScriptElementImpl script = new ExternalHtmlScriptElementImpl(node);
if (scriptSourcePath != null) {
try {
scriptSourcePath = Uri.encodeFull(scriptSourcePath);
parseUriWithException(scriptSourcePath);
Source scriptSource = _context.sourceFactory.resolveUri(htmlSource, scriptSourcePath);
script.scriptSource = scriptSource;
if (scriptSource == null || !scriptSource.exists()) {
reportValueError(HtmlWarningCode.URI_DOES_NOT_EXIST, scriptAttribute, [scriptSourcePath]);
}
} on URISyntaxException catch (exception) {
reportValueError(HtmlWarningCode.INVALID_URI, scriptAttribute, [scriptSourcePath]);
}
}
_scripts.add(script);
}
} else {
node.visitChildren(this);
}
} finally {
_parentNodes.remove(node);
}
return null;
}
/**
* Return the first source attribute for the given tag node, or `null` if it does not exist.
*
* @param node the node containing attributes
* @return the source attribute contained in the given tag
*/
ht.XmlAttributeNode getScriptSourcePath(ht.XmlTagNode node) {
for (ht.XmlAttributeNode attribute in node.attributes) {
if (attribute.name.lexeme == _SRC) {
return attribute;
}
}
return null;
}
/**
* Determine if the specified node is a Dart script.
*
* @param node the node to be tested (not `null`)
* @return `true` if the node is a Dart script
*/
bool isScriptNode(ht.XmlTagNode node) {
if (node.tagNodes.length != 0 || node.tag.lexeme != _SCRIPT) {
return false;
}
for (ht.XmlAttributeNode attribute in node.attributes) {
if (attribute.name.lexeme == _TYPE) {
ht.Token valueToken = attribute.value;
if (valueToken != null) {
String value = valueToken.lexeme;
if (value == _APPLICATION_DART_IN_DOUBLE_QUOTES || value == _APPLICATION_DART_IN_SINGLE_QUOTES) {
return true;
}
}
}
}
return false;
}
/**
* Report an error with the given error code at the given location. Use the given arguments to
* compose the error message.
*
* @param errorCode the error code of the error to be reported
* @param offset the offset of the first character to be highlighted
* @param length the number of characters to be highlighted
* @param arguments the arguments used to compose the error message
*/
void reportError(ErrorCode errorCode, int offset, int length, List<Object> arguments) {
_errorListener.onError(new AnalysisError.con2(_htmlElement.source, offset, length, errorCode, arguments));
}
/**
* Report an error with the given error code at the location of the value of the given attribute.
* Use the given arguments to compose the error message.
*
* @param errorCode the error code of the error to be reported
* @param offset the offset of the first character to be highlighted
* @param length the number of characters to be highlighted
* @param arguments the arguments used to compose the error message
*/
void reportValueError(ErrorCode errorCode, ht.XmlAttributeNode attribute, List<Object> arguments) {
int offset = attribute.value.offset + 1;
int length = attribute.value.length - 2;
reportError(errorCode, offset, length, arguments);
}
}
/**
* Instances of the class `DeadCodeVerifier` traverse an AST structure looking for cases of
* [HintCode#DEAD_CODE].
*
* @coverage dart.engine.resolver
*/
class DeadCodeVerifier extends RecursiveASTVisitor<Object> {
/**
* The error reporter by which errors will be reported.
*/
ErrorReporter _errorReporter;
/**
* Create a new instance of the [DeadCodeVerifier].
*
* @param errorReporter the error reporter
*/
DeadCodeVerifier(ErrorReporter errorReporter) {
this._errorReporter = errorReporter;
}
Object visitBinaryExpression(BinaryExpression node) {
sc.Token operator = node.operator;
bool isAmpAmp = identical(operator.type, sc.TokenType.AMPERSAND_AMPERSAND);
bool isBarBar = identical(operator.type, sc.TokenType.BAR_BAR);
if (isAmpAmp || isBarBar) {
Expression lhsCondition = node.leftOperand;
ValidResult lhsResult = getConstantBooleanValue(lhsCondition);
if (lhsResult != null) {
if (identical(lhsResult, ValidResult.RESULT_TRUE) && isBarBar) {
_errorReporter.reportError2(HintCode.DEAD_CODE, node.rightOperand, []);
safelyVisit(lhsCondition);
return null;
} else if (identical(lhsResult, ValidResult.RESULT_FALSE) && isAmpAmp) {
_errorReporter.reportError2(HintCode.DEAD_CODE, node.rightOperand, []);
safelyVisit(lhsCondition);
return null;
}
}
}
return super.visitBinaryExpression(node);
}
/**
* For each [Block], this method reports and error on all statements between the end of the
* block and the first return statement (assuming there it is not at the end of the block.)
*
* @param node the block to evaluate
*/
Object visitBlock(Block node) {
NodeList<Statement> statements = node.statements;
int size = statements.length;
for (int i = 0; i < size; i++) {
Statement currentStatement = statements[i];
safelyVisit(currentStatement);
if (currentStatement is ReturnStatement && i != size - 1) {
Statement nextStatement = statements[i + 1];
Statement lastStatement = statements[size - 1];
int offset = nextStatement.offset;
int length = lastStatement.end - offset;
_errorReporter.reportError3(HintCode.DEAD_CODE, offset, length, []);
return null;
}
}
return null;
}
Object visitConditionalExpression(ConditionalExpression node) {
Expression conditionExpression = node.condition;
ValidResult result = getConstantBooleanValue(conditionExpression);
if (result != null) {
if (identical(result, ValidResult.RESULT_TRUE)) {
_errorReporter.reportError2(HintCode.DEAD_CODE, node.elseExpression, []);
safelyVisit(node.thenExpression);
return null;
} else {
_errorReporter.reportError2(HintCode.DEAD_CODE, node.thenExpression, []);
safelyVisit(node.elseExpression);
return null;
}
}
return super.visitConditionalExpression(node);
}
Object visitIfStatement(IfStatement node) {
Expression conditionExpression = node.condition;
ValidResult result = getConstantBooleanValue(conditionExpression);
if (result != null) {
if (identical(result, ValidResult.RESULT_TRUE)) {
Statement elseStatement = node.elseStatement;
if (elseStatement != null) {
_errorReporter.reportError2(HintCode.DEAD_CODE, elseStatement, []);
safelyVisit(node.thenStatement);
return null;
}
} else {
_errorReporter.reportError2(HintCode.DEAD_CODE, node.thenStatement, []);
safelyVisit(node.elseStatement);
return null;
}
}
return super.visitIfStatement(node);
}
Object visitTryStatement(TryStatement node) {
safelyVisit(node.body);
safelyVisit(node.finallyBlock);
NodeList<CatchClause> catchClauses = node.catchClauses;
int numOfCatchClauses = catchClauses.length;
List<Type2> visitedTypes = new List<Type2>();
for (int i = 0; i < numOfCatchClauses; i++) {
CatchClause catchClause = catchClauses[i];
if (catchClause.onKeyword != null) {
TypeName typeName = catchClause.exceptionType;
if (typeName != null && typeName.type != null) {
Type2 currentType = typeName.type;
if (currentType.isObject) {
safelyVisit(catchClause);
if (i + 1 != numOfCatchClauses) {
CatchClause nextCatchClause = catchClauses[i + 1];
CatchClause lastCatchClause = catchClauses[numOfCatchClauses - 1];
int offset = nextCatchClause.offset;
int length = lastCatchClause.end - offset;
_errorReporter.reportError3(HintCode.DEAD_CODE_CATCH_FOLLOWING_CATCH, offset, length, []);
return null;
}
}
for (Type2 type in visitedTypes) {
if (currentType.isSubtypeOf(type)) {
CatchClause lastCatchClause = catchClauses[numOfCatchClauses - 1];
int offset = catchClause.offset;
int length = lastCatchClause.end - offset;
_errorReporter.reportError3(HintCode.DEAD_CODE_ON_CATCH_SUBTYPE, offset, length, [currentType.displayName, type.displayName]);
return null;
}
}
visitedTypes.add(currentType);
}
safelyVisit(catchClause);
} else {
safelyVisit(catchClause);
if (i + 1 != numOfCatchClauses) {
CatchClause nextCatchClause = catchClauses[i + 1];
CatchClause lastCatchClause = catchClauses[numOfCatchClauses - 1];
int offset = nextCatchClause.offset;
int length = lastCatchClause.end - offset;
_errorReporter.reportError3(HintCode.DEAD_CODE_CATCH_FOLLOWING_CATCH, offset, length, []);
return null;
}
}
}
return null;
}
Object visitWhileStatement(WhileStatement node) {
Expression conditionExpression = node.condition;
safelyVisit(conditionExpression);
ValidResult result = getConstantBooleanValue(conditionExpression);
if (result != null) {
if (identical(result, ValidResult.RESULT_FALSE)) {
_errorReporter.reportError2(HintCode.DEAD_CODE, node.body, []);
return null;
}
}
safelyVisit(node.body);
return null;
}
/**
* Given some [Expression], this method returns [ValidResult#RESULT_TRUE] if it is
* `true`, [ValidResult#RESULT_FALSE] if it is `false`, or `null` if the
* expression is not a constant boolean value.
*
* @param expression the expression to evaluate
* @return [ValidResult#RESULT_TRUE] if it is `true`, [ValidResult#RESULT_FALSE]
* if it is `false`, or `null` if the expression is not a constant boolean
* value
*/
ValidResult getConstantBooleanValue(Expression expression) {
if (expression is BooleanLiteral) {
if (((expression as BooleanLiteral)).value) {
return ValidResult.RESULT_TRUE;
} else {
return ValidResult.RESULT_FALSE;
}
} else {
EvaluationResultImpl result = expression.accept(new ConstantVisitor());
if (identical(result, ValidResult.RESULT_TRUE)) {
return ValidResult.RESULT_TRUE;
} else if (identical(result, ValidResult.RESULT_FALSE)) {
return ValidResult.RESULT_FALSE;
}
return null;
}
}
/**
* If the given node is not `null`, visit this instance of the dead code verifier.
*
* @param node the node to be visited
*/
void safelyVisit(ASTNode node) {
if (node != null) {
node.accept(this);
}
}
}
/**
* Instances of the class `HintGenerator` traverse a library's worth of dart code at a time to
* generate hints over the set of sources.
*
* @see HintCode
* @coverage dart.engine.resolver
*/
class HintGenerator {
List<CompilationUnit> _compilationUnits;
AnalysisContext _context;
AnalysisErrorListener _errorListener;
ImportsVerifier _importsVerifier;
DeadCodeVerifier _deadCodeVerifier;
HintGenerator(List<CompilationUnit> compilationUnits, AnalysisContext context, AnalysisErrorListener errorListener) {
this._compilationUnits = compilationUnits;
this._context = context;
this._errorListener = errorListener;
LibraryElement library = compilationUnits[0].element.library;
_importsVerifier = new ImportsVerifier(library);
}
void generateForLibrary() {
for (int i = 0; i < _compilationUnits.length; i++) {
CompilationUnitElement element = _compilationUnits[i].element;
if (element != null) {
if (i == 0) {
_importsVerifier.inDefiningCompilationUnit = true;
generateForCompilationUnit(_compilationUnits[i], element.source);
_importsVerifier.inDefiningCompilationUnit = false;
} else {
generateForCompilationUnit(_compilationUnits[i], element.source);
}
}
}
_importsVerifier.generateUnusedImportHints(new ErrorReporter(_errorListener, _compilationUnits[0].element.source));
}
void generateForCompilationUnit(CompilationUnit unit, Source source) {
ErrorReporter errorReporter = new ErrorReporter(_errorListener, source);
_importsVerifier.visitCompilationUnit(unit);
_deadCodeVerifier = new DeadCodeVerifier(errorReporter);
_deadCodeVerifier.visitCompilationUnit(unit);
}
}
/**
* Instances of the class `ImportsVerifier` visit all of the referenced libraries in the
* source code verifying that all of the imports are used, otherwise a
* [HintCode#UNUSED_IMPORT] is generated with
* [generateUnusedImportHints].
*
* While this class does not yet have support for an "Organize Imports" action, this logic built up
* in this class could be used for such an action in the future.
*
* @coverage dart.engine.resolver
*/
class ImportsVerifier extends RecursiveASTVisitor<Object> {
/**
* This is set to `true` if the current compilation unit which is being visited is the
* defining compilation unit for the library, its value can be set with
* [setInDefiningCompilationUnit].
*/
bool _inDefiningCompilationUnit = false;
/**
* The current library.
*/
LibraryElement _currentLibrary;
/**
* A list of [ImportDirective]s that the current library imports, as identifiers are visited
* by this visitor and an import has been identified as being used by the library, the
* [ImportDirective] is removed from this list. After all the sources in the library have
* been evaluated, this list represents the set of unused imports.
*
* @see ImportsVerifier#generateUnusedImportErrors(ErrorReporter)
*/
List<ImportDirective> _unusedImports;
/**
* This is a map between the set of [LibraryElement]s that the current library imports, and
* a list of [ImportDirective]s that imports the library. In cases where the current library
* imports a library with a single directive (such as `import lib1.dart;`), the library
* element will map to a list of one [ImportDirective], which will then be removed from the
* [unusedImports] list. In cases where the current library imports a library with multiple
* directives (such as `import lib1.dart; import lib1.dart show C;`), the
* [LibraryElement] will be mapped to a list of the import directives, and the namespace
* will need to be used to compute the correct [ImportDirective] being used, see
* [namespaceMap].
*/
Map<LibraryElement, List<ImportDirective>> _libraryMap;
/**
* In cases where there is more than one import directive per library element, this mapping is
* used to determine which of the multiple import directives are used by generating a
* [Namespace] for each of the imports to do lookups in the same way that they are done from
* the [ElementResolver].
*/
Map<ImportDirective, Namespace> _namespaceMap;
/**
* This is a map between prefix elements and the import directive from which they are derived. In
* cases where a type is referenced via a prefix element, the import directive can be marked as
* used (removed from the unusedImports) by looking at the resolved `lib` in `lib.X`,
* instead of looking at which library the `lib.X` resolves.
*/
Map<PrefixElement, ImportDirective> _prefixElementMap;
/**
* Create a new instance of the [ImportsVerifier].
*
* @param errorReporter the error reporter
*/
ImportsVerifier(LibraryElement library) {
this._currentLibrary = library;
this._unusedImports = new List<ImportDirective>();
this._libraryMap = new Map<LibraryElement, List<ImportDirective>>();
this._namespaceMap = new Map<ImportDirective, Namespace>();
this._prefixElementMap = new Map<PrefixElement, ImportDirective>();
}
/**
* After all of the compilation units have been visited by this visitor, this method can be called
* to report an [HintCode#UNUSED_IMPORT] hint for each of the import directives in the
* [unusedImports] list.
*
* @param errorReporter the error reporter to report the set of [HintCode#UNUSED_IMPORT]
* hints to
*/
void generateUnusedImportHints(ErrorReporter errorReporter) {
for (ImportDirective unusedImport in _unusedImports) {
errorReporter.reportError2(HintCode.UNUSED_IMPORT, unusedImport.uri, []);
}
}
Object visitCompilationUnit(CompilationUnit node) {
if (_inDefiningCompilationUnit) {
NodeList<Directive> directives = node.directives;
for (Directive directive in directives) {
if (directive is ImportDirective) {
ImportDirective importDirective = directive as ImportDirective;
LibraryElement libraryElement = importDirective.uriElement;
if (libraryElement != null) {
_unusedImports.add(importDirective);
if (importDirective.asToken != null) {
SimpleIdentifier prefixIdentifier = importDirective.prefix;
if (prefixIdentifier != null) {
Element element = prefixIdentifier.staticElement;
if (element is PrefixElement) {
PrefixElement prefixElementKey = element as PrefixElement;
_prefixElementMap[prefixElementKey] = importDirective;
}
}
}
putIntoLibraryMap(libraryElement, importDirective);
addAdditionalLibrariesForExports(libraryElement, importDirective, new List<LibraryElement>());
}
}
}
}
if (_unusedImports.isEmpty) {
return null;
}
return super.visitCompilationUnit(node);
}
Object visitExportDirective(ExportDirective node) => null;
Object visitImportDirective(ImportDirective node) => null;
Object visitLibraryDirective(LibraryDirective node) => null;
Object visitPrefixedIdentifier(PrefixedIdentifier node) {
SimpleIdentifier prefixIdentifier = node.prefix;
Element element = prefixIdentifier.staticElement;
if (element is PrefixElement) {
_unusedImports.remove(_prefixElementMap[element]);
return null;
}
return visitIdentifier(element, prefixIdentifier.name);
}
Object visitSimpleIdentifier(SimpleIdentifier node) => visitIdentifier(node.staticElement, node.name);
void set inDefiningCompilationUnit(bool inDefiningCompilationUnit2) {
this._inDefiningCompilationUnit = inDefiningCompilationUnit2;
}
/**
* Recursively add any exported library elements into the [libraryMap].
*/
void addAdditionalLibrariesForExports(LibraryElement library, ImportDirective importDirective, List<LibraryElement> exportPath) {
if (exportPath.contains(library)) {
return;
}
exportPath.add(library);
for (LibraryElement exportedLibraryElt in library.exportedLibraries) {
putIntoLibraryMap(exportedLibraryElt, importDirective);
addAdditionalLibrariesForExports(exportedLibraryElt, importDirective, exportPath);
}
}
/**
* Lookup and return the [Namespace] from the [namespaceMap], if the map does not
* have the computed namespace, compute it and cache it in the map. If the import directive is not
* resolved or is not resolvable, `null` is returned.
*
* @param importDirective the import directive used to compute the returned namespace
* @return the computed or looked up [Namespace]
*/
Namespace computeNamespace(ImportDirective importDirective) {
Namespace namespace = _namespaceMap[importDirective];
if (namespace == null) {
ImportElement importElement = importDirective.element as ImportElement;
if (importElement != null) {
NamespaceBuilder builder = new NamespaceBuilder();
namespace = builder.createImportNamespace(importElement);
_namespaceMap[importDirective] = namespace;
}
}
return namespace;
}
/**
* The [libraryMap] is a mapping between a library elements and a list of import
* directives, but when adding these mappings into the [libraryMap], this method can be
* used to simply add the mapping between the library element an an import directive without
* needing to check to see if a list needs to be created.
*/
void putIntoLibraryMap(LibraryElement libraryElement, ImportDirective importDirective) {
List<ImportDirective> importList = _libraryMap[libraryElement];
if (importList == null) {
importList = new List<ImportDirective>();
_libraryMap[libraryElement] = importList;
}
importList.add(importDirective);
}
Object visitIdentifier(Element element, String name) {
if (element == null) {
return null;
}
if (element is MultiplyDefinedElement) {
MultiplyDefinedElement multiplyDefinedElement = element as MultiplyDefinedElement;
for (Element elt in multiplyDefinedElement.conflictingElements) {
visitIdentifier(elt, name);
}
return null;
} else if (element is PrefixElement) {
_unusedImports.remove(_prefixElementMap[element]);
return null;
}
LibraryElement containingLibrary = element.library;
if (containingLibrary == null) {
return null;
}
if (_currentLibrary == containingLibrary) {
return null;
}
List<ImportDirective> importsFromSameLibrary = _libraryMap[containingLibrary];
if (importsFromSameLibrary == null) {
return null;
}
if (importsFromSameLibrary.length == 1) {
ImportDirective usedImportDirective = importsFromSameLibrary[0];
_unusedImports.remove(usedImportDirective);
} else {
for (ImportDirective importDirective in importsFromSameLibrary) {
Namespace namespace = computeNamespace(importDirective);
if (namespace != null && namespace.get(name) != null) {
_unusedImports.remove(importDirective);
}
}
}
return null;
}
}
/**
* Instances of the class `PubVerifier` traverse an AST structure looking for deviations from
* pub best practices.
*/
class PubVerifier extends RecursiveASTVisitor<Object> {
static String _PUBSPEC_YAML = "pubspec.yaml";
/**
* The analysis context containing the sources to be analyzed
*/
AnalysisContext _context;
/**
* The error reporter by which errors will be reported.
*/
ErrorReporter _errorReporter;
PubVerifier(AnalysisContext context, ErrorReporter errorReporter) {
this._context = context;
this._errorReporter = errorReporter;
}
Object visitImportDirective(ImportDirective directive) {
return null;
}
/**
* This verifies that the passed file import directive is not contained in a source inside a
* package "lib" directory hierarchy referencing a source outside that package "lib" directory
* hierarchy.
*
* @param uriLiteral the import URL (not `null`)
* @param path the file path being verified (not `null`)
* @return `true` if and only if an error code is generated on the passed node
* @see PubSuggestionCode.FILE_IMPORT_INSIDE_LIB_REFERENCES_FILE_OUTSIDE
*/
bool checkForFileImportInsideLibReferencesFileOutside(StringLiteral uriLiteral, String path) {
Source source = getSource(uriLiteral);
String fullName = getSourceFullName(source);
if (fullName != null) {
int pathIndex = 0;
int fullNameIndex = fullName.length;
while (pathIndex < path.length && JavaString.startsWithBefore(path, "../", pathIndex)) {
fullNameIndex = JavaString.lastIndexOf(fullName, '/', fullNameIndex);
if (fullNameIndex < 4) {
return false;
}
if (JavaString.startsWithBefore(fullName, "/lib", fullNameIndex - 4)) {
String relativePubspecPath = path.substring(0, pathIndex + 3) + _PUBSPEC_YAML;
Source pubspecSource = _context.sourceFactory.resolveUri(source, relativePubspecPath);
if (pubspecSource != null && pubspecSource.exists()) {
_errorReporter.reportError2(PubSuggestionCode.FILE_IMPORT_INSIDE_LIB_REFERENCES_FILE_OUTSIDE, uriLiteral, []);
}
return true;
}
pathIndex += 3;
}
}
return false;
}
/**
* This verifies that the passed file import directive is not contained in a source outside a
* package "lib" directory hierarchy referencing a source inside that package "lib" directory
* hierarchy.
*
* @param uriLiteral the import URL (not `null`)
* @param path the file path being verified (not `null`)
* @return `true` if and only if an error code is generated on the passed node
* @see PubSuggestionCode.FILE_IMPORT_OUTSIDE_LIB_REFERENCES_FILE_INSIDE
*/
bool checkForFileImportOutsideLibReferencesFileInside(StringLiteral uriLiteral, String path) {
if (path.startsWith("lib/")) {
if (checkForFileImportOutsideLibReferencesFileInside2(uriLiteral, path, 0)) {
return true;
}
}
int pathIndex = path.indexOf("/lib/");
while (pathIndex != -1) {
if (checkForFileImportOutsideLibReferencesFileInside2(uriLiteral, path, pathIndex + 1)) {
return true;
}
pathIndex = JavaString.indexOf(path, "/lib/", pathIndex + 4);
}
return false;
}
bool checkForFileImportOutsideLibReferencesFileInside2(StringLiteral uriLiteral, String path, int pathIndex) {
Source source = getSource(uriLiteral);
String relativePubspecPath = path.substring(0, pathIndex) + _PUBSPEC_YAML;
Source pubspecSource = _context.sourceFactory.resolveUri(source, relativePubspecPath);
if (pubspecSource == null || !pubspecSource.exists()) {
return false;
}
String fullName = getSourceFullName(source);
if (fullName != null) {
if (!fullName.contains("/lib/")) {
_errorReporter.reportError2(PubSuggestionCode.FILE_IMPORT_OUTSIDE_LIB_REFERENCES_FILE_INSIDE, uriLiteral, []);
return true;
}
}
return false;
}
/**
* This verifies that the passed package import directive does not contain ".."
*
* @param uriLiteral the import URL (not `null`)
* @param path the path to be validated (not `null`)
* @return `true` if and only if an error code is generated on the passed node
* @see PubSuggestionCode.PACKAGE_IMPORT_CONTAINS_DOT_DOT
*/
bool checkForPackageImportContainsDotDot(StringLiteral uriLiteral, String path) {
if (path.startsWith("../") || path.contains("/../")) {
_errorReporter.reportError2(PubSuggestionCode.PACKAGE_IMPORT_CONTAINS_DOT_DOT, uriLiteral, []);
return true;
}
return false;
}
/**
* Answer the source associated with the compilation unit containing the given AST node.
*
* @param node the node (not `null`)
* @return the source or `null` if it could not be determined
*/
Source getSource(ASTNode node) {
Source source = null;
CompilationUnit unit = node.getAncestor(CompilationUnit);
if (unit != null) {
CompilationUnitElement element = unit.element;
if (element != null) {
source = element.source;
}
}
return source;
}
/**
* Answer the full name of the given source. The returned value will have all
* [File#separatorChar] replace by '/'.
*
* @param source the source
* @return the full name or `null` if it could not be determined
*/
String getSourceFullName(Source source) {
if (source != null) {
String fullName = source.fullName;
if (fullName != null) {
return fullName.replaceAll(r'\', '/');
}
}
return null;
}
}
/**
* Instances of the class `DeclarationResolver` are used to resolve declarations in an AST
* structure to already built elements.
*/
class DeclarationResolver extends RecursiveASTVisitor<Object> {
/**
* The compilation unit containing the AST nodes being visited.
*/
CompilationUnitElement _enclosingUnit;
/**
* The function type alias containing the AST nodes being visited, or `null` if we are not
* in the scope of a function type alias.
*/
FunctionTypeAliasElement _enclosingAlias;
/**
* The class containing the AST nodes being visited, or `null` if we are not in the scope of
* a class.
*/
ClassElement _enclosingClass;
/**
* The method or function containing the AST nodes being visited, or `null` if we are not in
* the scope of a method or function.
*/
ExecutableElement _enclosingExecutable;
/**
* The parameter containing the AST nodes being visited, or `null` if we are not in the
* scope of a parameter.
*/
ParameterElement _enclosingParameter;
/**
* Resolve the declarations within the given compilation unit to the elements rooted at the given
* element.
*
* @param unit the compilation unit to be resolved
* @param element the root of the element model used to resolve the AST nodes
*/
void resolve(CompilationUnit unit, CompilationUnitElement element2) {
_enclosingUnit = element2;
unit.element = element2;
unit.accept(this);
}
Object visitCatchClause(CatchClause node) {
SimpleIdentifier exceptionParameter = node.exceptionParameter;
if (exceptionParameter != null) {
List<LocalVariableElement> localVariables = _enclosingExecutable.localVariables;
find3(localVariables, exceptionParameter);
SimpleIdentifier stackTraceParameter = node.stackTraceParameter;
if (stackTraceParameter != null) {
find3(localVariables, stackTraceParameter);
}
}
return super.visitCatchClause(node);
}
Object visitClassDeclaration(ClassDeclaration node) {
ClassElement outerClass = _enclosingClass;
try {
SimpleIdentifier className = node.name;
_enclosingClass = find3(_enclosingUnit.types, className);
return super.visitClassDeclaration(node);
} finally {
_enclosingClass = outerClass;
}
}
Object visitClassTypeAlias(ClassTypeAlias node) {
ClassElement outerClass = _enclosingClass;
try {
SimpleIdentifier className = node.name;
_enclosingClass = find3(_enclosingUnit.types, className);
return super.visitClassTypeAlias(node);
} finally {
_enclosingClass = outerClass;
}
}
Object visitConstructorDeclaration(ConstructorDeclaration node) {
ExecutableElement outerExecutable = _enclosingExecutable;
try {
SimpleIdentifier constructorName = node.name;
if (constructorName == null) {
_enclosingExecutable = _enclosingClass.unnamedConstructor;
} else {
_enclosingExecutable = _enclosingClass.getNamedConstructor(constructorName.name);
constructorName.staticElement = _enclosingExecutable;
}
node.element = _enclosingExecutable as ConstructorElement;
return super.visitConstructorDeclaration(node);
} finally {
_enclosingExecutable = outerExecutable;
}
}
Object visitDeclaredIdentifier(DeclaredIdentifier node) {
SimpleIdentifier variableName = node.identifier;
find3(_enclosingExecutable.localVariables, variableName);
return super.visitDeclaredIdentifier(node);
}
Object visitDefaultFormalParameter(DefaultFormalParameter node) {
SimpleIdentifier parameterName = node.parameter.identifier;
ParameterElement element = getElementForParameter(node, parameterName);
Expression defaultValue = node.defaultValue;
if (defaultValue != null) {
ExecutableElement outerExecutable = _enclosingExecutable;
try {
if (element == null) {
} else {
_enclosingExecutable = element.initializer;
}
defaultValue.accept(this);
} finally {
_enclosingExecutable = outerExecutable;
}
}
ParameterElement outerParameter = _enclosingParameter;
try {
_enclosingParameter = element;
return super.visitDefaultFormalParameter(node);
} finally {
_enclosingParameter = outerParameter;
}
}
Object visitExportDirective(ExportDirective node) {
String uri = getStringValue(node.uri);
if (uri != null) {
LibraryElement library = _enclosingUnit.library;
ExportElement exportElement = find5(library.exports, _enclosingUnit.context.sourceFactory.resolveUri(_enclosingUnit.source, uri));
node.element = exportElement;
}
return super.visitExportDirective(node);
}
Object visitFieldFormalParameter(FieldFormalParameter node) {
if (node.parent is! DefaultFormalParameter) {
SimpleIdentifier parameterName = node.identifier;
ParameterElement element = getElementForParameter(node, parameterName);
ParameterElement outerParameter = _enclosingParameter;
try {
_enclosingParameter = element;
return super.visitFieldFormalParameter(node);
} finally {
_enclosingParameter = outerParameter;
}
} else {
return super.visitFieldFormalParameter(node);
}
}
Object visitFunctionDeclaration(FunctionDeclaration node) {
ExecutableElement outerExecutable = _enclosingExecutable;
try {
SimpleIdentifier functionName = node.name;
sc.Token property = node.propertyKeyword;
if (property == null) {
if (_enclosingExecutable != null) {
_enclosingExecutable = find3(_enclosingExecutable.functions, functionName);
} else {
_enclosingExecutable = find3(_enclosingUnit.functions, functionName);
}
} else {
PropertyAccessorElement accessor = find3(_enclosingUnit.accessors, functionName);
if (identical(((property as sc.KeywordToken)).keyword, sc.Keyword.SET)) {
accessor = accessor.variable.setter;
functionName.staticElement = accessor;
}
_enclosingExecutable = accessor;
}
node.functionExpression.element = _enclosingExecutable;
return super.visitFunctionDeclaration(node);
} finally {
_enclosingExecutable = outerExecutable;
}
}
Object visitFunctionExpression(FunctionExpression node) {
if (node.parent is! FunctionDeclaration) {
FunctionElement element = find2(_enclosingExecutable.functions, node.beginToken.offset);
node.element = element;
}
ExecutableElement outerExecutable = _enclosingExecutable;
try {
_enclosingExecutable = node.element;
return super.visitFunctionExpression(node);
} finally {
_enclosingExecutable = outerExecutable;
}
}
Object visitFunctionTypeAlias(FunctionTypeAlias node) {
FunctionTypeAliasElement outerAlias = _enclosingAlias;
try {
SimpleIdentifier aliasName = node.name;
_enclosingAlias = find3(_enclosingUnit.functionTypeAliases, aliasName);
return super.visitFunctionTypeAlias(node);
} finally {
_enclosingAlias = outerAlias;
}
}
Object visitFunctionTypedFormalParameter(FunctionTypedFormalParameter node) {
if (node.parent is! DefaultFormalParameter) {
SimpleIdentifier parameterName = node.identifier;
ParameterElement element = getElementForParameter(node, parameterName);
ParameterElement outerParameter = _enclosingParameter;
try {
_enclosingParameter = element;
return super.visitFunctionTypedFormalParameter(node);
} finally {
_enclosingParameter = outerParameter;
}
} else {
return super.visitFunctionTypedFormalParameter(node);
}
}
Object visitImportDirective(ImportDirective node) {
String uri = getStringValue(node.uri);
if (uri != null) {
LibraryElement library = _enclosingUnit.library;
ImportElement importElement = find6(library.imports, _enclosingUnit.context.sourceFactory.resolveUri(_enclosingUnit.source, uri), node.prefix);
node.element = importElement;
}
return super.visitImportDirective(node);
}
Object visitLabeledStatement(LabeledStatement node) {
for (Label label in node.labels) {
SimpleIdentifier labelName = label.label;
find3(_enclosingExecutable.labels, labelName);
}
return super.visitLabeledStatement(node);
}
Object visitLibraryDirective(LibraryDirective node) {
node.element = _enclosingUnit.library;
return super.visitLibraryDirective(node);
}
Object visitMethodDeclaration(MethodDeclaration node) {
ExecutableElement outerExecutable = _enclosingExecutable;
try {
sc.Token property = node.propertyKeyword;
SimpleIdentifier methodName = node.name;
String nameOfMethod = methodName.name;
if (nameOfMethod == sc.TokenType.MINUS.lexeme && node.parameters.parameters.length == 0) {
nameOfMethod = "unary-";
}
if (property == null) {
_enclosingExecutable = find4(_enclosingClass.methods, nameOfMethod, methodName.offset);
methodName.staticElement = _enclosingExecutable;
} else {
PropertyAccessorElement accessor = find3(_enclosingClass.accessors, methodName);
if (identical(((property as sc.KeywordToken)).keyword, sc.Keyword.SET)) {
accessor = accessor.variable.setter;
methodName.staticElement = accessor;
}
_enclosingExecutable = accessor;
}
return super.visitMethodDeclaration(node);
} finally {
_enclosingExecutable = outerExecutable;
}
}
Object visitPartDirective(PartDirective node) {
String uri = getStringValue(node.uri);
if (uri != null) {
Source partSource = _enclosingUnit.context.sourceFactory.resolveUri(_enclosingUnit.source, uri);
node.element = find(_enclosingUnit.library.parts, partSource);
}
return super.visitPartDirective(node);
}
Object visitPartOfDirective(PartOfDirective node) {
node.element = _enclosingUnit.library;
return super.visitPartOfDirective(node);
}
Object visitSimpleFormalParameter(SimpleFormalParameter node) {
if (node.parent is! DefaultFormalParameter) {
SimpleIdentifier parameterName = node.identifier;
ParameterElement element = getElementForParameter(node, parameterName);
ParameterElement outerParameter = _enclosingParameter;
try {
_enclosingParameter = element;
return super.visitSimpleFormalParameter(node);
} finally {
_enclosingParameter = outerParameter;
}
} else {
}
return super.visitSimpleFormalParameter(node);
}
Object visitSwitchCase(SwitchCase node) {
for (Label label in node.labels) {
SimpleIdentifier labelName = label.label;
find3(_enclosingExecutable.labels, labelName);
}
return super.visitSwitchCase(node);
}
Object visitSwitchDefault(SwitchDefault node) {
for (Label label in node.labels) {
SimpleIdentifier labelName = label.label;
find3(_enclosingExecutable.labels, labelName);
}
return super.visitSwitchDefault(node);
}
Object visitTypeParameter(TypeParameter node) {
SimpleIdentifier parameterName = node.name;
if (_enclosingClass != null) {
find3(_enclosingClass.typeVariables, parameterName);
} else if (_enclosingAlias != null) {
find3(_enclosingAlias.typeVariables, parameterName);
}
return super.visitTypeParameter(node);
}
Object visitVariableDeclaration(VariableDeclaration node) {
VariableElement element = null;
SimpleIdentifier variableName = node.name;
if (_enclosingExecutable != null) {
element = find3(_enclosingExecutable.localVariables, variableName);
}
if (element == null && _enclosingClass != null) {
element = find3(_enclosingClass.fields, variableName);
}
if (element == null && _enclosingUnit != null) {
element = find3(_enclosingUnit.topLevelVariables, variableName);
}
Expression initializer = node.initializer;
if (initializer != null) {
ExecutableElement outerExecutable = _enclosingExecutable;
try {
if (element == null) {
} else {
_enclosingExecutable = element.initializer;
}
return super.visitVariableDeclaration(node);
} finally {
_enclosingExecutable = outerExecutable;
}
}
return super.visitVariableDeclaration(node);
}
/**
* Append the value of the given string literal to the given string builder.
*
* @param builder the builder to which the string's value is to be appended
* @param literal the string literal whose value is to be appended to the builder
* @throws IllegalArgumentException if the string is not a constant string without any string
* interpolation
*/
void appendStringValue(JavaStringBuilder builder, StringLiteral literal) {
if (literal is SimpleStringLiteral) {
builder.append(((literal as SimpleStringLiteral)).value);
} else if (literal is AdjacentStrings) {
for (StringLiteral stringLiteral in ((literal as AdjacentStrings)).strings) {
appendStringValue(builder, stringLiteral);
}
} else {
throw new IllegalArgumentException();
}
}
/**
* Return the element for the part with the given source, or `null` if there is no element
* for the given source.
*
* @param parts the elements for the parts
* @param partSource the source for the part whose element is to be returned
* @return the element for the part with the given source
*/
CompilationUnitElement find(List<CompilationUnitElement> parts, Source partSource) {
for (CompilationUnitElement part in parts) {
if (part.source == partSource) {
return part;
}
}
return null;
}
/**
* Return the element in the given array of elements that was created for the declaration at the
* given offset. This method should only be used when there is no name
*
* @param elements the elements of the appropriate kind that exist in the current context
* @param offset the offset of the name of the element to be returned
* @return the element at the given offset
*/
Element find2(List<Element> elements, int offset) => find4(elements, "", offset);
/**
* Return the element in the given array of elements that was created for the declaration with the
* given name.
*
* @param elements the elements of the appropriate kind that exist in the current context
* @param identifier the name node in the declaration of the element to be returned
* @return the element created for the declaration with the given name
*/
Element find3(List<Element> elements, SimpleIdentifier identifier) {
Element element = find4(elements, identifier.name, identifier.offset);
identifier.staticElement = element;
return element;
}
/**
* Return the element in the given array of elements that was created for the declaration with the
* given name at the given offset.
*
* @param elements the elements of the appropriate kind that exist in the current context
* @param name the name of the element to be returned
* @param offset the offset of the name of the element to be returned
* @return the element with the given name and offset
*/
Element find4(List<Element> elements, String name, int offset) {
for (Element element in elements) {
if (element.displayName == name && element.nameOffset == offset) {
return element;
}
}
return null;
}
/**
* Return the export element from the given array whose library has the given source, or
* `null` if there is no such export.
*
* @param exports the export elements being searched
* @param source the source of the library associated with the export element to being searched
* for
* @return the export element whose library has the given source
*/
ExportElement find5(List<ExportElement> exports, Source source2) {
for (ExportElement export in exports) {
if (export.exportedLibrary.source == source2) {
return export;
}
}
return null;
}
/**
* Return the import element from the given array whose library has the given source and that has
* the given prefix, or `null` if there is no such import.
*
* @param imports the import elements being searched
* @param source the source of the library associated with the import element to being searched
* for
* @param prefix the prefix with which the library was imported
* @return the import element whose library has the given source and prefix
*/
ImportElement find6(List<ImportElement> imports, Source source2, SimpleIdentifier prefix2) {
for (ImportElement element in imports) {
if (element.importedLibrary.source == source2) {
PrefixElement prefixElement = element.prefix;
if (prefix2 == null) {
if (prefixElement == null) {
return element;
}
} else {
if (prefixElement != null && prefix2.name == prefixElement.displayName) {
return element;
}
}
}
}
return null;
}
/**
* Search the most closely enclosing list of parameters for a parameter with the given name.
*
* @param node the node defining the parameter with the given name
* @param parameterName the name of the parameter being searched for
* @return the element representing the parameter with that name
*/
ParameterElement getElementForParameter(FormalParameter node, SimpleIdentifier parameterName) {
List<ParameterElement> parameters = null;
if (_enclosingParameter != null) {
parameters = _enclosingParameter.parameters;
}
if (parameters == null && _enclosingExecutable != null) {
parameters = _enclosingExecutable.parameters;
}
if (parameters == null && _enclosingAlias != null) {
parameters = _enclosingAlias.parameters;
}
ParameterElement element = parameters == null ? null : find3(parameters, parameterName);
if (element == null) {
PrintStringWriter writer = new PrintStringWriter();
writer.println("Invalid state found in the Analysis Engine:");
writer.println("DeclarationResolver.getElementForParameter() is visiting a parameter that does not appear to be in a method or function.");
writer.println("Ancestors:");
ASTNode parent = node.parent;
while (parent != null) {
writer.println(parent.runtimeType.toString());
writer.println("---------");
parent = parent.parent;
}
AnalysisEngine.instance.logger.logError2(writer.toString(), new AnalysisException());
}
return element;
}
/**
* Return the value of the given string literal, or `null` if the string is not a constant
* string without any string interpolation.
*
* @param literal the string literal whose value is to be returned
* @return the value of the given string literal
*/
String getStringValue(StringLiteral literal) {
if (literal is StringInterpolation) {
return null;
}
JavaStringBuilder builder = new JavaStringBuilder();
try {
appendStringValue(builder, literal);
} on IllegalArgumentException catch (exception) {
return null;
}
return builder.toString().trim();
}
}
/**
* Instances of the class `ElementResolver` are used by instances of [ResolverVisitor]
* to resolve references within the AST structure to the elements being referenced. The requirements
* for the element resolver are:
* <ol>
* * Every [SimpleIdentifier] should be resolved to the element to which it refers.
* Specifically:
*
* * An identifier within the declaration of that name should resolve to the element being
* declared.
* * An identifier denoting a prefix should resolve to the element representing the import that
* defines the prefix (an [ImportElement]).
* * An identifier denoting a variable should resolve to the element representing the variable (a
* [VariableElement]).
* * An identifier denoting a parameter should resolve to the element representing the parameter
* (a [ParameterElement]).
* * An identifier denoting a field should resolve to the element representing the getter or
* setter being invoked (a [PropertyAccessorElement]).
* * An identifier denoting the name of a method or function being invoked should resolve to the
* element representing the method or function (a [ExecutableElement]).
* * An identifier denoting a label should resolve to the element representing the label (a
* [LabelElement]).
*
* The identifiers within directives are exceptions to this rule and are covered below.
* * Every node containing a token representing an operator that can be overridden (
* [BinaryExpression], [PrefixExpression], [PostfixExpression]) should resolve to
* the element representing the method invoked by that operator (a [MethodElement]).
* * Every [FunctionExpressionInvocation] should resolve to the element representing the
* function being invoked (a [FunctionElement]). This will be the same element as that to
* which the name is resolved if the function has a name, but is provided for those cases where an
* unnamed function is being invoked.
* * Every [LibraryDirective] and [PartOfDirective] should resolve to the element
* representing the library being specified by the directive (a [LibraryElement]) unless, in
* the case of a part-of directive, the specified library does not exist.
* * Every [ImportDirective] and [ExportDirective] should resolve to the element
* representing the library being specified by the directive unless the specified library does not
* exist (an [ImportElement] or [ExportElement]).
* * The identifier representing the prefix in an [ImportDirective] should resolve to the
* element representing the prefix (a [PrefixElement]).
* * The identifiers in the hide and show combinators in [ImportDirective]s and
* [ExportDirective]s should resolve to the elements that are being hidden or shown,
* respectively, unless those names are not defined in the specified library (or the specified
* library does not exist).
* * Every [PartDirective] should resolve to the element representing the compilation unit
* being specified by the string unless the specified compilation unit does not exist (a
* [CompilationUnitElement]).
* </ol>
* Note that AST nodes that would represent elements that are not defined are not resolved to
* anything. This includes such things as references to undeclared variables (which is an error) and
* names in hide and show combinators that are not defined in the imported library (which is not an
* error).
*
* @coverage dart.engine.resolver
*/
class ElementResolver extends SimpleASTVisitor<Object> {
/**
* @return `true` if the given identifier is the return type of a constructor declaration.
*/
static bool isConstructorReturnType(SimpleIdentifier node) {
ASTNode parent = node.parent;
if (parent is ConstructorDeclaration) {
ConstructorDeclaration constructor = parent as ConstructorDeclaration;
return identical(constructor.returnType, node);
}
return false;
}
/**
* @return `true` if the given identifier is the return type of a factory constructor
* declaration.
*/
static bool isFactoryConstructorReturnType(SimpleIdentifier node) {
ASTNode parent = node.parent;
if (parent is ConstructorDeclaration) {
ConstructorDeclaration constructor = parent as ConstructorDeclaration;
return identical(constructor.returnType, node) && constructor.factoryKeyword != null;
}
return false;
}
/**
* Checks if the given 'super' expression is used in the valid context.
*
* @param node the 'super' expression to analyze
* @return `true` if the given 'super' expression is in the valid context
*/
static bool isSuperInValidContext(SuperExpression node) {
for (ASTNode n = node; n != null; n = n.parent) {
if (n is CompilationUnit) {
return false;
}
if (n is ConstructorDeclaration) {
ConstructorDeclaration constructor = n as ConstructorDeclaration;
return constructor.factoryKeyword == null;
}
if (n is ConstructorFieldInitializer) {
return false;
}
if (n is MethodDeclaration) {
MethodDeclaration method = n as MethodDeclaration;
return !method.isStatic;
}
}
return false;
}
/**
* The resolver driving this participant.
*/
ResolverVisitor _resolver;
/**
* A flag indicating whether we are running in strict mode. In strict mode, error reporting is
* based exclusively on the static type information.
*/
bool _strictMode = false;
/**
* The type representing the type 'dynamic'.
*/
Type2 _dynamicType;
/**
* The type representing the type 'type'.
*/
Type2 _typeType;
/**
* The name of the method that can be implemented by a class to allow its instances to be invoked
* as if they were a function.
*/
static String CALL_METHOD_NAME = "call";
/**
* The name of the method that will be invoked if an attempt is made to invoke an undefined method
* on an object.
*/
static String NO_SUCH_METHOD_METHOD_NAME = "noSuchMethod";
/**
* Initialize a newly created visitor to resolve the nodes in a compilation unit.
*
* @param resolver the resolver driving this participant
*/
ElementResolver(ResolverVisitor resolver) {
this._resolver = resolver;
_strictMode = resolver.definingLibrary.context.analysisOptions.strictMode;
_dynamicType = resolver.typeProvider.dynamicType;
_typeType = resolver.typeProvider.typeType;
}
Object visitAssignmentExpression(AssignmentExpression node) {
sc.Token operator = node.operator;
sc.TokenType operatorType = operator.type;
if (operatorType != sc.TokenType.EQ) {
operatorType = operatorFromCompoundAssignment(operatorType);
Expression leftHandSide = node.leftHandSide;
if (leftHandSide != null) {
String methodName = operatorType.lexeme;
Type2 staticType = getStaticType(leftHandSide);
MethodElement staticMethod = lookUpMethod(leftHandSide, staticType, methodName);
node.staticElement = staticMethod;
Type2 propagatedType = getPropagatedType(leftHandSide);
MethodElement propagatedMethod = lookUpMethod(leftHandSide, propagatedType, methodName);
node.propagatedElement = propagatedMethod;
if (shouldReportMissingMember(staticType, staticMethod) && (_strictMode || propagatedType == null || shouldReportMissingMember(propagatedType, propagatedMethod))) {
_resolver.reportErrorProxyConditionalAnalysisError3(staticType.element, StaticTypeWarningCode.UNDEFINED_METHOD, operator, [methodName, staticType.displayName]);
}
}
}
return null;
}
Object visitBinaryExpression(BinaryExpression node) {
sc.Token operator = node.operator;
if (operator.isUserDefinableOperator) {
Expression leftOperand = node.leftOperand;
if (leftOperand != null) {
String methodName = operator.lexeme;
Type2 staticType = getStaticType(leftOperand);
MethodElement staticMethod = lookUpMethod(leftOperand, staticType, methodName);
node.staticElement = staticMethod;
Type2 propagatedType = getPropagatedType(leftOperand);
MethodElement propagatedMethod = lookUpMethod(leftOperand, propagatedType, methodName);
node.propagatedElement = propagatedMethod;
if (shouldReportMissingMember(staticType, staticMethod) && (_strictMode || propagatedType == null || shouldReportMissingMember(propagatedType, propagatedMethod))) {
_resolver.reportErrorProxyConditionalAnalysisError3(staticType.element, StaticTypeWarningCode.UNDEFINED_OPERATOR, operator, [methodName, staticType.displayName]);
}
}
}
return null;
}
Object visitBreakStatement(BreakStatement node) {
SimpleIdentifier labelNode = node.label;
LabelElementImpl labelElement = lookupLabel(node, labelNode);
if (labelElement != null && labelElement.isOnSwitchMember) {
_resolver.reportError5(ResolverErrorCode.BREAK_LABEL_ON_SWITCH_MEMBER, labelNode, []);
}
return null;
}
Object visitClassDeclaration(ClassDeclaration node) {
setMetadata(node.element, node);
return null;
}
Object visitClassTypeAlias(ClassTypeAlias node) {
setMetadata(node.element, node);
return null;
}
Object visitCommentReference(CommentReference node) {
Identifier identifier = node.identifier;
if (identifier is SimpleIdentifier) {
SimpleIdentifier simpleIdentifier = identifier as SimpleIdentifier;
Element element = resolveSimpleIdentifier(simpleIdentifier);
if (element == null) {
element = findImportWithoutPrefix(simpleIdentifier);
if (element is MultiplyDefinedElement) {
element = null;
}
}
if (element == null) {
} else {
if (element.library == null || element.library != _resolver.definingLibrary) {
}
simpleIdentifier.staticElement = element;
if (node.newKeyword != null) {
if (element is ClassElement) {
ConstructorElement constructor = ((element as ClassElement)).unnamedConstructor;
if (constructor == null) {
} else {
simpleIdentifier.staticElement = constructor;
}
} else {
}
}
}
} else if (identifier is PrefixedIdentifier) {
PrefixedIdentifier prefixedIdentifier = identifier as PrefixedIdentifier;
SimpleIdentifier prefix = prefixedIdentifier.prefix;
SimpleIdentifier name = prefixedIdentifier.identifier;
Element element = resolveSimpleIdentifier(prefix);
if (element == null) {
} else {
if (element is PrefixElement) {
prefix.staticElement = element;
element = _resolver.nameScope.lookup(identifier, _resolver.definingLibrary);
name.staticElement = element;
return null;
}
LibraryElement library = element.library;
if (library == null) {
AnalysisEngine.instance.logger.logError("Found element with null library: ${element.name}");
} else if (library != _resolver.definingLibrary) {
}
name.staticElement = element;
if (node.newKeyword == null) {
if (element is ClassElement) {
Element memberElement = lookupGetterOrMethod(((element as ClassElement)).type, name.name);
if (memberElement == null) {
memberElement = ((element as ClassElement)).getNamedConstructor(name.name);
if (memberElement == null) {
memberElement = lookUpSetter(prefix, ((element as ClassElement)).type, name.name);
}
}
if (memberElement == null) {
} else {
name.staticElement = memberElement;
}
} else {
}
} else {
if (element is ClassElement) {
ConstructorElement constructor = ((element as ClassElement)).getNamedConstructor(name.name);
if (constructor == null) {
} else {
name.staticElement = constructor;
}
} else {
}
}
}
}
return null;
}
Object visitConstructorDeclaration(ConstructorDeclaration node) {
super.visitConstructorDeclaration(node);
ConstructorElement element = node.element;
if (element is ConstructorElementImpl) {
ConstructorElementImpl constructorElement = element as ConstructorElementImpl;
ConstructorName redirectedNode = node.redirectedConstructor;
if (redirectedNode != null) {
ConstructorElement redirectedElement = redirectedNode.staticElement;
constructorElement.redirectedConstructor = redirectedElement;
}
for (ConstructorInitializer initializer in node.initializers) {
if (initializer is RedirectingConstructorInvocation) {
ConstructorElement redirectedElement = ((initializer as RedirectingConstructorInvocation)).staticElement;
constructorElement.redirectedConstructor = redirectedElement;
}
}
setMetadata(constructorElement, node);
}
return null;
}
Object visitConstructorFieldInitializer(ConstructorFieldInitializer node) {
SimpleIdentifier fieldName = node.fieldName;
ClassElement enclosingClass = _resolver.enclosingClass;
FieldElement fieldElement = ((enclosingClass as ClassElementImpl)).getField(fieldName.name);
fieldName.staticElement = fieldElement;
if (fieldElement == null || fieldElement.isSynthetic) {
_resolver.reportError5(CompileTimeErrorCode.INITIALIZER_FOR_NON_EXISTANT_FIELD, node, [fieldName]);
} else if (fieldElement.isStatic) {
_resolver.reportError5(CompileTimeErrorCode.INITIALIZER_FOR_STATIC_FIELD, node, [fieldName]);
}
return null;
}
Object visitConstructorName(ConstructorName node) {
Type2 type = node.type.type;
if (type != null && type.isDynamic) {
return null;
} else if (type is! InterfaceType) {
ASTNode parent = node.parent;
if (parent is InstanceCreationExpression) {
if (((parent as InstanceCreationExpression)).isConst) {
} else {
}
} else {
}
return null;
}
ConstructorElement constructor;
SimpleIdentifier name = node.name;
InterfaceType interfaceType = type as InterfaceType;
LibraryElement definingLibrary = _resolver.definingLibrary;
if (name == null) {
constructor = interfaceType.lookUpConstructor(null, definingLibrary);
} else {
constructor = interfaceType.lookUpConstructor(name.name, definingLibrary);
name.staticElement = constructor;
}
node.staticElement = constructor;
return null;
}
Object visitContinueStatement(ContinueStatement node) {
SimpleIdentifier labelNode = node.label;
LabelElementImpl labelElement = lookupLabel(node, labelNode);
if (labelElement != null && labelElement.isOnSwitchStatement) {
_resolver.reportError5(ResolverErrorCode.CONTINUE_LABEL_ON_SWITCH, labelNode, []);
}
return null;
}
Object visitDeclaredIdentifier(DeclaredIdentifier node) {
setMetadata(node.element, node);
return null;
}
Object visitExportDirective(ExportDirective node) {
Element element = node.element;
if (element is ExportElement) {
resolveCombinators(((element as ExportElement)).exportedLibrary, node.combinators);
setMetadata(element, node);
}
return null;
}
Object visitFieldFormalParameter(FieldFormalParameter node) {
String fieldName = node.identifier.name;
ClassElement classElement = _resolver.enclosingClass;
if (classElement != null) {
FieldElement fieldElement = ((classElement as ClassElementImpl)).getField(fieldName);
if (fieldElement == null) {
_resolver.reportError5(CompileTimeErrorCode.INITIALIZING_FORMAL_FOR_NON_EXISTANT_FIELD, node, [fieldName]);
} else {
ParameterElement parameterElement = node.element;
if (parameterElement is FieldFormalParameterElementImpl) {
FieldFormalParameterElementImpl fieldFormal = parameterElement as FieldFormalParameterElementImpl;
fieldFormal.field = fieldElement;
Type2 declaredType = fieldFormal.type;
Type2 fieldType = fieldElement.type;
if (node.type == null) {
fieldFormal.type = fieldType;
}
if (fieldElement.isSynthetic) {
_resolver.reportError5(CompileTimeErrorCode.INITIALIZING_FORMAL_FOR_NON_EXISTANT_FIELD, node, [fieldName]);
} else if (fieldElement.isStatic) {
_resolver.reportError5(CompileTimeErrorCode.INITIALIZING_FORMAL_FOR_STATIC_FIELD, node, [fieldName]);
} else if (declaredType != null && fieldType != null && !declaredType.isAssignableTo(fieldType)) {
_resolver.reportError5(StaticWarningCode.FIELD_INITIALIZING_FORMAL_NOT_ASSIGNABLE, node, [declaredType.displayName, fieldType.displayName]);
}
} else {
if (fieldElement.isSynthetic) {
_resolver.reportError5(CompileTimeErrorCode.INITIALIZING_FORMAL_FOR_NON_EXISTANT_FIELD, node, [fieldName]);
} else if (fieldElement.isStatic) {
_resolver.reportError5(CompileTimeErrorCode.INITIALIZING_FORMAL_FOR_STATIC_FIELD, node, [fieldName]);
}
}
}
}
return super.visitFieldFormalParameter(node);
}
Object visitFunctionDeclaration(FunctionDeclaration node) {
setMetadata(node.element, node);
return null;
}
Object visitFunctionExpressionInvocation(FunctionExpressionInvocation node) => null;
Object visitFunctionTypeAlias(FunctionTypeAlias node) {
setMetadata(node.element, node);
return null;
}
Object visitImportDirective(ImportDirective node) {
SimpleIdentifier prefixNode = node.prefix;
if (prefixNode != null) {
String prefixName = prefixNode.name;
for (PrefixElement prefixElement in _resolver.definingLibrary.prefixes) {
if (prefixElement.displayName == prefixName) {
prefixNode.staticElement = prefixElement;
break;
}
}
}
Element element = node.element;
if (element is ImportElement) {
ImportElement importElement = element as ImportElement;
LibraryElement library = importElement.importedLibrary;
if (library != null) {
resolveCombinators(library, node.combinators);
}
setMetadata(element, node);
}
return null;
}
Object visitIndexExpression(IndexExpression node) {
Expression target = node.realTarget;
Type2 staticType = getStaticType(target);
Type2 propagatedType = getPropagatedType(target);
String getterMethodName = sc.TokenType.INDEX.lexeme;
String setterMethodName = sc.TokenType.INDEX_EQ.lexeme;
bool isInGetterContext = node.inGetterContext();
bool isInSetterContext = node.inSetterContext();
if (isInGetterContext && isInSetterContext) {
MethodElement setterStaticMethod = lookUpMethod(target, staticType, setterMethodName);
MethodElement setterPropagatedMethod = lookUpMethod(target, propagatedType, setterMethodName);
node.staticElement = setterStaticMethod;
node.propagatedElement = setterPropagatedMethod;
checkForUndefinedIndexOperator(node, target, getterMethodName, setterStaticMethod, setterPropagatedMethod, staticType, propagatedType);
MethodElement getterStaticMethod = lookUpMethod(target, staticType, getterMethodName);
MethodElement getterPropagatedMethod = lookUpMethod(target, propagatedType, getterMethodName);
AuxiliaryElements auxiliaryElements = new AuxiliaryElements(getterStaticMethod, getterPropagatedMethod);
node.auxiliaryElements = auxiliaryElements;
checkForUndefinedIndexOperator(node, target, getterMethodName, getterStaticMethod, getterPropagatedMethod, staticType, propagatedType);
} else if (isInGetterContext) {
MethodElement staticMethod = lookUpMethod(target, staticType, getterMethodName);
MethodElement propagatedMethod = lookUpMethod(target, propagatedType, getterMethodName);
node.staticElement = staticMethod;
node.propagatedElement = propagatedMethod;
checkForUndefinedIndexOperator(node, target, getterMethodName, staticMethod, propagatedMethod, staticType, propagatedType);
} else if (isInSetterContext) {
MethodElement staticMethod = lookUpMethod(target, staticType, setterMethodName);
MethodElement propagatedMethod = lookUpMethod(target, propagatedType, setterMethodName);
node.staticElement = staticMethod;
node.propagatedElement = propagatedMethod;
checkForUndefinedIndexOperator(node, target, setterMethodName, staticMethod, propagatedMethod, staticType, propagatedType);
}
return null;
}
Object visitInstanceCreationExpression(InstanceCreationExpression node) {
ConstructorElement invokedConstructor = node.constructorName.staticElement;
node.staticElement = invokedConstructor;
ArgumentList argumentList = node.argumentList;
List<ParameterElement> parameters = resolveArgumentsToParameters(node.isConst, argumentList, invokedConstructor);
if (parameters != null) {
argumentList.correspondingStaticParameters = parameters;
}
return null;
}
Object visitLibraryDirective(LibraryDirective node) {
setMetadata(node.element, node);
return null;
}
Object visitMethodDeclaration(MethodDeclaration node) {
setMetadata(node.element, node);
return null;
}
Object visitMethodInvocation(MethodInvocation node) {
SimpleIdentifier methodName = node.methodName;
Expression target = node.realTarget;
if (target is SuperExpression && !isSuperInValidContext(target as SuperExpression)) {
return null;
}
Element staticElement;
Element propagatedElement;
if (target == null) {
staticElement = resolveInvokedElement2(methodName);
propagatedElement = null;
} else {
staticElement = resolveInvokedElement(target, getStaticType(target), methodName);
propagatedElement = resolveInvokedElement(target, getPropagatedType(target), methodName);
}
staticElement = convertSetterToGetter(staticElement);
propagatedElement = convertSetterToGetter(propagatedElement);
methodName.staticElement = staticElement;
methodName.propagatedElement = propagatedElement;
ArgumentList argumentList = node.argumentList;
if (staticElement != null) {
List<ParameterElement> parameters = computeCorrespondingParameters(argumentList, staticElement);
if (parameters != null) {
argumentList.correspondingStaticParameters = parameters;
}
}
if (propagatedElement != null) {
List<ParameterElement> parameters = computeCorrespondingParameters(argumentList, propagatedElement);
if (parameters != null) {
argumentList.correspondingPropagatedParameters = parameters;
}
}
ErrorCode errorCode = checkForInvocationError(target, staticElement);
if (identical(errorCode, StaticTypeWarningCode.INVOCATION_OF_NON_FUNCTION)) {
_resolver.reportError5(StaticTypeWarningCode.INVOCATION_OF_NON_FUNCTION, methodName, [methodName.name]);
} else if (identical(errorCode, CompileTimeErrorCode.UNDEFINED_FUNCTION)) {
_resolver.reportError5(CompileTimeErrorCode.UNDEFINED_FUNCTION, methodName, [methodName.name]);
} else if (identical(errorCode, StaticTypeWarningCode.UNDEFINED_METHOD)) {
String targetTypeName;
if (target == null) {
ClassElement enclosingClass = _resolver.enclosingClass;
targetTypeName = enclosingClass.displayName;
_resolver.reportErrorProxyConditionalAnalysisError(_resolver.enclosingClass, StaticTypeWarningCode.UNDEFINED_METHOD, methodName, [methodName.name, targetTypeName]);
} else {
Type2 targetType = getStaticType(target);
if (targetType != null && targetType.isDartCoreFunction && methodName.name == CALL_METHOD_NAME) {
return null;
}
targetTypeName = targetType == null ? null : targetType.displayName;
_resolver.reportErrorProxyConditionalAnalysisError(targetType.element, StaticTypeWarningCode.UNDEFINED_METHOD, methodName, [methodName.name, targetTypeName]);
}
} else if (identical(errorCode, StaticTypeWarningCode.UNDEFINED_SUPER_METHOD)) {
Type2 targetType = getPropagatedType(target);
if (targetType == null) {
targetType = getStaticType(target);
}
String targetTypeName = targetType == null ? null : targetType.name;
_resolver.reportError5(StaticTypeWarningCode.UNDEFINED_SUPER_METHOD, methodName, [methodName.name, targetTypeName]);
}
return null;
}
Object visitPartDirective(PartDirective node) {
setMetadata(node.element, node);
return null;
}
Object visitPartOfDirective(PartOfDirective node) {
setMetadata(node.element, node);
return null;
}
Object visitPostfixExpression(PostfixExpression node) {
Expression operand = node.operand;
String methodName = getPostfixOperator(node);
Type2 staticType = getStaticType(operand);
MethodElement staticMethod = lookUpMethod(operand, staticType, methodName);
node.staticElement = staticMethod;
Type2 propagatedType = getPropagatedType(operand);
MethodElement propagatedMethod = lookUpMethod(operand, propagatedType, methodName);
node.propagatedElement = propagatedMethod;
if (shouldReportMissingMember(staticType, staticMethod) && (_strictMode || propagatedType == null || shouldReportMissingMember(propagatedType, propagatedMethod))) {
_resolver.reportErrorProxyConditionalAnalysisError3(staticType.element, StaticTypeWarningCode.UNDEFINED_OPERATOR, node.operator, [methodName, staticType.displayName]);
}
return null;
}
Object visitPrefixedIdentifier(PrefixedIdentifier node) {
SimpleIdentifier prefix = node.prefix;
SimpleIdentifier identifier = node.identifier;
Element prefixElement = prefix.staticElement;
if (prefixElement is PrefixElement) {
Element element = _resolver.nameScope.lookup(node, _resolver.definingLibrary);
if (element == null && identifier.inSetterContext()) {
element = _resolver.nameScope.lookup(new ElementResolver_SyntheticIdentifier("${node.name}="), _resolver.definingLibrary);
}
if (element == null) {
if (identifier.inSetterContext()) {
_resolver.reportError5(StaticWarningCode.UNDEFINED_SETTER, identifier, [identifier.name, prefixElement.name]);
} else {
_resolver.reportError5(StaticWarningCode.UNDEFINED_GETTER, identifier, [identifier.name, prefixElement.name]);
}
return null;
}
if (element is PropertyAccessorElement && identifier.inSetterContext()) {
PropertyInducingElement variable = ((element as PropertyAccessorElement)).variable;
if (variable != null) {
PropertyAccessorElement setter = variable.setter;
if (setter != null) {
element = setter;
}
}
}
identifier.staticElement = element;
if (node.parent is Annotation) {
Annotation annotation = node.parent as Annotation;
resolveAnnotationElement(annotation, element, null);
return null;
}
return null;
}
if (node.parent is Annotation) {
Annotation annotation = node.parent as Annotation;
resolveAnnotationElement(annotation, prefixElement, identifier);
}
resolvePropertyAccess(prefix, identifier);
return null;
}
Object visitPrefixExpression(PrefixExpression node) {
sc.Token operator = node.operator;
sc.TokenType operatorType = operator.type;
if (operatorType.isUserDefinableOperator || identical(operatorType, sc.TokenType.PLUS_PLUS) || identical(operatorType, sc.TokenType.MINUS_MINUS)) {
Expression operand = node.operand;
String methodName = getPrefixOperator(node);
Type2 staticType = getStaticType(operand);
MethodElement staticMethod = lookUpMethod(operand, staticType, methodName);
node.staticElement = staticMethod;
Type2 propagatedType = getPropagatedType(operand);
MethodElement propagatedMethod = lookUpMethod(operand, propagatedType, methodName);
node.propagatedElement = propagatedMethod;
if (shouldReportMissingMember(staticType, staticMethod) && (_strictMode || propagatedType == null || shouldReportMissingMember(propagatedType, propagatedMethod))) {
_resolver.reportErrorProxyConditionalAnalysisError3(staticType.element, StaticTypeWarningCode.UNDEFINED_OPERATOR, operator, [methodName, staticType.displayName]);
}
}
return null;
}
Object visitPropertyAccess(PropertyAccess node) {
Expression target = node.realTarget;
if (target is SuperExpression && !isSuperInValidContext(target as SuperExpression)) {
return null;
}
SimpleIdentifier propertyName = node.propertyName;
resolvePropertyAccess(target, propertyName);
return null;
}
Object visitRedirectingConstructorInvocation(RedirectingConstructorInvocation node) {
ClassElement enclosingClass = _resolver.enclosingClass;
if (enclosingClass == null) {
return null;
}
SimpleIdentifier name = node.constructorName;
ConstructorElement element;
if (name == null) {
element = enclosingClass.unnamedConstructor;
} else {
element = enclosingClass.getNamedConstructor(name.name);
}
if (element == null) {
return null;
}
if (name != null) {
name.staticElement = element;
}
node.staticElement = element;
node.element = element;
ArgumentList argumentList = node.argumentList;
List<ParameterElement> parameters = resolveArgumentsToParameters(false, argumentList, element);
if (parameters != null) {
argumentList.correspondingStaticParameters = parameters;
}
return null;
}
Object visitSimpleIdentifier(SimpleIdentifier node) {
if (node.staticElement != null) {
return null;
}
if (node.name == _dynamicType.name) {
node.staticElement = _dynamicType.element;
node.staticType = _typeType;
return null;
}
Element element = resolveSimpleIdentifier(node);
ClassElement enclosingClass = _resolver.enclosingClass;
if (isFactoryConstructorReturnType(node) && element != enclosingClass) {
_resolver.reportError5(CompileTimeErrorCode.INVALID_FACTORY_NAME_NOT_A_CLASS, node, []);
} else if (isConstructorReturnType(node) && element != enclosingClass) {
_resolver.reportError5(CompileTimeErrorCode.INVALID_CONSTRUCTOR_NAME, node, []);
element = null;
} else if (element == null || (element is PrefixElement && !isValidAsPrefix(node))) {
if (isConstructorReturnType(node)) {
_resolver.reportError5(CompileTimeErrorCode.INVALID_CONSTRUCTOR_NAME, node, []);
} else {
_resolver.reportErrorProxyConditionalAnalysisError(_resolver.enclosingClass, StaticWarningCode.UNDEFINED_IDENTIFIER, node, [node.name]);
}
}
node.staticElement = element;
if (node.inSetterContext() && node.inGetterContext() && enclosingClass != null) {
InterfaceType enclosingType = enclosingClass.type;
AuxiliaryElements auxiliaryElements = new AuxiliaryElements(lookUpGetter(null, enclosingType, node.name), null);
node.auxiliaryElements = auxiliaryElements;
}
if (node.parent is Annotation) {
Annotation annotation = node.parent as Annotation;
resolveAnnotationElement(annotation, element, null);
}
return null;
}
Object visitSuperConstructorInvocation(SuperConstructorInvocation node) {
ClassElement enclosingClass = _resolver.enclosingClass;
if (enclosingClass == null) {
return null;
}
ClassElement superclass = getSuperclass(enclosingClass);
if (superclass == null) {
return null;
}
SimpleIdentifier name = node.constructorName;
ConstructorElement element;
if (name == null) {
element = superclass.unnamedConstructor;
} else {
element = superclass.getNamedConstructor(name.name);
}
if (element == null) {
if (name != null) {
_resolver.reportError5(CompileTimeErrorCode.UNDEFINED_CONSTRUCTOR_IN_INITIALIZER, node, [superclass.name, name]);
} else {
_resolver.reportError5(CompileTimeErrorCode.UNDEFINED_CONSTRUCTOR_IN_INITIALIZER_DEFAULT, node, [superclass.name]);
}
return null;
} else {
if (element.isFactory) {
_resolver.reportError5(CompileTimeErrorCode.NON_GENERATIVE_CONSTRUCTOR, node, [element]);
}
}
if (name != null) {
name.staticElement = element;
}
node.staticElement = element;
node.element = element;
ArgumentList argumentList = node.argumentList;
List<ParameterElement> parameters = resolveArgumentsToParameters(isInConstConstructor, argumentList, element);
if (parameters != null) {
argumentList.correspondingStaticParameters = parameters;
}
return null;
}
Object visitSuperExpression(SuperExpression node) {
if (!isSuperInValidContext(node)) {
_resolver.reportError5(CompileTimeErrorCode.SUPER_IN_INVALID_CONTEXT, node, []);
}
return super.visitSuperExpression(node);
}
Object visitTypeParameter(TypeParameter node) {
TypeName bound = node.bound;
if (bound != null) {
TypeVariableElementImpl variable = node.name.staticElement as TypeVariableElementImpl;
if (variable != null) {
variable.bound = bound.type;
}
}
setMetadata(node.element, node);
return null;
}
Object visitVariableDeclaration(VariableDeclaration node) {
setMetadata(node.element, node);
return null;
}
/**
* Generate annotation elements for each of the annotations in the given node list and add them to
* the given list of elements.
*
* @param annotationList the list of elements to which new elements are to be added
* @param annotations the AST nodes used to generate new elements
*/
void addAnnotations(List<ElementAnnotationImpl> annotationList, NodeList<Annotation> annotations) {
for (Annotation annotationNode in annotations) {
Element resolvedElement = annotationNode.element;
if (resolvedElement != null) {
annotationList.add(new ElementAnnotationImpl(resolvedElement));
}
}
}
/**
* Given that we have found code to invoke the given element, return the error code that should be
* reported, or `null` if no error should be reported.
*
* @param target the target of the invocation, or `null` if there was no target
* @param element the element to be invoked
* @return the error code that should be reported
*/
ErrorCode checkForInvocationError(Expression target, Element element) {
if (element is PrefixElement) {
element = null;
}
if (element is PropertyAccessorElement) {
FunctionType getterType = ((element as PropertyAccessorElement)).type;
if (getterType != null) {
Type2 returnType = getterType.returnType;
if (!isExecutableType(returnType)) {
return StaticTypeWarningCode.INVOCATION_OF_NON_FUNCTION;
}
}
} else if (element is ExecutableElement) {
return null;
} else if (element == null && target is SuperExpression) {
return StaticTypeWarningCode.UNDEFINED_SUPER_METHOD;
} else {
if (element is PropertyInducingElement) {
PropertyAccessorElement getter = ((element as PropertyInducingElement)).getter;
FunctionType getterType = getter.type;
if (getterType != null) {
Type2 returnType = getterType.returnType;
if (!isExecutableType(returnType)) {
return StaticTypeWarningCode.INVOCATION_OF_NON_FUNCTION;
}
}
} else if (element is VariableElement) {
Type2 variableType = ((element as VariableElement)).type;
if (!isExecutableType(variableType)) {
return StaticTypeWarningCode.INVOCATION_OF_NON_FUNCTION;
}
} else {
if (target == null) {
ClassElement enclosingClass = _resolver.enclosingClass;
if (enclosingClass == null) {
return CompileTimeErrorCode.UNDEFINED_FUNCTION;
} else if (element == null) {
return StaticTypeWarningCode.UNDEFINED_METHOD;
} else {
return StaticTypeWarningCode.INVOCATION_OF_NON_FUNCTION;
}
} else {
Type2 targetType = getStaticType(target);
if (targetType == null) {
return CompileTimeErrorCode.UNDEFINED_FUNCTION;
} else if (!targetType.isDynamic) {
return StaticTypeWarningCode.UNDEFINED_METHOD;
}
}
}
}
return null;
}
/**
* Check that the for some index expression that the method element was resolved, otherwise a
* [StaticWarningCode#UNDEFINED_OPERATOR] is generated.
*
* @param node the index expression to resolve
* @param target the target of the expression
* @param methodName the name of the operator associated with the context of using of the given
* index expression
* @return `true` if and only if an error code is generated on the passed node
*/
bool checkForUndefinedIndexOperator(IndexExpression node, Expression target, String methodName, MethodElement staticMethod, MethodElement propagatedMethod, Type2 staticType, Type2 propagatedType) {
if (shouldReportMissingMember(staticType, staticMethod) && (_strictMode || propagatedType == null || shouldReportMissingMember(propagatedType, propagatedMethod))) {
sc.Token leftBracket = node.leftBracket;
sc.Token rightBracket = node.rightBracket;
if (leftBracket == null || rightBracket == null) {
_resolver.reportErrorProxyConditionalAnalysisError(staticType.element, StaticTypeWarningCode.UNDEFINED_OPERATOR, node, [methodName, staticType.displayName]);
} else {
int offset = leftBracket.offset;
int length = rightBracket.offset - offset + 1;
_resolver.reportErrorProxyConditionalAnalysisError2(staticType.element, StaticTypeWarningCode.UNDEFINED_OPERATOR, offset, length, [methodName, staticType.displayName]);
}
return true;
}
return false;
}
/**
* Given a list of arguments and the element that will be invoked using those argument, compute
* the list of parameters that correspond to the list of arguments. Return the parameters that
* correspond to the arguments, or `null` if no correspondence could be computed.
*
* @param argumentList the list of arguments being passed to the element
* @param executableElement the element that will be invoked with the arguments
* @return the parameters that correspond to the arguments
*/
List<ParameterElement> computeCorrespondingParameters(ArgumentList argumentList, Element element2) {
if (element2 is PropertyAccessorElement) {
FunctionType getterType = ((element2 as PropertyAccessorElement)).type;
if (getterType != null) {
Type2 getterReturnType = getterType.returnType;
if (getterReturnType is InterfaceType) {
MethodElement callMethod = ((getterReturnType as InterfaceType)).lookUpMethod(CALL_METHOD_NAME, _resolver.definingLibrary);
if (callMethod != null) {
return resolveArgumentsToParameters(false, argumentList, callMethod);
}
} else if (getterReturnType is FunctionType) {
Element functionElement = ((getterReturnType as FunctionType)).element;
if (functionElement is ExecutableElement) {
return resolveArgumentsToParameters(false, argumentList, functionElement as ExecutableElement);
}
}
}
} else if (element2 is ExecutableElement) {
return resolveArgumentsToParameters(false, argumentList, element2 as ExecutableElement);
} else if (element2 is VariableElement) {
VariableElement variable = element2 as VariableElement;
Type2 type = variable.type;
if (type is FunctionType) {
FunctionType functionType = type as FunctionType;
List<ParameterElement> parameters = functionType.parameters;
return resolveArgumentsToParameters2(false, argumentList, parameters);
} else if (type is InterfaceType) {
MethodElement callMethod = ((type as InterfaceType)).lookUpMethod(CALL_METHOD_NAME, _resolver.definingLibrary);
if (callMethod != null) {
List<ParameterElement> parameters = callMethod.parameters;
return resolveArgumentsToParameters2(false, argumentList, parameters);
}
}
}
return null;
}
/**
* If the given element is a setter, return the getter associated with it. Otherwise, return the
* element unchanged.
*
* @param element the element to be normalized
* @return a non-setter element derived from the given element
*/
Element convertSetterToGetter(Element element) {
if (element is PropertyAccessorElement) {
return ((element as PropertyAccessorElement)).variable.getter;
}
return element;
}
/**
* Look for any declarations of the given identifier that are imported using a prefix. Return the
* element that was found, or `null` if the name is not imported using a prefix.
*
* @param identifier the identifier that might have been imported using a prefix
* @return the element that was found
*/
Element findImportWithoutPrefix(SimpleIdentifier identifier) {
Element element = null;
Scope nameScope = _resolver.nameScope;
LibraryElement definingLibrary = _resolver.definingLibrary;
for (ImportElement importElement in definingLibrary.imports) {
PrefixElement prefixElement = importElement.prefix;
if (prefixElement != null) {
Identifier prefixedIdentifier = new ElementResolver_SyntheticIdentifier("${prefixElement.name}.${identifier.name}");
Element importedElement = nameScope.lookup(prefixedIdentifier, definingLibrary);
if (importedElement != null) {
if (element == null) {
element = importedElement;
} else {
element = new MultiplyDefinedElementImpl(definingLibrary.context, element, importedElement);
}
}
}
}
return element;
}
/**
* Return the name of the method invoked by the given postfix expression.
*
* @param node the postfix expression being invoked
* @return the name of the method invoked by the expression
*/
String getPostfixOperator(PostfixExpression node) => (identical(node.operator.type, sc.TokenType.PLUS_PLUS)) ? sc.TokenType.PLUS.lexeme : sc.TokenType.MINUS.lexeme;
/**
* Return the name of the method invoked by the given postfix expression.
*
* @param node the postfix expression being invoked
* @return the name of the method invoked by the expression
*/
String getPrefixOperator(PrefixExpression node) {
sc.Token operator = node.operator;
sc.TokenType operatorType = operator.type;
if (identical(operatorType, sc.TokenType.PLUS_PLUS)) {
return sc.TokenType.PLUS.lexeme;
} else if (identical(operatorType, sc.TokenType.MINUS_MINUS)) {
return sc.TokenType.MINUS.lexeme;
} else if (identical(operatorType, sc.TokenType.MINUS)) {
return "unary-";
} else {
return operator.lexeme;
}
}
/**
* Return the propagated type of the given expression that is to be used for type analysis.
*
* @param expression the expression whose type is to be returned
* @return the type of the given expression
*/
Type2 getPropagatedType(Expression expression) {
Type2 propagatedType = resolveTypeVariable(expression.propagatedType);
if (propagatedType is FunctionType) {
propagatedType = _resolver.typeProvider.functionType;
}
return propagatedType;
}
/**
* Return the static type of the given expression that is to be used for type analysis.
*
* @param expression the expression whose type is to be returned
* @return the type of the given expression
*/
Type2 getStaticType(Expression expression) {
if (expression is NullLiteral) {
return _resolver.typeProvider.objectType;
}
Type2 staticType = resolveTypeVariable(expression.staticType);
if (staticType is FunctionType) {
staticType = _resolver.typeProvider.functionType;
}
return staticType;
}
/**
* Return the element representing the superclass of the given class.
*
* @param targetClass the class whose superclass is to be returned
* @return the element representing the superclass of the given class
*/
ClassElement getSuperclass(ClassElement targetClass) {
InterfaceType superType = targetClass.supertype;
if (superType == null) {
return null;
}
return superType.element;
}
/**
* Return `true` if the given type represents an object that could be invoked using the call
* operator '()'.
*
* @param type the type being tested
* @return `true` if the given type represents an object that could be invoked
*/
bool isExecutableType(Type2 type) {
if (type.isDynamic || (type is FunctionType) || type.isDartCoreFunction || type.isObject) {
return true;
} else if (type is InterfaceType) {
ClassElement classElement = ((type as InterfaceType)).element;
MethodElement methodElement = classElement.lookUpMethod(CALL_METHOD_NAME, _resolver.definingLibrary);
return methodElement != null;
}
return false;
}
/**
* @return `true` iff current enclosing function is constant constructor declaration.
*/
bool get isInConstConstructor {
ExecutableElement function = _resolver.enclosingFunction;
if (function is ConstructorElement) {
return ((function as ConstructorElement)).isConst;
}
return false;
}
/**
* Return `true` if the given element is a static element.
*
* @param element the element being tested
* @return `true` if the given element is a static element
*/
bool isStatic(Element element) {
if (element is ExecutableElement) {
return ((element as ExecutableElement)).isStatic;
} else if (element is PropertyInducingElement) {
return ((element as PropertyInducingElement)).isStatic;
}
return false;
}
/**
* Return `true` if the given node can validly be resolved to a prefix:
*
* * it is the prefix in an import directive, or
* * it is the prefix in a prefixed identifier.
*
*
* @param node the node being tested
* @return `true` if the given node is the prefix in an import directive
*/
bool isValidAsPrefix(SimpleIdentifier node) {
ASTNode parent = node.parent;
if (parent is ImportDirective) {
return identical(((parent as ImportDirective)).prefix, node);
} else if (parent is PrefixedIdentifier) {
return true;
} else if (parent is MethodInvocation) {
return identical(((parent as MethodInvocation)).target, node);
}
return false;
}
/**
* Look up the getter with the given name in the given type. Return the element representing the
* getter that was found, or `null` if there is no getter with the given name.
*
* @param target the target of the invocation, or `null` if there is no target
* @param type the type in which the getter is defined
* @param getterName the name of the getter being looked up
* @return the element representing the getter that was found
*/
PropertyAccessorElement lookUpGetter(Expression target, Type2 type, String getterName) {
type = resolveTypeVariable(type);
if (type is InterfaceType) {
InterfaceType interfaceType = type as InterfaceType;
PropertyAccessorElement accessor;
if (target is SuperExpression) {
accessor = interfaceType.lookUpGetterInSuperclass(getterName, _resolver.definingLibrary);
} else {
accessor = interfaceType.lookUpGetter(getterName, _resolver.definingLibrary);
}
if (accessor != null) {
return accessor;
}
return lookUpGetterInInterfaces(interfaceType, false, getterName, new Set<ClassElement>());
}
return null;
}
/**
* Look up the getter with the given name in the interfaces implemented by the given type, either
* directly or indirectly. Return the element representing the getter that was found, or
* `null` if there is no getter with the given name.
*
* @param targetType the type in which the getter might be defined
* @param includeTargetType `true` if the search should include the target type
* @param getterName the name of the getter being looked up
* @param visitedInterfaces a set containing all of the interfaces that have been examined, used
* to prevent infinite recursion and to optimize the search
* @return the element representing the getter that was found
*/
PropertyAccessorElement lookUpGetterInInterfaces(InterfaceType targetType, bool includeTargetType, String getterName, Set<ClassElement> visitedInterfaces) {
ClassElement targetClass = targetType.element;
if (visitedInterfaces.contains(targetClass)) {
return null;
}
javaSetAdd(visitedInterfaces, targetClass);
if (includeTargetType) {
PropertyAccessorElement getter = targetType.getGetter(getterName);
if (getter != null) {
return getter;
}
}
for (InterfaceType interfaceType in targetType.interfaces) {
PropertyAccessorElement getter = lookUpGetterInInterfaces(interfaceType, true, getterName, visitedInterfaces);
if (getter != null) {
return getter;
}
}
for (InterfaceType mixinType in targetType.mixins) {
PropertyAccessorElement getter = lookUpGetterInInterfaces(mixinType, true, getterName, visitedInterfaces);
if (getter != null) {
return getter;
}
}
InterfaceType superclass = targetType.superclass;
if (superclass == null) {
return null;
}
return lookUpGetterInInterfaces(superclass, true, getterName, visitedInterfaces);
}
/**
* Look up the method or getter with the given name in the given type. Return the element
* representing the method or getter that was found, or `null` if there is no method or
* getter with the given name.
*
* @param type the type in which the method or getter is defined
* @param memberName the name of the method or getter being looked up
* @return the element representing the method or getter that was found
*/
ExecutableElement lookupGetterOrMethod(Type2 type, String memberName) {
type = resolveTypeVariable(type);
if (type is InterfaceType) {
InterfaceType interfaceType = type as InterfaceType;
ExecutableElement member = interfaceType.lookUpMethod(memberName, _resolver.definingLibrary);
if (member != null) {
return member;
}
member = interfaceType.lookUpGetter(memberName, _resolver.definingLibrary);
if (member != null) {
return member;
}
return lookUpGetterOrMethodInInterfaces(interfaceType, false, memberName, new Set<ClassElement>());
}
return null;
}
/**
* Look up the method or getter with the given name in the interfaces implemented by the given
* type, either directly or indirectly. Return the element representing the method or getter that
* was found, or `null` if there is no method or getter with the given name.
*
* @param targetType the type in which the method or getter might be defined
* @param includeTargetType `true` if the search should include the target type
* @param memberName the name of the method or getter being looked up
* @param visitedInterfaces a set containing all of the interfaces that have been examined, used
* to prevent infinite recursion and to optimize the search
* @return the element representing the method or getter that was found
*/
ExecutableElement lookUpGetterOrMethodInInterfaces(InterfaceType targetType, bool includeTargetType, String memberName, Set<ClassElement> visitedInterfaces) {
ClassElement targetClass = targetType.element;
if (visitedInterfaces.contains(targetClass)) {
return null;
}
javaSetAdd(visitedInterfaces, targetClass);
if (includeTargetType) {
ExecutableElement member = targetType.getMethod(memberName);
if (member != null) {
return member;
}
member = targetType.getGetter(memberName);
if (member != null) {
return member;
}
}
for (InterfaceType interfaceType in targetType.interfaces) {
ExecutableElement member = lookUpGetterOrMethodInInterfaces(interfaceType, true, memberName, visitedInterfaces);
if (member != null) {
return member;
}
}
for (InterfaceType mixinType in targetType.mixins) {
ExecutableElement member = lookUpGetterOrMethodInInterfaces(mixinType, true, memberName, visitedInterfaces);
if (member != null) {
return member;
}
}
InterfaceType superclass = targetType.superclass;
if (superclass == null) {
return null;
}
return lookUpGetterOrMethodInInterfaces(superclass, true, memberName, visitedInterfaces);
}
/**
* Find the element corresponding to the given label node in the current label scope.
*
* @param parentNode the node containing the given label
* @param labelNode the node representing the label being looked up
* @return the element corresponding to the given label node in the current scope
*/
LabelElementImpl lookupLabel(ASTNode parentNode, SimpleIdentifier labelNode) {
LabelScope labelScope = _resolver.labelScope;
LabelElementImpl labelElement = null;
if (labelNode == null) {
if (labelScope == null) {
} else {
labelElement = labelScope.lookup2(LabelScope.EMPTY_LABEL) as LabelElementImpl;
if (labelElement == null) {
}
labelElement = null;
}
} else {
if (labelScope == null) {
_resolver.reportError5(CompileTimeErrorCode.LABEL_UNDEFINED, labelNode, [labelNode.name]);
} else {
labelElement = labelScope.lookup(labelNode) as LabelElementImpl;
if (labelElement == null) {
_resolver.reportError5(CompileTimeErrorCode.LABEL_UNDEFINED, labelNode, [labelNode.name]);
} else {
labelNode.staticElement = labelElement;
}
}
}
if (labelElement != null) {
ExecutableElement labelContainer = labelElement.getAncestor(ExecutableElement);
if (labelContainer != _resolver.enclosingFunction) {
_resolver.reportError5(CompileTimeErrorCode.LABEL_IN_OUTER_SCOPE, labelNode, [labelNode.name]);
labelElement = null;
}
}
return labelElement;
}
/**
* Look up the method with the given name in the given type. Return the element representing the
* method that was found, or `null` if there is no method with the given name.
*
* @param target the target of the invocation, or `null` if there is no target
* @param type the type in which the method is defined
* @param methodName the name of the method being looked up
* @return the element representing the method that was found
*/
MethodElement lookUpMethod(Expression target, Type2 type, String methodName) {
type = resolveTypeVariable(type);
if (type is InterfaceType) {
InterfaceType interfaceType = type as InterfaceType;
MethodElement method;
if (target is SuperExpression) {
method = interfaceType.lookUpMethodInSuperclass(methodName, _resolver.definingLibrary);
} else {
method = interfaceType.lookUpMethod(methodName, _resolver.definingLibrary);
}
if (method != null) {
return method;
}
return lookUpMethodInInterfaces(interfaceType, false, methodName, new Set<ClassElement>());
}
return null;
}
/**
* Look up the method with the given name in the interfaces implemented by the given type, either
* directly or indirectly. Return the element representing the method that was found, or
* `null` if there is no method with the given name.
*
* @param targetType the type in which the member might be defined
* @param includeTargetType `true` if the search should include the target type
* @param methodName the name of the method being looked up
* @param visitedInterfaces a set containing all of the interfaces that have been examined, used
* to prevent infinite recursion and to optimize the search
* @return the element representing the method that was found
*/
MethodElement lookUpMethodInInterfaces(InterfaceType targetType, bool includeTargetType, String methodName, Set<ClassElement> visitedInterfaces) {
ClassElement targetClass = targetType.element;
if (visitedInterfaces.contains(targetClass)) {
return null;
}
javaSetAdd(visitedInterfaces, targetClass);
if (includeTargetType) {
MethodElement method = targetType.getMethod(methodName);
if (method != null) {
return method;
}
}
for (InterfaceType interfaceType in targetType.interfaces) {
MethodElement method = lookUpMethodInInterfaces(interfaceType, true, methodName, visitedInterfaces);
if (method != null) {
return method;
}
}
for (InterfaceType mixinType in targetType.mixins) {
MethodElement method = lookUpMethodInInterfaces(mixinType, true, methodName, visitedInterfaces);
if (method != null) {
return method;
}
}
InterfaceType superclass = targetType.superclass;
if (superclass == null) {
return null;
}
return lookUpMethodInInterfaces(superclass, true, methodName, visitedInterfaces);
}
/**
* Look up the setter with the given name in the given type. Return the element representing the
* setter that was found, or `null` if there is no setter with the given name.
*
* @param target the target of the invocation, or `null` if there is no target
* @param type the type in which the setter is defined
* @param setterName the name of the setter being looked up
* @return the element representing the setter that was found
*/
PropertyAccessorElement lookUpSetter(Expression target, Type2 type, String setterName) {
type = resolveTypeVariable(type);
if (type is InterfaceType) {
InterfaceType interfaceType = type as InterfaceType;
PropertyAccessorElement accessor;
if (target is SuperExpression) {
accessor = interfaceType.lookUpSetterInSuperclass(setterName, _resolver.definingLibrary);
} else {
accessor = interfaceType.lookUpSetter(setterName, _resolver.definingLibrary);
}
if (accessor != null) {
return accessor;
}
return lookUpSetterInInterfaces(interfaceType, false, setterName, new Set<ClassElement>());
}
return null;
}
/**
* Look up the setter with the given name in the interfaces implemented by the given type, either
* directly or indirectly. Return the element representing the setter that was found, or
* `null` if there is no setter with the given name.
*
* @param targetType the type in which the setter might be defined
* @param includeTargetType `true` if the search should include the target type
* @param setterName the name of the setter being looked up
* @param visitedInterfaces a set containing all of the interfaces that have been examined, used
* to prevent infinite recursion and to optimize the search
* @return the element representing the setter that was found
*/
PropertyAccessorElement lookUpSetterInInterfaces(InterfaceType targetType, bool includeTargetType, String setterName, Set<ClassElement> visitedInterfaces) {
ClassElement targetClass = targetType.element;
if (visitedInterfaces.contains(targetClass)) {
return null;
}
javaSetAdd(visitedInterfaces, targetClass);
if (includeTargetType) {
PropertyAccessorElement setter = targetType.getSetter(setterName);
if (setter != null) {
return setter;
}
}
for (InterfaceType interfaceType in targetType.interfaces) {
PropertyAccessorElement setter = lookUpSetterInInterfaces(interfaceType, true, setterName, visitedInterfaces);
if (setter != null) {
return setter;
}
}
for (InterfaceType mixinType in targetType.mixins) {
PropertyAccessorElement setter = lookUpSetterInInterfaces(mixinType, true, setterName, visitedInterfaces);
if (setter != null) {
return setter;
}
}
InterfaceType superclass = targetType.superclass;
if (superclass == null) {
return null;
}
return lookUpSetterInInterfaces(superclass, true, setterName, visitedInterfaces);
}
/**
* Return the binary operator that is invoked by the given compound assignment operator.
*
* @param operator the assignment operator being mapped
* @return the binary operator that invoked by the given assignment operator
*/
sc.TokenType operatorFromCompoundAssignment(sc.TokenType operator) {
while (true) {
if (operator == sc.TokenType.AMPERSAND_EQ) {
return sc.TokenType.AMPERSAND;
} else if (operator == sc.TokenType.BAR_EQ) {
return sc.TokenType.BAR;
} else if (operator == sc.TokenType.CARET_EQ) {
return sc.TokenType.CARET;
} else if (operator == sc.TokenType.GT_GT_EQ) {
return sc.TokenType.GT_GT;
} else if (operator == sc.TokenType.LT_LT_EQ) {
return sc.TokenType.LT_LT;
} else if (operator == sc.TokenType.MINUS_EQ) {
return sc.TokenType.MINUS;
} else if (operator == sc.TokenType.PERCENT_EQ) {
return sc.TokenType.PERCENT;
} else if (operator == sc.TokenType.PLUS_EQ) {
return sc.TokenType.PLUS;
} else if (operator == sc.TokenType.SLASH_EQ) {
return sc.TokenType.SLASH;
} else if (operator == sc.TokenType.STAR_EQ) {
return sc.TokenType.STAR;
} else if (operator == sc.TokenType.TILDE_SLASH_EQ) {
return sc.TokenType.TILDE_SLASH;
}
break;
}
AnalysisEngine.instance.logger.logError("Failed to map ${operator.lexeme} to it's corresponding operator");
return operator;
}
void resolveAnnotationConstructorInvocationArguments(Annotation annotation, ConstructorElement constructor) {
ArgumentList argumentList = annotation.arguments;
if (argumentList == null) {
return;
}
List<ParameterElement> parameters = resolveArgumentsToParameters(true, argumentList, constructor);
if (parameters != null) {
argumentList.correspondingStaticParameters = parameters;
}
}
/**
* Validates that the given [Element] is the constant variable; or resolves it as a
* constructor invocation.
*
* @param annotation the [Annotation] to resolve
* @param element the current known [Element] of the annotation, or [ClassElement]
* @param nameNode the name of the invoked constructor, may be `null` if unnamed constructor
* or not a constructor invocation
*/
void resolveAnnotationElement(Annotation annotation, Element element2, SimpleIdentifier nameNode) {
if (element2 is PropertyAccessorElement) {
PropertyAccessorElement accessorElement = element2 as PropertyAccessorElement;
if (!accessorElement.isSynthetic) {
_resolver.reportError5(CompileTimeErrorCode.INVALID_ANNOTATION, annotation, []);
return;
}
VariableElement variableElement = accessorElement.variable;
if (!variableElement.isConst) {
_resolver.reportError5(CompileTimeErrorCode.INVALID_ANNOTATION, annotation, []);
}
return;
}
if (element2 is ClassElement) {
if (nameNode == null) {
nameNode = annotation.constructorName;
}
String name = nameNode != null ? nameNode.name : null;
ConstructorElement constructor;
{
InterfaceType interfaceType = new InterfaceTypeImpl.con1(element2 as ClassElement);
LibraryElement definingLibrary = _resolver.definingLibrary;
constructor = interfaceType.lookUpConstructor(name, definingLibrary);
}
if (constructor == null) {
_resolver.reportError5(CompileTimeErrorCode.INVALID_ANNOTATION, annotation, []);
return;
}
annotation.element = constructor;
if (nameNode != null) {
nameNode.staticElement = constructor;
}
resolveAnnotationConstructorInvocationArguments(annotation, constructor);
return;
}
if (element2 != null) {
_resolver.reportError5(CompileTimeErrorCode.INVALID_ANNOTATION, annotation, []);
}
}
/**
* Given a list of arguments and the element that will be invoked using those argument, compute
* the list of parameters that correspond to the list of arguments. Return the parameters that
* correspond to the arguments, or `null` if no correspondence could be computed.
*
* @param reportError if `true` then compile-time error should be reported; if `false`
* then compile-time warning
* @param argumentList the list of arguments being passed to the element
* @param executableElement the element that will be invoked with the arguments
* @return the parameters that correspond to the arguments
*/
List<ParameterElement> resolveArgumentsToParameters(bool reportError, ArgumentList argumentList, ExecutableElement executableElement) {
if (executableElement == null) {
return null;
}
List<ParameterElement> parameters = executableElement.parameters;
return resolveArgumentsToParameters2(reportError, argumentList, parameters);
}
/**
* Given a list of arguments and the parameters related to the element that will be invoked using
* those argument, compute the list of parameters that correspond to the list of arguments. Return
* the parameters that correspond to the arguments.
*
* @param reportError if `true` then compile-time error should be reported; if `false`
* then compile-time warning
* @param argumentList the list of arguments being passed to the element
* @param parameters the of the function that will be invoked with the arguments
* @return the parameters that correspond to the arguments
*/
List<ParameterElement> resolveArgumentsToParameters2(bool reportError, ArgumentList argumentList, List<ParameterElement> parameters) {
List<ParameterElement> requiredParameters = new List<ParameterElement>();
List<ParameterElement> positionalParameters = new List<ParameterElement>();
Map<String, ParameterElement> namedParameters = new Map<String, ParameterElement>();
for (ParameterElement parameter in parameters) {
ParameterKind kind = parameter.parameterKind;
if (identical(kind, ParameterKind.REQUIRED)) {
requiredParameters.add(parameter);
} else if (identical(kind, ParameterKind.POSITIONAL)) {
positionalParameters.add(parameter);
} else {
namedParameters[parameter.name] = parameter;
}
}
List<ParameterElement> unnamedParameters = new List<ParameterElement>.from(requiredParameters);
unnamedParameters.addAll(positionalParameters);
int unnamedParameterCount = unnamedParameters.length;
int unnamedIndex = 0;
NodeList<Expression> arguments = argumentList.arguments;
int argumentCount = arguments.length;
List<ParameterElement> resolvedParameters = new List<ParameterElement>(argumentCount);
int positionalArgumentCount = 0;
Set<String> usedNames = new Set<String>();
for (int i = 0; i < argumentCount; i++) {
Expression argument = arguments[i];
if (argument is NamedExpression) {
SimpleIdentifier nameNode = ((argument as NamedExpression)).name.label;
String name = nameNode.name;
ParameterElement element = namedParameters[name];
if (element == null) {
ErrorCode errorCode = (reportError ? CompileTimeErrorCode.UNDEFINED_NAMED_PARAMETER : StaticWarningCode.UNDEFINED_NAMED_PARAMETER) as ErrorCode;
_resolver.reportError5(errorCode, nameNode, [name]);
} else {
resolvedParameters[i] = element;
nameNode.staticElement = element;
}
if (!javaSetAdd(usedNames, name)) {
_resolver.reportError5(CompileTimeErrorCode.DUPLICATE_NAMED_ARGUMENT, nameNode, [name]);
}
} else {
positionalArgumentCount++;
if (unnamedIndex < unnamedParameterCount) {
resolvedParameters[i] = unnamedParameters[unnamedIndex++];
}
}
}
if (positionalArgumentCount < requiredParameters.length) {
ErrorCode errorCode = (reportError ? CompileTimeErrorCode.NOT_ENOUGH_REQUIRED_ARGUMENTS : StaticWarningCode.NOT_ENOUGH_REQUIRED_ARGUMENTS) as ErrorCode;
_resolver.reportError5(errorCode, argumentList, [requiredParameters.length, positionalArgumentCount]);
} else if (positionalArgumentCount > unnamedParameterCount) {
ErrorCode errorCode = (reportError ? CompileTimeErrorCode.EXTRA_POSITIONAL_ARGUMENTS : StaticWarningCode.EXTRA_POSITIONAL_ARGUMENTS) as ErrorCode;
_resolver.reportError5(errorCode, argumentList, [unnamedParameterCount, positionalArgumentCount]);
}
return resolvedParameters;
}
/**
* Resolve the names in the given combinators in the scope of the given library.
*
* @param library the library that defines the names
* @param combinators the combinators containing the names to be resolved
*/
void resolveCombinators(LibraryElement library, NodeList<Combinator> combinators) {
if (library == null) {
return;
}
Namespace namespace = new NamespaceBuilder().createExportNamespace2(library);
for (Combinator combinator in combinators) {
NodeList<SimpleIdentifier> names;
if (combinator is HideCombinator) {
names = ((combinator as HideCombinator)).hiddenNames;
} else {
names = ((combinator as ShowCombinator)).shownNames;
}
for (SimpleIdentifier name in names) {
Element element = namespace.get(name.name);
if (element != null) {
name.staticElement = element;
}
}
}
}
/**
* Given an invocation of the form 'e.m(a1, ..., an)', resolve 'e.m' to the element being invoked.
* If the returned element is a method, then the method will be invoked. If the returned element
* is a getter, the getter will be invoked without arguments and the result of that invocation
* will then be invoked with the arguments.
*
* @param target the target of the invocation ('e')
* @param targetType the type of the target
* @param methodName the name of the method being invoked ('m')
* @return the element being invoked
*/
Element resolveInvokedElement(Expression target, Type2 targetType, SimpleIdentifier methodName) {
if (targetType is InterfaceType) {
InterfaceType classType = targetType as InterfaceType;
Element element = lookUpMethod(target, classType, methodName.name);
if (element == null) {
element = lookUpGetter(target, classType, methodName.name);
}
return element;
} else if (target is SimpleIdentifier) {
Element targetElement = ((target as SimpleIdentifier)).staticElement;
if (targetElement is PrefixElement) {
String name = "${((target as SimpleIdentifier)).name}.${methodName}";
Identifier functionName = new ElementResolver_SyntheticIdentifier(name);
Element element = _resolver.nameScope.lookup(functionName, _resolver.definingLibrary);
if (element != null) {
return element;
}
}
}
return null;
}
/**
* Given an invocation of the form 'm(a1, ..., an)', resolve 'm' to the element being invoked. If
* the returned element is a method, then the method will be invoked. If the returned element is a
* getter, the getter will be invoked without arguments and the result of that invocation will
* then be invoked with the arguments.
*
* @param methodName the name of the method being invoked ('m')
* @return the element being invoked
*/
Element resolveInvokedElement2(SimpleIdentifier methodName) {
Element element = _resolver.nameScope.lookup(methodName, _resolver.definingLibrary);
if (element == null) {
ClassElement enclosingClass = _resolver.enclosingClass;
if (enclosingClass != null) {
InterfaceType enclosingType = enclosingClass.type;
element = lookUpMethod(null, enclosingType, methodName.name);
if (element == null) {
element = lookUpGetter(null, enclosingType, methodName.name);
}
}
}
return element;
}
/**
* Given that we are accessing a property of the given type with the given name, return the
* element that represents the property.
*
* @param target the target of the invocation ('e')
* @param targetType the type in which the search for the property should begin
* @param propertyName the name of the property being accessed
* @return the element that represents the property
*/
ExecutableElement resolveProperty(Expression target, Type2 targetType, SimpleIdentifier propertyName) {
ExecutableElement memberElement = null;
if (propertyName.inSetterContext()) {
memberElement = lookUpSetter(target, targetType, propertyName.name);
}
if (memberElement == null) {
memberElement = lookUpGetter(target, targetType, propertyName.name);
}
if (memberElement == null) {
memberElement = lookUpMethod(target, targetType, propertyName.name);
}
return memberElement;
}
void resolvePropertyAccess(Expression target, SimpleIdentifier propertyName) {
Type2 staticType = getStaticType(target);
ExecutableElement staticElement = resolveProperty(target, staticType, propertyName);
if (target.parent.parent is Annotation) {
if (staticElement != null) {
propertyName.staticElement = staticElement;
}
return;
}
propertyName.staticElement = staticElement;
Type2 propagatedType = getPropagatedType(target);
ExecutableElement propagatedElement = resolveProperty(target, propagatedType, propertyName);
propertyName.propagatedElement = propagatedElement;
if (shouldReportMissingMember(staticType, staticElement) && (_strictMode || propagatedType == null || shouldReportMissingMember(propagatedType, propagatedElement))) {
Element selectedElement = select(staticElement, propagatedElement);
bool isStaticProperty = isStatic(selectedElement);
if (propertyName.inSetterContext()) {
if (isStaticProperty) {
_resolver.reportErrorProxyConditionalAnalysisError(staticType.element, StaticWarningCode.UNDEFINED_SETTER, propertyName, [propertyName.name, staticType.displayName]);
} else {
_resolver.reportErrorProxyConditionalAnalysisError(staticType.element, StaticTypeWarningCode.UNDEFINED_SETTER, propertyName, [propertyName.name, staticType.displayName]);
}
} else if (propertyName.inGetterContext()) {
if (isStaticProperty) {
_resolver.reportErrorProxyConditionalAnalysisError(staticType.element, StaticWarningCode.UNDEFINED_GETTER, propertyName, [propertyName.name, staticType.displayName]);
} else {
_resolver.reportErrorProxyConditionalAnalysisError(staticType.element, StaticTypeWarningCode.UNDEFINED_GETTER, propertyName, [propertyName.name, staticType.displayName]);
}
} else {
_resolver.reportErrorProxyConditionalAnalysisError(staticType.element, StaticWarningCode.UNDEFINED_IDENTIFIER, propertyName, [propertyName.name]);
}
}
}
/**
* Resolve the given simple identifier if possible. Return the element to which it could be
* resolved, or `null` if it could not be resolved. This does not record the results of the
* resolution.
*
* @param node the identifier to be resolved
* @return the element to which the identifier could be resolved
*/
Element resolveSimpleIdentifier(SimpleIdentifier node) {
Element element = _resolver.nameScope.lookup(node, _resolver.definingLibrary);
if (element is PropertyAccessorElement && node.inSetterContext()) {
PropertyInducingElement variable = ((element as PropertyAccessorElement)).variable;
if (variable != null) {
PropertyAccessorElement setter = variable.setter;
if (setter == null) {
ClassElement enclosingClass = _resolver.enclosingClass;
if (enclosingClass != null) {
setter = lookUpSetter(null, enclosingClass.type, node.name);
}
}
if (setter != null) {
element = setter;
}
}
} else if (element == null && node.inSetterContext()) {
element = _resolver.nameScope.lookup(new ElementResolver_SyntheticIdentifier("${node.name}="), _resolver.definingLibrary);
}
ClassElement enclosingClass = _resolver.enclosingClass;
if (element == null && enclosingClass != null) {
InterfaceType enclosingType = enclosingClass.type;
if (element == null && node.inSetterContext()) {
element = lookUpSetter(null, enclosingType, node.name);
}
if (element == null && node.inGetterContext()) {
element = lookUpGetter(null, enclosingType, node.name);
}
if (element == null) {
element = lookUpMethod(null, enclosingType, node.name);
}
}
return element;
}
/**
* If the given type is a type variable, resolve it to the type that should be used when looking
* up members. Otherwise, return the original type.
*
* @param type the type that is to be resolved if it is a type variable
* @return the type that should be used in place of the argument if it is a type variable, or the
* original argument if it isn't a type variable
*/
Type2 resolveTypeVariable(Type2 type) {
if (type is TypeVariableType) {
Type2 bound = ((type as TypeVariableType)).element.bound;
if (bound == null) {
return _resolver.typeProvider.objectType;
}
return bound;
}
return type;
}
/**
* Return the propagated element if it is not `null`, or the static element if it is.
*
* @param staticElement the element computed using static type information
* @param propagatedElement the element computed using propagated type information
* @return the more specific of the two elements
*/
ExecutableElement select(ExecutableElement staticElement, ExecutableElement propagatedElement) => propagatedElement != null ? propagatedElement : staticElement;
/**
* Given a node that can have annotations associated with it and the element to which that node
* has been resolved, create the annotations in the element model representing the annotations on
* the node.
*
* @param element the element to which the node has been resolved
* @param node the node that can have annotations associated with it
*/
void setMetadata(Element element, AnnotatedNode node) {
if (element is! ElementImpl) {
return;
}
List<ElementAnnotationImpl> annotationList = new List<ElementAnnotationImpl>();
addAnnotations(annotationList, node.metadata);
if (node is VariableDeclaration && node.parent is VariableDeclarationList) {
VariableDeclarationList list = node.parent as VariableDeclarationList;
addAnnotations(annotationList, list.metadata);
if (list.parent is FieldDeclaration) {
FieldDeclaration fieldDeclaration = list.parent as FieldDeclaration;
addAnnotations(annotationList, fieldDeclaration.metadata);
} else if (list.parent is TopLevelVariableDeclaration) {
TopLevelVariableDeclaration variableDeclaration = list.parent as TopLevelVariableDeclaration;
addAnnotations(annotationList, variableDeclaration.metadata);
}
}
if (!annotationList.isEmpty) {
((element as ElementImpl)).metadata = new List.from(annotationList);
}
}
/**
* Return `true` if we should report an error as a result of looking up a member in the
* given type and not finding any member.
*
* @param type the type in which we attempted to perform the look-up
* @param member the result of the look-up
* @return `true` if we should report an error
*/
bool shouldReportMissingMember(Type2 type, ExecutableElement member) {
if (member != null || type == null || type.isDynamic) {
return false;
}
return true;
}
}
/**
* Instances of the class `SyntheticIdentifier` implement an identifier that can be used to
* look up names in the lexical scope when there is no identifier in the AST structure. There is
* no identifier in the AST when the parser could not distinguish between a method invocation and
* an invocation of a top-level function imported with a prefix.
*/
class ElementResolver_SyntheticIdentifier extends Identifier {
/**
* The name of the synthetic identifier.
*/
String _name;
/**
* Initialize a newly created synthetic identifier to have the given name.
*
* @param name the name of the synthetic identifier
*/
ElementResolver_SyntheticIdentifier(String name) {
this._name = name;
}
accept(ASTVisitor visitor) => null;
sc.Token get beginToken => null;
Element get bestElement => null;
sc.Token get endToken => null;
String get name => _name;
Element get propagatedElement => null;
Element get staticElement => null;
void visitChildren(ASTVisitor visitor) {
}
}
/**
* Instances of the class `InheritanceManager` manage the knowledge of where class members
* (methods, getters & setters) are inherited from.
*
* @coverage dart.engine.resolver
*/
class InheritanceManager {
/**
* The [LibraryElement] that is managed by this manager.
*/
LibraryElement _library;
/**
* This is a mapping between each [ClassElement] and a map between the [String] member
* names and the associated [ExecutableElement] in the mixin and superclass chain.
*/
Map<ClassElement, Map<String, ExecutableElement>> _classLookup;
/**
* This is a mapping between each [ClassElement] and a map between the [String] member
* names and the associated [ExecutableElement] in the interface set.
*/
Map<ClassElement, Map<String, ExecutableElement>> _interfaceLookup;
/**
* A map between each visited [ClassElement] and the set of [AnalysisError]s found on
* the class element.
*/
Map<ClassElement, Set<AnalysisError>> _errorsInClassElement = new Map<ClassElement, Set<AnalysisError>>();
/**
* Initialize a newly created inheritance manager.
*
* @param library the library element context that the inheritance mappings are being generated
*/
InheritanceManager(LibraryElement library) {
this._library = library;
_classLookup = new Map<ClassElement, Map<String, ExecutableElement>>();
_interfaceLookup = new Map<ClassElement, Map<String, ExecutableElement>>();
}
/**
* Return the set of [AnalysisError]s found on the passed [ClassElement], or
* `null` if there are none.
*
* @param classElt the class element to query
* @return the set of [AnalysisError]s found on the passed [ClassElement], or
* `null` if there are none
*/
Set<AnalysisError> getErrors(ClassElement classElt) => _errorsInClassElement[classElt];
/**
* Get and return a mapping between the set of all string names of the members inherited from the
* passed [ClassElement] superclass hierarchy, and the associated [ExecutableElement].
*
* @param classElt the class element to query
* @return a mapping between the set of all members inherited from the passed [ClassElement]
* superclass hierarchy, and the associated [ExecutableElement]
*/
Map<String, ExecutableElement> getMapOfMembersInheritedFromClasses(ClassElement classElt) => computeClassChainLookupMap(classElt, new Set<ClassElement>());
/**
* Get and return a mapping between the set of all string names of the members inherited from the
* passed [ClassElement] interface hierarchy, and the associated [ExecutableElement].
*
* @param classElt the class element to query
* @return a mapping between the set of all string names of the members inherited from the passed
* [ClassElement] interface hierarchy, and the associated [ExecutableElement].
*/
Map<String, ExecutableElement> getMapOfMembersInheritedFromInterfaces(ClassElement classElt) => computeInterfaceLookupMap(classElt, new Set<ClassElement>());
/**
* Given some [ClassElement] and some member name, this returns the
* [ExecutableElement] that the class inherits from the mixins,
* superclasses or interfaces, that has the member name, if no member is inherited `null` is
* returned.
*
* @param classElt the class element to query
* @param memberName the name of the executable element to find and return
* @return the inherited executable element with the member name, or `null` if no such
* member exists
*/
ExecutableElement lookupInheritance(ClassElement classElt, String memberName) {
if (memberName == null || memberName.isEmpty) {
return null;
}
ExecutableElement executable = computeClassChainLookupMap(classElt, new Set<ClassElement>())[memberName];
if (executable == null) {
return computeInterfaceLookupMap(classElt, new Set<ClassElement>())[memberName];
}
return executable;
}
/**
* Given some [ClassElement] and some member name, this returns the
* [ExecutableElement] that the class either declares itself, or
* inherits, that has the member name, if no member is inherited `null` is returned.
*
* @param classElt the class element to query
* @param memberName the name of the executable element to find and return
* @return the inherited executable element with the member name, or `null` if no such
* member exists
*/
ExecutableElement lookupMember(ClassElement classElt, String memberName) {
ExecutableElement element = lookupMemberInClass(classElt, memberName);
if (element != null) {
return element;
}
return lookupInheritance(classElt, memberName);
}
/**
* Given some [InterfaceType] and some member name, this returns the
* [FunctionType] of the [ExecutableElement] that the
* class either declares itself, or inherits, that has the member name, if no member is inherited
* `null` is returned. The returned [FunctionType] has all type
* parameters substituted with corresponding type arguments from the given [InterfaceType].
*
* @param interfaceType the interface type to query
* @param memberName the name of the executable element to find and return
* @return the member's function type, or `null` if no such member exists
*/
FunctionType lookupMemberType(InterfaceType interfaceType, String memberName) {
ExecutableElement iteratorMember = lookupMember(interfaceType.element, memberName);
if (iteratorMember == null) {
return null;
}
return substituteTypeArgumentsInMemberFromInheritance(iteratorMember.type, memberName, interfaceType);
}
/**
* Set the new library element context.
*
* @param library the new library element
*/
void set libraryElement(LibraryElement library2) {
this._library = library2;
}
/**
* This method takes some inherited [FunctionType], and resolves all the parameterized types
* in the function type, dependent on the class in which it is being overridden.
*
* @param baseFunctionType the function type that is being overridden
* @param memberName the name of the member, this is used to lookup the inheritance path of the
* override
* @param definingType the type that is overriding the member
* @return the passed function type with any parameterized types substituted
*/
FunctionType substituteTypeArgumentsInMemberFromInheritance(FunctionType baseFunctionType, String memberName, InterfaceType definingType) {
if (baseFunctionType == null) {
return baseFunctionType;
}
Queue<InterfaceType> inheritancePath = new Queue<InterfaceType>();
computeInheritancePath(inheritancePath, definingType, memberName);
if (inheritancePath == null || inheritancePath.isEmpty) {
return baseFunctionType;
}
FunctionType functionTypeToReturn = baseFunctionType;
while (!inheritancePath.isEmpty) {
InterfaceType lastType = inheritancePath.removeLast();
List<Type2> parameterTypes = lastType.element.type.typeArguments;
List<Type2> argumentTypes = lastType.typeArguments;
functionTypeToReturn = functionTypeToReturn.substitute2(argumentTypes, parameterTypes);
}
return functionTypeToReturn;
}
/**
* Compute and return a mapping between the set of all string names of the members inherited from
* the passed [ClassElement] superclass hierarchy, and the associated
* [ExecutableElement].
*
* @param classElt the class element to query
* @param visitedClasses a set of visited classes passed back into this method when it calls
* itself recursively
* @return a mapping between the set of all string names of the members inherited from the passed
* [ClassElement] superclass hierarchy, and the associated [ExecutableElement]
*/
Map<String, ExecutableElement> computeClassChainLookupMap(ClassElement classElt, Set<ClassElement> visitedClasses) {
Map<String, ExecutableElement> resultMap = _classLookup[classElt];
if (resultMap != null) {
return resultMap;
} else {
resultMap = new Map<String, ExecutableElement>();
}
ClassElement superclassElt = null;
InterfaceType supertype = classElt.supertype;
if (supertype != null) {
superclassElt = supertype.element;
} else {
_classLookup[classElt] = resultMap;
return resultMap;
}
if (superclassElt != null) {
if (!visitedClasses.contains(superclassElt)) {
javaSetAdd(visitedClasses, classElt);
resultMap = new Map<String, ExecutableElement>.from(computeClassChainLookupMap(superclassElt, visitedClasses));
} else {
_classLookup[superclassElt] = resultMap;
return resultMap;
}
recordMapWithClassMembers(resultMap, supertype);
}
List<InterfaceType> mixins = classElt.mixins;
for (int i = mixins.length - 1; i >= 0; i--) {
recordMapWithClassMembers(resultMap, mixins[i]);
}
_classLookup[classElt] = resultMap;
return resultMap;
}
/**
* Compute and return the inheritance path given the context of a type and a member that is
* overridden in the inheritance path (for which the type is in the path).
*
* @param chain the inheritance path that is built up as this method calls itself recursively,
* when this method is called an empty [LinkedList] should be provided
* @param currentType the current type in the inheritance path
* @param memberName the name of the member that is being looked up the inheritance path
*/
void computeInheritancePath(Queue<InterfaceType> chain, InterfaceType currentType, String memberName) {
chain.add(currentType);
ClassElement classElt = currentType.element;
InterfaceType supertype = classElt.supertype;
if (supertype == null) {
return;
}
if (chain.length != 1) {
if (lookupMemberInClass(classElt, memberName) != null) {
return;
}
}
List<InterfaceType> mixins = classElt.mixins;
for (int i = mixins.length - 1; i >= 0; i--) {
ClassElement mixinElement = mixins[i].element;
if (mixinElement != null) {
ExecutableElement elt = lookupMemberInClass(mixinElement, memberName);
if (elt != null) {
chain.add(mixins[i]);
return;
}
}
}
ClassElement superclassElt = supertype.element;
if (lookupMember(superclassElt, memberName) != null) {
computeInheritancePath(chain, supertype, memberName);
return;
}
List<InterfaceType> interfaces = classElt.interfaces;
for (InterfaceType interfaceType in interfaces) {
ClassElement interfaceElement = interfaceType.element;
if (interfaceElement != null && lookupMember(interfaceElement, memberName) != null) {
computeInheritancePath(chain, interfaceType, memberName);
return;
}
}
}
/**
* Compute and return a mapping between the set of all string names of the members inherited from
* the passed [ClassElement] interface hierarchy, and the associated
* [ExecutableElement].
*
* @param classElt the class element to query
* @param visitedInterfaces a set of visited classes passed back into this method when it calls
* itself recursively
* @return a mapping between the set of all string names of the members inherited from the passed
* [ClassElement] interface hierarchy, and the associated [ExecutableElement]
*/
Map<String, ExecutableElement> computeInterfaceLookupMap(ClassElement classElt, Set<ClassElement> visitedInterfaces) {
Map<String, ExecutableElement> resultMap = _interfaceLookup[classElt];
if (resultMap != null) {
return resultMap;
} else {
resultMap = new Map<String, ExecutableElement>();
}
InterfaceType supertype = classElt.supertype;
ClassElement superclassElement = supertype != null ? supertype.element : null;
List<InterfaceType> mixins = classElt.mixins;
List<InterfaceType> interfaces = classElt.interfaces;
List<Map<String, ExecutableElement>> lookupMaps = new List<Map<String, ExecutableElement>>();
if (superclassElement != null) {
if (!visitedInterfaces.contains(superclassElement)) {
try {
javaSetAdd(visitedInterfaces, superclassElement);
Map<String, ExecutableElement> map = computeInterfaceLookupMap(superclassElement, visitedInterfaces);
map = new Map<String, ExecutableElement>.from(map);
List<MethodElement> methods = supertype.methods;
for (MethodElement method in methods) {
if (method.isAccessibleIn(_library) && !method.isStatic) {
map[method.name] = method;
}
}
List<PropertyAccessorElement> accessors = supertype.accessors;
for (PropertyAccessorElement accessor in accessors) {
if (accessor.isAccessibleIn(_library) && !accessor.isStatic) {
map[accessor.name] = accessor;
}
}
lookupMaps.add(map);
} finally {
visitedInterfaces.remove(superclassElement);
}
} else {
Map<String, ExecutableElement> map = _interfaceLookup[classElt];
if (map != null) {
lookupMaps.add(map);
} else {
_interfaceLookup[superclassElement] = resultMap;
return resultMap;
}
}
}
for (InterfaceType mixinType in mixins) {
Map<String, ExecutableElement> mapWithMixinMembers = new Map<String, ExecutableElement>();
recordMapWithClassMembers(mapWithMixinMembers, mixinType);
lookupMaps.add(mapWithMixinMembers);
}
for (InterfaceType interfaceType in interfaces) {
ClassElement interfaceElement = interfaceType.element;
if (interfaceElement != null) {
if (!visitedInterfaces.contains(interfaceElement)) {
try {
javaSetAdd(visitedInterfaces, interfaceElement);
Map<String, ExecutableElement> map = computeInterfaceLookupMap(interfaceElement, visitedInterfaces);
map = new Map<String, ExecutableElement>.from(map);
List<MethodElement> methods = interfaceType.methods;
for (MethodElement method in methods) {
if (method.isAccessibleIn(_library) && !method.isStatic) {
map[method.name] = method;
}
}
List<PropertyAccessorElement> accessors = interfaceType.accessors;
for (PropertyAccessorElement accessor in accessors) {
if (accessor.isAccessibleIn(_library) && !accessor.isStatic) {
map[accessor.name] = accessor;
}
}
lookupMaps.add(map);
} finally {
visitedInterfaces.remove(interfaceElement);
}
} else {
Map<String, ExecutableElement> map = _interfaceLookup[classElt];
if (map != null) {
lookupMaps.add(map);
} else {
_interfaceLookup[interfaceElement] = resultMap;
return resultMap;
}
}
}
}
if (lookupMaps.length == 0) {
_interfaceLookup[classElt] = resultMap;
return resultMap;
}
Map<String, Set<ExecutableElement>> unionMap = new Map<String, Set<ExecutableElement>>();
for (Map<String, ExecutableElement> lookupMap in lookupMaps) {
for (MapEntry<String, ExecutableElement> entry in getMapEntrySet(lookupMap)) {
String key = entry.getKey();
Set<ExecutableElement> set = unionMap[key];
if (set == null) {
set = new Set<ExecutableElement>();
unionMap[key] = set;
}
javaSetAdd(set, entry.getValue());
}
}
for (MapEntry<String, Set<ExecutableElement>> entry in getMapEntrySet(unionMap)) {
String key = entry.getKey();
Set<ExecutableElement> set = entry.getValue();
int numOfEltsWithMatchingNames = set.length;
if (numOfEltsWithMatchingNames == 1) {
resultMap[key] = new JavaIterator(set).next();
} else {
bool allMethods = true;
bool allSetters = true;
bool allGetters = true;
for (ExecutableElement executableElement in set) {
if (executableElement is PropertyAccessorElement) {
allMethods = false;
if (((executableElement as PropertyAccessorElement)).isSetter) {
allGetters = false;
} else {
allSetters = false;
}
} else {
allGetters = false;
allSetters = false;
}
}
if (allMethods || allGetters || allSetters) {
List<ExecutableElement> elements = new List.from(set);
List<FunctionType> executableElementTypes = new List<FunctionType>(numOfEltsWithMatchingNames);
for (int i = 0; i < numOfEltsWithMatchingNames; i++) {
executableElementTypes[i] = elements[i].type;
}
bool foundSubtypeOfAllTypes = false;
for (int i = 0; i < numOfEltsWithMatchingNames; i++) {
FunctionType subtype = executableElementTypes[i];
if (subtype == null) {
continue;
}
bool subtypeOfAllTypes = true;
for (int j = 0; j < numOfEltsWithMatchingNames && subtypeOfAllTypes; j++) {
if (i != j) {
if (!subtype.isSubtypeOf(executableElementTypes[j])) {
subtypeOfAllTypes = false;
break;
}
}
}
if (subtypeOfAllTypes) {
foundSubtypeOfAllTypes = true;
resultMap[key] = elements[i];
break;
}
}
if (!foundSubtypeOfAllTypes) {
reportError(classElt, classElt.nameOffset, classElt.displayName.length, StaticTypeWarningCode.INCONSISTENT_METHOD_INHERITANCE, [key]);
}
} else {
if (!allMethods && !allGetters) {
reportError(classElt, classElt.nameOffset, classElt.displayName.length, StaticWarningCode.INCONSISTENT_METHOD_INHERITANCE_GETTER_AND_METHOD, [key]);
}
resultMap.remove(entry.getKey());
}
}
}
_interfaceLookup[classElt] = resultMap;
return resultMap;
}
/**
* Given some [ClassElement], this method finds and returns the [ExecutableElement] of
* the passed name in the class element. Static members, members in super types and members not
* accessible from the current library are not considered.
*
* @param classElt the class element to query
* @param memberName the name of the member to lookup in the class
* @return the found [ExecutableElement], or `null` if no such member was found
*/
ExecutableElement lookupMemberInClass(ClassElement classElt, String memberName) {
List<MethodElement> methods = classElt.methods;
for (MethodElement method in methods) {
if (memberName == method.name && method.isAccessibleIn(_library) && !method.isStatic) {
return method;
}
}
List<PropertyAccessorElement> accessors = classElt.accessors;
for (PropertyAccessorElement accessor in accessors) {
if (memberName == accessor.name && accessor.isAccessibleIn(_library) && !accessor.isStatic) {
return accessor;
}
}
return null;
}
/**
* Record the passed map with the set of all members (methods, getters and setters) in the type
* into the passed map.
*
* @param map some non-`null` map to put the methods and accessors from the passed
* [ClassElement] into
* @param type the type that will be recorded into the passed map
*/
void recordMapWithClassMembers(Map<String, ExecutableElement> map, InterfaceType type) {
List<MethodElement> methods = type.methods;
for (MethodElement method in methods) {
if (method.isAccessibleIn(_library) && !method.isStatic) {
map[method.name] = method;
}
}
List<PropertyAccessorElement> accessors = type.accessors;
for (PropertyAccessorElement accessor in accessors) {
if (accessor.isAccessibleIn(_library) && !accessor.isStatic) {
map[accessor.name] = accessor;
}
}
}
/**
* This method is used to report errors on when they are found computing inheritance information.
* See [ErrorVerifier#checkForInconsistentMethodInheritance] to see where these generated
* error codes are reported back into the analysis engine.
*
* @param classElt the location of the source for which the exception occurred
* @param offset the offset of the location of the error
* @param length the length of the location of the error
* @param errorCode the error code to be associated with this error
* @param arguments the arguments used to build the error message
*/
void reportError(ClassElement classElt, int offset, int length, ErrorCode errorCode, List<Object> arguments) {
Set<AnalysisError> errorSet = _errorsInClassElement[classElt];
if (errorSet == null) {
errorSet = new Set<AnalysisError>();
_errorsInClassElement[classElt] = errorSet;
}
javaSetAdd(errorSet, new AnalysisError.con2(classElt.source, offset, length, errorCode, arguments));
}
}
/**
* Instances of the class `Library` represent the data about a single library during the
* resolution of some (possibly different) library. They are not intended to be used except during
* the resolution process.
*
* @coverage dart.engine.resolver
*/
class Library {
/**
* The analysis context in which this library is being analyzed.
*/
InternalAnalysisContext _analysisContext;
/**
* The inheritance manager which is used for this member lookups in this library.
*/
InheritanceManager _inheritanceManager;
/**
* The listener to which analysis errors will be reported.
*/
AnalysisErrorListener _errorListener;
/**
* The source specifying the defining compilation unit of this library.
*/
Source _librarySource;
/**
* The library element representing this library.
*/
LibraryElementImpl _libraryElement;
/**
* A list containing all of the libraries that are imported into this library.
*/
List<Library> _importedLibraries = _EMPTY_ARRAY;
/**
* A table mapping URI-based directive to the actual URI value.
*/
Map<UriBasedDirective, String> _directiveUris = new Map<UriBasedDirective, String>();
/**
* A flag indicating whether this library explicitly imports core.
*/
bool _explicitlyImportsCore = false;
/**
* A list containing all of the libraries that are exported from this library.
*/
List<Library> _exportedLibraries = _EMPTY_ARRAY;
/**
* A table mapping the sources for the compilation units in this library to their corresponding
* AST structures.
*/
Map<Source, ResolvableCompilationUnit> _astMap = new Map<Source, ResolvableCompilationUnit>();
/**
* The library scope used when resolving elements within this library's compilation units.
*/
LibraryScope _libraryScope;
/**
* An empty array that can be used to initialize lists of libraries.
*/
static List<Library> _EMPTY_ARRAY = new List<Library>(0);
/**
* Initialize a newly created data holder that can maintain the data associated with a library.
*
* @param analysisContext the analysis context in which this library is being analyzed
* @param errorListener the listener to which analysis errors will be reported
* @param librarySource the source specifying the defining compilation unit of this library
*/
Library(InternalAnalysisContext analysisContext, AnalysisErrorListener errorListener, Source librarySource) {
this._analysisContext = analysisContext;
this._errorListener = errorListener;
this._librarySource = librarySource;
this._libraryElement = analysisContext.getLibraryElement(librarySource) as LibraryElementImpl;
}
/**
* Return the AST structure associated with the given source.
*
* @param source the source representing the compilation unit whose AST is to be returned
* @return the AST structure associated with the given source
* @throws AnalysisException if an AST structure could not be created for the compilation unit
*/
CompilationUnit getAST(Source source) {
ResolvableCompilationUnit holder = _astMap[source];
if (holder == null) {
holder = _analysisContext.computeResolvableCompilationUnit(source);
_astMap[source] = holder;
}
return holder.compilationUnit;
}
/**
* Return an array of the [CompilationUnit]s that make up the library. The first unit is
* always the defining unit.
*
* @return an array of the [CompilationUnit]s that make up the library. The first unit is
* always the defining unit
*/
List<CompilationUnit> get compilationUnits {
List<CompilationUnit> unitArrayList = new List<CompilationUnit>();
unitArrayList.add(definingCompilationUnit);
for (Source source in _astMap.keys.toSet()) {
if (_librarySource != source) {
unitArrayList.add(getAST(source));
}
}
return new List.from(unitArrayList);
}
/**
* Return a collection containing the sources for the compilation units in this library, including
* the defining compilation unit.
*
* @return the sources for the compilation units in this library
*/
Set<Source> get compilationUnitSources => _astMap.keys.toSet();
/**
* Return the AST structure associated with the defining compilation unit for this library.
*
* @return the AST structure associated with the defining compilation unit for this library
* @throws AnalysisException if an AST structure could not be created for the defining compilation
* unit
*/
CompilationUnit get definingCompilationUnit => getAST(_librarySource);
/**
* Return `true` if this library explicitly imports core.
*
* @return `true` if this library explicitly imports core
*/
bool get explicitlyImportsCore => _explicitlyImportsCore;
/**
* Return an array containing the libraries that are exported from this library.
*
* @return an array containing the libraries that are exported from this library
*/
List<Library> get exports => _exportedLibraries;
/**
* Return an array containing the libraries that are imported into this library.
*
* @return an array containing the libraries that are imported into this library
*/
List<Library> get imports => _importedLibraries;
/**
* Return an array containing the libraries that are either imported or exported from this
* library.
*
* @return the libraries that are either imported or exported from this library
*/
List<Library> get importsAndExports {
Set<Library> libraries = new Set<Library>();
for (Library library in _importedLibraries) {
javaSetAdd(libraries, library);
}
for (Library library in _exportedLibraries) {
javaSetAdd(libraries, library);
}
return new List.from(libraries);
}
/**
* Return the inheritance manager for this library.
*
* @return the inheritance manager for this library
*/
InheritanceManager get inheritanceManager {
if (_inheritanceManager == null) {
return _inheritanceManager = new InheritanceManager(_libraryElement);
}
return _inheritanceManager;
}
/**
* Return the library element representing this library, creating it if necessary.
*
* @return the library element representing this library
*/
LibraryElementImpl get libraryElement {
if (_libraryElement == null) {
try {
_libraryElement = _analysisContext.computeLibraryElement(_librarySource) as LibraryElementImpl;
} on AnalysisException catch (exception) {
AnalysisEngine.instance.logger.logError2("Could not compute ilbrary element for ${_librarySource.fullName}", exception);
}
}
return _libraryElement;
}
/**
* Return the library scope used when resolving elements within this library's compilation units.
*
* @return the library scope used when resolving elements within this library's compilation units
*/
LibraryScope get libraryScope {
if (_libraryScope == null) {
_libraryScope = new LibraryScope(_libraryElement, _errorListener);
}
return _libraryScope;
}
/**
* Return the source specifying the defining compilation unit of this library.
*
* @return the source specifying the defining compilation unit of this library
*/
Source get librarySource => _librarySource;
/**
* Return the modification stamp associated with the given source.
*
* @param source the source representing the compilation unit whose AST is to be returned
* @return the AST structure associated with the given source
* @throws AnalysisException if an AST structure could not be created for the compilation unit
*/
int getModificationStamp(Source source) {
ResolvableCompilationUnit holder = _astMap[source];
if (holder == null) {
holder = _analysisContext.computeResolvableCompilationUnit(source);
_astMap[source] = holder;
}
return holder.modificationStamp;
}
/**
* Return the result of resolving the URI of the given URI-based directive against the URI of the
* library, or `null` if the URI is not valid. If the URI is not valid, report the error.
*
* @param directive the directive which URI should be resolved
* @return the result of resolving the URI against the URI of the library
*/
Source getSource(UriBasedDirective directive) {
StringLiteral uriLiteral = directive.uri;
if (uriLiteral is StringInterpolation) {
_errorListener.onError(new AnalysisError.con2(_librarySource, uriLiteral.offset, uriLiteral.length, CompileTimeErrorCode.URI_WITH_INTERPOLATION, []));
return null;
}
String uriContent = uriLiteral.stringValue.trim();
_directiveUris[directive] = uriContent;
uriContent = Uri.encodeFull(uriContent);
try {
parseUriWithException(uriContent);
Source source = _analysisContext.sourceFactory.resolveUri(_librarySource, uriContent);
if (source == null || !source.exists()) {
_errorListener.onError(new AnalysisError.con2(_librarySource, uriLiteral.offset, uriLiteral.length, CompileTimeErrorCode.URI_DOES_NOT_EXIST, [uriContent]));
}
return source;
} on URISyntaxException catch (exception) {
_errorListener.onError(new AnalysisError.con2(_librarySource, uriLiteral.offset, uriLiteral.length, CompileTimeErrorCode.INVALID_URI, [uriContent]));
}
return null;
}
/**
* Returns the URI value of the given directive.
*/
String getUri(UriBasedDirective directive) => _directiveUris[directive];
/**
* Set the AST structure associated with the defining compilation unit for this library to the
* given AST structure.
*
* @param modificationStamp the modification time of the source from which the compilation unit
* was created
* @param unit the AST structure associated with the defining compilation unit for this library
*/
void setDefiningCompilationUnit(int modificationStamp, CompilationUnit unit) {
_astMap[_librarySource] = new ResolvableCompilationUnit(modificationStamp, unit);
}
/**
* Set whether this library explicitly imports core to match the given value.
*
* @param explicitlyImportsCore `true` if this library explicitly imports core
*/
void set explicitlyImportsCore(bool explicitlyImportsCore2) {
this._explicitlyImportsCore = explicitlyImportsCore2;
}
/**
* Set the libraries that are exported by this library to be those in the given array.
*
* @param exportedLibraries the libraries that are exported by this library
*/
void set exportedLibraries(List<Library> exportedLibraries2) {
this._exportedLibraries = exportedLibraries2;
}
/**
* Set the libraries that are imported into this library to be those in the given array.
*
* @param importedLibraries the libraries that are imported into this library
*/
void set importedLibraries(List<Library> importedLibraries2) {
this._importedLibraries = importedLibraries2;
}
/**
* Set the library element representing this library to the given library element.
*
* @param libraryElement the library element representing this library
*/
void set libraryElement(LibraryElementImpl libraryElement2) {
this._libraryElement = libraryElement2;
if (_inheritanceManager != null) {
_inheritanceManager.libraryElement = libraryElement2;
}
}
String toString() => _librarySource.shortName;
}
/**
* Instances of the class `LibraryElementBuilder` build an element model for a single library.
*
* @coverage dart.engine.resolver
*/
class LibraryElementBuilder {
/**
* The analysis context in which the element model will be built.
*/
InternalAnalysisContext _analysisContext;
/**
* The listener to which errors will be reported.
*/
AnalysisErrorListener _errorListener;
/**
* The name of the function used as an entry point.
*/
static String _ENTRY_POINT_NAME = "main";
/**
* Initialize a newly created library element builder.
*
* @param resolver the resolver for which the element model is being built
*/
LibraryElementBuilder(LibraryResolver resolver) {
this._analysisContext = resolver.analysisContext;
this._errorListener = resolver.errorListener;
}
/**
* Build the library element for the given library.
*
* @param library the library for which an element model is to be built
* @return the library element that was built
* @throws AnalysisException if the analysis could not be performed
*/
LibraryElementImpl buildLibrary(Library library) {
CompilationUnitBuilder builder = new CompilationUnitBuilder();
Source librarySource = library.librarySource;
CompilationUnit definingCompilationUnit = library.definingCompilationUnit;
CompilationUnitElementImpl definingCompilationUnitElement = builder.buildCompilationUnit(librarySource, definingCompilationUnit);
NodeList<Directive> directives = definingCompilationUnit.directives;
LibraryIdentifier libraryNameNode = null;
bool hasPartDirective = false;
FunctionElement entryPoint = findEntryPoint(definingCompilationUnitElement);
List<Directive> directivesToResolve = new List<Directive>();
List<CompilationUnitElementImpl> sourcedCompilationUnits = new List<CompilationUnitElementImpl>();
for (Directive directive in directives) {
if (directive is LibraryDirective) {
if (libraryNameNode == null) {
libraryNameNode = ((directive as LibraryDirective)).name;
directivesToResolve.add(directive);
}
} else if (directive is PartDirective) {
PartDirective partDirective = directive as PartDirective;
StringLiteral partUri = partDirective.uri;
Source partSource = library.getSource(partDirective);
if (partSource != null && partSource.exists()) {
hasPartDirective = true;
CompilationUnitElementImpl part = builder.buildCompilationUnit(partSource, library.getAST(partSource));
part.uri = library.getUri(partDirective);
String partLibraryName = getPartLibraryName(library, partSource, directivesToResolve);
if (partLibraryName == null) {
_errorListener.onError(new AnalysisError.con2(librarySource, partUri.offset, partUri.length, CompileTimeErrorCode.PART_OF_NON_PART, [partUri.toSource()]));
} else if (libraryNameNode == null) {
} else if (libraryNameNode.name != partLibraryName) {
_errorListener.onError(new AnalysisError.con2(librarySource, partUri.offset, partUri.length, StaticWarningCode.PART_OF_DIFFERENT_LIBRARY, [libraryNameNode.name, partLibraryName]));
}
if (entryPoint == null) {
entryPoint = findEntryPoint(part);
}
directive.element = part;
sourcedCompilationUnits.add(part);
}
}
}
if (hasPartDirective && libraryNameNode == null) {
_errorListener.onError(new AnalysisError.con1(librarySource, ResolverErrorCode.MISSING_LIBRARY_DIRECTIVE_WITH_PART, []));
}
LibraryElementImpl libraryElement = new LibraryElementImpl(_analysisContext, libraryNameNode);
libraryElement.definingCompilationUnit = definingCompilationUnitElement;
if (entryPoint != null) {
libraryElement.entryPoint = entryPoint;
}
int sourcedUnitCount = sourcedCompilationUnits.length;
libraryElement.parts = new List.from(sourcedCompilationUnits);
for (Directive directive in directivesToResolve) {
directive.element = libraryElement;
}
library.libraryElement = libraryElement;
if (sourcedUnitCount > 0) {
patchTopLevelAccessors(libraryElement);
}
return libraryElement;
}
/**
* Add all of the non-synthetic getters and setters defined in the given compilation unit that
* have no corresponding accessor to one of the given collections.
*
* @param getters the map to which getters are to be added
* @param setters the list to which setters are to be added
* @param unit the compilation unit defining the accessors that are potentially being added
*/
void collectAccessors(Map<String, PropertyAccessorElement> getters, List<PropertyAccessorElement> setters, CompilationUnitElement unit) {
for (PropertyAccessorElement accessor in unit.accessors) {
if (accessor.isGetter) {
if (!accessor.isSynthetic && accessor.correspondingSetter == null) {
getters[accessor.displayName] = accessor;
}
} else {
if (!accessor.isSynthetic && accessor.correspondingGetter == null) {
setters.add(accessor);
}
}
}
}
/**
* Search the top-level functions defined in the given compilation unit for the entry point.
*
* @param element the compilation unit to be searched
* @return the entry point that was found, or `null` if the compilation unit does not define
* an entry point
*/
FunctionElement findEntryPoint(CompilationUnitElementImpl element) {
for (FunctionElement function in element.functions) {
if (function.name == _ENTRY_POINT_NAME) {
return function;
}
}
return null;
}
/**
* Return the name of the library that the given part is declared to be a part of, or `null`
* if the part does not contain a part-of directive.
*
* @param library the library containing the part
* @param partSource the source representing the part
* @param directivesToResolve a list of directives that should be resolved to the library being
* built
* @return the name of the library that the given part is declared to be a part of
*/
String getPartLibraryName(Library library, Source partSource, List<Directive> directivesToResolve) {
try {
CompilationUnit partUnit = library.getAST(partSource);
for (Directive directive in partUnit.directives) {
if (directive is PartOfDirective) {
directivesToResolve.add(directive);
LibraryIdentifier libraryName = ((directive as PartOfDirective)).libraryName;
if (libraryName != null) {
return libraryName.name;
}
}
}
} on AnalysisException catch (exception) {
}
return null;
}
/**
* Look through all of the compilation units defined for the given library, looking for getters
* and setters that are defined in different compilation units but that have the same names. If
* any are found, make sure that they have the same variable element.
*
* @param libraryElement the library defining the compilation units to be processed
*/
void patchTopLevelAccessors(LibraryElementImpl libraryElement) {
Map<String, PropertyAccessorElement> getters = new Map<String, PropertyAccessorElement>();
List<PropertyAccessorElement> setters = new List<PropertyAccessorElement>();
collectAccessors(getters, setters, libraryElement.definingCompilationUnit);
for (CompilationUnitElement unit in libraryElement.parts) {
collectAccessors(getters, setters, unit);
}
for (PropertyAccessorElement setter in setters) {
PropertyAccessorElement getter = getters[setter.displayName];
if (getter != null) {
PropertyInducingElementImpl variable = getter.variable as PropertyInducingElementImpl;
variable.setter = setter;
((setter as PropertyAccessorElementImpl)).variable = variable;
}
}
}
}
/**
* Instances of the class `LibraryResolver` are used to resolve one or more mutually dependent
* libraries within a single context.
*
* @coverage dart.engine.resolver
*/
class LibraryResolver {
/**
* The analysis context in which the libraries are being analyzed.
*/
InternalAnalysisContext _analysisContext;
/**
* A flag indicating whether analysis is to generate hint results (e.g. type inference based
* information and pub best practices).
*/
bool _enableHints = false;
/**
* The listener to which analysis errors will be reported, this error listener is either
* references [recordingErrorListener], or it unions the passed
* [AnalysisErrorListener] with the [recordingErrorListener].
*/
RecordingErrorListener _errorListener;
/**
* A source object representing the core library (dart:core).
*/
Source _coreLibrarySource;
/**
* The object representing the core library.
*/
Library _coreLibrary;
/**
* The object used to access the types from the core library.
*/
TypeProvider _typeProvider;
/**
* A table mapping library sources to the information being maintained for those libraries.
*/
Map<Source, Library> _libraryMap = new Map<Source, Library>();
/**
* A collection containing the libraries that are being resolved together.
*/
Set<Library> _librariesInCycles;
/**
* Initialize a newly created library resolver to resolve libraries within the given context.
*
* @param analysisContext the analysis context in which the library is being analyzed
*/
LibraryResolver(InternalAnalysisContext analysisContext) {
this._analysisContext = analysisContext;
this._errorListener = new RecordingErrorListener();
_coreLibrarySource = analysisContext.sourceFactory.forUri(DartSdk.DART_CORE);
_enableHints = analysisContext.analysisOptions.hint;
}
/**
* Return the analysis context in which the libraries are being analyzed.
*
* @return the analysis context in which the libraries are being analyzed
*/
InternalAnalysisContext get analysisContext => _analysisContext;
/**
* Return the listener to which analysis errors will be reported.
*
* @return the listener to which analysis errors will be reported
*/
RecordingErrorListener get errorListener => _errorListener;
/**
* Return an array containing information about all of the libraries that were resolved.
*
* @return an array containing the libraries that were resolved
*/
Set<Library> get resolvedLibraries => _librariesInCycles;
/**
* Resolve the library specified by the given source in the given context. The library is assumed
* to be embedded in the given source.
*
* @param librarySource the source specifying the defining compilation unit of the library to be
* resolved
* @param modificationStamp the time stamp of the source from which the compilation unit was
* created
* @param unit the compilation unit representing the embedded library
* @param fullAnalysis `true` if a full analysis should be performed
* @return the element representing the resolved library
* @throws AnalysisException if the library could not be resolved for some reason
*/
LibraryElement resolveEmbeddedLibrary(Source librarySource, int modificationStamp, CompilationUnit unit, bool fullAnalysis) {
InstrumentationBuilder instrumentation = Instrumentation.builder2("dart.engine.LibraryResolver.resolveEmbeddedLibrary");
try {
instrumentation.metric("fullAnalysis", fullAnalysis);
instrumentation.data3("fullName", librarySource.fullName);
Library targetLibrary = createLibrary2(librarySource, modificationStamp, unit);
_coreLibrary = _libraryMap[_coreLibrarySource];
if (_coreLibrary == null) {
_coreLibrary = createLibrary(_coreLibrarySource);
}
instrumentation.metric3("createLibrary", "complete");
computeLibraryDependencies2(targetLibrary, unit);
_librariesInCycles = computeLibrariesInCycles(targetLibrary);
buildElementModels();
instrumentation.metric3("buildElementModels", "complete");
LibraryElement coreElement = _coreLibrary.libraryElement;
if (coreElement == null) {
throw new AnalysisException.con1("Could not resolve dart:core");
}
buildDirectiveModels();
instrumentation.metric3("buildDirectiveModels", "complete");
_typeProvider = new TypeProviderImpl(coreElement);
buildTypeHierarchies();
instrumentation.metric3("buildTypeHierarchies", "complete");
resolveReferencesAndTypes();
instrumentation.metric3("resolveReferencesAndTypes", "complete");
performConstantEvaluation();
instrumentation.metric3("performConstantEvaluation", "complete");
if (fullAnalysis) {
runAdditionalAnalyses();
instrumentation.metric3("runAdditionalAnalyses", "complete");
}
return targetLibrary.libraryElement;
} finally {
instrumentation.log();
}
}
/**
* Resolve the library specified by the given source in the given context.
*
* Note that because Dart allows circular imports between libraries, it is possible that more than
* one library will need to be resolved. In such cases the error listener can receive errors from
* multiple libraries.
*
* @param librarySource the source specifying the defining compilation unit of the library to be
* resolved
* @param fullAnalysis `true` if a full analysis should be performed
* @return the element representing the resolved library
* @throws AnalysisException if the library could not be resolved for some reason
*/
LibraryElement resolveLibrary(Source librarySource, bool fullAnalysis) {
InstrumentationBuilder instrumentation = Instrumentation.builder2("dart.engine.LibraryResolver.resolveLibrary");
try {
instrumentation.metric("fullAnalysis", fullAnalysis);
instrumentation.data3("fullName", librarySource.fullName);
Library targetLibrary = createLibrary(librarySource);
_coreLibrary = _libraryMap[_coreLibrarySource];
if (_coreLibrary == null) {
_coreLibrary = createLibrary(_coreLibrarySource);
}
instrumentation.metric3("createLibrary", "complete");
computeLibraryDependencies(targetLibrary);
_librariesInCycles = computeLibrariesInCycles(targetLibrary);
buildElementModels();
instrumentation.metric3("buildElementModels", "complete");
LibraryElement coreElement = _coreLibrary.libraryElement;
if (coreElement == null) {
throw new AnalysisException.con1("Could not resolve dart:core");
}
buildDirectiveModels();
instrumentation.metric3("buildDirectiveModels", "complete");
_typeProvider = new TypeProviderImpl(coreElement);
buildTypeHierarchies();
instrumentation.metric3("buildTypeHierarchies", "complete");
resolveReferencesAndTypes();
instrumentation.metric3("resolveReferencesAndTypes", "complete");
performConstantEvaluation();
instrumentation.metric3("performConstantEvaluation", "complete");
if (fullAnalysis) {
runAdditionalAnalyses();
instrumentation.metric3("runAdditionalAnalyses", "complete");
}
instrumentation.metric2("librariesInCycles", _librariesInCycles.length);
for (Library lib in _librariesInCycles) {
instrumentation.metric2("librariesInCycles-CompilationUnitSources-Size", lib.compilationUnitSources.length);
}
return targetLibrary.libraryElement;
} finally {
instrumentation.log();
}
}
/**
* Add a dependency to the given map from the referencing library to the referenced library.
*
* @param dependencyMap the map to which the dependency is to be added
* @param referencingLibrary the library that references the referenced library
* @param referencedLibrary the library referenced by the referencing library
*/
void addDependencyToMap(Map<Library, List<Library>> dependencyMap, Library referencingLibrary, Library referencedLibrary) {
List<Library> dependentLibraries = dependencyMap[referencedLibrary];
if (dependentLibraries == null) {
dependentLibraries = new List<Library>();
dependencyMap[referencedLibrary] = dependentLibraries;
}
dependentLibraries.add(referencingLibrary);
}
/**
* Given a library that is part of a cycle that includes the root library, add to the given set of
* libraries all of the libraries reachable from the root library that are also included in the
* cycle.
*
* @param library the library to be added to the collection of libraries in cycles
* @param librariesInCycle a collection of the libraries that are in the cycle
* @param dependencyMap a table mapping libraries to the collection of libraries from which those
* libraries are referenced
*/
void addLibrariesInCycle(Library library, Set<Library> librariesInCycle, Map<Library, List<Library>> dependencyMap) {
if (javaSetAdd(librariesInCycle, library)) {
List<Library> dependentLibraries = dependencyMap[library];
if (dependentLibraries != null) {
for (Library dependentLibrary in dependentLibraries) {
addLibrariesInCycle(dependentLibrary, librariesInCycle, dependencyMap);
}
}
}
}
/**
* Add the given library, and all libraries reachable from it that have not already been visited,
* to the given dependency map.
*
* @param library the library currently being added to the dependency map
* @param dependencyMap the dependency map being computed
* @param visitedLibraries the libraries that have already been visited, used to prevent infinite
* recursion
*/
void addToDependencyMap(Library library, Map<Library, List<Library>> dependencyMap, Set<Library> visitedLibraries) {
if (javaSetAdd(visitedLibraries, library)) {
for (Library referencedLibrary in library.importsAndExports) {
addDependencyToMap(dependencyMap, library, referencedLibrary);
addToDependencyMap(referencedLibrary, dependencyMap, visitedLibraries);
}
if (!library.explicitlyImportsCore && library != _coreLibrary) {
addDependencyToMap(dependencyMap, library, _coreLibrary);
}
}
}
/**
* Build the element model representing the combinators declared by the given directive.
*
* @param directive the directive that declares the combinators
* @return an array containing the import combinators that were built
*/
List<NamespaceCombinator> buildCombinators(NamespaceDirective directive) {
List<NamespaceCombinator> combinators = new List<NamespaceCombinator>();
for (Combinator combinator in directive.combinators) {
if (combinator is HideCombinator) {
HideElementCombinatorImpl hide = new HideElementCombinatorImpl();
hide.hiddenNames = getIdentifiers(((combinator as HideCombinator)).hiddenNames);
combinators.add(hide);
} else {
ShowElementCombinatorImpl show = new ShowElementCombinatorImpl();
show.shownNames = getIdentifiers(((combinator as ShowCombinator)).shownNames);
combinators.add(show);
}
}
return new List.from(combinators);
}
/**
* Every library now has a corresponding [LibraryElement], so it is now possible to resolve
* the import and export directives.
*
* @throws AnalysisException if the defining compilation unit for any of the libraries could not
* be accessed
*/
void buildDirectiveModels() {
for (Library library in _librariesInCycles) {
Map<String, PrefixElementImpl> nameToPrefixMap = new Map<String, PrefixElementImpl>();
List<ImportElement> imports = new List<ImportElement>();
List<ExportElement> exports = new List<ExportElement>();
for (Directive directive in library.definingCompilationUnit.directives) {
if (directive is ImportDirective) {
ImportDirective importDirective = directive as ImportDirective;
Source importedSource = library.getSource(importDirective);
if (importedSource != null) {
Library importedLibrary = _libraryMap[importedSource];
if (importedLibrary != null) {
ImportElementImpl importElement = new ImportElementImpl();
importElement.uri = library.getUri(importDirective);
importElement.combinators = buildCombinators(importDirective);
LibraryElement importedLibraryElement = importedLibrary.libraryElement;
if (importedLibraryElement != null) {
importElement.importedLibrary = importedLibraryElement;
}
SimpleIdentifier prefixNode = ((directive as ImportDirective)).prefix;
if (prefixNode != null) {
String prefixName = prefixNode.name;
PrefixElementImpl prefix = nameToPrefixMap[prefixName];
if (prefix == null) {
prefix = new PrefixElementImpl(prefixNode);
nameToPrefixMap[prefixName] = prefix;
}
importElement.prefix = prefix;
prefixNode.staticElement = prefix;
}
directive.element = importElement;
imports.add(importElement);
if (doesCompilationUnitHavePartOfDirective(importedLibrary.getAST(importedSource))) {
StringLiteral uriLiteral = importDirective.uri;
_errorListener.onError(new AnalysisError.con2(library.librarySource, uriLiteral.offset, uriLiteral.length, CompileTimeErrorCode.IMPORT_OF_NON_LIBRARY, [uriLiteral.toSource()]));
}
}
}
} else if (directive is ExportDirective) {
ExportDirective exportDirective = directive as ExportDirective;
Source exportedSource = library.getSource(exportDirective);
if (exportedSource != null) {
Library exportedLibrary = _libraryMap[exportedSource];
if (exportedLibrary != null) {
ExportElementImpl exportElement = new ExportElementImpl();
exportElement.uri = library.getUri(exportDirective);
exportElement.combinators = buildCombinators(exportDirective);
LibraryElement exportedLibraryElement = exportedLibrary.libraryElement;
if (exportedLibraryElement != null) {
exportElement.exportedLibrary = exportedLibraryElement;
}
directive.element = exportElement;
exports.add(exportElement);
if (doesCompilationUnitHavePartOfDirective(exportedLibrary.getAST(exportedSource))) {
StringLiteral uriLiteral = exportDirective.uri;
_errorListener.onError(new AnalysisError.con2(library.librarySource, uriLiteral.offset, uriLiteral.length, CompileTimeErrorCode.EXPORT_OF_NON_LIBRARY, [uriLiteral.toSource()]));
}
}
}
}
}
Source librarySource = library.librarySource;
if (!library.explicitlyImportsCore && _coreLibrarySource != librarySource) {
ImportElementImpl importElement = new ImportElementImpl();
importElement.importedLibrary = _coreLibrary.libraryElement;
importElement.synthetic = true;
imports.add(importElement);
}
LibraryElementImpl libraryElement = library.libraryElement;
libraryElement.imports = new List.from(imports);
libraryElement.exports = new List.from(exports);
}
}
/**
* Build element models for all of the libraries in the current cycle.
*
* @throws AnalysisException if any of the element models cannot be built
*/
void buildElementModels() {
for (Library library in _librariesInCycles) {
LibraryElementBuilder builder = new LibraryElementBuilder(this);
LibraryElementImpl libraryElement = builder.buildLibrary(library);
library.libraryElement = libraryElement;
}
}
/**
* Resolve the type hierarchy across all of the types declared in the libraries in the current
* cycle.
*
* @throws AnalysisException if any of the type hierarchies could not be resolved
*/
void buildTypeHierarchies() {
for (Library library in _librariesInCycles) {
for (Source source in library.compilationUnitSources) {
TypeResolverVisitor visitor = new TypeResolverVisitor.con1(library, source, _typeProvider);
library.getAST(source).accept(visitor);
}
}
}
/**
* Compute a dependency map of libraries reachable from the given library. A dependency map is a
* table that maps individual libraries to a list of the libraries that either import or export
* those libraries.
*
* This map is used to compute all of the libraries involved in a cycle that include the root
* library. Given that we only add libraries that are reachable from the root library, when we
* work backward we are guaranteed to only get libraries in the cycle.
*
* @param library the library currently being added to the dependency map
*/
Map<Library, List<Library>> computeDependencyMap(Library library) {
Map<Library, List<Library>> dependencyMap = new Map<Library, List<Library>>();
addToDependencyMap(library, dependencyMap, new Set<Library>());
return dependencyMap;
}
/**
* Return a collection containing all of the libraries reachable from the given library that are
* contained in a cycle that includes the given library.
*
* @param library the library that must be included in any cycles whose members are to be returned
* @return all of the libraries referenced by the given library that have a circular reference
* back to the given library
*/
Set<Library> computeLibrariesInCycles(Library library) {
Map<Library, List<Library>> dependencyMap = computeDependencyMap(library);
Set<Library> librariesInCycle = new Set<Library>();
addLibrariesInCycle(library, librariesInCycle, dependencyMap);
return librariesInCycle;
}
/**
* Recursively traverse the libraries reachable from the given library, creating instances of the
* class [Library] to represent them, and record the references in the library objects.
*
* @param library the library to be processed to find libraries that have not yet been traversed
* @throws AnalysisException if some portion of the library graph could not be traversed
*/
void computeLibraryDependencies(Library library) {
Source librarySource = library.librarySource;
computeLibraryDependencies3(library, _analysisContext.computeImportedLibraries(librarySource), _analysisContext.computeExportedLibraries(librarySource));
}
/**
* Recursively traverse the libraries reachable from the given library, creating instances of the
* class [Library] to represent them, and record the references in the library objects.
*
* @param library the library to be processed to find libraries that have not yet been traversed
* @throws AnalysisException if some portion of the library graph could not be traversed
*/
void computeLibraryDependencies2(Library library, CompilationUnit unit) {
Source librarySource = library.librarySource;
Set<Source> exportedSources = new Set<Source>();
Set<Source> importedSources = new Set<Source>();
for (Directive directive in unit.directives) {
if (directive is ExportDirective) {
Source exportSource = resolveSource(librarySource, directive as ExportDirective);
if (exportSource != null) {
javaSetAdd(exportedSources, exportSource);
}
} else if (directive is ImportDirective) {
Source importSource = resolveSource(librarySource, directive as ImportDirective);
if (importSource != null) {
javaSetAdd(importedSources, importSource);
}
}
}
computeLibraryDependencies3(library, new List.from(importedSources), new List.from(exportedSources));
}
/**
* Recursively traverse the libraries reachable from the given library, creating instances of the
* class [Library] to represent them, and record the references in the library objects.
*
* @param library the library to be processed to find libraries that have not yet been traversed
* @param importedSources an array containing the sources that are imported into the given library
* @param exportedSources an array containing the sources that are exported from the given library
* @throws AnalysisException if some portion of the library graph could not be traversed
*/
void computeLibraryDependencies3(Library library, List<Source> importedSources, List<Source> exportedSources) {
List<Library> importedLibraries = new List<Library>();
bool explicitlyImportsCore = false;
for (Source importedSource in importedSources) {
if (importedSource == _coreLibrarySource) {
explicitlyImportsCore = true;
}
Library importedLibrary = _libraryMap[importedSource];
if (importedLibrary == null) {
importedLibrary = createLibraryOrNull(importedSource);
if (importedLibrary != null) {
computeLibraryDependencies(importedLibrary);
}
}
if (importedLibrary != null) {
importedLibraries.add(importedLibrary);
}
}
library.importedLibraries = new List.from(importedLibraries);
List<Library> exportedLibraries = new List<Library>();
for (Source exportedSource in exportedSources) {
Library exportedLibrary = _libraryMap[exportedSource];
if (exportedLibrary == null) {
exportedLibrary = createLibraryOrNull(exportedSource);
if (exportedLibrary != null) {
computeLibraryDependencies(exportedLibrary);
}
}
if (exportedLibrary != null) {
exportedLibraries.add(exportedLibrary);
}
}
library.exportedLibraries = new List.from(exportedLibraries);
library.explicitlyImportsCore = explicitlyImportsCore;
if (!explicitlyImportsCore && _coreLibrarySource != library.librarySource) {
Library importedLibrary = _libraryMap[_coreLibrarySource];
if (importedLibrary == null) {
importedLibrary = createLibraryOrNull(_coreLibrarySource);
if (importedLibrary != null) {
computeLibraryDependencies(importedLibrary);
}
}
}
}
/**
* Create an object to represent the information about the library defined by the compilation unit
* with the given source.
*
* @param librarySource the source of the library's defining compilation unit
* @return the library object that was created
* @throws AnalysisException if the library source is not valid
*/
Library createLibrary(Source librarySource) {
Library library = new Library(_analysisContext, _errorListener, librarySource);
library.definingCompilationUnit;
_libraryMap[librarySource] = library;
return library;
}
/**
* Create an object to represent the information about the library defined by the compilation unit
* with the given source.
*
* @param librarySource the source of the library's defining compilation unit
* @param modificationStamp the modification time of the source from which the compilation unit
* was created
* @param unit the compilation unit that defines the library
* @return the library object that was created
* @throws AnalysisException if the library source is not valid
*/
Library createLibrary2(Source librarySource, int modificationStamp, CompilationUnit unit) {
Library library = new Library(_analysisContext, _errorListener, librarySource);
library.setDefiningCompilationUnit(modificationStamp, unit);
_libraryMap[librarySource] = library;
return library;
}
/**
* Create an object to represent the information about the library defined by the compilation unit
* with the given source. Return the library object that was created, or `null` if the
* source is not valid.
*
* @param librarySource the source of the library's defining compilation unit
* @return the library object that was created
*/
Library createLibraryOrNull(Source librarySource) {
if (!librarySource.exists()) {
return null;
}
Library library = new Library(_analysisContext, _errorListener, librarySource);
_libraryMap[librarySource] = library;
return library;
}
/**
* Return `true` if and only if the passed [CompilationUnit] has a part-of directive.
*
* @param node the [CompilationUnit] to test
* @return `true` if and only if the passed [CompilationUnit] has a part-of directive
*/
bool doesCompilationUnitHavePartOfDirective(CompilationUnit node) {
NodeList<Directive> directives = node.directives;
for (Directive directive in directives) {
if (directive is PartOfDirective) {
return true;
}
}
return false;
}
/**
* Return an array containing the lexical identifiers associated with the nodes in the given list.
*
* @param names the AST nodes representing the identifiers
* @return the lexical identifiers associated with the nodes in the list
*/
List<String> getIdentifiers(NodeList<SimpleIdentifier> names) {
int count = names.length;
List<String> identifiers = new List<String>(count);
for (int i = 0; i < count; i++) {
identifiers[i] = names[i].name;
}
return identifiers;
}
/**
* Compute a value for all of the constants in the libraries being analyzed.
*/
void performConstantEvaluation() {
ConstantValueComputer computer = new ConstantValueComputer();
for (Library library in _librariesInCycles) {
for (Source source in library.compilationUnitSources) {
try {
CompilationUnit unit = library.getAST(source);
if (unit != null) {
computer.add(unit);
}
} on AnalysisException catch (exception) {
AnalysisEngine.instance.logger.logError2("Internal Error: Could not access AST for ${source.fullName} during constant evaluation", exception);
}
}
}
computer.computeValues();
}
/**
* Resolve the identifiers and perform type analysis in the libraries in the current cycle.
*
* @throws AnalysisException if any of the identifiers could not be resolved or if any of the
* libraries could not have their types analyzed
*/
void resolveReferencesAndTypes() {
for (Library library in _librariesInCycles) {
resolveReferencesAndTypes2(library);
}
}
/**
* Resolve the identifiers and perform type analysis in the given library.
*
* @param library the library to be resolved
* @throws AnalysisException if any of the identifiers could not be resolved or if the types in
* the library cannot be analyzed
*/
void resolveReferencesAndTypes2(Library library) {
for (Source source in library.compilationUnitSources) {
ResolverVisitor visitor = new ResolverVisitor.con1(library, source, _typeProvider);
library.getAST(source).accept(visitor);
for (ProxyConditionalAnalysisError conditionalCode in visitor.proxyConditionalAnalysisErrors) {
if (conditionalCode.shouldIncludeErrorCode()) {
visitor.reportError(conditionalCode.analysisError);
}
}
}
}
/**
* Return the result of resolving the URI of the given URI-based directive against the URI of the
* given library, or `null` if the URI is not valid.
*
* @param librarySource the source representing the library containing the directive
* @param directive the directive which URI should be resolved
* @return the result of resolving the URI against the URI of the library
*/
Source resolveSource(Source librarySource, UriBasedDirective directive) {
StringLiteral uriLiteral = directive.uri;
if (uriLiteral is StringInterpolation) {
return null;
}
String uriContent = uriLiteral.stringValue.trim();
if (uriContent == null || uriContent.isEmpty) {
return null;
}
uriContent = Uri.encodeFull(uriContent);
return _analysisContext.sourceFactory.resolveUri(librarySource, uriContent);
}
/**
* Run additional analyses, such as the [ConstantVerifier] and [ErrorVerifier]
* analysis in the current cycle.
*
* @throws AnalysisException if any of the identifiers could not be resolved or if the types in
* the library cannot be analyzed
*/
void runAdditionalAnalyses() {
for (Library library in _librariesInCycles) {
runAdditionalAnalyses2(library);
}
}
/**
* Run additional analyses, such as the [ConstantVerifier] and [ErrorVerifier]
* analysis in the given library.
*
* @param library the library to have the extra analyses processes run
* @throws AnalysisException if any of the identifiers could not be resolved or if the types in
* the library cannot be analyzed
*/
void runAdditionalAnalyses2(Library library) {
for (Source source in library.compilationUnitSources) {
ErrorReporter errorReporter = new ErrorReporter(_errorListener, source);
CompilationUnit unit = library.getAST(source);
ConstantVerifier constantVerifier = new ConstantVerifier(errorReporter, _typeProvider);
unit.accept(constantVerifier);
ErrorVerifier errorVerifier = new ErrorVerifier(errorReporter, library.libraryElement, _typeProvider, library.inheritanceManager);
unit.accept(errorVerifier);
}
if (_enableHints) {
HintGenerator hintGenerator = new HintGenerator(library.compilationUnits, _analysisContext, _errorListener);
hintGenerator.generateForLibrary();
}
}
}
/**
* This class is a wrapper for an [AnalysisError] which can also be queried after resolution
* to find out if the error should actually be reported. In this case, these errors are conditional
* on the non-existence of an `@proxy` annotation.
*
* If we have other conditional error codes in the future, we should have this class implement some
* ConditionalErrorCode so that after resolution, a list of ConditionalErrorCode can be visited
* instead of multiple lists of *ConditionalErrorCodes.
*/
class ProxyConditionalAnalysisError {
/**
* The name of the proxy annotation, from the meta pub package.
*/
static String _PROXY_ANNOTATION_NAME = "proxy";
/**
* The name of the meta library name, from the meta pub package.
*/
static String _META_LIBRARY_NAME = "meta";
/**
* Return `true` if the given element represents a class that has the proxy annotation.
*
* @param element the class being tested
* @return `true` if the given element represents a class that has the proxy annotation
*/
static bool classHasProxyAnnotation(Element element2) {
if (element2 is ClassElement) {
ClassElement classElement = element2 as ClassElement;
List<ElementAnnotation> annotations = classElement.metadata;
for (ElementAnnotation annotation in annotations) {
Element elementAnnotation = annotation.element;
if (elementAnnotation != null) {
LibraryElement lib = elementAnnotation.library;
if (elementAnnotation.name == _PROXY_ANNOTATION_NAME && lib != null && lib.name == _META_LIBRARY_NAME) {
return true;
}
}
}
}
return false;
}
/**
* The enclosing [ClassElement], this is what will determine if the error code should, or
* should not, be generated on the source.
*/
Element _enclosingElement;
/**
* The conditional analysis error.
*/
AnalysisError _analysisError;
/**
* Instantiate a new ProxyConditionalErrorCode with some enclosing element and the conditional
* analysis error.
*
* @param enclosingElement the enclosing element
* @param analysisError the conditional analysis error
*/
ProxyConditionalAnalysisError(Element enclosingElement, AnalysisError analysisError) {
this._enclosingElement = enclosingElement;
this._analysisError = analysisError;
}
/**
* Return the analysis error.
*
* @return the analysis error
*/
AnalysisError get analysisError => _analysisError;
/**
* Return `true` iff the enclosing class has the proxy annotation.
*
* @return `true` iff the enclosing class has the proxy annotation
*/
bool shouldIncludeErrorCode() => !classHasProxyAnnotation(_enclosingElement);
}
/**
* Instances of the class `ResolverVisitor` are used to resolve the nodes within a single
* compilation unit.
*
* @coverage dart.engine.resolver
*/
class ResolverVisitor extends ScopedVisitor {
/**
* The manager for the inheritance mappings.
*/
InheritanceManager _inheritanceManager;
/**
* The object used to resolve the element associated with the current node.
*/
ElementResolver _elementResolver;
/**
* The object used to compute the type associated with the current node.
*/
StaticTypeAnalyzer _typeAnalyzer;
/**
* The class element representing the class containing the current node, or `null` if the
* current node is not contained in a class.
*/
ClassElement _enclosingClass = null;
/**
* The element representing the function containing the current node, or `null` if the
* current node is not contained in a function.
*/
ExecutableElement _enclosingFunction = null;
/**
* The object keeping track of which elements have had their types overridden.
*/
TypeOverrideManager _overrideManager = new TypeOverrideManager();
/**
* Proxy conditional error codes.
*/
List<ProxyConditionalAnalysisError> _proxyConditionalAnalysisErrors = new List<ProxyConditionalAnalysisError>();
/**
* Initialize a newly created visitor to resolve the nodes in a compilation unit.
*
* @param library the library containing the compilation unit being resolved
* @param source the source representing the compilation unit being visited
* @param typeProvider the object used to access the types from the core library
*/
ResolverVisitor.con1(Library library, Source source, TypeProvider typeProvider) : super.con1(library, source, typeProvider) {
this._inheritanceManager = library.inheritanceManager;
this._elementResolver = new ElementResolver(this);
this._typeAnalyzer = new StaticTypeAnalyzer(this);
}
/**
* Initialize a newly created visitor to resolve the nodes in a compilation unit.
*
* @param definingLibrary the element for the library containing the compilation unit being
* visited
* @param source the source representing the compilation unit being visited
* @param typeProvider the object used to access the types from the core library
* @param errorListener the error listener that will be informed of any errors that are found
* during resolution
*/
ResolverVisitor.con2(LibraryElement definingLibrary, Source source, TypeProvider typeProvider, InheritanceManager inheritanceManager, AnalysisErrorListener errorListener) : super.con2(definingLibrary, source, typeProvider, errorListener) {
this._inheritanceManager = inheritanceManager;
this._elementResolver = new ElementResolver(this);
this._typeAnalyzer = new StaticTypeAnalyzer(this);
}
/**
* Return the object keeping track of which elements have had their types overridden.
*
* @return the object keeping track of which elements have had their types overridden
*/
TypeOverrideManager get overrideManager => _overrideManager;
List<ProxyConditionalAnalysisError> get proxyConditionalAnalysisErrors => _proxyConditionalAnalysisErrors;
Object visitAsExpression(AsExpression node) {
super.visitAsExpression(node);
override(node.expression, node.type.type);
return null;
}
Object visitAssertStatement(AssertStatement node) {
super.visitAssertStatement(node);
propagateTrueState(node.condition);
return null;
}
Object visitBinaryExpression(BinaryExpression node) {
sc.TokenType operatorType = node.operator.type;
Expression leftOperand = node.leftOperand;
Expression rightOperand = node.rightOperand;
if (identical(operatorType, sc.TokenType.AMPERSAND_AMPERSAND)) {
safelyVisit(leftOperand);
if (rightOperand != null) {
try {
_overrideManager.enterScope();
propagateTrueState(leftOperand);
rightOperand.accept(this);
} finally {
_overrideManager.exitScope();
}
}
} else if (identical(operatorType, sc.TokenType.BAR_BAR)) {
safelyVisit(leftOperand);
if (rightOperand != null) {
try {
_overrideManager.enterScope();
propagateFalseState(leftOperand);
rightOperand.accept(this);
} finally {
_overrideManager.exitScope();
}
}
} else {
safelyVisit(leftOperand);
safelyVisit(rightOperand);
}
node.accept(_elementResolver);
node.accept(_typeAnalyzer);
return null;
}
Object visitBreakStatement(BreakStatement node) {
node.accept(_elementResolver);
node.accept(_typeAnalyzer);
return null;
}
Object visitClassDeclaration(ClassDeclaration node) {
ClassElement outerType = _enclosingClass;
try {
_enclosingClass = node.element;
_typeAnalyzer.thisType = _enclosingClass == null ? null : _enclosingClass.type;
super.visitClassDeclaration(node);
} finally {
_typeAnalyzer.thisType = outerType == null ? null : outerType.type;
_enclosingClass = outerType;
}
return null;
}
Object visitCommentReference(CommentReference node) {
node.accept(_elementResolver);
node.accept(_typeAnalyzer);
return null;
}
Object visitCompilationUnit(CompilationUnit node) {
try {
_overrideManager.enterScope();
for (Directive directive in node.directives) {
directive.accept(this);
}
List<CompilationUnitMember> classes = new List<CompilationUnitMember>();
for (CompilationUnitMember declaration in node.declarations) {
if (declaration is ClassDeclaration) {
classes.add(declaration);
} else {
declaration.accept(this);
}
}
for (CompilationUnitMember declaration in classes) {
declaration.accept(this);
}
} finally {
_overrideManager.exitScope();
}
node.accept(_elementResolver);
node.accept(_typeAnalyzer);
return null;
}
Object visitConditionalExpression(ConditionalExpression node) {
Expression condition = node.condition;
safelyVisit(condition);
Expression thenExpression = node.thenExpression;
if (thenExpression != null) {
try {
_overrideManager.enterScope();
propagateTrueState(condition);
thenExpression.accept(this);
} finally {
_overrideManager.exitScope();
}
}
Expression elseExpression = node.elseExpression;
if (elseExpression != null) {
try {
_overrideManager.enterScope();
propagateFalseState(condition);
elseExpression.accept(this);
} finally {
_overrideManager.exitScope();
}
}
node.accept(_elementResolver);
node.accept(_typeAnalyzer);
bool thenIsAbrupt = isAbruptTermination(thenExpression);
bool elseIsAbrupt = isAbruptTermination(elseExpression);
if (elseIsAbrupt && !thenIsAbrupt) {
propagateTrueState(condition);
propagateState(thenExpression);
} else if (thenIsAbrupt && !elseIsAbrupt) {
propagateFalseState(condition);
propagateState(elseExpression);
}
return null;
}
Object visitConstructorDeclaration(ConstructorDeclaration node) {
ExecutableElement outerFunction = _enclosingFunction;
try {
_enclosingFunction = node.element;
super.visitConstructorDeclaration(node);
} finally {
_enclosingFunction = outerFunction;
}
return null;
}
Object visitConstructorFieldInitializer(ConstructorFieldInitializer node) {
safelyVisit(node.expression);
node.accept(_elementResolver);
node.accept(_typeAnalyzer);
return null;
}
Object visitConstructorName(ConstructorName node) {
node.accept(_elementResolver);
node.accept(_typeAnalyzer);
return null;
}
Object visitContinueStatement(ContinueStatement node) {
node.accept(_elementResolver);
node.accept(_typeAnalyzer);
return null;
}
Object visitDoStatement(DoStatement node) {
try {
_overrideManager.enterScope();
super.visitDoStatement(node);
} finally {
_overrideManager.exitScope();
}
return null;
}
Object visitFieldDeclaration(FieldDeclaration node) {
try {
_overrideManager.enterScope();
super.visitFieldDeclaration(node);
} finally {
Map<Element, Type2> overrides = _overrideManager.captureOverrides(node.fields);
_overrideManager.exitScope();
_overrideManager.applyOverrides(overrides);
}
return null;
}
Object visitForEachStatement(ForEachStatement node) {
try {
_overrideManager.enterScope();
super.visitForEachStatement(node);
} finally {
_overrideManager.exitScope();
}
return null;
}
Object visitForStatement(ForStatement node) {
try {
_overrideManager.enterScope();
super.visitForStatement(node);
} finally {
_overrideManager.exitScope();
}
return null;
}
Object visitFunctionBody(FunctionBody node) {
try {
_overrideManager.enterScope();
super.visitFunctionBody(node);
} finally {
_overrideManager.exitScope();
}
return null;
}
Object visitFunctionDeclaration(FunctionDeclaration node) {
ExecutableElement outerFunction = _enclosingFunction;
try {
SimpleIdentifier functionName = node.name;
_enclosingFunction = functionName.staticElement as ExecutableElement;
super.visitFunctionDeclaration(node);
} finally {
_enclosingFunction = outerFunction;
}
return null;
}
Object visitFunctionExpression(FunctionExpression node) {
ExecutableElement outerFunction = _enclosingFunction;
try {
_enclosingFunction = node.element;
_overrideManager.enterScope();
super.visitFunctionExpression(node);
} finally {
_overrideManager.exitScope();
_enclosingFunction = outerFunction;
}
return null;
}
Object visitFunctionExpressionInvocation(FunctionExpressionInvocation node) {
safelyVisit(node.function);
node.accept(_elementResolver);
inferFunctionExpressionsParametersTypes(node.argumentList);
safelyVisit(node.argumentList);
node.accept(_typeAnalyzer);
return null;
}
Object visitHideCombinator(HideCombinator node) => null;
Object visitIfStatement(IfStatement node) {
Expression condition = node.condition;
safelyVisit(condition);
Map<Element, Type2> thenOverrides = null;
Statement thenStatement = node.thenStatement;
if (thenStatement != null) {
try {
_overrideManager.enterScope();
propagateTrueState(condition);
visitStatementInScope(thenStatement);
} finally {
thenOverrides = _overrideManager.captureLocalOverrides();
_overrideManager.exitScope();
}
}
Map<Element, Type2> elseOverrides = null;
Statement elseStatement = node.elseStatement;
if (elseStatement != null) {
try {
_overrideManager.enterScope();
propagateFalseState(condition);
visitStatementInScope(elseStatement);
} finally {
elseOverrides = _overrideManager.captureLocalOverrides();
_overrideManager.exitScope();
}
}
node.accept(_elementResolver);
node.accept(_typeAnalyzer);
bool thenIsAbrupt = isAbruptTermination2(thenStatement);
bool elseIsAbrupt = isAbruptTermination2(elseStatement);
if (elseIsAbrupt && !thenIsAbrupt) {
propagateTrueState(condition);
if (thenOverrides != null) {
_overrideManager.applyOverrides(thenOverrides);
}
} else if (thenIsAbrupt && !elseIsAbrupt) {
propagateFalseState(condition);
if (elseOverrides != null) {
_overrideManager.applyOverrides(elseOverrides);
}
}
return null;
}
Object visitLabel(Label node) => null;
Object visitLibraryIdentifier(LibraryIdentifier node) => null;
Object visitMethodDeclaration(MethodDeclaration node) {
ExecutableElement outerFunction = _enclosingFunction;
try {
_enclosingFunction = node.element;
super.visitMethodDeclaration(node);
} finally {
_enclosingFunction = outerFunction;
}
return null;
}
Object visitMethodInvocation(MethodInvocation node) {
safelyVisit(node.target);
node.accept(_elementResolver);
inferFunctionExpressionsParametersTypes(node.argumentList);
safelyVisit(node.argumentList);
node.accept(_typeAnalyzer);
return null;
}
Object visitNode(ASTNode node) {
node.visitChildren(this);
node.accept(_elementResolver);
node.accept(_typeAnalyzer);
return null;
}
Object visitPrefixedIdentifier(PrefixedIdentifier node) {
safelyVisit(node.prefix);
node.accept(_elementResolver);
node.accept(_typeAnalyzer);
return null;
}
Object visitPropertyAccess(PropertyAccess node) {
safelyVisit(node.target);
node.accept(_elementResolver);
node.accept(_typeAnalyzer);
return null;
}
Object visitRedirectingConstructorInvocation(RedirectingConstructorInvocation node) {
safelyVisit(node.argumentList);
node.accept(_elementResolver);
node.accept(_typeAnalyzer);
return null;
}
Object visitShowCombinator(ShowCombinator node) => null;
Object visitSuperConstructorInvocation(SuperConstructorInvocation node) {
safelyVisit(node.argumentList);
node.accept(_elementResolver);
node.accept(_typeAnalyzer);
return null;
}
Object visitSwitchCase(SwitchCase node) {
try {
_overrideManager.enterScope();
super.visitSwitchCase(node);
} finally {
_overrideManager.exitScope();
}
return null;
}
Object visitSwitchDefault(SwitchDefault node) {
try {
_overrideManager.enterScope();
super.visitSwitchDefault(node);
} finally {
_overrideManager.exitScope();
}
return null;
}
Object visitTopLevelVariableDeclaration(TopLevelVariableDeclaration node) {
try {
_overrideManager.enterScope();
super.visitTopLevelVariableDeclaration(node);
} finally {
Map<Element, Type2> overrides = _overrideManager.captureOverrides(node.variables);
_overrideManager.exitScope();
_overrideManager.applyOverrides(overrides);
}
return null;
}
Object visitTypeName(TypeName node) => null;
Object visitWhileStatement(WhileStatement node) {
Expression condition = node.condition;
safelyVisit(condition);
Statement body = node.body;
if (body != null) {
try {
_overrideManager.enterScope();
propagateTrueState(condition);
visitStatementInScope(body);
} finally {
_overrideManager.exitScope();
}
}
node.accept(_elementResolver);
node.accept(_typeAnalyzer);
return null;
}
/**
* Return the class element representing the class containing the current node, or `null` if
* the current node is not contained in a class.
*
* @return the class element representing the class containing the current node
*/
ClassElement get enclosingClass => _enclosingClass;
/**
* Return the element representing the function containing the current node, or `null` if
* the current node is not contained in a function.
*
* @return the element representing the function containing the current node
*/
ExecutableElement get enclosingFunction => _enclosingFunction;
/**
* Return the propagated element associated with the given expression whose type can be
* overridden, or `null` if there is no element whose type can be overridden.
*
* @param expression the expression with which the element is associated
* @return the element associated with the given expression
*/
VariableElement getOverridablePropagatedElement(Expression expression) {
Element element = null;
if (expression is SimpleIdentifier) {
element = ((expression as SimpleIdentifier)).propagatedElement;
} else if (expression is PrefixedIdentifier) {
element = ((expression as PrefixedIdentifier)).propagatedElement;
} else if (expression is PropertyAccess) {
element = ((expression as PropertyAccess)).propertyName.propagatedElement;
}
if (element is VariableElement) {
return element as VariableElement;
}
return null;
}
/**
* Return the static element associated with the given expression whose type can be overridden, or
* `null` if there is no element whose type can be overridden.
*
* @param expression the expression with which the element is associated
* @return the element associated with the given expression
*/
VariableElement getOverridableStaticElement(Expression expression) {
Element element = null;
if (expression is SimpleIdentifier) {
element = ((expression as SimpleIdentifier)).staticElement;
} else if (expression is PrefixedIdentifier) {
element = ((expression as PrefixedIdentifier)).staticElement;
} else if (expression is PropertyAccess) {
element = ((expression as PropertyAccess)).propertyName.staticElement;
}
if (element is VariableElement) {
return element as VariableElement;
}
return null;
}
/**
* If it is appropriate to do so, override the current type of the static and propagated elements
* associated with the given expression with the given type. Generally speaking, it is appropriate
* if the given type is more specific than the current type.
*
* @param expression the expression used to access the static and propagated elements whose types
* might be overridden
* @param potentialType the potential type of the elements
*/
void override(Expression expression, Type2 potentialType) {
VariableElement element = getOverridableStaticElement(expression);
if (element != null) {
override2(element, potentialType);
}
element = getOverridablePropagatedElement(expression);
if (element != null) {
override2(element, potentialType);
}
}
/**
* If it is appropriate to do so, override the current type of the given element with the given
* type. Generally speaking, it is appropriate if the given type is more specific than the current
* type.
*
* @param element the element whose type might be overridden
* @param potentialType the potential type of the element
*/
void override2(VariableElement element, Type2 potentialType) {
if (potentialType == null || identical(potentialType, BottomTypeImpl.instance)) {
return;
}
if (element is PropertyInducingElement) {
PropertyInducingElement variable = element as PropertyInducingElement;
if (!variable.isConst && !variable.isFinal) {
return;
}
}
Type2 currentType = getBestType(element);
if (currentType == null || !currentType.isMoreSpecificThan(potentialType)) {
_overrideManager.setType(element, potentialType);
}
}
/**
* Report a conditional analysis error with the given error code and arguments.
*
* @param enclosingElement the enclosing element
* @param errorCode the error code of the error to be reported
* @param node the node specifying the location of the error
* @param arguments the arguments to the error, used to compose the error message
*/
void reportErrorProxyConditionalAnalysisError(Element enclosingElement, ErrorCode errorCode, ASTNode node, List<Object> arguments) {
_proxyConditionalAnalysisErrors.add(new ProxyConditionalAnalysisError(enclosingElement, new AnalysisError.con2(source, node.offset, node.length, errorCode, arguments)));
}
/**
* Report a conditional analysis error with the given error code and arguments.
*
* @param enclosingElement the enclosing element
* @param errorCode the error code of the error to be reported
* @param offset the offset of the location of the error
* @param length the length of the location of the error
* @param arguments the arguments to the error, used to compose the error message
*/
void reportErrorProxyConditionalAnalysisError2(Element enclosingElement, ErrorCode errorCode, int offset, int length, List<Object> arguments) {
_proxyConditionalAnalysisErrors.add(new ProxyConditionalAnalysisError(enclosingElement, new AnalysisError.con2(source, offset, length, errorCode, arguments)));
}
/**
* Report a conditional analysis error with the given error code and arguments.
*
* @param enclosingElement the enclosing element
* @param errorCode the error code of the error to be reported
* @param token the token specifying the location of the error
* @param arguments the arguments to the error, used to compose the error message
*/
void reportErrorProxyConditionalAnalysisError3(Element enclosingElement, ErrorCode errorCode, sc.Token token, List<Object> arguments) {
_proxyConditionalAnalysisErrors.add(new ProxyConditionalAnalysisError(enclosingElement, new AnalysisError.con2(source, token.offset, token.length, errorCode, arguments)));
}
void visitForEachStatementInScope(ForEachStatement node) {
Expression iterator = node.iterator;
safelyVisit(iterator);
DeclaredIdentifier loopVariable = node.loopVariable;
safelyVisit(loopVariable);
Statement body = node.body;
if (body != null) {
try {
_overrideManager.enterScope();
if (loopVariable != null && iterator != null) {
LocalVariableElement loopElement = loopVariable.element;
if (loopElement != null) {
Type2 iteratorElementType = getIteratorElementType(iterator);
override2(loopElement, iteratorElementType);
recordPropagatedType(loopVariable.identifier, iteratorElementType);
}
}
visitStatementInScope(body);
} finally {
_overrideManager.exitScope();
}
}
node.accept(_elementResolver);
node.accept(_typeAnalyzer);
}
void visitForStatementInScope(ForStatement node) {
safelyVisit(node.variables);
safelyVisit(node.initialization);
safelyVisit(node.condition);
_overrideManager.enterScope();
try {
propagateTrueState(node.condition);
visitStatementInScope(node.body);
node.updaters.accept(this);
} finally {
_overrideManager.exitScope();
}
}
/**
* Return the best type information available for the given element. If the type of the element
* has been overridden, then return the overriding type. Otherwise, return the static type.
*
* @param element the element for which type information is to be returned
* @return the best type information available for the given element
*/
Type2 getBestType(Element element) {
Type2 bestType = _overrideManager.getType(element);
if (bestType == null) {
if (element is LocalVariableElement) {
bestType = ((element as LocalVariableElement)).type;
} else if (element is ParameterElement) {
bestType = ((element as ParameterElement)).type;
}
}
return bestType;
}
/**
* The given expression is the expression used to compute the iterator for a for-each statement.
* Attempt to compute the type of objects that will be assigned to the loop variable and return
* that type. Return `null` if the type could not be determined.
*
* @param iterator the iterator for a for-each statement
* @return the type of objects that will be assigned to the loop variable
*/
Type2 getIteratorElementType(Expression iteratorExpression) {
Type2 expressionType = iteratorExpression.staticType;
if (expressionType is InterfaceType) {
InterfaceType interfaceType = expressionType as InterfaceType;
FunctionType iteratorFunction = _inheritanceManager.lookupMemberType(interfaceType, "iterator");
if (iteratorFunction == null) {
return null;
}
Type2 iteratorType = iteratorFunction.returnType;
if (iteratorType is InterfaceType) {
InterfaceType iteratorInterfaceType = iteratorType as InterfaceType;
FunctionType currentFunction = _inheritanceManager.lookupMemberType(iteratorInterfaceType, "current");
if (currentFunction == null) {
return null;
}
return currentFunction.returnType;
}
}
return null;
}
/**
* If given "mayBeClosure" is [FunctionExpression] without explicit parameters types and its
* required type is [FunctionType], then infer parameters types from [FunctionType].
*/
void inferFunctionExpressionParametersTypes(Expression mayBeClosure, Type2 mayByFunctionType) {
if (mayBeClosure is! FunctionExpression) {
return;
}
FunctionExpression closure = mayBeClosure as FunctionExpression;
if (mayByFunctionType is! FunctionType) {
return;
}
FunctionType expectedClosureType = mayByFunctionType as FunctionType;
closure.propagatedType = expectedClosureType;
NodeList<FormalParameter> parameters = closure.parameters.parameters;
List<ParameterElement> expectedParameters = expectedClosureType.parameters;
for (int i = 0; i < parameters.length && i < expectedParameters.length; i++) {
FormalParameter parameter = parameters[i];
ParameterElement element = parameter.element;
Type2 currentType = getBestType(element);
Type2 expectedType = expectedParameters[i].type;
if (currentType == null || expectedType.isMoreSpecificThan(currentType)) {
_overrideManager.setType(element, expectedType);
}
}
}
/**
* Try to infer types of parameters of the [FunctionExpression] arguments.
*/
void inferFunctionExpressionsParametersTypes(ArgumentList argumentList) {
for (Expression argument in argumentList.arguments) {
ParameterElement parameter = argument.propagatedParameterElement;
if (parameter == null) {
parameter = argument.staticParameterElement;
}
if (parameter != null) {
inferFunctionExpressionParametersTypes(argument, parameter.type);
}
}
}
/**
* Return `true` if the given expression terminates abruptly (that is, if any expression
* following the given expression will not be reached).
*
* @param expression the expression being tested
* @return `true` if the given expression terminates abruptly
*/
bool isAbruptTermination(Expression expression2) {
while (expression2 is ParenthesizedExpression) {
expression2 = ((expression2 as ParenthesizedExpression)).expression;
}
return expression2 is ThrowExpression || expression2 is RethrowExpression;
}
/**
* Return `true` if the given statement terminates abruptly (that is, if any statement
* following the given statement will not be reached).
*
* @param statement the statement being tested
* @return `true` if the given statement terminates abruptly
*/
bool isAbruptTermination2(Statement statement) {
if (statement is ReturnStatement || statement is BreakStatement || statement is ContinueStatement) {
return true;
} else if (statement is ExpressionStatement) {
return isAbruptTermination(((statement as ExpressionStatement)).expression);
} else if (statement is Block) {
NodeList<Statement> statements = ((statement as Block)).statements;
int size = statements.length;
if (size == 0) {
return false;
}
return isAbruptTermination2(statements[size - 1]);
}
return false;
}
/**
* Propagate any type information that results from knowing that the given condition will have
* been evaluated to 'false'.
*
* @param condition the condition that will have evaluated to 'false'
*/
void propagateFalseState(Expression condition) {
if (condition is BinaryExpression) {
BinaryExpression binary = condition as BinaryExpression;
if (identical(binary.operator.type, sc.TokenType.BAR_BAR)) {
propagateFalseState(binary.leftOperand);
propagateFalseState(binary.rightOperand);
}
} else if (condition is IsExpression) {
IsExpression is2 = condition as IsExpression;
if (is2.notOperator != null) {
override(is2.expression, is2.type.type);
}
} else if (condition is PrefixExpression) {
PrefixExpression prefix = condition as PrefixExpression;
if (identical(prefix.operator.type, sc.TokenType.BANG)) {
propagateTrueState(prefix.operand);
}
} else if (condition is ParenthesizedExpression) {
propagateFalseState(((condition as ParenthesizedExpression)).expression);
}
}
/**
* Propagate any type information that results from knowing that the given expression will have
* been evaluated without altering the flow of execution.
*
* @param expression the expression that will have been evaluated
*/
void propagateState(Expression expression) {
}
/**
* Propagate any type information that results from knowing that the given condition will have
* been evaluated to 'true'.
*
* @param condition the condition that will have evaluated to 'true'
*/
void propagateTrueState(Expression condition) {
if (condition is BinaryExpression) {
BinaryExpression binary = condition as BinaryExpression;
if (identical(binary.operator.type, sc.TokenType.AMPERSAND_AMPERSAND)) {
propagateTrueState(binary.leftOperand);
propagateTrueState(binary.rightOperand);
}
} else if (condition is IsExpression) {
IsExpression is2 = condition as IsExpression;
if (is2.notOperator == null) {
override(is2.expression, is2.type.type);
}
} else if (condition is PrefixExpression) {
PrefixExpression prefix = condition as PrefixExpression;
if (identical(prefix.operator.type, sc.TokenType.BANG)) {
propagateFalseState(prefix.operand);
}
} else if (condition is ParenthesizedExpression) {
propagateTrueState(((condition as ParenthesizedExpression)).expression);
}
}
/**
* Record that the propagated type of the given node is the given type.
*
* @param expression the node whose type is to be recorded
* @param type the propagated type of the node
*/
void recordPropagatedType(Expression expression, Type2 type) {
if (type != null && !type.isDynamic) {
expression.propagatedType = type;
}
}
get elementResolver_J2DAccessor => _elementResolver;
set elementResolver_J2DAccessor(__v) => _elementResolver = __v;
get labelScope_J2DAccessor => _labelScope;
set labelScope_J2DAccessor(__v) => _labelScope = __v;
get nameScope_J2DAccessor => _nameScope;
set nameScope_J2DAccessor(__v) => _nameScope = __v;
get typeAnalyzer_J2DAccessor => _typeAnalyzer;
set typeAnalyzer_J2DAccessor(__v) => _typeAnalyzer = __v;
get enclosingClass_J2DAccessor => _enclosingClass;
set enclosingClass_J2DAccessor(__v) => _enclosingClass = __v;
}
/**
* The abstract class `ScopedVisitor` maintains name and label scopes as an AST structure is
* being visited.
*
* @coverage dart.engine.resolver
*/
abstract class ScopedVisitor extends GeneralizingASTVisitor<Object> {
/**
* The element for the library containing the compilation unit being visited.
*/
LibraryElement _definingLibrary;
/**
* The source representing the compilation unit being visited.
*/
Source _source;
/**
* The error listener that will be informed of any errors that are found during resolution.
*/
AnalysisErrorListener _errorListener;
/**
* The scope used to resolve identifiers.
*/
Scope _nameScope;
/**
* The object used to access the types from the core library.
*/
TypeProvider _typeProvider;
/**
* The scope used to resolve labels for `break` and `continue` statements, or
* `null` if no labels have been defined in the current context.
*/
LabelScope _labelScope;
/**
* Initialize a newly created visitor to resolve the nodes in a compilation unit.
*
* @param library the library containing the compilation unit being resolved
* @param source the source representing the compilation unit being visited
* @param typeProvider the object used to access the types from the core library
*/
ScopedVisitor.con1(Library library, Source source, TypeProvider typeProvider) {
this._definingLibrary = library.libraryElement;
this._source = source;
LibraryScope libraryScope = library.libraryScope;
this._errorListener = libraryScope.errorListener;
this._nameScope = libraryScope;
this._typeProvider = typeProvider;
}
/**
* Initialize a newly created visitor to resolve the nodes in a compilation unit.
*
* @param definingLibrary the element for the library containing the compilation unit being
* visited
* @param source the source representing the compilation unit being visited
* @param typeProvider the object used to access the types from the core library
* @param errorListener the error listener that will be informed of any errors that are found
* during resolution
*/
ScopedVisitor.con2(LibraryElement definingLibrary, Source source, TypeProvider typeProvider, AnalysisErrorListener errorListener) {
this._definingLibrary = definingLibrary;
this._source = source;
this._errorListener = errorListener;
this._nameScope = new LibraryScope(definingLibrary, errorListener);
this._typeProvider = typeProvider;
}
/**
* Return the library element for the library containing the compilation unit being resolved.
*
* @return the library element for the library containing the compilation unit being resolved
*/
LibraryElement get definingLibrary => _definingLibrary;
/**
* Return the object used to access the types from the core library.
*
* @return the object used to access the types from the core library
*/
TypeProvider get typeProvider => _typeProvider;
/**
* Report an error with the given analysis error.
*
* @param errorCode analysis error
*/
void reportError(AnalysisError analysisError) {
_errorListener.onError(analysisError);
}
Object visitBlock(Block node) {
Scope outerScope = _nameScope;
try {
EnclosedScope enclosedScope = new EnclosedScope(_nameScope);
hideNamesDefinedInBlock(enclosedScope, node);
_nameScope = enclosedScope;
super.visitBlock(node);
} finally {
_nameScope = outerScope;
}
return null;
}
Object visitCatchClause(CatchClause node) {
SimpleIdentifier exception = node.exceptionParameter;
if (exception != null) {
Scope outerScope = _nameScope;
try {
_nameScope = new EnclosedScope(_nameScope);
_nameScope.define(exception.staticElement);
SimpleIdentifier stackTrace = node.stackTraceParameter;
if (stackTrace != null) {
_nameScope.define(stackTrace.staticElement);
}
super.visitCatchClause(node);
} finally {
_nameScope = outerScope;
}
} else {
super.visitCatchClause(node);
}
return null;
}
Object visitClassDeclaration(ClassDeclaration node) {
Scope outerScope = _nameScope;
try {
_nameScope = new ClassScope(_nameScope, node.element);
super.visitClassDeclaration(node);
} finally {
_nameScope = outerScope;
}
return null;
}
Object visitClassTypeAlias(ClassTypeAlias node) {
Scope outerScope = _nameScope;
try {
_nameScope = new ClassScope(_nameScope, node.element);
super.visitClassTypeAlias(node);
} finally {
_nameScope = outerScope;
}
return null;
}
Object visitConstructorDeclaration(ConstructorDeclaration node) {
Scope outerScope = _nameScope;
try {
_nameScope = new FunctionScope(_nameScope, node.element);
super.visitConstructorDeclaration(node);
} finally {
_nameScope = outerScope;
}
return null;
}
Object visitDeclaredIdentifier(DeclaredIdentifier node) {
VariableElement element = node.element;
if (element != null) {
_nameScope.define(element);
}
super.visitDeclaredIdentifier(node);
return null;
}
Object visitDoStatement(DoStatement node) {
LabelScope outerLabelScope = _labelScope;
try {
_labelScope = new LabelScope.con1(_labelScope, false, false);
visitStatementInScope(node.body);
safelyVisit(node.condition);
} finally {
_labelScope = outerLabelScope;
}
return null;
}
Object visitForEachStatement(ForEachStatement node) {
Scope outerNameScope = _nameScope;
LabelScope outerLabelScope = _labelScope;
try {
_nameScope = new EnclosedScope(_nameScope);
_labelScope = new LabelScope.con1(outerLabelScope, false, false);
visitForEachStatementInScope(node);
} finally {
_labelScope = outerLabelScope;
_nameScope = outerNameScope;
}
return null;
}
Object visitForStatement(ForStatement node) {
Scope outerNameScope = _nameScope;
LabelScope outerLabelScope = _labelScope;
try {
_nameScope = new EnclosedScope(_nameScope);
_labelScope = new LabelScope.con1(outerLabelScope, false, false);
visitForStatementInScope(node);
} finally {
_labelScope = outerLabelScope;
_nameScope = outerNameScope;
}
return null;
}
Object visitFunctionDeclaration(FunctionDeclaration node) {
ExecutableElement function = node.element;
Scope outerScope = _nameScope;
try {
_nameScope = new FunctionScope(_nameScope, function);
super.visitFunctionDeclaration(node);
} finally {
_nameScope = outerScope;
}
if (function.enclosingElement is! CompilationUnitElement) {
_nameScope.define(function);
}
return null;
}
Object visitFunctionExpression(FunctionExpression node) {
if (node.parent is FunctionDeclaration) {
super.visitFunctionExpression(node);
} else {
Scope outerScope = _nameScope;
try {
ExecutableElement functionElement = node.element;
if (functionElement == null) {
} else {
_nameScope = new FunctionScope(_nameScope, functionElement);
}
super.visitFunctionExpression(node);
} finally {
_nameScope = outerScope;
}
}
return null;
}
Object visitFunctionTypeAlias(FunctionTypeAlias node) {
Scope outerScope = _nameScope;
try {
_nameScope = new FunctionTypeScope(_nameScope, node.element);
super.visitFunctionTypeAlias(node);
} finally {
_nameScope = outerScope;
}
return null;
}
Object visitIfStatement(IfStatement node) {
safelyVisit(node.condition);
visitStatementInScope(node.thenStatement);
visitStatementInScope(node.elseStatement);
return null;
}
Object visitLabeledStatement(LabeledStatement node) {
LabelScope outerScope = addScopesFor(node.labels);
try {
super.visitLabeledStatement(node);
} finally {
_labelScope = outerScope;
}
return null;
}
Object visitMethodDeclaration(MethodDeclaration node) {
Scope outerScope = _nameScope;
try {
_nameScope = new FunctionScope(_nameScope, node.element);
super.visitMethodDeclaration(node);
} finally {
_nameScope = outerScope;
}
return null;
}
Object visitSwitchCase(SwitchCase node) {
node.expression.accept(this);
Scope outerNameScope = _nameScope;
try {
_nameScope = new EnclosedScope(_nameScope);
node.statements.accept(this);
} finally {
_nameScope = outerNameScope;
}
return null;
}
Object visitSwitchDefault(SwitchDefault node) {
Scope outerNameScope = _nameScope;
try {
_nameScope = new EnclosedScope(_nameScope);
node.statements.accept(this);
} finally {
_nameScope = outerNameScope;
}
return null;
}
Object visitSwitchStatement(SwitchStatement node) {
LabelScope outerScope = _labelScope;
try {
_labelScope = new LabelScope.con1(outerScope, true, false);
for (SwitchMember member in node.members) {
for (Label label in member.labels) {
SimpleIdentifier labelName = label.label;
LabelElement labelElement = labelName.staticElement as LabelElement;
_labelScope = new LabelScope.con2(_labelScope, labelName.name, labelElement);
}
}
super.visitSwitchStatement(node);
} finally {
_labelScope = outerScope;
}
return null;
}
Object visitVariableDeclaration(VariableDeclaration node) {
if (node.parent.parent is! TopLevelVariableDeclaration && node.parent.parent is! FieldDeclaration) {
VariableElement element = node.element;
if (element != null) {
_nameScope.define(element);
}
}
super.visitVariableDeclaration(node);
return null;
}
Object visitWhileStatement(WhileStatement node) {
LabelScope outerScope = _labelScope;
try {
_labelScope = new LabelScope.con1(outerScope, false, false);
safelyVisit(node.condition);
visitStatementInScope(node.body);
} finally {
_labelScope = outerScope;
}
return null;
}
/**
* Return the label scope in which the current node is being resolved.
*
* @return the label scope in which the current node is being resolved
*/
LabelScope get labelScope => _labelScope;
/**
* Return the name scope in which the current node is being resolved.
*
* @return the name scope in which the current node is being resolved
*/
Scope get nameScope => _nameScope;
/**
* Return the source.
*
* @return the source
*/
Source get source => _source;
/**
* Report an error with the given error code and arguments.
*
* @param errorCode the error code of the error to be reported
* @param node the node specifying the location of the error
* @param arguments the arguments to the error, used to compose the error message
*/
void reportError5(ErrorCode errorCode, ASTNode node, List<Object> arguments) {
_errorListener.onError(new AnalysisError.con2(_source, node.offset, node.length, errorCode, arguments));
}
/**
* Report an error with the given error code and arguments.
*
* @param errorCode the error code of the error to be reported
* @param offset the offset of the location of the error
* @param length the length of the location of the error
* @param arguments the arguments to the error, used to compose the error message
*/
void reportError6(ErrorCode errorCode, int offset, int length, List<Object> arguments) {
_errorListener.onError(new AnalysisError.con2(_source, offset, length, errorCode, arguments));
}
/**
* Report an error with the given error code and arguments.
*
* @param errorCode the error code of the error to be reported
* @param token the token specifying the location of the error
* @param arguments the arguments to the error, used to compose the error message
*/
void reportError7(ErrorCode errorCode, sc.Token token, List<Object> arguments) {
_errorListener.onError(new AnalysisError.con2(_source, token.offset, token.length, errorCode, arguments));
}
/**
* Visit the given AST node if it is not null.
*
* @param node the node to be visited
*/
void safelyVisit(ASTNode node) {
if (node != null) {
node.accept(this);
}
}
/**
* Visit the given statement after it's scope has been created. This replaces the normal call to
* the inherited visit method so that ResolverVisitor can intervene when type propagation is
* enabled.
*
* @param node the statement to be visited
*/
void visitForEachStatementInScope(ForEachStatement node) {
safelyVisit(node.iterator);
safelyVisit(node.loopVariable);
visitStatementInScope(node.body);
}
/**
* Visit the given statement after it's scope has been created. This replaces the normal call to
* the inherited visit method so that ResolverVisitor can intervene when type propagation is
* enabled.
*
* @param node the statement to be visited
*/
void visitForStatementInScope(ForStatement node) {
safelyVisit(node.variables);
safelyVisit(node.initialization);
safelyVisit(node.condition);
node.updaters.accept(this);
visitStatementInScope(node.body);
}
/**
* Visit the given statement after it's scope has been created. This is used by ResolverVisitor to
* correctly visit the 'then' and 'else' statements of an 'if' statement.
*
* @param node the statement to be visited
*/
void visitStatementInScope(Statement node) {
if (node is Block) {
visitBlock(node as Block);
} else if (node != null) {
Scope outerNameScope = _nameScope;
try {
_nameScope = new EnclosedScope(_nameScope);
node.accept(this);
} finally {
_nameScope = outerNameScope;
}
}
}
/**
* Add scopes for each of the given labels.
*
* @param labels the labels for which new scopes are to be added
* @return the scope that was in effect before the new scopes were added
*/
LabelScope addScopesFor(NodeList<Label> labels) {
LabelScope outerScope = _labelScope;
for (Label label in labels) {
SimpleIdentifier labelNameNode = label.label;
String labelName = labelNameNode.name;
LabelElement labelElement = labelNameNode.staticElement as LabelElement;
_labelScope = new LabelScope.con2(_labelScope, labelName, labelElement);
}
return outerScope;
}
/**
* Marks the local declarations of the given [Block] hidden in the enclosing scope.
* According to the scoping rules name is hidden if block defines it, but name is defined after
* its declaration statement.
*/
void hideNamesDefinedInBlock(EnclosedScope scope, Block block) {
for (Statement statement in block.statements) {
if (statement is VariableDeclarationStatement) {
VariableDeclarationStatement vds = statement as VariableDeclarationStatement;
for (VariableDeclaration variableDeclaration in vds.variables.variables) {
Element element = variableDeclaration.element;
scope.hide(element);
}
}
if (statement is FunctionDeclarationStatement) {
FunctionDeclarationStatement fds = statement as FunctionDeclarationStatement;
Element element = fds.functionDeclaration.element;
scope.hide(element);
}
}
}
}
/**
* Instances of the class `StaticTypeAnalyzer` perform two type-related tasks. First, they
* compute the static type of every expression. Second, they look for any static type errors or
* warnings that might need to be generated. The requirements for the type analyzer are:
* <ol>
* * Every element that refers to types should be fully populated.
* * Every node representing an expression should be resolved to the Type of the expression.
* </ol>
*
* @coverage dart.engine.resolver
*/
class StaticTypeAnalyzer extends SimpleASTVisitor<Object> {
/**
* Create a table mapping HTML tag names to the names of the classes (in 'dart:html') that
* implement those tags.
*
* @return the table that was created
*/
static Map<String, String> createHtmlTagToClassMap() {
Map<String, String> map = new Map<String, String>();
map["a"] = "AnchorElement";
map["area"] = "AreaElement";
map["br"] = "BRElement";
map["base"] = "BaseElement";
map["body"] = "BodyElement";
map["button"] = "ButtonElement";
map["canvas"] = "CanvasElement";
map["content"] = "ContentElement";
map["dl"] = "DListElement";
map["datalist"] = "DataListElement";
map["details"] = "DetailsElement";
map["div"] = "DivElement";
map["embed"] = "EmbedElement";
map["fieldset"] = "FieldSetElement";
map["form"] = "FormElement";
map["hr"] = "HRElement";
map["head"] = "HeadElement";
map["h1"] = "HeadingElement";
map["h2"] = "HeadingElement";
map["h3"] = "HeadingElement";
map["h4"] = "HeadingElement";
map["h5"] = "HeadingElement";
map["h6"] = "HeadingElement";
map["html"] = "HtmlElement";
map["iframe"] = "IFrameElement";
map["img"] = "ImageElement";
map["input"] = "InputElement";
map["keygen"] = "KeygenElement";
map["li"] = "LIElement";
map["label"] = "LabelElement";
map["legend"] = "LegendElement";
map["link"] = "LinkElement";
map["map"] = "MapElement";
map["menu"] = "MenuElement";
map["meter"] = "MeterElement";
map["ol"] = "OListElement";
map["object"] = "ObjectElement";
map["optgroup"] = "OptGroupElement";
map["output"] = "OutputElement";
map["p"] = "ParagraphElement";
map["param"] = "ParamElement";
map["pre"] = "PreElement";
map["progress"] = "ProgressElement";
map["script"] = "ScriptElement";
map["select"] = "SelectElement";
map["source"] = "SourceElement";
map["span"] = "SpanElement";
map["style"] = "StyleElement";
map["caption"] = "TableCaptionElement";
map["td"] = "TableCellElement";
map["col"] = "TableColElement";
map["table"] = "TableElement";
map["tr"] = "TableRowElement";
map["textarea"] = "TextAreaElement";
map["title"] = "TitleElement";
map["track"] = "TrackElement";
map["ul"] = "UListElement";
map["video"] = "VideoElement";
return map;
}
/**
* The resolver driving the resolution and type analysis.
*/
ResolverVisitor _resolver;
/**
* The object providing access to the types defined by the language.
*/
TypeProvider _typeProvider;
/**
* The type representing the type 'dynamic'.
*/
Type2 _dynamicType;
/**
* The type representing the class containing the nodes being analyzed, or `null` if the
* nodes are not within a class.
*/
InterfaceType _thisType;
/**
* The object keeping track of which elements have had their types overridden.
*/
TypeOverrideManager _overrideManager;
/**
* A table mapping [ExecutableElement]s to their propagated return types.
*/
Map<ExecutableElement, Type2> _propagatedReturnTypes = new Map<ExecutableElement, Type2>();
/**
* A table mapping HTML tag names to the names of the classes (in 'dart:html') that implement
* those tags.
*/
static Map<String, String> _HTML_ELEMENT_TO_CLASS_MAP = createHtmlTagToClassMap();
/**
* Initialize a newly created type analyzer.
*
* @param resolver the resolver driving this participant
*/
StaticTypeAnalyzer(ResolverVisitor resolver) {
this._resolver = resolver;
_typeProvider = resolver.typeProvider;
_dynamicType = _typeProvider.dynamicType;
_overrideManager = resolver.overrideManager;
}
/**
* Set the type of the class being analyzed to the given type.
*
* @param thisType the type representing the class containing the nodes being analyzed
*/
void set thisType(InterfaceType thisType2) {
this._thisType = thisType2;
}
/**
* The Dart Language Specification, 12.5: <blockquote>The static type of a string literal is
* `String`.</blockquote>
*/
Object visitAdjacentStrings(AdjacentStrings node) {
recordStaticType(node, _typeProvider.stringType);
return null;
}
/**
* The Dart Language Specification, 12.33: <blockquote>The static type of an argument definition
* test is `bool`.</blockquote>
*/
Object visitArgumentDefinitionTest(ArgumentDefinitionTest node) {
recordStaticType(node, _typeProvider.boolType);
return null;
}
/**
* The Dart Language Specification, 12.32: <blockquote>... the cast expression <i>e as T</i> ...
*
* It is a static warning if <i>T</i> does not denote a type available in the current lexical
* scope.
*
* The static type of a cast expression <i>e as T</i> is <i>T</i>.</blockquote>
*/
Object visitAsExpression(AsExpression node) {
recordStaticType(node, getType2(node.type));
return null;
}
/**
* The Dart Language Specification, 12.18: <blockquote>... an assignment <i>a</i> of the form <i>v
* = e</i> ...
*
* It is a static type warning if the static type of <i>e</i> may not be assigned to the static
* type of <i>v</i>.
*
* The static type of the expression <i>v = e</i> is the static type of <i>e</i>.
*
* ... an assignment of the form <i>C.v = e</i> ...
*
* It is a static type warning if the static type of <i>e</i> may not be assigned to the static
* type of <i>C.v</i>.
*
* The static type of the expression <i>C.v = e</i> is the static type of <i>e</i>.
*
* ... an assignment of the form <i>e<sub>1</sub>.v = e<sub>2</sub></i> ...
*
* Let <i>T</i> be the static type of <i>e<sub>1</sub></i>. It is a static type warning if
* <i>T</i> does not have an accessible instance setter named <i>v=</i>. It is a static type
* warning if the static type of <i>e<sub>2</sub></i> may not be assigned to <i>T</i>.
*
* The static type of the expression <i>e<sub>1</sub>.v = e<sub>2</sub></i> is the static type of
* <i>e<sub>2</sub></i>.
*
* ... an assignment of the form <i>e<sub>1</sub>[e<sub>2</sub>] = e<sub>3</sub></i> ...
*
* The static type of the expression <i>e<sub>1</sub>[e<sub>2</sub>] = e<sub>3</sub></i> is the
* static type of <i>e<sub>3</sub></i>.
*
* A compound assignment of the form <i>v op= e</i> is equivalent to <i>v = v op e</i>. A compound
* assignment of the form <i>C.v op= e</i> is equivalent to <i>C.v = C.v op e</i>. A compound
* assignment of the form <i>e<sub>1</sub>.v op= e<sub>2</sub></i> is equivalent to <i>((x) => x.v
* = x.v op e<sub>2</sub>)(e<sub>1</sub>)</i> where <i>x</i> is a variable that is not used in
* <i>e<sub>2</sub></i>. A compound assignment of the form <i>e<sub>1</sub>[e<sub>2</sub>] op=
* e<sub>3</sub></i> is equivalent to <i>((a, i) => a[i] = a[i] op e<sub>3</sub>)(e<sub>1</sub>,
* e<sub>2</sub>)</i> where <i>a</i> and <i>i</i> are a variables that are not used in
* <i>e<sub>3</sub></i>.</blockquote>
*/
Object visitAssignmentExpression(AssignmentExpression node) {
sc.TokenType operator = node.operator.type;
if (identical(operator, sc.TokenType.EQ)) {
Expression rightHandSide = node.rightHandSide;
Type2 staticType = getStaticType(rightHandSide);
recordStaticType(node, staticType);
Type2 overrideType = staticType;
Type2 propagatedType = rightHandSide.propagatedType;
if (propagatedType != null) {
if (propagatedType.isMoreSpecificThan(staticType)) {
recordPropagatedType2(node, propagatedType);
}
overrideType = propagatedType;
}
_resolver.override(node.leftHandSide, overrideType);
} else {
ExecutableElement staticMethodElement = node.staticElement;
Type2 staticType = computeStaticReturnType(staticMethodElement);
recordStaticType(node, staticType);
MethodElement propagatedMethodElement = node.propagatedElement;
if (propagatedMethodElement != staticMethodElement) {
Type2 propagatedType = computeStaticReturnType(propagatedMethodElement);
if (propagatedType != null && propagatedType.isMoreSpecificThan(staticType)) {
recordPropagatedType2(node, propagatedType);
}
}
}
return null;
}
/**
* The Dart Language Specification, 12.20: <blockquote>The static type of a logical boolean
* expression is `bool`.</blockquote>
*
* The Dart Language Specification, 12.21:<blockquote>A bitwise expression of the form
* <i>e<sub>1</sub> op e<sub>2</sub></i> is equivalent to the method invocation
* <i>e<sub>1</sub>.op(e<sub>2</sub>)</i>. A bitwise expression of the form <i>super op
* e<sub>2</sub></i> is equivalent to the method invocation
* <i>super.op(e<sub>2</sub>)</i>.</blockquote>
*
* The Dart Language Specification, 12.22: <blockquote>The static type of an equality expression
* is `bool`.</blockquote>
*
* The Dart Language Specification, 12.23: <blockquote>A relational expression of the form
* <i>e<sub>1</sub> op e<sub>2</sub></i> is equivalent to the method invocation
* <i>e<sub>1</sub>.op(e<sub>2</sub>)</i>. A relational expression of the form <i>super op
* e<sub>2</sub></i> is equivalent to the method invocation
* <i>super.op(e<sub>2</sub>)</i>.</blockquote>
*
* The Dart Language Specification, 12.24: <blockquote>A shift expression of the form
* <i>e<sub>1</sub> op e<sub>2</sub></i> is equivalent to the method invocation
* <i>e<sub>1</sub>.op(e<sub>2</sub>)</i>. A shift expression of the form <i>super op
* e<sub>2</sub></i> is equivalent to the method invocation
* <i>super.op(e<sub>2</sub>)</i>.</blockquote>
*
* The Dart Language Specification, 12.25: <blockquote>An additive expression of the form
* <i>e<sub>1</sub> op e<sub>2</sub></i> is equivalent to the method invocation
* <i>e<sub>1</sub>.op(e<sub>2</sub>)</i>. An additive expression of the form <i>super op
* e<sub>2</sub></i> is equivalent to the method invocation
* <i>super.op(e<sub>2</sub>)</i>.</blockquote>
*
* The Dart Language Specification, 12.26: <blockquote>A multiplicative expression of the form
* <i>e<sub>1</sub> op e<sub>2</sub></i> is equivalent to the method invocation
* <i>e<sub>1</sub>.op(e<sub>2</sub>)</i>. A multiplicative expression of the form <i>super op
* e<sub>2</sub></i> is equivalent to the method invocation
* <i>super.op(e<sub>2</sub>)</i>.</blockquote>
*/
Object visitBinaryExpression(BinaryExpression node) {
ExecutableElement staticMethodElement = node.staticElement;
Type2 staticType = computeStaticReturnType(staticMethodElement);
staticType = refineBinaryExpressionType(node, staticType);
recordStaticType(node, staticType);
MethodElement propagatedMethodElement = node.propagatedElement;
if (propagatedMethodElement != staticMethodElement) {
Type2 propagatedType = computeStaticReturnType(propagatedMethodElement);
if (propagatedType != null && propagatedType.isMoreSpecificThan(staticType)) {
recordPropagatedType2(node, propagatedType);
}
}
return null;
}
/**
* The Dart Language Specification, 12.4: <blockquote>The static type of a boolean literal is
* bool.</blockquote>
*/
Object visitBooleanLiteral(BooleanLiteral node) {
recordStaticType(node, _typeProvider.boolType);
return null;
}
/**
* The Dart Language Specification, 12.15.2: <blockquote>A cascaded method invocation expression
* of the form <i>e..suffix</i> is equivalent to the expression <i>(t) {t.suffix; return
* t;}(e)</i>.</blockquote>
*/
Object visitCascadeExpression(CascadeExpression node) {
recordStaticType(node, getStaticType(node.target));
recordPropagatedType2(node, node.target.propagatedType);
return null;
}
/**
* The Dart Language Specification, 12.19: <blockquote> ... a conditional expression <i>c</i> of
* the form <i>e<sub>1</sub> ? e<sub>2</sub> : e<sub>3</sub></i> ...
*
* It is a static type warning if the type of e<sub>1</sub> may not be assigned to `bool`.
*
* The static type of <i>c</i> is the least upper bound of the static type of <i>e<sub>2</sub></i>
* and the static type of <i>e<sub>3</sub></i>.</blockquote>
*/
Object visitConditionalExpression(ConditionalExpression node) {
Type2 staticThenType = getStaticType(node.thenExpression);
Type2 staticElseType = getStaticType(node.elseExpression);
if (staticThenType == null) {
staticThenType = _dynamicType;
}
if (staticElseType == null) {
staticElseType = _dynamicType;
}
Type2 staticType = staticThenType.getLeastUpperBound(staticElseType);
if (staticType == null) {
staticType = _dynamicType;
}
recordStaticType(node, staticType);
Type2 propagatedThenType = node.thenExpression.propagatedType;
Type2 propagatedElseType = node.elseExpression.propagatedType;
if (propagatedThenType != null || propagatedElseType != null) {
if (propagatedThenType == null) {
propagatedThenType = staticThenType;
}
if (propagatedElseType == null) {
propagatedElseType = staticElseType;
}
Type2 propagatedType = propagatedThenType.getLeastUpperBound(propagatedElseType);
if (propagatedType != null && propagatedType.isMoreSpecificThan(staticType)) {
recordPropagatedType2(node, propagatedType);
}
}
return null;
}
/**
* The Dart Language Specification, 12.3: <blockquote>The static type of a literal double is
* double.</blockquote>
*/
Object visitDoubleLiteral(DoubleLiteral node) {
recordStaticType(node, _typeProvider.doubleType);
return null;
}
Object visitFunctionDeclaration(FunctionDeclaration node) {
FunctionExpression function = node.functionExpression;
ExecutableElementImpl functionElement = node.element as ExecutableElementImpl;
functionElement.returnType = computeStaticReturnType2(node);
recordPropagatedType(functionElement, function.body);
recordStaticType(function, functionElement.type);
return null;
}
/**
* The Dart Language Specification, 12.9: <blockquote>The static type of a function literal of the
* form <i>(T<sub>1</sub> a<sub>1</sub>, &hellip;, T<sub>n</sub> a<sub>n</sub>, [T<sub>n+1</sub>
* x<sub>n+1</sub> = d1, &hellip;, T<sub>n+k</sub> x<sub>n+k</sub> = dk]) => e</i> is
* <i>(T<sub>1</sub>, &hellip;, Tn, [T<sub>n+1</sub> x<sub>n+1</sub>, &hellip;, T<sub>n+k</sub>
* x<sub>n+k</sub>]) &rarr; T<sub>0</sub></i>, where <i>T<sub>0</sub></i> is the static type of
* <i>e</i>. In any case where <i>T<sub>i</sub>, 1 &lt;= i &lt;= n</i>, is not specified, it is
* considered to have been specified as dynamic.
*
* The static type of a function literal of the form <i>(T<sub>1</sub> a<sub>1</sub>, &hellip;,
* T<sub>n</sub> a<sub>n</sub>, {T<sub>n+1</sub> x<sub>n+1</sub> : d1, &hellip;, T<sub>n+k</sub>
* x<sub>n+k</sub> : dk}) => e</i> is <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>, {T<sub>n+1</sub>
* x<sub>n+1</sub>, &hellip;, T<sub>n+k</sub> x<sub>n+k</sub>}) &rarr; T<sub>0</sub></i>, where
* <i>T<sub>0</sub></i> is the static type of <i>e</i>. In any case where <i>T<sub>i</sub>, 1
* &lt;= i &lt;= n</i>, is not specified, it is considered to have been specified as dynamic.
*
* The static type of a function literal of the form <i>(T<sub>1</sub> a<sub>1</sub>, &hellip;,
* T<sub>n</sub> a<sub>n</sub>, [T<sub>n+1</sub> x<sub>n+1</sub> = d1, &hellip;, T<sub>n+k</sub>
* x<sub>n+k</sub> = dk]) {s}</i> is <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>, [T<sub>n+1</sub>
* x<sub>n+1</sub>, &hellip;, T<sub>n+k</sub> x<sub>n+k</sub>]) &rarr; dynamic</i>. In any case
* where <i>T<sub>i</sub>, 1 &lt;= i &lt;= n</i>, is not specified, it is considered to have been
* specified as dynamic.
*
* The static type of a function literal of the form <i>(T<sub>1</sub> a<sub>1</sub>, &hellip;,
* T<sub>n</sub> a<sub>n</sub>, {T<sub>n+1</sub> x<sub>n+1</sub> : d1, &hellip;, T<sub>n+k</sub>
* x<sub>n+k</sub> : dk}) {s}</i> is <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>, {T<sub>n+1</sub>
* x<sub>n+1</sub>, &hellip;, T<sub>n+k</sub> x<sub>n+k</sub>}) &rarr; dynamic</i>. In any case
* where <i>T<sub>i</sub>, 1 &lt;= i &lt;= n</i>, is not specified, it is considered to have been
* specified as dynamic.</blockquote>
*/
Object visitFunctionExpression(FunctionExpression node) {
if (node.parent is FunctionDeclaration) {
return null;
}
ExecutableElementImpl functionElement = node.element as ExecutableElementImpl;
functionElement.returnType = computeStaticReturnType3(node);
recordPropagatedType(functionElement, node.body);
recordStaticType(node, node.element.type);
return null;
}
/**
* The Dart Language Specification, 12.14.4: <blockquote>A function expression invocation <i>i</i>
* has the form <i>e<sub>f</sub>(a<sub>1</sub>, &hellip;, a<sub>n</sub>, x<sub>n+1</sub>:
* a<sub>n+1</sub>, &hellip;, x<sub>n+k</sub>: a<sub>n+k</sub>)</i>, where <i>e<sub>f</sub></i> is
* an expression.
*
* It is a static type warning if the static type <i>F</i> of <i>e<sub>f</sub></i> may not be
* assigned to a function type.
*
* If <i>F</i> is not a function type, the static type of <i>i</i> is dynamic. Otherwise the
* static type of <i>i</i> is the declared return type of <i>F</i>.</blockquote>
*/
Object visitFunctionExpressionInvocation(FunctionExpressionInvocation node) {
ExecutableElement staticMethodElement = node.staticElement;
Type2 staticStaticType = computeStaticReturnType(staticMethodElement);
recordStaticType(node, staticStaticType);
Type2 staticPropagatedType = computePropagatedReturnType(staticMethodElement);
if (staticPropagatedType != null && (staticStaticType == null || staticPropagatedType.isMoreSpecificThan(staticStaticType))) {
recordPropagatedType2(node, staticPropagatedType);
}
ExecutableElement propagatedMethodElement = node.propagatedElement;
if (propagatedMethodElement != staticMethodElement) {
Type2 propagatedStaticType = computeStaticReturnType(propagatedMethodElement);
if (propagatedStaticType != null && (staticStaticType == null || propagatedStaticType.isMoreSpecificThan(staticStaticType)) && (staticPropagatedType == null || propagatedStaticType.isMoreSpecificThan(staticPropagatedType))) {
recordPropagatedType2(node, propagatedStaticType);
}
Type2 propagatedPropagatedType = computePropagatedReturnType(propagatedMethodElement);
if (propagatedPropagatedType != null && (staticStaticType == null || propagatedPropagatedType.isMoreSpecificThan(staticStaticType)) && (staticPropagatedType == null || propagatedPropagatedType.isMoreSpecificThan(staticPropagatedType)) && (propagatedStaticType == null || propagatedPropagatedType.isMoreSpecificThan(propagatedStaticType))) {
recordPropagatedType2(node, propagatedPropagatedType);
}
}
return null;
}
/**
* The Dart Language Specification, 12.29: <blockquote>An assignable expression of the form
* <i>e<sub>1</sub>[e<sub>2</sub>]</i> is evaluated as a method invocation of the operator method
* <i>[]</i> on <i>e<sub>1</sub></i> with argument <i>e<sub>2</sub></i>.</blockquote>
*/
Object visitIndexExpression(IndexExpression node) {
if (node.inSetterContext()) {
ExecutableElement staticMethodElement = node.staticElement;
Type2 staticType = computeArgumentType(staticMethodElement);
recordStaticType(node, staticType);
MethodElement propagatedMethodElement = node.propagatedElement;
if (propagatedMethodElement != staticMethodElement) {
Type2 propagatedType = computeArgumentType(propagatedMethodElement);
if (propagatedType != null && propagatedType.isMoreSpecificThan(staticType)) {
recordPropagatedType2(node, propagatedType);
}
}
} else {
ExecutableElement staticMethodElement = node.staticElement;
Type2 staticType = computeStaticReturnType(staticMethodElement);
recordStaticType(node, staticType);
MethodElement propagatedMethodElement = node.propagatedElement;
if (propagatedMethodElement != staticMethodElement) {
Type2 propagatedType = computeStaticReturnType(propagatedMethodElement);
if (propagatedType != null && propagatedType.isMoreSpecificThan(staticType)) {
recordPropagatedType2(node, propagatedType);
}
}
}
return null;
}
/**
* The Dart Language Specification, 12.11.1: <blockquote>The static type of a new expression of
* either the form <i>new T.id(a<sub>1</sub>, &hellip;, a<sub>n</sub>)</i> or the form <i>new
* T(a<sub>1</sub>, &hellip;, a<sub>n</sub>)</i> is <i>T</i>.</blockquote>
*
* The Dart Language Specification, 12.11.2: <blockquote>The static type of a constant object
* expression of either the form <i>const T.id(a<sub>1</sub>, &hellip;, a<sub>n</sub>)</i> or the
* form <i>const T(a<sub>1</sub>, &hellip;, a<sub>n</sub>)</i> is <i>T</i>. </blockquote>
*/
Object visitInstanceCreationExpression(InstanceCreationExpression node) {
recordStaticType(node, node.constructorName.type.type);
ConstructorElement element = node.element;
if (element != null && "Element" == element.enclosingElement.name) {
String constructorName = element.name;
if ("tag" == constructorName) {
LibraryElement library = element.library;
if (isHtmlLibrary(library)) {
Type2 returnType = getFirstArgumentAsType2(library, node.argumentList, _HTML_ELEMENT_TO_CLASS_MAP);
if (returnType != null) {
recordPropagatedType2(node, returnType);
}
}
} else {
LibraryElement library = element.library;
if (isHtmlLibrary(library)) {
Type2 returnType = getElementNameAsType(library, constructorName, _HTML_ELEMENT_TO_CLASS_MAP);
if (returnType != null) {
recordPropagatedType2(node, returnType);
}
}
}
}
return null;
}
/**
* The Dart Language Specification, 12.3: <blockquote>The static type of an integer literal is
* `int`.</blockquote>
*/
Object visitIntegerLiteral(IntegerLiteral node) {
recordStaticType(node, _typeProvider.intType);
return null;
}
/**
* The Dart Language Specification, 12.31: <blockquote>It is a static warning if <i>T</i> does not
* denote a type available in the current lexical scope.
*
* The static type of an is-expression is `bool`.</blockquote>
*/
Object visitIsExpression(IsExpression node) {
recordStaticType(node, _typeProvider.boolType);
return null;
}
/**
* The Dart Language Specification, 12.6: <blockquote>The static type of a list literal of the
* form <i><b>const</b> &lt;E&gt;[e<sub>1</sub>, &hellip;, e<sub>n</sub>]</i> or the form
* <i>&lt;E&gt;[e<sub>1</sub>, &hellip;, e<sub>n</sub>]</i> is `List&lt;E&gt;`. The static
* type a list literal of the form <i><b>const</b> [e<sub>1</sub>, &hellip;, e<sub>n</sub>]</i> or
* the form <i>[e<sub>1</sub>, &hellip;, e<sub>n</sub>]</i> is `List&lt;dynamic&gt;`
* .</blockquote>
*/
Object visitListLiteral(ListLiteral node) {
Type2 staticType = _dynamicType;
TypeArgumentList typeArguments = node.typeArguments;
if (typeArguments != null) {
NodeList<TypeName> arguments = typeArguments.arguments;
if (arguments != null && arguments.length == 1) {
TypeName argumentTypeName = arguments[0];
Type2 argumentType = getType2(argumentTypeName);
if (argumentType != null) {
staticType = argumentType;
}
}
}
recordStaticType(node, _typeProvider.listType.substitute4(<Type2> [staticType]));
NodeList<Expression> elements = node.elements;
int count = elements.length;
if (count > 0) {
Type2 propagatedType = elements[0].bestType;
for (int i = 1; i < count; i++) {
Type2 elementType = elements[i].bestType;
if (propagatedType != elementType) {
propagatedType = _dynamicType;
} else {
propagatedType = propagatedType.getLeastUpperBound(elementType);
if (propagatedType == null) {
propagatedType = _dynamicType;
}
}
}
if (propagatedType.isMoreSpecificThan(staticType)) {
recordPropagatedType2(node, _typeProvider.listType.substitute4(<Type2> [propagatedType]));
}
}
return null;
}
/**
* The Dart Language Specification, 12.7: <blockquote>The static type of a map literal of the form
* <i><b>const</b> &lt;String, V&gt; {k<sub>1</sub>:e<sub>1</sub>, &hellip;,
* k<sub>n</sub>:e<sub>n</sub>}</i> or the form <i>&lt;String, V&gt; {k<sub>1</sub>:e<sub>1</sub>,
* &hellip;, k<sub>n</sub>:e<sub>n</sub>}</i> is `Map&lt;String, V&gt;`. The static type a
* map literal of the form <i><b>const</b> {k<sub>1</sub>:e<sub>1</sub>, &hellip;,
* k<sub>n</sub>:e<sub>n</sub>}</i> or the form <i>{k<sub>1</sub>:e<sub>1</sub>, &hellip;,
* k<sub>n</sub>:e<sub>n</sub>}</i> is `Map&lt;String, dynamic&gt;`.
*
* It is a compile-time error if the first type argument to a map literal is not
* <i>String</i>.</blockquote>
*/
Object visitMapLiteral(MapLiteral node) {
Type2 staticKeyType = _dynamicType;
Type2 staticValueType = _dynamicType;
TypeArgumentList typeArguments = node.typeArguments;
if (typeArguments != null) {
NodeList<TypeName> arguments = typeArguments.arguments;
if (arguments != null && arguments.length == 2) {
TypeName entryKeyTypeName = arguments[0];
Type2 entryKeyType = getType2(entryKeyTypeName);
if (entryKeyType != null) {
staticKeyType = entryKeyType;
}
TypeName entryValueTypeName = arguments[1];
Type2 entryValueType = getType2(entryValueTypeName);
if (entryValueType != null) {
staticValueType = entryValueType;
}
}
}
recordStaticType(node, _typeProvider.mapType.substitute4(<Type2> [staticKeyType, staticValueType]));
NodeList<MapLiteralEntry> entries = node.entries;
int count = entries.length;
if (count > 0) {
MapLiteralEntry entry = entries[0];
Type2 propagatedKeyType = entry.key.bestType;
Type2 propagatedValueType = entry.value.bestType;
for (int i = 1; i < count; i++) {
entry = entries[i];
Type2 elementKeyType = entry.key.bestType;
if (propagatedKeyType != elementKeyType) {
propagatedKeyType = _dynamicType;
} else {
propagatedKeyType = propagatedKeyType.getLeastUpperBound(elementKeyType);
if (propagatedKeyType == null) {
propagatedKeyType = _dynamicType;
}
}
Type2 elementValueType = entry.value.bestType;
if (propagatedValueType != elementValueType) {
propagatedValueType = _dynamicType;
} else {
propagatedValueType = propagatedValueType.getLeastUpperBound(elementValueType);
if (propagatedValueType == null) {
propagatedValueType = _dynamicType;
}
}
}
bool betterKey = propagatedKeyType != null && propagatedKeyType.isMoreSpecificThan(staticKeyType);
bool betterValue = propagatedValueType != null && propagatedValueType.isMoreSpecificThan(staticValueType);
if (betterKey || betterValue) {
if (!betterKey) {
propagatedKeyType = staticKeyType;
}
if (!betterValue) {
propagatedValueType = staticValueType;
}
recordPropagatedType2(node, _typeProvider.mapType.substitute4(<Type2> [propagatedKeyType, propagatedValueType]));
}
}
return null;
}
/**
* The Dart Language Specification, 12.15.1: <blockquote>An ordinary method invocation <i>i</i>
* has the form <i>o.m(a<sub>1</sub>, &hellip;, a<sub>n</sub>, x<sub>n+1</sub>: a<sub>n+1</sub>,
* &hellip;, x<sub>n+k</sub>: a<sub>n+k</sub>)</i>.
*
* Let <i>T</i> be the static type of <i>o</i>. It is a static type warning if <i>T</i> does not
* have an accessible instance member named <i>m</i>. If <i>T.m</i> exists, it is a static warning
* if the type <i>F</i> of <i>T.m</i> may not be assigned to a function type.
*
* If <i>T.m</i> does not exist, or if <i>F</i> is not a function type, the static type of
* <i>i</i> is dynamic. Otherwise the static type of <i>i</i> is the declared return type of
* <i>F</i>.</blockquote>
*
* The Dart Language Specification, 11.15.3: <blockquote>A static method invocation <i>i</i> has
* the form <i>C.m(a<sub>1</sub>, &hellip;, a<sub>n</sub>, x<sub>n+1</sub>: a<sub>n+1</sub>,
* &hellip;, x<sub>n+k</sub>: a<sub>n+k</sub>)</i>.
*
* It is a static type warning if the type <i>F</i> of <i>C.m</i> may not be assigned to a
* function type.
*
* If <i>F</i> is not a function type, or if <i>C.m</i> does not exist, the static type of i is
* dynamic. Otherwise the static type of <i>i</i> is the declared return type of
* <i>F</i>.</blockquote>
*
* The Dart Language Specification, 11.15.4: <blockquote>A super method invocation <i>i</i> has
* the form <i>super.m(a<sub>1</sub>, &hellip;, a<sub>n</sub>, x<sub>n+1</sub>: a<sub>n+1</sub>,
* &hellip;, x<sub>n+k</sub>: a<sub>n+k</sub>)</i>.
*
* It is a static type warning if <i>S</i> does not have an accessible instance member named m. If
* <i>S.m</i> exists, it is a static warning if the type <i>F</i> of <i>S.m</i> may not be
* assigned to a function type.
*
* If <i>S.m</i> does not exist, or if <i>F</i> is not a function type, the static type of
* <i>i</i> is dynamic. Otherwise the static type of <i>i</i> is the declared return type of
* <i>F</i>.</blockquote>
*/
Object visitMethodInvocation(MethodInvocation node) {
SimpleIdentifier methodNameNode = node.methodName;
Element staticMethodElement = methodNameNode.staticElement;
Type2 staticStaticType = computeStaticReturnType(staticMethodElement);
recordStaticType(node, staticStaticType);
Type2 staticPropagatedType = computePropagatedReturnType(staticMethodElement);
if (staticPropagatedType != null && (staticStaticType == null || staticPropagatedType.isMoreSpecificThan(staticStaticType))) {
recordPropagatedType2(node, staticPropagatedType);
}
String methodName = methodNameNode.name;
if (methodName == "then") {
Expression target = node.realTarget;
Type2 targetType = target == null ? null : target.bestType;
if (isAsyncFutureType(targetType)) {
NodeList<Expression> arguments = node.argumentList.arguments;
if (arguments.length == 1) {
Expression closureArg = arguments[0];
if (closureArg is FunctionExpression) {
FunctionExpression closureExpr = closureArg as FunctionExpression;
Type2 returnType = computePropagatedReturnType(closureExpr.element);
if (returnType != null) {
InterfaceTypeImpl newFutureType;
if (isAsyncFutureType(returnType)) {
newFutureType = returnType as InterfaceTypeImpl;
} else {
InterfaceType futureType = targetType as InterfaceType;
newFutureType = new InterfaceTypeImpl.con1(futureType.element);
newFutureType.typeArguments = <Type2> [returnType];
}
recordPropagatedType2(node, newFutureType);
return null;
}
}
}
}
}
if (methodName == "\$dom_createEvent") {
Expression target = node.realTarget;
if (target != null) {
Type2 targetType = target.bestType;
if (targetType is InterfaceType && (targetType.name == "HtmlDocument" || targetType.name == "Document")) {
LibraryElement library = targetType.element.library;
if (isHtmlLibrary(library)) {
Type2 returnType = getFirstArgumentAsType(library, node.argumentList);
if (returnType != null) {
recordPropagatedType2(node, returnType);
}
}
}
}
} else if (methodName == "query") {
Expression target = node.realTarget;
if (target == null) {
Element methodElement = methodNameNode.bestElement;
if (methodElement != null) {
LibraryElement library = methodElement.library;
if (isHtmlLibrary(library)) {
Type2 returnType = getFirstArgumentAsQuery(library, node.argumentList);
if (returnType != null) {
recordPropagatedType2(node, returnType);
}
}
}
} else {
Type2 targetType = target.bestType;
if (targetType is InterfaceType && (targetType.name == "HtmlDocument" || targetType.name == "Document")) {
LibraryElement library = targetType.element.library;
if (isHtmlLibrary(library)) {
Type2 returnType = getFirstArgumentAsQuery(library, node.argumentList);
if (returnType != null) {
recordPropagatedType2(node, returnType);
}
}
}
}
} else if (methodName == "\$dom_createElement") {
Expression target = node.realTarget;
Type2 targetType = target.bestType;
if (targetType is InterfaceType && (targetType.name == "HtmlDocument" || targetType.name == "Document")) {
LibraryElement library = targetType.element.library;
if (isHtmlLibrary(library)) {
Type2 returnType = getFirstArgumentAsQuery(library, node.argumentList);
if (returnType != null) {
recordPropagatedType2(node, returnType);
}
}
}
} else if (methodName == "JS") {
Type2 returnType = getFirstArgumentAsType(_typeProvider.objectType.element.library, node.argumentList);
if (returnType != null) {
recordPropagatedType2(node, returnType);
}
} else {
Element propagatedElement = methodNameNode.propagatedElement;
if (propagatedElement != staticMethodElement) {
Type2 propagatedStaticType = computeStaticReturnType(propagatedElement);
if (propagatedStaticType != null && (staticStaticType == null || propagatedStaticType.isMoreSpecificThan(staticStaticType)) && (staticPropagatedType == null || propagatedStaticType.isMoreSpecificThan(staticPropagatedType))) {
recordPropagatedType2(node, propagatedStaticType);
}
Type2 propagatedPropagatedType = computePropagatedReturnType(propagatedElement);
if (propagatedPropagatedType != null && (staticStaticType == null || propagatedPropagatedType.isMoreSpecificThan(staticStaticType)) && (staticPropagatedType == null || propagatedPropagatedType.isMoreSpecificThan(staticPropagatedType)) && (propagatedStaticType == null || propagatedPropagatedType.isMoreSpecificThan(propagatedStaticType))) {
recordPropagatedType2(node, propagatedPropagatedType);
}
}
}
return null;
}
Object visitNamedExpression(NamedExpression node) {
Expression expression = node.expression;
recordStaticType(node, getStaticType(expression));
recordPropagatedType2(node, expression.propagatedType);
return null;
}
/**
* The Dart Language Specification, 12.2: <blockquote>The static type of `null` is bottom.
* </blockquote>
*/
Object visitNullLiteral(NullLiteral node) {
recordStaticType(node, _typeProvider.bottomType);
return null;
}
Object visitParenthesizedExpression(ParenthesizedExpression node) {
Expression expression = node.expression;
recordStaticType(node, getStaticType(expression));
recordPropagatedType2(node, expression.propagatedType);
return null;
}
/**
* The Dart Language Specification, 12.28: <blockquote>A postfix expression of the form
* <i>v++</i>, where <i>v</i> is an identifier, is equivalent to <i>(){var r = v; v = r + 1;
* return r}()</i>.
*
* A postfix expression of the form <i>C.v++</i> is equivalent to <i>(){var r = C.v; C.v = r + 1;
* return r}()</i>.
*
* A postfix expression of the form <i>e1.v++</i> is equivalent to <i>(x){var r = x.v; x.v = r +
* 1; return r}(e1)</i>.
*
* A postfix expression of the form <i>e1[e2]++</i> is equivalent to <i>(a, i){var r = a[i]; a[i]
* = r + 1; return r}(e1, e2)</i>
*
* A postfix expression of the form <i>v--</i>, where <i>v</i> is an identifier, is equivalent to
* <i>(){var r = v; v = r - 1; return r}()</i>.
*
* A postfix expression of the form <i>C.v--</i> is equivalent to <i>(){var r = C.v; C.v = r - 1;
* return r}()</i>.
*
* A postfix expression of the form <i>e1.v--</i> is equivalent to <i>(x){var r = x.v; x.v = r -
* 1; return r}(e1)</i>.
*
* A postfix expression of the form <i>e1[e2]--</i> is equivalent to <i>(a, i){var r = a[i]; a[i]
* = r - 1; return r}(e1, e2)</i></blockquote>
*/
Object visitPostfixExpression(PostfixExpression node) {
Expression operand = node.operand;
Type2 staticType = getStaticType(operand);
sc.TokenType operator = node.operator.type;
if (identical(operator, sc.TokenType.MINUS_MINUS) || identical(operator, sc.TokenType.PLUS_PLUS)) {
Type2 intType = _typeProvider.intType;
if (identical(getStaticType(node.operand), intType)) {
staticType = intType;
}
}
recordStaticType(node, staticType);
recordPropagatedType2(node, operand.propagatedType);
return null;
}
/**
* See [visitSimpleIdentifier].
*/
Object visitPrefixedIdentifier(PrefixedIdentifier node) {
SimpleIdentifier prefixedIdentifier = node.identifier;
Element element = prefixedIdentifier.staticElement;
Type2 staticType = _dynamicType;
if (element is ClassElement) {
if (isNotTypeLiteral(node)) {
staticType = ((element as ClassElement)).type;
} else {
staticType = _typeProvider.typeType;
}
} else if (element is FunctionTypeAliasElement) {
staticType = ((element as FunctionTypeAliasElement)).type;
} else if (element is MethodElement) {
staticType = ((element as MethodElement)).type;
} else if (element is PropertyAccessorElement) {
staticType = getType(element as PropertyAccessorElement, node.prefix.staticType);
} else if (element is ExecutableElement) {
staticType = ((element as ExecutableElement)).type;
} else if (element is TypeVariableElement) {
staticType = ((element as TypeVariableElement)).type;
} else if (element is VariableElement) {
staticType = ((element as VariableElement)).type;
}
recordStaticType(prefixedIdentifier, staticType);
recordStaticType(node, staticType);
Type2 propagatedType = _overrideManager.getType(element);
if (propagatedType != null && propagatedType.isMoreSpecificThan(staticType)) {
recordPropagatedType2(prefixedIdentifier, propagatedType);
recordPropagatedType2(node, propagatedType);
}
return null;
}
/**
* The Dart Language Specification, 12.27: <blockquote>A unary expression <i>u</i> of the form
* <i>op e</i> is equivalent to a method invocation <i>expression e.op()</i>. An expression of the
* form <i>op super</i> is equivalent to the method invocation <i>super.op()<i>.</blockquote>
*/
Object visitPrefixExpression(PrefixExpression node) {
sc.TokenType operator = node.operator.type;
if (identical(operator, sc.TokenType.BANG)) {
recordStaticType(node, _typeProvider.boolType);
} else {
ExecutableElement staticMethodElement = node.staticElement;
Type2 staticType = computeStaticReturnType(staticMethodElement);
if (identical(operator, sc.TokenType.MINUS_MINUS) || identical(operator, sc.TokenType.PLUS_PLUS)) {
Type2 intType = _typeProvider.intType;
if (identical(getStaticType(node.operand), intType)) {
staticType = intType;
}
}
recordStaticType(node, staticType);
MethodElement propagatedMethodElement = node.propagatedElement;
if (propagatedMethodElement != staticMethodElement) {
Type2 propagatedType = computeStaticReturnType(propagatedMethodElement);
if (propagatedType != null && propagatedType.isMoreSpecificThan(staticType)) {
recordPropagatedType2(node, propagatedType);
}
}
}
return null;
}
/**
* The Dart Language Specification, 12.13: <blockquote> Property extraction allows for a member of
* an object to be concisely extracted from the object. If <i>o</i> is an object, and if <i>m</i>
* is the name of a method member of <i>o</i>, then
*
* * <i>o.m</i> is defined to be equivalent to: <i>(r<sub>1</sub>, &hellip;, r<sub>n</sub>,
* {p<sub>1</sub> : d<sub>1</sub>, &hellip;, p<sub>k</sub> : d<sub>k</sub>}){return
* o.m(r<sub>1</sub>, &hellip;, r<sub>n</sub>, p<sub>1</sub>: p<sub>1</sub>, &hellip;,
* p<sub>k</sub>: p<sub>k</sub>);}</i> if <i>m</i> has required parameters <i>r<sub>1</sub>,
* &hellip;, r<sub>n</sub></i>, and named parameters <i>p<sub>1</sub> &hellip; p<sub>k</sub></i>
* with defaults <i>d<sub>1</sub>, &hellip;, d<sub>k</sub></i>.
* * <i>(r<sub>1</sub>, &hellip;, r<sub>n</sub>, [p<sub>1</sub> = d<sub>1</sub>, &hellip;,
* p<sub>k</sub> = d<sub>k</sub>]){return o.m(r<sub>1</sub>, &hellip;, r<sub>n</sub>,
* p<sub>1</sub>, &hellip;, p<sub>k</sub>);}</i> if <i>m</i> has required parameters
* <i>r<sub>1</sub>, &hellip;, r<sub>n</sub></i>, and optional positional parameters
* <i>p<sub>1</sub> &hellip; p<sub>k</sub></i> with defaults <i>d<sub>1</sub>, &hellip;,
* d<sub>k</sub></i>.
*
* Otherwise, if <i>m</i> is the name of a getter member of <i>o</i> (declared implicitly or
* explicitly) then <i>o.m</i> evaluates to the result of invoking the getter. </blockquote>
*
* The Dart Language Specification, 12.17: <blockquote> ... a getter invocation <i>i</i> of the
* form <i>e.m</i> ...
*
* Let <i>T</i> be the static type of <i>e</i>. It is a static type warning if <i>T</i> does not
* have a getter named <i>m</i>.
*
* The static type of <i>i</i> is the declared return type of <i>T.m</i>, if <i>T.m</i> exists;
* otherwise the static type of <i>i</i> is dynamic.
*
* ... a getter invocation <i>i</i> of the form <i>C.m</i> ...
*
* It is a static warning if there is no class <i>C</i> in the enclosing lexical scope of
* <i>i</i>, or if <i>C</i> does not declare, implicitly or explicitly, a getter named <i>m</i>.
*
* The static type of <i>i</i> is the declared return type of <i>C.m</i> if it exists or dynamic
* otherwise.
*
* ... a top-level getter invocation <i>i</i> of the form <i>m</i>, where <i>m</i> is an
* identifier ...
*
* The static type of <i>i</i> is the declared return type of <i>m</i>.</blockquote>
*/
Object visitPropertyAccess(PropertyAccess node) {
SimpleIdentifier propertyName = node.propertyName;
Element element = propertyName.staticElement;
Type2 staticType = _dynamicType;
if (element is MethodElement) {
staticType = ((element as MethodElement)).type;
} else if (element is PropertyAccessorElement) {
staticType = getType(element as PropertyAccessorElement, node.target != null ? getStaticType(node.target) : null);
} else {
}
recordStaticType(propertyName, staticType);
recordStaticType(node, staticType);
Type2 propagatedType = _overrideManager.getType(element);
if (propagatedType != null && propagatedType.isMoreSpecificThan(staticType)) {
recordPropagatedType2(node, propagatedType);
}
return null;
}
/**
* The Dart Language Specification, 12.9: <blockquote>The static type of a rethrow expression is
* bottom.</blockquote>
*/
Object visitRethrowExpression(RethrowExpression node) {
recordStaticType(node, _typeProvider.bottomType);
return null;
}
/**
* The Dart Language Specification, 12.30: <blockquote>Evaluation of an identifier expression
* <i>e</i> of the form <i>id</i> proceeds as follows:
*
* Let <i>d</i> be the innermost declaration in the enclosing lexical scope whose name is
* <i>id</i>. If no such declaration exists in the lexical scope, let <i>d</i> be the declaration
* of the inherited member named <i>id</i> if it exists.
*
* * If <i>d</i> is a class or type alias <i>T</i>, the value of <i>e</i> is the unique instance
* of class `Type` reifying <i>T</i>.
* * If <i>d</i> is a type parameter <i>T</i>, then the value of <i>e</i> is the value of the
* actual type argument corresponding to <i>T</i> that was passed to the generative constructor
* that created the current binding of this. We are assured that this is well defined, because if
* we were in a static member the reference to <i>T</i> would be a compile-time error.
* * If <i>d</i> is a library variable then:
*
* * If <i>d</i> is of one of the forms <i>var v = e<sub>i</sub>;</i>, <i>T v =
* e<sub>i</sub>;</i>, <i>final v = e<sub>i</sub>;</i>, <i>final T v = e<sub>i</sub>;</i>, and no
* value has yet been stored into <i>v</i> then the initializer expression <i>e<sub>i</sub></i> is
* evaluated. If, during the evaluation of <i>e<sub>i</sub></i>, the getter for <i>v</i> is
* referenced, a CyclicInitializationError is thrown. If the evaluation succeeded yielding an
* object <i>o</i>, let <i>r = o</i>, otherwise let <i>r = null</i>. In any case, <i>r</i> is
* stored into <i>v</i>. The value of <i>e</i> is <i>r</i>.
* * If <i>d</i> is of one of the forms <i>const v = e;</i> or <i>const T v = e;</i> the result
* of the getter is the value of the compile time constant <i>e</i>. Otherwise
* * <i>e</i> evaluates to the current binding of <i>id</i>.
*
* * If <i>d</i> is a local variable or formal parameter then <i>e</i> evaluates to the current
* binding of <i>id</i>.
* * If <i>d</i> is a static method, top level function or local function then <i>e</i>
* evaluates to the function defined by <i>d</i>.
* * If <i>d</i> is the declaration of a static variable or static getter declared in class
* <i>C</i>, then <i>e</i> is equivalent to the getter invocation <i>C.id</i>.
* * If <i>d</i> is the declaration of a top level getter, then <i>e</i> is equivalent to the
* getter invocation <i>id</i>.
* * Otherwise, if <i>e</i> occurs inside a top level or static function (be it function,
* method, getter, or setter) or variable initializer, evaluation of e causes a NoSuchMethodError
* to be thrown.
* * Otherwise <i>e</i> is equivalent to the property extraction <i>this.id</i>.
*
* </blockquote>
*/
Object visitSimpleIdentifier(SimpleIdentifier node) {
Element element = node.staticElement;
Type2 staticType = _dynamicType;
if (element is ClassElement) {
if (isNotTypeLiteral(node)) {
staticType = ((element as ClassElement)).type;
} else {
staticType = _typeProvider.typeType;
}
} else if (element is FunctionTypeAliasElement) {
staticType = ((element as FunctionTypeAliasElement)).type;
} else if (element is MethodElement) {
staticType = ((element as MethodElement)).type;
} else if (element is PropertyAccessorElement) {
staticType = getType(element as PropertyAccessorElement, null);
} else if (element is ExecutableElement) {
staticType = ((element as ExecutableElement)).type;
} else if (element is TypeVariableElement) {
staticType = ((element as TypeVariableElement)).type;
} else if (element is VariableElement) {
staticType = ((element as VariableElement)).type;
} else if (element is PrefixElement) {
return null;
} else {
staticType = _dynamicType;
}
recordStaticType(node, staticType);
Type2 propagatedType = _overrideManager.getType(element);
if (propagatedType != null && propagatedType.isMoreSpecificThan(staticType)) {
recordPropagatedType2(node, propagatedType);
}
return null;
}
/**
* The Dart Language Specification, 12.5: <blockquote>The static type of a string literal is
* `String`.</blockquote>
*/
Object visitSimpleStringLiteral(SimpleStringLiteral node) {
recordStaticType(node, _typeProvider.stringType);
return null;
}
/**
* The Dart Language Specification, 12.5: <blockquote>The static type of a string literal is
* `String`.</blockquote>
*/
Object visitStringInterpolation(StringInterpolation node) {
recordStaticType(node, _typeProvider.stringType);
return null;
}
Object visitSuperExpression(SuperExpression node) {
if (_thisType == null) {
recordStaticType(node, _dynamicType);
} else {
recordStaticType(node, _thisType);
}
return null;
}
Object visitSymbolLiteral(SymbolLiteral node) {
recordStaticType(node, _typeProvider.symbolType);
return null;
}
/**
* The Dart Language Specification, 12.10: <blockquote>The static type of `this` is the
* interface of the immediately enclosing class.</blockquote>
*/
Object visitThisExpression(ThisExpression node) {
if (_thisType == null) {
recordStaticType(node, _dynamicType);
} else {
recordStaticType(node, _thisType);
}
return null;
}
/**
* The Dart Language Specification, 12.8: <blockquote>The static type of a throw expression is
* bottom.</blockquote>
*/
Object visitThrowExpression(ThrowExpression node) {
recordStaticType(node, _typeProvider.bottomType);
return null;
}
Object visitVariableDeclaration(VariableDeclaration node) {
Expression initializer = node.initializer;
if (initializer != null) {
Type2 rightType = initializer.bestType;
SimpleIdentifier name = node.name;
recordPropagatedType2(name, rightType);
VariableElement element = name.staticElement as VariableElement;
if (element != null) {
_resolver.override2(element, rightType);
}
}
return null;
}
/**
* Record that the static type of the given node is the type of the second argument to the method
* represented by the given element.
*
* @param element the element representing the method invoked by the given node
*/
Type2 computeArgumentType(ExecutableElement element) {
if (element != null) {
List<ParameterElement> parameters = element.parameters;
if (parameters != null && parameters.length == 2) {
return parameters[1].type;
}
}
return _dynamicType;
}
/**
* Compute the propagated return type of the method or function represented by the given element.
*
* @param element the element representing the method or function invoked by the given node
* @return the propagated return type that was computed
*/
Type2 computePropagatedReturnType(Element element) {
if (element is ExecutableElement) {
return _propagatedReturnTypes[element];
}
return null;
}
/**
* Given a function body, compute the propagated return type of the function. The propagated
* return type of functions with a block body is the least upper bound of all
* [ReturnStatement] expressions, with an expression body it is the type of the expression.
*
* @param body the boy of the function whose propagated return type is to be computed
* @return the propagated return type that was computed
*/
Type2 computePropagatedReturnType2(FunctionBody body) {
if (body is ExpressionFunctionBody) {
ExpressionFunctionBody expressionBody = body as ExpressionFunctionBody;
return expressionBody.expression.bestType;
}
if (body is BlockFunctionBody) {
List<Type2> result = [null];
body.accept(new GeneralizingASTVisitor_8(result));
return result[0];
}
return null;
}
/**
* Compute the static return type of the method or function represented by the given element.
*
* @param element the element representing the method or function invoked by the given node
* @return the static return type that was computed
*/
Type2 computeStaticReturnType(Element element) {
if (element is PropertyAccessorElement) {
FunctionType propertyType = ((element as PropertyAccessorElement)).type;
if (propertyType != null) {
Type2 returnType = propertyType.returnType;
if (returnType is InterfaceType) {
if (identical(returnType, _typeProvider.functionType)) {
return _dynamicType;
}
MethodElement callMethod = ((returnType as InterfaceType)).lookUpMethod(ElementResolver.CALL_METHOD_NAME, _resolver.definingLibrary);
if (callMethod != null) {
return callMethod.type.returnType;
}
} else if (returnType is FunctionType) {
Type2 innerReturnType = ((returnType as FunctionType)).returnType;
if (innerReturnType != null) {
return innerReturnType;
}
} else if (returnType.isDartCoreFunction) {
return _dynamicType;
}
if (returnType != null) {
return returnType;
}
}
} else if (element is ExecutableElement) {
FunctionType type = ((element as ExecutableElement)).type;
if (type != null) {
return type.returnType;
}
} else if (element is VariableElement) {
Type2 variableType = ((element as VariableElement)).type;
if (variableType is FunctionType) {
return ((variableType as FunctionType)).returnType;
}
}
return _dynamicType;
}
/**
* Given a function declaration, compute the return static type of the function. The return type
* of functions with a block body is `dynamicType`, with an expression body it is the type
* of the expression.
*
* @param node the function expression whose static return type is to be computed
* @return the static return type that was computed
*/
Type2 computeStaticReturnType2(FunctionDeclaration node) {
TypeName returnType = node.returnType;
if (returnType == null) {
return _dynamicType;
}
return returnType.type;
}
/**
* Given a function expression, compute the return type of the function. The return type of
* functions with a block body is `dynamicType`, with an expression body it is the type of
* the expression.
*
* @param node the function expression whose return type is to be computed
* @return the return type that was computed
*/
Type2 computeStaticReturnType3(FunctionExpression node) {
FunctionBody body = node.body;
if (body is ExpressionFunctionBody) {
return getStaticType(((body as ExpressionFunctionBody)).expression);
}
return _dynamicType;
}
/**
* If the given element name can be mapped to the name of a class defined within the given
* library, return the type specified by the argument.
*
* @param library the library in which the specified type would be defined
* @param elementName the name of the element for which a type is being sought
* @param nameMap an optional map used to map the element name to a type name
* @return the type specified by the first argument in the argument list
*/
Type2 getElementNameAsType(LibraryElement library, String elementName, Map<String, String> nameMap) {
if (elementName != null) {
if (nameMap != null) {
elementName = nameMap[elementName.toLowerCase()];
}
ClassElement returnType = library.getType(elementName);
if (returnType != null) {
return returnType.type;
}
}
return null;
}
/**
* If the given argument list contains at least one argument, and if the argument is a simple
* string literal, then parse that argument as a query string and return the type specified by the
* argument.
*
* @param library the library in which the specified type would be defined
* @param argumentList the list of arguments from which a type is to be extracted
* @return the type specified by the first argument in the argument list
*/
Type2 getFirstArgumentAsQuery(LibraryElement library, ArgumentList argumentList) {
String argumentValue = getFirstArgumentAsString(argumentList);
if (argumentValue != null) {
if (argumentValue.contains(" ")) {
return null;
}
String tag = argumentValue;
tag = StringUtilities.substringBefore(tag, ":");
tag = StringUtilities.substringBefore(tag, "[");
tag = StringUtilities.substringBefore(tag, ".");
tag = StringUtilities.substringBefore(tag, "#");
tag = _HTML_ELEMENT_TO_CLASS_MAP[tag.toLowerCase()];
ClassElement returnType = library.getType(tag);
if (returnType != null) {
return returnType.type;
}
}
return null;
}
/**
* If the given argument list contains at least one argument, and if the argument is a simple
* string literal, return the String value of the argument.
*
* @param argumentList the list of arguments from which a string value is to be extracted
* @return the string specified by the first argument in the argument list
*/
String getFirstArgumentAsString(ArgumentList argumentList) {
NodeList<Expression> arguments = argumentList.arguments;
if (arguments.length > 0) {
Expression argument = arguments[0];
if (argument is SimpleStringLiteral) {
return ((argument as SimpleStringLiteral)).value;
}
}
return null;
}
/**
* If the given argument list contains at least one argument, and if the argument is a simple
* string literal, and if the value of the argument is the name of a class defined within the
* given library, return the type specified by the argument.
*
* @param library the library in which the specified type would be defined
* @param argumentList the list of arguments from which a type is to be extracted
* @return the type specified by the first argument in the argument list
*/
Type2 getFirstArgumentAsType(LibraryElement library, ArgumentList argumentList) => getFirstArgumentAsType2(library, argumentList, null);
/**
* If the given argument list contains at least one argument, and if the argument is a simple
* string literal, and if the value of the argument is the name of a class defined within the
* given library, return the type specified by the argument.
*
* @param library the library in which the specified type would be defined
* @param argumentList the list of arguments from which a type is to be extracted
* @param nameMap an optional map used to map the element name to a type name
* @return the type specified by the first argument in the argument list
*/
Type2 getFirstArgumentAsType2(LibraryElement library, ArgumentList argumentList, Map<String, String> nameMap) => getElementNameAsType(library, getFirstArgumentAsString(argumentList), nameMap);
/**
* Return the static type of the given expression.
*
* @param expression the expression whose type is to be returned
* @return the static type of the given expression
*/
Type2 getStaticType(Expression expression) {
Type2 type = expression.staticType;
if (type == null) {
return _dynamicType;
}
return type;
}
/**
* Return the type that should be recorded for a node that resolved to the given accessor.
*
* @param accessor the accessor that the node resolved to
* @param context if the accessor element has context [by being the RHS of a
* [PrefixedIdentifier] or [PropertyAccess]], and the return type of the
* accessor is a parameter type, then the type of the LHS can be used to get more
* specific type information
* @return the type that should be recorded for a node that resolved to the given accessor
*/
Type2 getType(PropertyAccessorElement accessor, Type2 context) {
FunctionType functionType = accessor.type;
if (functionType == null) {
return _dynamicType;
}
if (accessor.isSetter) {
List<Type2> parameterTypes = functionType.normalParameterTypes;
if (parameterTypes != null && parameterTypes.length > 0) {
return parameterTypes[0];
}
PropertyAccessorElement getter = accessor.variable.getter;
if (getter != null) {
functionType = getter.type;
if (functionType != null) {
return functionType.returnType;
}
}
return _dynamicType;
}
Type2 returnType = functionType.returnType;
if (returnType is TypeVariableType && context is InterfaceType) {
InterfaceType interfaceTypeContext = context as InterfaceType;
List<TypeVariableElement> parameterElements = interfaceTypeContext.element != null ? interfaceTypeContext.element.typeVariables : null;
if (parameterElements != null) {
for (int i = 0; i < parameterElements.length; i++) {
TypeVariableElement varElt = parameterElements[i];
if (returnType.name == varElt.name) {
return interfaceTypeContext.typeArguments[i];
}
}
}
}
return returnType;
}
/**
* Return the type represented by the given type name.
*
* @param typeName the type name representing the type to be returned
* @return the type represented by the type name
*/
Type2 getType2(TypeName typeName) {
Type2 type = typeName.type;
if (type == null) {
return _dynamicType;
}
return type;
}
/**
* Return `true` if the given [Type] is the `Future` form the 'dart:async'
* library.
*/
bool isAsyncFutureType(Type2 type) => type is InterfaceType && type.name == "Future" && isAsyncLibrary(type.element.library);
/**
* Return `true` if the given library is the 'dart:async' library.
*
* @param library the library being tested
* @return `true` if the library is 'dart:async'
*/
bool isAsyncLibrary(LibraryElement library) => library.name == "dart.async";
/**
* Return `true` if the given library is the 'dart:html' library.
*
* @param library the library being tested
* @return `true` if the library is 'dart:html'
*/
bool isHtmlLibrary(LibraryElement library) => library != null && "dart.dom.html" == library.name;
/**
* Return `true` if the given node is not a type literal.
*
* @param node the node being tested
* @return `true` if the given node is not a type literal
*/
bool isNotTypeLiteral(Identifier node) {
ASTNode parent = node.parent;
return parent is TypeName || (parent is PrefixedIdentifier && (parent.parent is TypeName || identical(((parent as PrefixedIdentifier)).prefix, node))) || (parent is PropertyAccess && identical(((parent as PropertyAccess)).target, node)) || (parent is MethodInvocation && identical(node, ((parent as MethodInvocation)).target));
}
/**
* Given a function element and its body, compute and record the propagated return type of the
* function.
*
* @param functionElement the function element to record propagated return type for
* @param body the boy of the function whose propagated return type is to be computed
* @return the propagated return type that was computed, may be `null` if it is not more
* specific than the static return type.
*/
void recordPropagatedType(ExecutableElement functionElement, FunctionBody body) {
Type2 propagatedReturnType = computePropagatedReturnType2(body);
if (propagatedReturnType == null) {
return;
}
if (identical(propagatedReturnType, BottomTypeImpl.instance)) {
return;
}
Type2 staticReturnType = functionElement.returnType;
if (!propagatedReturnType.isMoreSpecificThan(staticReturnType)) {
return;
}
_propagatedReturnTypes[functionElement] = propagatedReturnType;
}
/**
* Record that the propagated type of the given node is the given type.
*
* @param expression the node whose type is to be recorded
* @param type the propagated type of the node
*/
void recordPropagatedType2(Expression expression, Type2 type) {
if (type != null && !type.isDynamic) {
expression.propagatedType = type;
}
}
/**
* Record that the static type of the given node is the given type.
*
* @param expression the node whose type is to be recorded
* @param type the static type of the node
*/
void recordStaticType(Expression expression, Type2 type) {
if (type == null) {
expression.staticType = _dynamicType;
} else {
expression.staticType = type;
}
}
/**
* Attempts to make a better guess for the static type of the given binary expression.
*
* @param node the binary expression to analyze
* @param staticType the static type of the expression as resolved
* @return the better type guess, or the same static type as given
*/
Type2 refineBinaryExpressionType(BinaryExpression node, Type2 staticType) {
sc.TokenType operator = node.operator.type;
if (identical(operator, sc.TokenType.AMPERSAND_AMPERSAND) || identical(operator, sc.TokenType.BAR_BAR) || identical(operator, sc.TokenType.EQ_EQ) || identical(operator, sc.TokenType.BANG_EQ)) {
return _typeProvider.boolType;
}
if (identical(operator, sc.TokenType.MINUS) || identical(operator, sc.TokenType.PERCENT) || identical(operator, sc.TokenType.PLUS) || identical(operator, sc.TokenType.STAR)) {
Type2 doubleType = _typeProvider.doubleType;
if (identical(getStaticType(node.leftOperand), _typeProvider.intType) && identical(getStaticType(node.rightOperand), doubleType)) {
return doubleType;
}
}
if (identical(operator, sc.TokenType.MINUS) || identical(operator, sc.TokenType.PERCENT) || identical(operator, sc.TokenType.PLUS) || identical(operator, sc.TokenType.STAR) || identical(operator, sc.TokenType.TILDE_SLASH)) {
Type2 intType = _typeProvider.intType;
if (identical(getStaticType(node.leftOperand), intType) && identical(getStaticType(node.rightOperand), intType)) {
staticType = intType;
}
}
return staticType;
}
get thisType_J2DAccessor => _thisType;
set thisType_J2DAccessor(__v) => _thisType = __v;
}
class GeneralizingASTVisitor_8 extends GeneralizingASTVisitor<Object> {
List<Type2> result;
GeneralizingASTVisitor_8(this.result) : super();
Object visitExpression(Expression node) => null;
Object visitReturnStatement(ReturnStatement node) {
Type2 type;
Expression expression = node.expression;
if (expression != null) {
type = expression.bestType;
} else {
type = BottomTypeImpl.instance;
}
if (result[0] == null) {
result[0] = type;
} else {
result[0] = result[0].getLeastUpperBound(type);
}
return null;
}
}
/**
* Instances of the class `TypeOverrideManager` manage the ability to override the type of an
* element within a given context.
*/
class TypeOverrideManager {
/**
* The current override scope, or `null` if no scope has been entered.
*/
TypeOverrideManager_TypeOverrideScope _currentScope;
/**
* Apply a set of overrides that were previously captured.
*
* @param overrides the overrides to be applied
*/
void applyOverrides(Map<Element, Type2> overrides) {
if (_currentScope == null) {
throw new IllegalStateException("Cannot apply overrides without a scope");
}
_currentScope.applyOverrides(overrides);
}
/**
* Return a table mapping the elements whose type is overridden in the current scope to the
* overriding type.
*
* @return the overrides in the current scope
*/
Map<Element, Type2> captureLocalOverrides() {
if (_currentScope == null) {
throw new IllegalStateException("Cannot capture local overrides without a scope");
}
return _currentScope.captureLocalOverrides();
}
/**
* Return a map from the elements for the variables in the given list that have their types
* overridden to the overriding type.
*
* @param variableList the list of variables whose overriding types are to be captured
* @return a table mapping elements to their overriding types
*/
Map<Element, Type2> captureOverrides(VariableDeclarationList variableList) {
if (_currentScope == null) {
throw new IllegalStateException("Cannot capture overrides without a scope");
}
return _currentScope.captureOverrides(variableList);
}
/**
* Enter a new override scope.
*/
void enterScope() {
_currentScope = new TypeOverrideManager_TypeOverrideScope(_currentScope);
}
/**
* Exit the current override scope.
*/
void exitScope() {
if (_currentScope == null) {
throw new IllegalStateException("No scope to exit");
}
_currentScope = _currentScope._outerScope;
}
/**
* Return the overridden type of the given element, or `null` if the type of the element has
* not been overridden.
*
* @param element the element whose type might have been overridden
* @return the overridden type of the given element
*/
Type2 getType(Element element) {
if (_currentScope == null) {
return null;
}
return _currentScope.getType(element);
}
/**
* Set the overridden type of the given element to the given type
*
* @param element the element whose type might have been overridden
* @param type the overridden type of the given element
*/
void setType(Element element, Type2 type) {
if (_currentScope == null) {
throw new IllegalStateException("Cannot override without a scope");
}
_currentScope.setType(element, type);
}
}
/**
* Instances of the class `TypeOverrideScope` represent a scope in which the types of
* elements can be overridden.
*/
class TypeOverrideManager_TypeOverrideScope {
/**
* The outer scope in which types might be overridden.
*/
TypeOverrideManager_TypeOverrideScope _outerScope;
/**
* A table mapping elements to the overridden type of that element.
*/
Map<Element, Type2> _overridenTypes = new Map<Element, Type2>();
/**
* Initialize a newly created scope to be an empty child of the given scope.
*
* @param outerScope the outer scope in which types might be overridden
*/
TypeOverrideManager_TypeOverrideScope(TypeOverrideManager_TypeOverrideScope outerScope) {
this._outerScope = outerScope;
}
/**
* Apply a set of overrides that were previously captured.
*
* @param overrides the overrides to be applied
*/
void applyOverrides(Map<Element, Type2> overrides) {
for (MapEntry<Element, Type2> entry in getMapEntrySet(overrides)) {
_overridenTypes[entry.getKey()] = entry.getValue();
}
}
/**
* Return a table mapping the elements whose type is overridden in the current scope to the
* overriding type.
*
* @return the overrides in the current scope
*/
Map<Element, Type2> captureLocalOverrides() => _overridenTypes;
/**
* Return a map from the elements for the variables in the given list that have their types
* overridden to the overriding type.
*
* @param variableList the list of variables whose overriding types are to be captured
* @return a table mapping elements to their overriding types
*/
Map<Element, Type2> captureOverrides(VariableDeclarationList variableList) {
Map<Element, Type2> overrides = new Map<Element, Type2>();
if (variableList.isConst || variableList.isFinal) {
for (VariableDeclaration variable in variableList.variables) {
Element element = variable.element;
if (element != null) {
Type2 type = _overridenTypes[element];
if (type != null) {
overrides[element] = type;
}
}
}
}
return overrides;
}
/**
* Return the overridden type of the given element, or `null` if the type of the element
* has not been overridden.
*
* @param element the element whose type might have been overridden
* @return the overridden type of the given element
*/
Type2 getType(Element element) {
Type2 type = _overridenTypes[element];
if (type == null && element is PropertyAccessorElement) {
type = _overridenTypes[((element as PropertyAccessorElement)).variable];
}
if (type != null) {
return type;
} else if (_outerScope != null) {
return _outerScope.getType(element);
}
return null;
}
/**
* Set the overridden type of the given element to the given type
*
* @param element the element whose type might have been overridden
* @param type the overridden type of the given element
*/
void setType(Element element, Type2 type) {
_overridenTypes[element] = type;
}
}
/**
* The interface `TypeProvider` defines the behavior of objects that provide access to types
* defined by the language.
*
* @coverage dart.engine.resolver
*/
abstract class TypeProvider {
/**
* Return the type representing the built-in type 'Null'.
*
* @return the type representing the built-in type 'null'
*/
InterfaceType get nullType;
/**
* Return the type representing the built-in type 'bool'.
*
* @return the type representing the built-in type 'bool'
*/
InterfaceType get boolType;
/**
* Return the type representing the type 'bottom'.
*
* @return the type representing the type 'bottom'
*/
Type2 get bottomType;
/**
* Return the type representing the built-in type 'double'.
*
* @return the type representing the built-in type 'double'
*/
InterfaceType get doubleType;
/**
* Return the type representing the built-in type 'dynamic'.
*
* @return the type representing the built-in type 'dynamic'
*/
Type2 get dynamicType;
/**
* Return the type representing the built-in type 'Function'.
*
* @return the type representing the built-in type 'Function'
*/
InterfaceType get functionType;
/**
* Return the type representing the built-in type 'int'.
*
* @return the type representing the built-in type 'int'
*/
InterfaceType get intType;
/**
* Return the type representing the built-in type 'List'.
*
* @return the type representing the built-in type 'List'
*/
InterfaceType get listType;
/**
* Return the type representing the built-in type 'Map'.
*
* @return the type representing the built-in type 'Map'
*/
InterfaceType get mapType;
/**
* Return the type representing the built-in type 'num'.
*
* @return the type representing the built-in type 'num'
*/
InterfaceType get numType;
/**
* Return the type representing the built-in type 'Object'.
*
* @return the type representing the built-in type 'Object'
*/
InterfaceType get objectType;
/**
* Return the type representing the built-in type 'StackTrace'.
*
* @return the type representing the built-in type 'StackTrace'
*/
InterfaceType get stackTraceType;
/**
* Return the type representing the built-in type 'String'.
*
* @return the type representing the built-in type 'String'
*/
InterfaceType get stringType;
/**
* Return the type representing the built-in type 'Symbol'.
*
* @return the type representing the built-in type 'Symbol'
*/
InterfaceType get symbolType;
/**
* Return the type representing the built-in type 'Type'.
*
* @return the type representing the built-in type 'Type'
*/
InterfaceType get typeType;
}
/**
* Instances of the class `TypeProviderImpl` provide access to types defined by the language
* by looking for those types in the element model for the core library.
*
* @coverage dart.engine.resolver
*/
class TypeProviderImpl implements TypeProvider {
/**
* The type representing the built-in type 'bool'.
*/
InterfaceType _boolType;
/**
* The type representing the type 'bottom'.
*/
Type2 _bottomType;
/**
* The type representing the built-in type 'double'.
*/
InterfaceType _doubleType;
/**
* The type representing the built-in type 'dynamic'.
*/
Type2 _dynamicType;
/**
* The type representing the built-in type 'Function'.
*/
InterfaceType _functionType;
/**
* The type representing the built-in type 'int'.
*/
InterfaceType _intType;
/**
* The type representing the built-in type 'List'.
*/
InterfaceType _listType;
/**
* The type representing the built-in type 'Map'.
*/
InterfaceType _mapType;
/**
* The type representing the type 'Null'.
*/
InterfaceType _nullType;
/**
* The type representing the built-in type 'num'.
*/
InterfaceType _numType;
/**
* The type representing the built-in type 'Object'.
*/
InterfaceType _objectType;
/**
* The type representing the built-in type 'StackTrace'.
*/
InterfaceType _stackTraceType;
/**
* The type representing the built-in type 'String'.
*/
InterfaceType _stringType;
/**
* The type representing the built-in type 'Symbol'.
*/
InterfaceType _symbolType;
/**
* The type representing the built-in type 'Type'.
*/
InterfaceType _typeType;
/**
* Initialize a newly created type provider to provide the types defined in the given library.
*
* @param coreLibrary the element representing the core library (dart:core).
*/
TypeProviderImpl(LibraryElement coreLibrary) {
initializeFrom(coreLibrary);
}
InterfaceType get boolType => _boolType;
Type2 get bottomType => _bottomType;
InterfaceType get doubleType => _doubleType;
Type2 get dynamicType => _dynamicType;
InterfaceType get functionType => _functionType;
InterfaceType get intType => _intType;
InterfaceType get listType => _listType;
InterfaceType get mapType => _mapType;
InterfaceType get nullType => _nullType;
InterfaceType get numType => _numType;
InterfaceType get objectType => _objectType;
InterfaceType get stackTraceType => _stackTraceType;
InterfaceType get stringType => _stringType;
InterfaceType get symbolType => _symbolType;
InterfaceType get typeType => _typeType;
/**
* Return the type with the given name from the given namespace, or `null` if there is no
* class with the given name.
*
* @param namespace the namespace in which to search for the given name
* @param typeName the name of the type being searched for
* @return the type that was found
*/
InterfaceType getType(Namespace namespace, String typeName) {
Element element = namespace.get(typeName);
if (element == null) {
AnalysisEngine.instance.logger.logInformation("No definition of type ${typeName}");
return null;
}
return ((element as ClassElement)).type;
}
/**
* Initialize the types provided by this type provider from the given library.
*
* @param library the library containing the definitions of the core types
*/
void initializeFrom(LibraryElement library) {
Namespace namespace = new NamespaceBuilder().createPublicNamespace(library);
_boolType = getType(namespace, "bool");
_bottomType = BottomTypeImpl.instance;
_doubleType = getType(namespace, "double");
_dynamicType = DynamicTypeImpl.instance;
_functionType = getType(namespace, "Function");
_intType = getType(namespace, "int");
_listType = getType(namespace, "List");
_mapType = getType(namespace, "Map");
_nullType = getType(namespace, "Null");
_numType = getType(namespace, "num");
_objectType = getType(namespace, "Object");
_stackTraceType = getType(namespace, "StackTrace");
_stringType = getType(namespace, "String");
_symbolType = getType(namespace, "Symbol");
_typeType = getType(namespace, "Type");
}
}
/**
* Instances of the class `TypeResolverVisitor` are used to resolve the types associated with
* the elements in the element model. This includes the types of superclasses, mixins, interfaces,
* fields, methods, parameters, and local variables. As a side-effect, this also finishes building
* the type hierarchy.
*
* @coverage dart.engine.resolver
*/
class TypeResolverVisitor extends ScopedVisitor {
/**
* The type representing the type 'dynamic'.
*/
Type2 _dynamicType;
/**
* The flag specifying if currently visited class references 'super' expression.
*/
bool _hasReferenceToSuper = false;
/**
* Initialize a newly created visitor to resolve the nodes in a compilation unit.
*
* @param library the library containing the compilation unit being resolved
* @param source the source representing the compilation unit being visited
* @param typeProvider the object used to access the types from the core library
*/
TypeResolverVisitor.con1(Library library, Source source, TypeProvider typeProvider) : super.con1(library, source, typeProvider) {
_dynamicType = typeProvider.dynamicType;
}
/**
* Initialize a newly created visitor to resolve the nodes in a compilation unit.
*
* @param definingLibrary the element for the library containing the compilation unit being
* visited
* @param source the source representing the compilation unit being visited
* @param typeProvider the object used to access the types from the core library
* @param errorListener the error listener that will be informed of any errors that are found
* during resolution
*/
TypeResolverVisitor.con2(LibraryElement definingLibrary, Source source, TypeProvider typeProvider, AnalysisErrorListener errorListener) : super.con2(definingLibrary, source, typeProvider, errorListener) {
_dynamicType = typeProvider.dynamicType;
}
Object visitCatchClause(CatchClause node) {
super.visitCatchClause(node);
SimpleIdentifier exception = node.exceptionParameter;
if (exception != null) {
TypeName exceptionTypeName = node.exceptionType;
Type2 exceptionType;
if (exceptionTypeName == null) {
exceptionType = typeProvider.objectType;
} else {
exceptionType = getType3(exceptionTypeName);
}
recordType(exception, exceptionType);
Element element = exception.staticElement;
if (element is VariableElementImpl) {
((element as VariableElementImpl)).type = exceptionType;
} else {
}
}
SimpleIdentifier stackTrace = node.stackTraceParameter;
if (stackTrace != null) {
recordType(stackTrace, typeProvider.stackTraceType);
}
return null;
}
Object visitClassDeclaration(ClassDeclaration node) {
_hasReferenceToSuper = false;
super.visitClassDeclaration(node);
ClassElementImpl classElement = getClassElement(node.name);
InterfaceType superclassType = null;
ExtendsClause extendsClause = node.extendsClause;
if (extendsClause != null) {
ErrorCode errorCode = (node.withClause == null ? CompileTimeErrorCode.EXTENDS_NON_CLASS : CompileTimeErrorCode.MIXIN_WITH_NON_CLASS_SUPERCLASS) as ErrorCode;
superclassType = resolveType(extendsClause.superclass, errorCode, errorCode);
if (superclassType != typeProvider.objectType) {
classElement.validMixin = false;
}
}
if (classElement != null) {
if (superclassType == null) {
InterfaceType objectType = typeProvider.objectType;
if (classElement.type != objectType) {
superclassType = objectType;
}
}
classElement.supertype = superclassType;
classElement.hasReferenceToSuper2 = _hasReferenceToSuper;
}
resolve(classElement, node.withClause, node.implementsClause);
return null;
}
Object visitClassTypeAlias(ClassTypeAlias node) {
super.visitClassTypeAlias(node);
ClassElementImpl classElement = getClassElement(node.name);
ErrorCode errorCode = CompileTimeErrorCode.MIXIN_WITH_NON_CLASS_SUPERCLASS;
InterfaceType superclassType = resolveType(node.superclass, errorCode, errorCode);
if (superclassType == null) {
superclassType = typeProvider.objectType;
}
if (classElement != null && superclassType != null) {
classElement.supertype = superclassType;
}
resolve(classElement, node.withClause, node.implementsClause);
return null;
}
Object visitConstructorDeclaration(ConstructorDeclaration node) {
super.visitConstructorDeclaration(node);
ExecutableElementImpl element = node.element as ExecutableElementImpl;
ClassElement definingClass = element.enclosingElement as ClassElement;
element.returnType = definingClass.type;
FunctionTypeImpl type = new FunctionTypeImpl.con1(element);
type.typeArguments = definingClass.type.typeArguments;
element.type = type;
return null;
}
Object visitDeclaredIdentifier(DeclaredIdentifier node) {
super.visitDeclaredIdentifier(node);
Type2 declaredType;
TypeName typeName = node.type;
if (typeName == null) {
declaredType = _dynamicType;
} else {
declaredType = getType3(typeName);
}
LocalVariableElementImpl element = node.element as LocalVariableElementImpl;
element.type = declaredType;
return null;
}
Object visitDefaultFormalParameter(DefaultFormalParameter node) {
super.visitDefaultFormalParameter(node);
return null;
}
Object visitFieldFormalParameter(FieldFormalParameter node) {
super.visitFieldFormalParameter(node);
Element element = node.identifier.staticElement;
if (element is ParameterElementImpl) {
ParameterElementImpl parameter = element as ParameterElementImpl;
FormalParameterList parameterList = node.parameters;
if (parameterList == null) {
Type2 type;
TypeName typeName = node.type;
if (typeName == null) {
type = _dynamicType;
} else {
type = getType3(typeName);
}
parameter.type = type;
} else {
setFunctionTypedParameterType(parameter, node.type, node.parameters);
}
} else {
}
return null;
}
Object visitFunctionDeclaration(FunctionDeclaration node) {
super.visitFunctionDeclaration(node);
ExecutableElementImpl element = node.element as ExecutableElementImpl;
element.returnType = computeReturnType(node.returnType);
FunctionTypeImpl type = new FunctionTypeImpl.con1(element);
ClassElement definingClass = element.getAncestor(ClassElement);
if (definingClass != null) {
type.typeArguments = definingClass.type.typeArguments;
}
element.type = type;
return null;
}
Object visitFunctionTypeAlias(FunctionTypeAlias node) {
super.visitFunctionTypeAlias(node);
FunctionTypeAliasElementImpl element = node.element as FunctionTypeAliasElementImpl;
element.returnType = computeReturnType(node.returnType);
return null;
}
Object visitFunctionTypedFormalParameter(FunctionTypedFormalParameter node) {
super.visitFunctionTypedFormalParameter(node);
Element element = node.identifier.staticElement;
if (element is ParameterElementImpl) {
setFunctionTypedParameterType(element as ParameterElementImpl, node.returnType, node.parameters);
} else {
}
return null;
}
Object visitMethodDeclaration(MethodDeclaration node) {
super.visitMethodDeclaration(node);
ExecutableElementImpl element = node.element as ExecutableElementImpl;
element.returnType = computeReturnType(node.returnType);
FunctionTypeImpl type = new FunctionTypeImpl.con1(element);
ClassElement definingClass = element.getAncestor(ClassElement);
if (definingClass != null) {
type.typeArguments = definingClass.type.typeArguments;
}
element.type = type;
if (element is PropertyAccessorElement) {
PropertyAccessorElement accessor = element as PropertyAccessorElement;
PropertyInducingElementImpl variable = accessor.variable as PropertyInducingElementImpl;
if (accessor.isGetter) {
variable.type = type.returnType;
} else if (variable.type == null) {
List<Type2> parameterTypes = type.normalParameterTypes;
if (parameterTypes != null && parameterTypes.length > 0) {
variable.type = parameterTypes[0];
}
}
}
return null;
}
Object visitSimpleFormalParameter(SimpleFormalParameter node) {
super.visitSimpleFormalParameter(node);
Type2 declaredType;
TypeName typeName = node.type;
if (typeName == null) {
declaredType = _dynamicType;
} else {
declaredType = getType3(typeName);
}
Element element = node.identifier.staticElement;
if (element is ParameterElement) {
((element as ParameterElementImpl)).type = declaredType;
} else {
}
return null;
}
Object visitSuperExpression(SuperExpression node) {
_hasReferenceToSuper = true;
return super.visitSuperExpression(node);
}
Object visitTypeName(TypeName node) {
super.visitTypeName(node);
Identifier typeName = node.name;
TypeArgumentList argumentList = node.typeArguments;
Element element = nameScope.lookup(typeName, definingLibrary);
if (element == null) {
if (typeName.name == _dynamicType.name) {
setElement(typeName, _dynamicType.element);
if (argumentList != null) {
}
typeName.staticType = _dynamicType;
node.type = _dynamicType;
return null;
}
VoidTypeImpl voidType = VoidTypeImpl.instance;
if (typeName.name == voidType.name) {
if (argumentList != null) {
}
typeName.staticType = voidType;
node.type = voidType;
return null;
}
ASTNode parent = node.parent;
if (typeName is PrefixedIdentifier && parent is ConstructorName && argumentList == null) {
ConstructorName name = parent as ConstructorName;
if (name.name == null) {
PrefixedIdentifier prefixedIdentifier = typeName as PrefixedIdentifier;
SimpleIdentifier prefix = prefixedIdentifier.prefix;
element = nameScope.lookup(prefix, definingLibrary);
if (element is PrefixElement) {
if (parent.parent is InstanceCreationExpression && ((parent.parent as InstanceCreationExpression)).isConst) {
reportError5(CompileTimeErrorCode.CONST_WITH_NON_TYPE, prefixedIdentifier.identifier, [prefixedIdentifier.identifier.name]);
} else {
reportError5(StaticWarningCode.NEW_WITH_NON_TYPE, prefixedIdentifier.identifier, [prefixedIdentifier.identifier.name]);
}
setElement(prefix, element);
return null;
} else if (element != null) {
name.name = prefixedIdentifier.identifier;
name.period = prefixedIdentifier.period;
node.name = prefix;
typeName = prefix;
}
}
}
}
bool elementValid = element is! MultiplyDefinedElement;
if (elementValid && element is! ClassElement && isTypeNameInInstanceCreationExpression(node)) {
SimpleIdentifier typeNameSimple = getTypeSimpleIdentifier(typeName);
InstanceCreationExpression creation = node.parent.parent as InstanceCreationExpression;
if (creation.isConst) {
if (element == null) {
reportError5(CompileTimeErrorCode.UNDEFINED_CLASS, typeNameSimple, [typeName]);
} else {
reportError5(CompileTimeErrorCode.CONST_WITH_NON_TYPE, typeNameSimple, [typeName]);
}
elementValid = false;
} else {
if (element != null) {
reportError5(StaticWarningCode.NEW_WITH_NON_TYPE, typeNameSimple, [typeName]);
elementValid = false;
}
}
}
if (elementValid && element == null) {
SimpleIdentifier typeNameSimple = getTypeSimpleIdentifier(typeName);
if (typeNameSimple.name == "boolean") {
reportError5(StaticWarningCode.UNDEFINED_CLASS_BOOLEAN, typeNameSimple, []);
} else if (isTypeNameInCatchClause(node)) {
reportError5(StaticWarningCode.NON_TYPE_IN_CATCH_CLAUSE, typeName, [typeName.name]);
} else if (isTypeNameInAsExpression(node)) {
reportError5(StaticWarningCode.CAST_TO_NON_TYPE, typeName, [typeName.name]);
} else if (isTypeNameInIsExpression(node)) {
reportError5(StaticWarningCode.TYPE_TEST_NON_TYPE, typeName, [typeName.name]);
} else if (isTypeNameTargetInRedirectedConstructor(node)) {
reportError5(StaticWarningCode.REDIRECT_TO_NON_CLASS, typeName, [typeName.name]);
} else if (isTypeNameInTypeArgumentList(node)) {
reportError5(StaticTypeWarningCode.NON_TYPE_AS_TYPE_ARGUMENT, typeName, [typeName.name]);
} else {
reportError5(StaticWarningCode.UNDEFINED_CLASS, typeName, [typeName.name]);
}
elementValid = false;
}
if (!elementValid) {
if (element is MultiplyDefinedElement) {
setElement(typeName, element);
} else {
setElement(typeName, _dynamicType.element);
}
typeName.staticType = _dynamicType;
node.type = _dynamicType;
return null;
}
Type2 type = null;
if (element is ClassElement) {
setElement(typeName, element);
type = ((element as ClassElement)).type;
} else if (element is FunctionTypeAliasElement) {
setElement(typeName, element);
type = ((element as FunctionTypeAliasElement)).type;
} else if (element is TypeVariableElement) {
setElement(typeName, element);
type = ((element as TypeVariableElement)).type;
if (argumentList != null) {
}
} else if (element is MultiplyDefinedElement) {
List<Element> elements = ((element as MultiplyDefinedElement)).conflictingElements;
type = getType(elements);
if (type != null) {
node.type = type;
}
} else {
if (isTypeNameInCatchClause(node)) {
reportError5(StaticWarningCode.NON_TYPE_IN_CATCH_CLAUSE, typeName, [typeName.name]);
} else if (isTypeNameInAsExpression(node)) {
reportError5(StaticWarningCode.CAST_TO_NON_TYPE, typeName, [typeName.name]);
} else if (isTypeNameInIsExpression(node)) {
reportError5(StaticWarningCode.TYPE_TEST_NON_TYPE, typeName, [typeName.name]);
} else if (isTypeNameTargetInRedirectedConstructor(node)) {
reportError5(StaticWarningCode.REDIRECT_TO_NON_CLASS, typeName, [typeName.name]);
} else if (isTypeNameInTypeArgumentList(node)) {
reportError5(StaticTypeWarningCode.NON_TYPE_AS_TYPE_ARGUMENT, typeName, [typeName.name]);
} else {
ASTNode parent = typeName.parent;
while (parent is TypeName) {
parent = parent.parent;
}
if (parent is ExtendsClause || parent is ImplementsClause || parent is WithClause || parent is ClassTypeAlias) {
} else {
reportError5(StaticWarningCode.NOT_A_TYPE, typeName, [typeName.name]);
}
}
setElement(typeName, _dynamicType.element);
typeName.staticType = _dynamicType;
node.type = _dynamicType;
return null;
}
if (argumentList != null) {
NodeList<TypeName> arguments = argumentList.arguments;
int argumentCount = arguments.length;
List<Type2> parameters = getTypeArguments(type);
int parameterCount = parameters.length;
int count = Math.min(argumentCount, parameterCount);
List<Type2> typeArguments = new List<Type2>();
for (int i = 0; i < count; i++) {
Type2 argumentType = getType3(arguments[i]);
if (argumentType != null) {
typeArguments.add(argumentType);
}
}
if (argumentCount != parameterCount) {
reportError5(getInvalidTypeParametersErrorCode(node), node, [typeName.name, parameterCount, argumentCount]);
}
argumentCount = typeArguments.length;
if (argumentCount < parameterCount) {
for (int i = argumentCount; i < parameterCount; i++) {
typeArguments.add(_dynamicType);
}
}
if (type is InterfaceTypeImpl) {
InterfaceTypeImpl interfaceType = type as InterfaceTypeImpl;
type = interfaceType.substitute4(new List.from(typeArguments));
} else if (type is FunctionTypeImpl) {
FunctionTypeImpl functionType = type as FunctionTypeImpl;
type = functionType.substitute3(new List.from(typeArguments));
} else {
}
} else {
List<Type2> parameters = getTypeArguments(type);
int parameterCount = parameters.length;
if (parameterCount > 0) {
DynamicTypeImpl dynamicType = DynamicTypeImpl.instance;
List<Type2> arguments = new List<Type2>(parameterCount);
for (int i = 0; i < parameterCount; i++) {
arguments[i] = dynamicType;
}
type = type.substitute2(arguments, parameters);
}
}
typeName.staticType = type;
node.type = type;
return null;
}
Object visitVariableDeclaration(VariableDeclaration node) {
super.visitVariableDeclaration(node);
Type2 declaredType;
TypeName typeName = ((node.parent as VariableDeclarationList)).type;
if (typeName == null) {
declaredType = _dynamicType;
} else {
declaredType = getType3(typeName);
}
Element element = node.name.staticElement;
if (element is VariableElement) {
((element as VariableElementImpl)).type = declaredType;
if (element is PropertyInducingElement) {
PropertyInducingElement variableElement = element as PropertyInducingElement;
PropertyAccessorElementImpl getter = variableElement.getter as PropertyAccessorElementImpl;
getter.returnType = declaredType;
FunctionTypeImpl getterType = new FunctionTypeImpl.con1(getter);
ClassElement definingClass = element.getAncestor(ClassElement);
if (definingClass != null) {
getterType.typeArguments = definingClass.type.typeArguments;
}
getter.type = getterType;
PropertyAccessorElementImpl setter = variableElement.setter as PropertyAccessorElementImpl;
if (setter != null) {
List<ParameterElement> parameters = setter.parameters;
if (parameters.length > 0) {
((parameters[0] as ParameterElementImpl)).type = declaredType;
}
setter.returnType = VoidTypeImpl.instance;
FunctionTypeImpl setterType = new FunctionTypeImpl.con1(setter);
if (definingClass != null) {
setterType.typeArguments = definingClass.type.typeArguments;
}
setter.type = setterType;
}
}
} else {
}
return null;
}
/**
* Given a type name representing the return type of a function, compute the return type of the
* function.
*
* @param returnType the type name representing the return type of the function
* @return the return type that was computed
*/
Type2 computeReturnType(TypeName returnType) {
if (returnType == null) {
return _dynamicType;
} else {
return returnType.type;
}
}
/**
* Return the class element that represents the class whose name was provided.
*
* @param identifier the name from the declaration of a class
* @return the class element that represents the class
*/
ClassElementImpl getClassElement(SimpleIdentifier identifier) {
if (identifier == null) {
return null;
}
Element element = identifier.staticElement;
if (element is! ClassElementImpl) {
return null;
}
return element as ClassElementImpl;
}
/**
* Return an array containing all of the elements associated with the parameters in the given
* list.
*
* @param parameterList the list of parameters whose elements are to be returned
* @return the elements associated with the parameters
*/
List<ParameterElement> getElements(FormalParameterList parameterList) {
List<ParameterElement> elements = new List<ParameterElement>();
for (FormalParameter parameter in parameterList.parameters) {
ParameterElement element = parameter.identifier.staticElement as ParameterElement;
if (element != null) {
elements.add(element);
}
}
return new List.from(elements);
}
/**
* The number of type arguments in the given type name does not match the number of parameters in
* the corresponding class element. Return the error code that should be used to report this
* error.
*
* @param node the type name with the wrong number of type arguments
* @return the error code that should be used to report that the wrong number of type arguments
* were provided
*/
ErrorCode getInvalidTypeParametersErrorCode(TypeName node) {
ASTNode parent = node.parent;
if (parent is ConstructorName) {
parent = parent.parent;
if (parent is InstanceCreationExpression) {
if (((parent as InstanceCreationExpression)).isConst) {
return CompileTimeErrorCode.CONST_WITH_INVALID_TYPE_PARAMETERS;
} else {
return StaticWarningCode.NEW_WITH_INVALID_TYPE_PARAMETERS;
}
}
}
return StaticTypeWarningCode.WRONG_NUMBER_OF_TYPE_ARGUMENTS;
}
/**
* Given the multiple elements to which a single name could potentially be resolved, return the
* single interface type that should be used, or `null` if there is no clear choice.
*
* @param elements the elements to which a single name could potentially be resolved
* @return the single interface type that should be used for the type name
*/
InterfaceType getType(List<Element> elements) {
InterfaceType type = null;
for (Element element in elements) {
if (element is ClassElement) {
if (type != null) {
return null;
}
type = ((element as ClassElement)).type;
}
}
return type;
}
/**
* Return the type represented by the given type name.
*
* @param typeName the type name representing the type to be returned
* @return the type represented by the type name
*/
Type2 getType3(TypeName typeName) {
Type2 type = typeName.type;
if (type == null) {
return _dynamicType;
}
return type;
}
/**
* Return the type arguments associated with the given type.
*
* @param type the type whole type arguments are to be returned
* @return the type arguments associated with the given type
*/
List<Type2> getTypeArguments(Type2 type) {
if (type is InterfaceType) {
return ((type as InterfaceType)).typeArguments;
} else if (type is FunctionType) {
return ((type as FunctionType)).typeArguments;
}
return TypeImpl.EMPTY_ARRAY;
}
/**
* Returns the simple identifier of the given (may be qualified) type name.
*
* @param typeName the (may be qualified) qualified type name
* @return the simple identifier of the given (may be qualified) type name.
*/
SimpleIdentifier getTypeSimpleIdentifier(Identifier typeName) {
if (typeName is SimpleIdentifier) {
return typeName as SimpleIdentifier;
} else {
return ((typeName as PrefixedIdentifier)).identifier;
}
}
/**
* Checks if the given type name is used as the type in an as expression.
*
* @param typeName the type name to analyzer
* @return `true` if the given type name is used as the type in an as expression
*/
bool isTypeNameInAsExpression(TypeName typeName) {
ASTNode parent = typeName.parent;
if (parent is AsExpression) {
AsExpression asExpression = parent as AsExpression;
return identical(asExpression.type, typeName);
}
return false;
}
/**
* Checks if the given type name is used as the exception type in a catch clause.
*
* @param typeName the type name to analyzer
* @return `true` if the given type name is used as the exception type in a catch clause
*/
bool isTypeNameInCatchClause(TypeName typeName) {
ASTNode parent = typeName.parent;
if (parent is CatchClause) {
CatchClause catchClause = parent as CatchClause;
return identical(catchClause.exceptionType, typeName);
}
return false;
}
/**
* Checks if the given type name is used as the type in an instance creation expression.
*
* @param typeName the type name to analyzer
* @return `true` if the given type name is used as the type in an instance creation
* expression
*/
bool isTypeNameInInstanceCreationExpression(TypeName typeName) {
ASTNode parent = typeName.parent;
if (parent is ConstructorName && parent.parent is InstanceCreationExpression) {
ConstructorName constructorName = parent as ConstructorName;
return constructorName != null && identical(constructorName.type, typeName);
}
return false;
}
/**
* Checks if the given type name is used as the type in an is expression.
*
* @param typeName the type name to analyzer
* @return `true` if the given type name is used as the type in an is expression
*/
bool isTypeNameInIsExpression(TypeName typeName) {
ASTNode parent = typeName.parent;
if (parent is IsExpression) {
IsExpression isExpression = parent as IsExpression;
return identical(isExpression.type, typeName);
}
return false;
}
/**
* Checks if the given type name used in a type argument list.
*
* @param typeName the type name to analyzer
* @return `true` if the given type name is in a type argument list
*/
bool isTypeNameInTypeArgumentList(TypeName typeName) => typeName.parent is TypeArgumentList;
/**
* Checks if the given type name is the target in a redirected constructor.
*
* @param typeName the type name to analyzer
* @return `true` if the given type name is used as the type in a redirected constructor
*/
bool isTypeNameTargetInRedirectedConstructor(TypeName typeName) {
ASTNode parent = typeName.parent;
if (parent is ConstructorName) {
ConstructorName constructorName = parent as ConstructorName;
parent = constructorName.parent;
if (parent is ConstructorDeclaration) {
ConstructorDeclaration constructorDeclaration = parent as ConstructorDeclaration;
return constructorName == constructorDeclaration.redirectedConstructor;
}
}
return false;
}
/**
* Record that the static type of the given node is the given type.
*
* @param expression the node whose type is to be recorded
* @param type the static type of the node
*/
Object recordType(Expression expression, Type2 type) {
if (type == null) {
expression.staticType = _dynamicType;
} else {
expression.staticType = type;
}
return null;
}
/**
* Resolve the types in the given with and implements clauses and associate those types with the
* given class element.
*
* @param classElement the class element with which the mixin and interface types are to be
* associated
* @param withClause the with clause to be resolved
* @param implementsClause the implements clause to be resolved
*/
void resolve(ClassElementImpl classElement, WithClause withClause, ImplementsClause implementsClause) {
if (withClause != null) {
List<InterfaceType> mixinTypes = resolveTypes(withClause.mixinTypes, CompileTimeErrorCode.MIXIN_OF_NON_CLASS, CompileTimeErrorCode.MIXIN_OF_NON_CLASS);
if (classElement != null) {
classElement.mixins = mixinTypes;
}
}
if (implementsClause != null) {
NodeList<TypeName> interfaces = implementsClause.interfaces;
List<InterfaceType> interfaceTypes = resolveTypes(interfaces, CompileTimeErrorCode.IMPLEMENTS_NON_CLASS, CompileTimeErrorCode.IMPLEMENTS_DYNAMIC);
if (classElement != null) {
classElement.interfaces = interfaceTypes;
}
List<TypeName> typeNames = new List.from(interfaces);
List<bool> detectedRepeatOnIndex = new List<bool>.filled(typeNames.length, false);
for (int i = 0; i < detectedRepeatOnIndex.length; i++) {
detectedRepeatOnIndex[i] = false;
}
for (int i = 0; i < typeNames.length; i++) {
TypeName typeName = typeNames[i];
if (!detectedRepeatOnIndex[i]) {
Element element = typeName.name.staticElement;
for (int j = i + 1; j < typeNames.length; j++) {
TypeName typeName2 = typeNames[j];
Identifier identifier2 = typeName2.name;
String name2 = identifier2.name;
Element element2 = identifier2.staticElement;
if (element != null && element == element2) {
detectedRepeatOnIndex[j] = true;
reportError5(CompileTimeErrorCode.IMPLEMENTS_REPEATED, typeName2, [name2]);
}
}
}
}
}
}
/**
* Return the type specified by the given name.
*
* @param typeName the type name specifying the type to be returned
* @param nonTypeError the error to produce if the type name is defined to be something other than
* a type
* @param dynamicTypeError the error to produce if the type name is "dynamic"
* @return the type specified by the type name
*/
InterfaceType resolveType(TypeName typeName, ErrorCode nonTypeError, ErrorCode dynamicTypeError) {
Type2 type = typeName.type;
if (type is InterfaceType) {
return type as InterfaceType;
}
Identifier name = typeName.name;
if (name.name == sc.Keyword.DYNAMIC.syntax) {
reportError5(dynamicTypeError, name, [name.name]);
} else {
reportError5(nonTypeError, name, [name.name]);
}
return null;
}
/**
* Resolve the types in the given list of type names.
*
* @param typeNames the type names to be resolved
* @param nonTypeError the error to produce if the type name is defined to be something other than
* a type
* @param dynamicTypeError the error to produce if the type name is "dynamic"
* @return an array containing all of the types that were resolved.
*/
List<InterfaceType> resolveTypes(NodeList<TypeName> typeNames, ErrorCode nonTypeError, ErrorCode dynamicTypeError) {
List<InterfaceType> types = new List<InterfaceType>();
for (TypeName typeName in typeNames) {
InterfaceType type = resolveType(typeName, nonTypeError, dynamicTypeError);
if (type != null) {
types.add(type);
}
}
return new List.from(types);
}
void setElement(Identifier typeName, Element element) {
if (element != null) {
if (typeName is SimpleIdentifier) {
((typeName as SimpleIdentifier)).staticElement = element;
} else if (typeName is PrefixedIdentifier) {
PrefixedIdentifier identifier = typeName as PrefixedIdentifier;
identifier.identifier.staticElement = element;
SimpleIdentifier prefix = identifier.prefix;
Element prefixElement = nameScope.lookup(prefix, definingLibrary);
if (prefixElement != null) {
prefix.staticElement = prefixElement;
}
}
}
}
/**
* Given a parameter element, create a function type based on the given return type and parameter
* list and associate the created type with the element.
*
* @param element the parameter element whose type is to be set
* @param returnType the (possibly `null`) return type of the function
* @param parameterList the list of parameters to the function
*/
void setFunctionTypedParameterType(ParameterElementImpl element, TypeName returnType2, FormalParameterList parameterList) {
List<ParameterElement> parameters = getElements(parameterList);
FunctionTypeAliasElementImpl aliasElement = new FunctionTypeAliasElementImpl(null);
aliasElement.synthetic = true;
aliasElement.shareParameters(parameters);
aliasElement.returnType = computeReturnType(returnType2);
FunctionTypeImpl type = new FunctionTypeImpl.con2(aliasElement);
ClassElement definingClass = element.getAncestor(ClassElement);
if (definingClass != null) {
aliasElement.shareTypeVariables(definingClass.typeVariables);
type.typeArguments = definingClass.type.typeArguments;
} else {
FunctionTypeAliasElement alias = element.getAncestor(FunctionTypeAliasElement);
while (alias != null && alias.isSynthetic) {
alias = alias.getAncestor(FunctionTypeAliasElement);
}
if (alias != null) {
aliasElement.typeVariables = alias.typeVariables;
type.typeArguments = alias.type.typeArguments;
} else {
type.typeArguments = TypeVariableTypeImpl.EMPTY_ARRAY;
}
}
element.type = type;
}
}
/**
* Instances of the class `ClassScope` implement the scope defined by a class.
*
* @coverage dart.engine.resolver
*/
class ClassScope extends EnclosedScope {
/**
* Initialize a newly created scope enclosed within another scope.
*
* @param enclosingScope the scope in which this scope is lexically enclosed
* @param typeElement the element representing the type represented by this scope
*/
ClassScope(Scope enclosingScope, ClassElement typeElement) : super(new EnclosedScope(enclosingScope)) {
defineTypeParameters(typeElement);
defineMembers(typeElement);
}
AnalysisError getErrorForDuplicate(Element existing, Element duplicate) {
if (existing is PropertyAccessorElement && duplicate is MethodElement) {
if (existing.nameOffset < duplicate.nameOffset) {
return new AnalysisError.con2(duplicate.source, duplicate.nameOffset, duplicate.displayName.length, CompileTimeErrorCode.METHOD_AND_GETTER_WITH_SAME_NAME, [existing.displayName]);
} else {
return new AnalysisError.con2(existing.source, existing.nameOffset, existing.displayName.length, CompileTimeErrorCode.GETTER_AND_METHOD_WITH_SAME_NAME, [existing.displayName]);
}
}
return super.getErrorForDuplicate(existing, duplicate);
}
/**
* Define the instance members defined by the class.
*
* @param typeElement the element representing the type represented by this scope
*/
void defineMembers(ClassElement typeElement) {
for (PropertyAccessorElement accessor in typeElement.accessors) {
define(accessor);
}
for (MethodElement method in typeElement.methods) {
define(method);
}
}
/**
* Define the type parameters for the class.
*
* @param typeElement the element representing the type represented by this scope
*/
void defineTypeParameters(ClassElement typeElement) {
Scope parameterScope = enclosingScope;
for (TypeVariableElement parameter in typeElement.typeVariables) {
parameterScope.define(parameter);
}
}
}
/**
* Instances of the class `EnclosedScope` implement a scope that is lexically enclosed in
* another scope.
*
* @coverage dart.engine.resolver
*/
class EnclosedScope extends Scope {
/**
* The scope in which this scope is lexically enclosed.
*/
Scope _enclosingScope;
/**
* A set of names that will be defined in this scope, but right now are not defined. However
* according to the scoping rules these names are hidden, even if they were defined in an outer
* scope.
*/
Set<String> _hiddenNames = new Set<String>();
/**
* Initialize a newly created scope enclosed within another scope.
*
* @param enclosingScope the scope in which this scope is lexically enclosed
*/
EnclosedScope(Scope enclosingScope) {
this._enclosingScope = enclosingScope;
}
LibraryElement get definingLibrary => _enclosingScope.definingLibrary;
AnalysisErrorListener get errorListener => _enclosingScope.errorListener;
/**
* Hides the name of the given element in this scope. If there is already an element with the
* given name defined in an outer scope, then it will become unavailable.
*
* @param element the element to be hidden in this scope
*/
void hide(Element element) {
if (element != null) {
String name = element.name;
if (name != null && !name.isEmpty) {
javaSetAdd(_hiddenNames, name);
}
}
}
/**
* Return the scope in which this scope is lexically enclosed.
*
* @return the scope in which this scope is lexically enclosed
*/
Scope get enclosingScope => _enclosingScope;
Element lookup3(Identifier identifier, String name, LibraryElement referencingLibrary) {
Element element = localLookup(name, referencingLibrary);
if (element != null) {
return element;
}
if (_hiddenNames.contains(name)) {
return null;
}
return _enclosingScope.lookup3(identifier, name, referencingLibrary);
}
}
/**
* Instances of the class `FunctionScope` implement the scope defined by a function.
*
* @coverage dart.engine.resolver
*/
class FunctionScope extends EnclosedScope {
/**
* Initialize a newly created scope enclosed within another scope.
*
* @param enclosingScope the scope in which this scope is lexically enclosed
* @param functionElement the element representing the type represented by this scope
*/
FunctionScope(Scope enclosingScope, ExecutableElement functionElement) : super(new EnclosedScope(enclosingScope)) {
defineParameters(functionElement);
}
/**
* Define the parameters for the given function in the scope that encloses this function.
*
* @param functionElement the element representing the function represented by this scope
*/
void defineParameters(ExecutableElement functionElement) {
Scope parameterScope = enclosingScope;
if (functionElement.enclosingElement is ExecutableElement) {
String name = functionElement.name;
if (name != null && !name.isEmpty) {
parameterScope.define(functionElement);
}
}
for (ParameterElement parameter in functionElement.parameters) {
if (!parameter.isInitializingFormal) {
parameterScope.define(parameter);
}
}
}
}
/**
* Instances of the class `FunctionTypeScope` implement the scope defined by a function type
* alias.
*
* @coverage dart.engine.resolver
*/
class FunctionTypeScope extends EnclosedScope {
/**
* Initialize a newly created scope enclosed within another scope.
*
* @param enclosingScope the scope in which this scope is lexically enclosed
* @param typeElement the element representing the type alias represented by this scope
*/
FunctionTypeScope(Scope enclosingScope, FunctionTypeAliasElement typeElement) : super(new EnclosedScope(enclosingScope)) {
defineTypeVariables(typeElement);
defineParameters(typeElement);
}
/**
* Define the parameters for the function type alias.
*
* @param typeElement the element representing the type represented by this scope
*/
void defineParameters(FunctionTypeAliasElement typeElement) {
for (ParameterElement parameter in typeElement.parameters) {
define(parameter);
}
}
/**
* Define the type variables for the function type alias.
*
* @param typeElement the element representing the type represented by this scope
*/
void defineTypeVariables(FunctionTypeAliasElement typeElement) {
Scope typeVariableScope = enclosingScope;
for (TypeVariableElement typeVariable in typeElement.typeVariables) {
typeVariableScope.define(typeVariable);
}
}
}
/**
* Instances of the class `LabelScope` represent a scope in which a single label is defined.
*
* @coverage dart.engine.resolver
*/
class LabelScope {
/**
* The label scope enclosing this label scope.
*/
LabelScope _outerScope;
/**
* The label defined in this scope.
*/
String _label;
/**
* The element to which the label resolves.
*/
LabelElement _element;
/**
* The marker used to look up a label element for an unlabeled `break` or `continue`.
*/
static String EMPTY_LABEL = "";
/**
* The label element returned for scopes that can be the target of an unlabeled `break` or
* `continue`.
*/
static SimpleIdentifier _EMPTY_LABEL_IDENTIFIER = new SimpleIdentifier.full(new sc.StringToken(sc.TokenType.IDENTIFIER, "", 0));
/**
* Initialize a newly created scope to represent the potential target of an unlabeled
* `break` or `continue`.
*
* @param outerScope the label scope enclosing the new label scope
* @param onSwitchStatement `true` if this label is associated with a `switch`
* statement
* @param onSwitchMember `true` if this label is associated with a `switch` member
*/
LabelScope.con1(LabelScope outerScope, bool onSwitchStatement, bool onSwitchMember) : this.con2(outerScope, EMPTY_LABEL, new LabelElementImpl(_EMPTY_LABEL_IDENTIFIER, onSwitchStatement, onSwitchMember));
/**
* Initialize a newly created scope to represent the given label.
*
* @param outerScope the label scope enclosing the new label scope
* @param label the label defined in this scope
* @param element the element to which the label resolves
*/
LabelScope.con2(LabelScope outerScope, String label, LabelElement element) {
this._outerScope = outerScope;
this._label = label;
this._element = element;
}
/**
* Return the label element corresponding to the given label, or `null` if the given label
* is not defined in this scope.
*
* @param targetLabel the label being looked up
* @return the label element corresponding to the given label
*/
LabelElement lookup(SimpleIdentifier targetLabel) => lookup2(targetLabel.name);
/**
* Return the label element corresponding to the given label, or `null` if the given label
* is not defined in this scope.
*
* @param targetLabel the label being looked up
* @return the label element corresponding to the given label
*/
LabelElement lookup2(String targetLabel) {
if (_label == targetLabel) {
return _element;
} else if (_outerScope != null) {
return _outerScope.lookup2(targetLabel);
} else {
return null;
}
}
}
/**
* Instances of the class `LibraryImportScope` represent the scope containing all of the names
* available from imported libraries.
*
* @coverage dart.engine.resolver
*/
class LibraryImportScope extends Scope {
/**
* The element representing the library in which this scope is enclosed.
*/
LibraryElement _definingLibrary;
/**
* The listener that is to be informed when an error is encountered.
*/
AnalysisErrorListener _errorListener;
/**
* A list of the namespaces representing the names that are available in this scope from imported
* libraries.
*/
List<Namespace> _importedNamespaces = new List<Namespace>();
/**
* Initialize a newly created scope representing the names imported into the given library.
*
* @param definingLibrary the element representing the library that imports the names defined in
* this scope
* @param errorListener the listener that is to be informed when an error is encountered
*/
LibraryImportScope(LibraryElement definingLibrary, AnalysisErrorListener errorListener) {
this._definingLibrary = definingLibrary;
this._errorListener = errorListener;
createImportedNamespaces(definingLibrary);
}
void define(Element element) {
if (!Scope.isPrivateName(element.displayName)) {
super.define(element);
}
}
LibraryElement get definingLibrary => _definingLibrary;
AnalysisErrorListener get errorListener => _errorListener;
Element lookup3(Identifier identifier, String name, LibraryElement referencingLibrary) {
Element foundElement = localLookup(name, referencingLibrary);
if (foundElement != null) {
return foundElement;
}
for (Namespace nameSpace in _importedNamespaces) {
Element element = nameSpace.get(name);
if (element != null) {
if (foundElement == null) {
foundElement = element;
} else {
foundElement = new MultiplyDefinedElementImpl(_definingLibrary.context, foundElement, element);
}
}
}
if (foundElement is MultiplyDefinedElementImpl) {
String foundEltName = foundElement.displayName;
String libName1 = "", libName2 = "";
List<Element> conflictingMembers = ((foundElement as MultiplyDefinedElementImpl)).conflictingElements;
LibraryElement enclosingLibrary = conflictingMembers[0].getAncestor(LibraryElement);
if (enclosingLibrary != null) {
libName1 = enclosingLibrary.definingCompilationUnit.displayName;
}
enclosingLibrary = conflictingMembers[1].getAncestor(LibraryElement);
if (enclosingLibrary != null) {
libName2 = enclosingLibrary.definingCompilationUnit.displayName;
}
_errorListener.onError(new AnalysisError.con2(source, identifier.offset, identifier.length, StaticWarningCode.AMBIGUOUS_IMPORT, [foundEltName, libName1, libName2]));
return foundElement;
}
if (foundElement != null) {
defineWithoutChecking2(name, foundElement);
}
return foundElement;
}
/**
* Create all of the namespaces associated with the libraries imported into this library. The
* names are not added to this scope, but are stored for later reference.
*
* @param definingLibrary the element representing the library that imports the libraries for
* which namespaces will be created
*/
void createImportedNamespaces(LibraryElement definingLibrary) {
NamespaceBuilder builder = new NamespaceBuilder();
for (ImportElement element in definingLibrary.imports) {
_importedNamespaces.add(builder.createImportNamespace(element));
}
}
}
/**
* Instances of the class `LibraryScope` implement a scope containing all of the names defined
* in a given library.
*
* @coverage dart.engine.resolver
*/
class LibraryScope extends EnclosedScope {
/**
* Initialize a newly created scope representing the names defined in the given library.
*
* @param definingLibrary the element representing the library represented by this scope
* @param errorListener the listener that is to be informed when an error is encountered
*/
LibraryScope(LibraryElement definingLibrary, AnalysisErrorListener errorListener) : super(new LibraryImportScope(definingLibrary, errorListener)) {
defineTopLevelNames(definingLibrary);
}
AnalysisError getErrorForDuplicate(Element existing, Element duplicate) {
if (existing is PrefixElement) {
int offset = duplicate.nameOffset;
if (duplicate is PropertyAccessorElement) {
PropertyAccessorElement accessor = duplicate as PropertyAccessorElement;
if (accessor.isSynthetic) {
offset = accessor.variable.nameOffset;
}
}
return new AnalysisError.con2(source, offset, duplicate.displayName.length, CompileTimeErrorCode.PREFIX_COLLIDES_WITH_TOP_LEVEL_MEMBER, [existing.displayName]);
}
return super.getErrorForDuplicate(existing, duplicate);
}
/**
* Add to this scope all of the public top-level names that are defined in the given compilation
* unit.
*
* @param compilationUnit the compilation unit defining the top-level names to be added to this
* scope
*/
void defineLocalNames(CompilationUnitElement compilationUnit) {
for (PropertyAccessorElement element in compilationUnit.accessors) {
define(element);
}
for (FunctionElement element in compilationUnit.functions) {
define(element);
}
for (FunctionTypeAliasElement element in compilationUnit.functionTypeAliases) {
define(element);
}
for (ClassElement element in compilationUnit.types) {
define(element);
}
}
/**
* Add to this scope all of the names that are explicitly defined in the given library.
*
* @param definingLibrary the element representing the library that defines the names in this
* scope
*/
void defineTopLevelNames(LibraryElement definingLibrary) {
for (PrefixElement prefix in definingLibrary.prefixes) {
define(prefix);
}
defineLocalNames(definingLibrary.definingCompilationUnit);
for (CompilationUnitElement compilationUnit in definingLibrary.parts) {
defineLocalNames(compilationUnit);
}
}
}
/**
* Instances of the class `Namespace` implement a mapping of identifiers to the elements
* represented by those identifiers. Namespaces are the building blocks for scopes.
*
* @coverage dart.engine.resolver
*/
class Namespace {
/**
* A table mapping names that are defined in this namespace to the element representing the thing
* declared with that name.
*/
Map<String, Element> _definedNames;
/**
* An empty namespace.
*/
static Namespace EMPTY = new Namespace(new Map<String, Element>());
/**
* Initialize a newly created namespace to have the given defined names.
*
* @param definedNames the mapping from names that are defined in this namespace to the
* corresponding elements
*/
Namespace(Map<String, Element> definedNames) {
this._definedNames = definedNames;
}
/**
* Return the element in this namespace that is available to the containing scope using the given
* name.
*
* @param name the name used to reference the
* @return the element represented by the given identifier
*/
Element get(String name) => _definedNames[name];
/**
* Return a table containing the same mappings as those defined by this namespace.
*
* @return a table containing the same mappings as those defined by this namespace
*/
Map<String, Element> get definedNames => new Map<String, Element>.from(_definedNames);
}
/**
* Instances of the class `NamespaceBuilder` are used to build a `Namespace`. Namespace
* builders are thread-safe and re-usable.
*
* @coverage dart.engine.resolver
*/
class NamespaceBuilder {
/**
* Create a namespace representing the export namespace of the given [ExportElement].
*
* @param element the export element whose export namespace is to be created
* @return the export namespace that was created
*/
Namespace createExportNamespace(ExportElement element) {
LibraryElement exportedLibrary = element.exportedLibrary;
if (exportedLibrary == null) {
return Namespace.EMPTY;
}
Map<String, Element> definedNames = createExportMapping(exportedLibrary, new Set<LibraryElement>());
definedNames = apply(definedNames, element.combinators);
return new Namespace(definedNames);
}
/**
* Create a namespace representing the export namespace of the given library.
*
* @param library the library whose export namespace is to be created
* @return the export namespace that was created
*/
Namespace createExportNamespace2(LibraryElement library) => new Namespace(createExportMapping(library, new Set<LibraryElement>()));
/**
* Create a namespace representing the import namespace of the given library.
*
* @param library the library whose import namespace is to be created
* @return the import namespace that was created
*/
Namespace createImportNamespace(ImportElement element) {
LibraryElement importedLibrary = element.importedLibrary;
if (importedLibrary == null) {
return Namespace.EMPTY;
}
Map<String, Element> definedNames = createExportMapping(importedLibrary, new Set<LibraryElement>());
definedNames = apply(definedNames, element.combinators);
definedNames = apply2(definedNames, element.prefix);
return new Namespace(definedNames);
}
/**
* Create a namespace representing the public namespace of the given library.
*
* @param library the library whose public namespace is to be created
* @return the public namespace that was created
*/
Namespace createPublicNamespace(LibraryElement library) {
Map<String, Element> definedNames = new Map<String, Element>();
addPublicNames(definedNames, library.definingCompilationUnit);
for (CompilationUnitElement compilationUnit in library.parts) {
addPublicNames(definedNames, compilationUnit);
}
return new Namespace(definedNames);
}
/**
* Add all of the names in the given namespace to the given mapping table.
*
* @param definedNames the mapping table to which the names in the given namespace are to be added
* @param namespace the namespace containing the names to be added to this namespace
*/
void addAll(Map<String, Element> definedNames, Map<String, Element> newNames) {
for (MapEntry<String, Element> entry in getMapEntrySet(newNames)) {
definedNames[entry.getKey()] = entry.getValue();
}
}
/**
* Add all of the names in the given namespace to the given mapping table.
*
* @param definedNames the mapping table to which the names in the given namespace are to be added
* @param namespace the namespace containing the names to be added to this namespace
*/
void addAll2(Map<String, Element> definedNames2, Namespace namespace) {
if (namespace != null) {
addAll(definedNames2, namespace.definedNames);
}
}
/**
* Add the given element to the given mapping table if it has a publicly visible name.
*
* @param definedNames the mapping table to which the public name is to be added
* @param element the element to be added
*/
void addIfPublic(Map<String, Element> definedNames, Element element) {
String name = element.name;
if (name != null && !Scope.isPrivateName(name)) {
definedNames[name] = element;
}
}
/**
* Add to the given mapping table all of the public top-level names that are defined in the given
* compilation unit.
*
* @param definedNames the mapping table to which the public names are to be added
* @param compilationUnit the compilation unit defining the top-level names to be added to this
* namespace
*/
void addPublicNames(Map<String, Element> definedNames, CompilationUnitElement compilationUnit) {
for (PropertyAccessorElement element in compilationUnit.accessors) {
addIfPublic(definedNames, element);
}
for (FunctionElement element in compilationUnit.functions) {
addIfPublic(definedNames, element);
}
for (FunctionTypeAliasElement element in compilationUnit.functionTypeAliases) {
addIfPublic(definedNames, element);
}
for (ClassElement element in compilationUnit.types) {
addIfPublic(definedNames, element);
}
}
/**
* Apply the given combinators to all of the names in the given mapping table.
*
* @param definedNames the mapping table to which the namespace operations are to be applied
* @param combinators the combinators to be applied
*/
Map<String, Element> apply(Map<String, Element> definedNames, List<NamespaceCombinator> combinators) {
for (NamespaceCombinator combinator in combinators) {
if (combinator is HideElementCombinator) {
hide(definedNames, ((combinator as HideElementCombinator)).hiddenNames);
} else if (combinator is ShowElementCombinator) {
definedNames = show(definedNames, ((combinator as ShowElementCombinator)).shownNames);
} else {
AnalysisEngine.instance.logger.logError("Unknown type of combinator: ${combinator.runtimeType.toString()}");
}
}
return definedNames;
}
/**
* Apply the given prefix to all of the names in the table of defined names.
*
* @param definedNames the names that were defined before this operation
* @param prefixElement the element defining the prefix to be added to the names
*/
Map<String, Element> apply2(Map<String, Element> definedNames, PrefixElement prefixElement) {
if (prefixElement != null) {
String prefix = prefixElement.name;
Map<String, Element> newNames = new Map<String, Element>();
for (MapEntry<String, Element> entry in getMapEntrySet(definedNames)) {
newNames["${prefix}.${entry.getKey()}"] = entry.getValue();
}
return newNames;
} else {
return definedNames;
}
}
/**
* Create a mapping table representing the export namespace of the given library.
*
* @param library the library whose public namespace is to be created
* @param visitedElements a set of libraries that do not need to be visited when processing the
* export directives of the given library because all of the names defined by them will
* be added by another library
* @return the mapping table that was created
*/
Map<String, Element> createExportMapping(LibraryElement library, Set<LibraryElement> visitedElements) {
javaSetAdd(visitedElements, library);
try {
Map<String, Element> definedNames = new Map<String, Element>();
for (ExportElement element in library.exports) {
LibraryElement exportedLibrary = element.exportedLibrary;
if (exportedLibrary != null && !visitedElements.contains(exportedLibrary)) {
Map<String, Element> exportedNames = createExportMapping(exportedLibrary, visitedElements);
exportedNames = apply(exportedNames, element.combinators);
addAll(definedNames, exportedNames);
}
}
addAll2(definedNames, ((library.context as InternalAnalysisContext)).getPublicNamespace(library));
return definedNames;
} finally {
visitedElements.remove(library);
}
}
/**
* Hide all of the given names by removing them from the given collection of defined names.
*
* @param definedNames the names that were defined before this operation
* @param hiddenNames the names to be hidden
*/
void hide(Map<String, Element> definedNames, List<String> hiddenNames) {
for (String name in hiddenNames) {
definedNames.remove(name);
definedNames.remove("${name}=");
}
}
/**
* Show only the given names by removing all other names from the given collection of defined
* names.
*
* @param definedNames the names that were defined before this operation
* @param shownNames the names to be shown
*/
Map<String, Element> show(Map<String, Element> definedNames, List<String> shownNames) {
Map<String, Element> newNames = new Map<String, Element>();
for (String name in shownNames) {
Element element = definedNames[name];
if (element != null) {
newNames[name] = element;
}
String setterName = "${name}=";
element = definedNames[setterName];
if (element != null) {
newNames[setterName] = element;
}
}
return newNames;
}
}
/**
* The abstract class `Scope` defines the behavior common to name scopes used by the resolver
* to determine which names are visible at any given point in the code.
*
* @coverage dart.engine.resolver
*/
abstract class Scope {
/**
* The prefix used to mark an identifier as being private to its library.
*/
static String PRIVATE_NAME_PREFIX = "_";
/**
* The suffix added to the declared name of a setter when looking up the setter. Used to
* disambiguate between a getter and a setter that have the same name.
*/
static String SETTER_SUFFIX = "=";
/**
* The name used to look up the method used to implement the unary minus operator. Used to
* disambiguate between the unary and binary operators.
*/
static String UNARY_MINUS = "unary-";
/**
* Return `true` if the given name is a library-private name.
*
* @param name the name being tested
* @return `true` if the given name is a library-private name
*/
static bool isPrivateName(String name) => name != null && name.startsWith(PRIVATE_NAME_PREFIX);
/**
* A table mapping names that are defined in this scope to the element representing the thing
* declared with that name.
*/
Map<String, Element> _definedNames = new Map<String, Element>();
/**
* Add the given element to this scope. If there is already an element with the given name defined
* in this scope, then an error will be generated and the original element will continue to be
* mapped to the name. If there is an element with the given name in an enclosing scope, then a
* warning will be generated but the given element will hide the inherited element.
*
* @param element the element to be added to this scope
*/
void define(Element element) {
String name = getName(element);
if (name != null && !name.isEmpty) {
if (_definedNames.containsKey(name)) {
errorListener.onError(getErrorForDuplicate(_definedNames[name], element));
} else {
_definedNames[name] = element;
}
}
}
/**
* Return the element with which the given identifier is associated, or `null` if the name
* is not defined within this scope.
*
* @param identifier the identifier associated with the element to be returned
* @param referencingLibrary the library that contains the reference to the name, used to
* implement library-level privacy
* @return the element with which the given identifier is associated
*/
Element lookup(Identifier identifier, LibraryElement referencingLibrary) => lookup3(identifier, identifier.name, referencingLibrary);
/**
* Add the given element to this scope without checking for duplication or hiding.
*
* @param element the element to be added to this scope
*/
void defineWithoutChecking(Element element) {
_definedNames[getName(element)] = element;
}
/**
* Add the given element to this scope without checking for duplication or hiding.
*
* @param name the name of the element to be added
* @param element the element to be added to this scope
*/
void defineWithoutChecking2(String name, Element element) {
_definedNames[name] = element;
}
/**
* Return the element representing the library in which this scope is enclosed.
*
* @return the element representing the library in which this scope is enclosed
*/
LibraryElement get definingLibrary;
/**
* Return the error code to be used when reporting that a name being defined locally conflicts
* with another element of the same name in the local scope.
*
* @param existing the first element to be declared with the conflicting name
* @param duplicate another element declared with the conflicting name
* @return the error code used to report duplicate names within a scope
*/
AnalysisError getErrorForDuplicate(Element existing, Element duplicate) {
Source source = duplicate.source;
if (source == null) {
source = source;
}
return new AnalysisError.con2(source, duplicate.nameOffset, duplicate.displayName.length, CompileTimeErrorCode.DUPLICATE_DEFINITION, [existing.displayName]);
}
/**
* Return the listener that is to be informed when an error is encountered.
*
* @return the listener that is to be informed when an error is encountered
*/
AnalysisErrorListener get errorListener;
/**
* Return the source object representing the compilation unit with which errors related to this
* scope should be associated.
*
* @return the source object with which errors should be associated
*/
Source get source => definingLibrary.definingCompilationUnit.source;
/**
* Return the element with which the given name is associated, or `null` if the name is not
* defined within this scope. This method only returns elements that are directly defined within
* this scope, not elements that are defined in an enclosing scope.
*
* @param name the name associated with the element to be returned
* @param referencingLibrary the library that contains the reference to the name, used to
* implement library-level privacy
* @return the element with which the given name is associated
*/
Element localLookup(String name, LibraryElement referencingLibrary) => _definedNames[name];
/**
* Return the element with which the given name is associated, or `null` if the name is not
* defined within this scope.
*
* @param identifier the identifier node to lookup element for, used to report correct kind of a
* problem and associate problem with
* @param name the name associated with the element to be returned
* @param referencingLibrary the library that contains the reference to the name, used to
* implement library-level privacy
* @return the element with which the given name is associated
*/
Element lookup3(Identifier identifier, String name, LibraryElement referencingLibrary);
/**
* Return the name that will be used to look up the given element.
*
* @param element the element whose look-up name is to be returned
* @return the name that will be used to look up the given element
*/
String getName(Element element) {
if (element is MethodElement) {
MethodElement method = element as MethodElement;
if (method.name == "-" && method.parameters.length == 0) {
return UNARY_MINUS;
}
}
return element.name;
}
}
/**
* Instances of the class `ConstantVerifier` traverse an AST structure looking for additional
* errors and warnings not covered by the parser and resolver. In particular, it looks for errors
* and warnings related to constant expressions.
*
* @coverage dart.engine.resolver
*/
class ConstantVerifier extends RecursiveASTVisitor<Object> {
/**
* The error reporter by which errors will be reported.
*/
ErrorReporter _errorReporter;
/**
* The type representing the type 'bool'.
*/
InterfaceType _boolType;
/**
* The type representing the type 'int'.
*/
InterfaceType _intType;
/**
* The type representing the type 'num'.
*/
InterfaceType _numType;
/**
* The type representing the type 'string'.
*/
InterfaceType _stringType;
/**
* Initialize a newly created constant verifier.
*
* @param errorReporter the error reporter by which errors will be reported
*/
ConstantVerifier(ErrorReporter errorReporter, TypeProvider typeProvider) {
this._errorReporter = errorReporter;
this._boolType = typeProvider.boolType;
this._intType = typeProvider.intType;
this._numType = typeProvider.numType;
this._stringType = typeProvider.stringType;
}
Object visitAnnotation(Annotation node) {
super.visitAnnotation(node);
Element element = node.element;
if (element is ConstructorElement) {
ConstructorElement constructorElement = element as ConstructorElement;
if (!constructorElement.isConst) {
_errorReporter.reportError2(CompileTimeErrorCode.NON_CONSTANT_ANNOTATION_CONSTRUCTOR, node, []);
return null;
}
ArgumentList argumentList = node.arguments;
if (argumentList == null) {
_errorReporter.reportError2(CompileTimeErrorCode.NO_ANNOTATION_CONSTRUCTOR_ARGUMENTS, node, []);
return null;
}
validateConstantArguments(argumentList);
}
return null;
}
Object visitConstructorDeclaration(ConstructorDeclaration node) {
if (node.constKeyword != null) {
validateInitializers(node);
}
validateDefaultValues(node.parameters);
return super.visitConstructorDeclaration(node);
}
Object visitFunctionExpression(FunctionExpression node) {
super.visitFunctionExpression(node);
validateDefaultValues(node.parameters);
return null;
}
Object visitInstanceCreationExpression(InstanceCreationExpression node) {
validateConstantArguments2(node);
return super.visitInstanceCreationExpression(node);
}
Object visitListLiteral(ListLiteral node) {
super.visitListLiteral(node);
if (node.constKeyword != null) {
for (Expression element in node.elements) {
validate(element, CompileTimeErrorCode.NON_CONSTANT_LIST_ELEMENT);
}
}
return null;
}
Object visitMapLiteral(MapLiteral node) {
super.visitMapLiteral(node);
bool isConst = node.constKeyword != null;
bool reportEqualKeys = true;
Set<Object> keys = new Set<Object>();
List<Expression> invalidKeys = new List<Expression>();
for (MapLiteralEntry entry in node.entries) {
Expression key = entry.key;
if (isConst) {
EvaluationResultImpl result = validate(key, CompileTimeErrorCode.NON_CONSTANT_MAP_KEY);
validate(entry.value, CompileTimeErrorCode.NON_CONSTANT_MAP_VALUE);
if (result is ValidResult) {
Object value = ((result as ValidResult)).value;
if (keys.contains(value)) {
invalidKeys.add(key);
} else {
javaSetAdd(keys, value);
}
}
} else {
EvaluationResultImpl result = key.accept(new ConstantVisitor());
if (result is ValidResult) {
Object value = ((result as ValidResult)).value;
if (keys.contains(value)) {
invalidKeys.add(key);
} else {
javaSetAdd(keys, value);
}
} else {
reportEqualKeys = false;
}
}
}
if (reportEqualKeys) {
for (Expression key in invalidKeys) {
_errorReporter.reportError2(StaticWarningCode.EQUAL_KEYS_IN_MAP, key, []);
}
}
return null;
}
Object visitMethodDeclaration(MethodDeclaration node) {
super.visitMethodDeclaration(node);
validateDefaultValues(node.parameters);
return null;
}
Object visitSwitchCase(SwitchCase node) {
super.visitSwitchCase(node);
validate(node.expression, CompileTimeErrorCode.NON_CONSTANT_CASE_EXPRESSION);
return null;
}
Object visitVariableDeclaration(VariableDeclaration node) {
super.visitVariableDeclaration(node);
Expression initializer = node.initializer;
if (initializer != null && node.isConst) {
VariableElementImpl element = node.element as VariableElementImpl;
EvaluationResultImpl result = element.evaluationResult;
if (result == null) {
result = validate(initializer, CompileTimeErrorCode.CONST_INITIALIZED_WITH_NON_CONSTANT_VALUE);
element.evaluationResult = result;
} else if (result is ErrorResult) {
reportErrors(result, CompileTimeErrorCode.CONST_INITIALIZED_WITH_NON_CONSTANT_VALUE);
}
}
return null;
}
/**
* Return `true` if the given value is the result of evaluating an expression whose value is
* a valid key in a const map literal. Keys in const map literals must be either a string, number,
* boolean, list, map, or null.
*
* @param value
* @return `true` if the given value is a valid key in a const map literal
*/
bool isValidConstMapKey(Object value) => true;
/**
* If the given result represents one or more errors, report those errors. Except for special
* cases, use the given error code rather than the one reported in the error.
*
* @param result the result containing any errors that need to be reported
* @param errorCode the error code to be used if the result represents an error
*/
void reportErrors(EvaluationResultImpl result, ErrorCode errorCode2) {
if (result is ErrorResult) {
for (ErrorResult_ErrorData data in ((result as ErrorResult)).errorData) {
ErrorCode dataErrorCode = data.errorCode;
if (identical(dataErrorCode, CompileTimeErrorCode.CONST_EVAL_THROWS_EXCEPTION) || identical(dataErrorCode, CompileTimeErrorCode.CONST_EVAL_THROWS_IDBZE) || identical(dataErrorCode, CompileTimeErrorCode.CONST_EVAL_TYPE_BOOL_NUM_STRING) || identical(dataErrorCode, CompileTimeErrorCode.CONST_EVAL_TYPE_BOOL) || identical(dataErrorCode, CompileTimeErrorCode.CONST_EVAL_TYPE_INT) || identical(dataErrorCode, CompileTimeErrorCode.CONST_EVAL_TYPE_NUM)) {
_errorReporter.reportError2(dataErrorCode, data.node, []);
} else {
_errorReporter.reportError2(errorCode2, data.node, []);
}
}
}
}
/**
* Validate that the given expression is a compile time constant. Return the value of the compile
* time constant, or `null` if the expression is not a compile time constant.
*
* @param expression the expression to be validated
* @param errorCode the error code to be used if the expression is not a compile time constant
* @return the value of the compile time constant
*/
EvaluationResultImpl validate(Expression expression, ErrorCode errorCode) {
EvaluationResultImpl result = expression.accept(new ConstantVisitor());
reportErrors(result, errorCode);
return result;
}
/**
* Validate that if the passed arguments are constant expressions.
*
* @param argumentList the argument list to evaluate
*/
void validateConstantArguments(ArgumentList argumentList) {
for (Expression argument in argumentList.arguments) {
if (argument is NamedExpression) {
argument = ((argument as NamedExpression)).expression;
}
validate(argument, CompileTimeErrorCode.CONST_WITH_NON_CONSTANT_ARGUMENT);
}
}
/**
* Validate that if the passed instance creation is 'const' then all its arguments are constant
* expressions.
*
* @param node the instance creation evaluate
*/
void validateConstantArguments2(InstanceCreationExpression node) {
if (!node.isConst) {
return;
}
ArgumentList argumentList = node.argumentList;
if (argumentList == null) {
return;
}
validateConstantArguments(argumentList);
}
/**
* Validate that the default value associated with each of the parameters in the given list is a
* compile time constant.
*
* @param parameters the list of parameters to be validated
*/
void validateDefaultValues(FormalParameterList parameters2) {
if (parameters2 == null) {
return;
}
for (FormalParameter parameter in parameters2.parameters) {
if (parameter is DefaultFormalParameter) {
DefaultFormalParameter defaultParameter = parameter as DefaultFormalParameter;
Expression defaultValue = defaultParameter.defaultValue;
if (defaultValue != null) {
EvaluationResultImpl result = validate(defaultValue, CompileTimeErrorCode.NON_CONSTANT_DEFAULT_VALUE);
VariableElementImpl element = parameter.element as VariableElementImpl;
element.evaluationResult = result;
}
}
}
}
/**
* Validates that the given expression is a compile time constant.
*
* @param parameterElements the elements of parameters of constant constructor, they are
* considered as a valid potentially constant expressions
* @param expression the expression to validate
*/
void validateInitializerExpression(List<ParameterElement> parameterElements, Expression expression) {
EvaluationResultImpl result = expression.accept(new ConstantVisitor_10(this, parameterElements));
reportErrors(result, CompileTimeErrorCode.NON_CONSTANT_VALUE_IN_INITIALIZER);
}
/**
* Validates that all of the arguments of a constructor initializer are compile time constants.
*
* @param parameterElements the elements of parameters of constant constructor, they are
* considered as a valid potentially constant expressions
* @param argumentList the argument list to validate
*/
void validateInitializerInvocationArguments(List<ParameterElement> parameterElements, ArgumentList argumentList) {
if (argumentList == null) {
return;
}
for (Expression argument in argumentList.arguments) {
validateInitializerExpression(parameterElements, argument);
}
}
/**
* Validates that the expressions of the given initializers (of a constant constructor) are all
* compile time constants.
*
* @param constructor the constant constructor declaration to validate
*/
void validateInitializers(ConstructorDeclaration constructor) {
List<ParameterElement> parameterElements = constructor.parameters.parameterElements;
NodeList<ConstructorInitializer> initializers = constructor.initializers;
for (ConstructorInitializer initializer in initializers) {
if (initializer is ConstructorFieldInitializer) {
ConstructorFieldInitializer fieldInitializer = initializer as ConstructorFieldInitializer;
validateInitializerExpression(parameterElements, fieldInitializer.expression);
}
if (initializer is RedirectingConstructorInvocation) {
RedirectingConstructorInvocation invocation = initializer as RedirectingConstructorInvocation;
validateInitializerInvocationArguments(parameterElements, invocation.argumentList);
}
if (initializer is SuperConstructorInvocation) {
SuperConstructorInvocation invocation = initializer as SuperConstructorInvocation;
validateInitializerInvocationArguments(parameterElements, invocation.argumentList);
}
}
}
}
class ConstantVisitor_10 extends ConstantVisitor {
final ConstantVerifier ConstantVerifier_this;
List<ParameterElement> parameterElements;
ConstantVisitor_10(this.ConstantVerifier_this, this.parameterElements) : super();
EvaluationResultImpl visitSimpleIdentifier(SimpleIdentifier node) {
Element element = node.staticElement;
for (ParameterElement parameterElement in parameterElements) {
if (identical(parameterElement, element) && parameterElement != null) {
Type2 type = parameterElement.type;
if (type != null) {
if (type.isDynamic) {
return ValidResult.RESULT_DYNAMIC;
}
if (type.isSubtypeOf(ConstantVerifier_this._boolType)) {
return ValidResult.RESULT_BOOL;
}
if (type.isSubtypeOf(ConstantVerifier_this._intType)) {
return ValidResult.RESULT_INT;
}
if (type.isSubtypeOf(ConstantVerifier_this._numType)) {
return ValidResult.RESULT_NUM;
}
if (type.isSubtypeOf(ConstantVerifier_this._stringType)) {
return ValidResult.RESULT_STRING;
}
}
return ValidResult.RESULT_OBJECT;
}
}
return super.visitSimpleIdentifier(node);
}
}
/**
* Instances of the class `ErrorVerifier` traverse an AST structure looking for additional
* errors and warnings not covered by the parser and resolver.
*
* @coverage dart.engine.resolver
*/
class ErrorVerifier extends RecursiveASTVisitor<Object> {
/**
* Checks if the given expression is the reference to the type.
*
* @param expr the expression to evaluate
* @return `true` if the given expression is the reference to the type
*/
static bool isTypeReference(Expression expr) {
if (expr is Identifier) {
Identifier identifier = expr as Identifier;
return identifier.staticElement is ClassElement;
}
return false;
}
/**
* The error reporter by which errors will be reported.
*/
ErrorReporter _errorReporter;
/**
* The current library that is being analyzed.
*/
LibraryElement _currentLibrary;
/**
* The type representing the type 'dynamic'.
*/
Type2 _dynamicType;
/**
* The object providing access to the types defined by the language.
*/
TypeProvider _typeProvider;
/**
* The manager for the inheritance mappings.
*/
InheritanceManager _inheritanceManager;
/**
* A flag indicating whether we are running in strict mode. In strict mode, error reporting is
* based exclusively on the static type information.
*/
bool _strictMode = false;
/**
* This is set to `true` iff the visitor is currently visiting children nodes of a
* [ConstructorDeclaration] and the constructor is 'const'.
*
* @see #visitConstructorDeclaration(ConstructorDeclaration)
*/
bool _isEnclosingConstructorConst = false;
/**
* This is set to `true` iff the visitor is currently visiting children nodes of a
* [CatchClause].
*
* @see #visitCatchClause(CatchClause)
*/
bool _isInCatchClause = false;
/**
* This is set to `true` iff the visitor is currently visiting children nodes of an
* [Comment].
*/
bool _isInComment = false;
/**
* This is set to `true` iff the visitor is currently visiting children nodes of an
* [InstanceCreationExpression].
*/
bool _isInConstInstanceCreation = false;
/**
* This is set to `true` iff the visitor is currently visiting children nodes of a native
* [ClassDeclaration].
*/
bool _isInNativeClass = false;
/**
* This is set to `true` iff the visitor is currently visiting a static variable
* declaration.
*/
bool _isInStaticVariableDeclaration = false;
/**
* This is set to `true` iff the visitor is currently visiting an instance variable
* declaration.
*/
bool _isInInstanceVariableDeclaration = false;
/**
* This is set to `true` iff the visitor is currently visiting an instance variable
* initializer.
*/
bool _isInInstanceVariableInitializer = false;
/**
* This is set to `true` iff the visitor is currently visiting a
* [ConstructorInitializer].
*/
bool _isInConstructorInitializer = false;
/**
* This is set to `true` iff the visitor is currently visiting a
* [FunctionTypedFormalParameter].
*/
bool _isInFunctionTypedFormalParameter = false;
/**
* This is set to `true` iff the visitor is currently visiting a static method. By "method"
* here getter, setter and operator declarations are also implied since they are all represented
* with a [MethodDeclaration] in the AST structure.
*/
bool _isInStaticMethod = false;
/**
* This is set to `true` iff the visitor is currently visiting code in the SDK.
*/
bool _isInSystemLibrary = false;
/**
* The class containing the AST nodes being visited, or `null` if we are not in the scope of
* a class.
*/
ClassElement _enclosingClass;
/**
* The method or function that we are currently visiting, or `null` if we are not inside a
* method or function.
*/
ExecutableElement _enclosingFunction;
/**
* This map is initialized when visiting the contents of a class declaration. If the visitor is
* not in an enclosing class declaration, then the map is set to `null`.
*
* When set the map maps the set of [FieldElement]s in the class to an
* [INIT_STATE#NOT_INIT] or [INIT_STATE#INIT_IN_DECLARATION]. <code>checkFor*</code>
* methods, specifically [checkForAllFinalInitializedErrorCodes],
* can make a copy of the map to compute error code states. <code>checkFor*</code> methods should
* only ever make a copy, or read from this map after it has been set in
* [visitClassDeclaration].
*
* @see #visitClassDeclaration(ClassDeclaration)
* @see #checkForAllFinalInitializedErrorCodes(ConstructorDeclaration)
*/
Map<FieldElement, INIT_STATE> _initialFieldElementsMap;
/**
* A table mapping name of the library to the export directive which export this library.
*/
Map<String, LibraryElement> _nameToExportElement = new Map<String, LibraryElement>();
/**
* A table mapping name of the library to the import directive which import this library.
*/
Map<String, LibraryElement> _nameToImportElement = new Map<String, LibraryElement>();
/**
* A table mapping names to the export elements exported them.
*/
Map<String, ExportElement> _exportedNames = new Map<String, ExportElement>();
/**
* A set of the names of the variable initializers we are visiting now.
*/
Set<String> _namesForReferenceToDeclaredVariableInInitializer = new Set<String>();
/**
* A list of types used by the [CompileTimeErrorCode#EXTENDS_DISALLOWED_CLASS] and
* [CompileTimeErrorCode#IMPLEMENTS_DISALLOWED_CLASS] error codes.
*/
List<InterfaceType> _DISALLOWED_TYPES_TO_EXTEND_OR_IMPLEMENT;
ErrorVerifier(ErrorReporter errorReporter, LibraryElement currentLibrary, TypeProvider typeProvider, InheritanceManager inheritanceManager) {
this._errorReporter = errorReporter;
this._currentLibrary = currentLibrary;
this._isInSystemLibrary = currentLibrary.source.isInSystemLibrary;
this._typeProvider = typeProvider;
this._inheritanceManager = inheritanceManager;
_strictMode = currentLibrary.context.analysisOptions.strictMode;
_isEnclosingConstructorConst = false;
_isInCatchClause = false;
_isInStaticVariableDeclaration = false;
_isInInstanceVariableDeclaration = false;
_isInInstanceVariableInitializer = false;
_isInConstructorInitializer = false;
_isInStaticMethod = false;
_dynamicType = typeProvider.dynamicType;
_DISALLOWED_TYPES_TO_EXTEND_OR_IMPLEMENT = <InterfaceType> [
typeProvider.nullType,
typeProvider.numType,
typeProvider.intType,
typeProvider.doubleType,
typeProvider.boolType,
typeProvider.stringType];
}
Object visitArgumentDefinitionTest(ArgumentDefinitionTest node) {
checkForArgumentDefinitionTestNonParameter(node);
return super.visitArgumentDefinitionTest(node);
}
Object visitArgumentList(ArgumentList node) {
checkForArgumentTypeNotAssignable(node);
return super.visitArgumentList(node);
}
Object visitAssertStatement(AssertStatement node) {
checkForNonBoolExpression(node);
return super.visitAssertStatement(node);
}
Object visitAssignmentExpression(AssignmentExpression node) {
sc.Token operator = node.operator;
sc.TokenType operatorType = operator.type;
if (identical(operatorType, sc.TokenType.EQ)) {
checkForInvalidAssignment2(node.leftHandSide, node.rightHandSide);
} else {
checkForInvalidAssignment(node);
}
checkForAssignmentToFinal(node);
checkForArgumentTypeNotAssignable2(node.rightHandSide);
return super.visitAssignmentExpression(node);
}
Object visitBinaryExpression(BinaryExpression node) {
checkForArgumentTypeNotAssignable2(node.rightOperand);
return super.visitBinaryExpression(node);
}
Object visitCatchClause(CatchClause node) {
bool previousIsInCatchClause = _isInCatchClause;
try {
_isInCatchClause = true;
return super.visitCatchClause(node);
} finally {
_isInCatchClause = previousIsInCatchClause;
}
}
Object visitClassDeclaration(ClassDeclaration node) {
ClassElement outerClass = _enclosingClass;
try {
_isInNativeClass = node.nativeClause != null;
_enclosingClass = node.element;
WithClause withClause = node.withClause;
ImplementsClause implementsClause = node.implementsClause;
ExtendsClause extendsClause = node.extendsClause;
checkForBuiltInIdentifierAsName(node.name, CompileTimeErrorCode.BUILT_IN_IDENTIFIER_AS_TYPE_NAME);
checkForMemberWithClassName();
checkForNoDefaultSuperConstructorImplicit(node);
checkForAllMixinErrorCodes(withClause);
if (implementsClause != null || extendsClause != null) {
if (!checkForImplementsDisallowedClass(implementsClause) && !checkForExtendsDisallowedClass(extendsClause)) {
checkForNonAbstractClassInheritsAbstractMember(node);
checkForInconsistentMethodInheritance();
checkForRecursiveInterfaceInheritance(_enclosingClass, new List<ClassElement>());
}
}
ClassElement classElement = node.element;
if (classElement != null) {
List<FieldElement> fieldElements = classElement.fields;
_initialFieldElementsMap = new Map<FieldElement, INIT_STATE>();
for (FieldElement fieldElement in fieldElements) {
if (!fieldElement.isSynthetic) {
_initialFieldElementsMap[fieldElement] = fieldElement.initializer == null ? INIT_STATE.NOT_INIT : INIT_STATE.INIT_IN_DECLARATION;
}
}
}
checkForFinalNotInitialized(node);
checkForDuplicateDefinitionInheritance();
checkForConflictingGetterAndMethod();
checkImplementsSuperClass(node);
return super.visitClassDeclaration(node);
} finally {
_isInNativeClass = false;
_initialFieldElementsMap = null;
_enclosingClass = outerClass;
}
}
Object visitClassTypeAlias(ClassTypeAlias node) {
checkForBuiltInIdentifierAsName(node.name, CompileTimeErrorCode.BUILT_IN_IDENTIFIER_AS_TYPEDEF_NAME);
checkForAllMixinErrorCodes(node.withClause);
ClassElement outerClassElement = _enclosingClass;
try {
_enclosingClass = node.element;
checkForRecursiveInterfaceInheritance(node.element, new List<ClassElement>());
checkForTypeAliasCannotReferenceItself_mixin(node);
} finally {
_enclosingClass = outerClassElement;
}
return super.visitClassTypeAlias(node);
}
Object visitComment(Comment node) {
_isInComment = true;
try {
return super.visitComment(node);
} finally {
_isInComment = false;
}
}
Object visitConditionalExpression(ConditionalExpression node) {
checkForNonBoolCondition(node.condition);
return super.visitConditionalExpression(node);
}
Object visitConstructorDeclaration(ConstructorDeclaration node) {
ExecutableElement outerFunction = _enclosingFunction;
try {
_enclosingFunction = node.element;
_isEnclosingConstructorConst = node.constKeyword != null;
checkForConstConstructorWithNonFinalField(node);
checkForConstConstructorWithNonConstSuper(node);
checkForConflictingConstructorNameAndMember(node);
checkForAllFinalInitializedErrorCodes(node);
checkForRedirectingConstructorErrorCodes(node);
checkForMultipleSuperInitializers(node);
checkForRecursiveConstructorRedirect(node);
if (!checkForRecursiveFactoryRedirect(node)) {
checkForAllRedirectConstructorErrorCodes(node);
}
checkForUndefinedConstructorInInitializerImplicit(node);
checkForRedirectToNonConstConstructor(node);
checkForReturnInGenerativeConstructor(node);
return super.visitConstructorDeclaration(node);
} finally {
_isEnclosingConstructorConst = false;
_enclosingFunction = outerFunction;
}
}
Object visitConstructorFieldInitializer(ConstructorFieldInitializer node) {
_isInConstructorInitializer = true;
try {
checkForFieldInitializerNotAssignable(node);
return super.visitConstructorFieldInitializer(node);
} finally {
_isInConstructorInitializer = false;
}
}
Object visitDefaultFormalParameter(DefaultFormalParameter node) {
checkForInvalidAssignment2(node.identifier, node.defaultValue);
checkForDefaultValueInFunctionTypedParameter(node);
return super.visitDefaultFormalParameter(node);
}
Object visitDoStatement(DoStatement node) {
checkForNonBoolCondition(node.condition);
return super.visitDoStatement(node);
}
Object visitExportDirective(ExportDirective node) {
checkForAmbiguousExport(node);
checkForExportDuplicateLibraryName(node);
checkForExportInternalLibrary(node);
return super.visitExportDirective(node);
}
Object visitExpressionFunctionBody(ExpressionFunctionBody node) {
FunctionType functionType = _enclosingFunction == null ? null : _enclosingFunction.type;
Type2 expectedReturnType = functionType == null ? DynamicTypeImpl.instance : functionType.returnType;
checkForReturnOfInvalidType(node.expression, expectedReturnType);
return super.visitExpressionFunctionBody(node);
}
Object visitFieldDeclaration(FieldDeclaration node) {
if (!node.isStatic) {
VariableDeclarationList variables = node.fields;
if (variables.isConst) {
_errorReporter.reportError4(CompileTimeErrorCode.CONST_INSTANCE_FIELD, variables.keyword, []);
}
}
_isInStaticVariableDeclaration = node.isStatic;
_isInInstanceVariableDeclaration = !_isInStaticVariableDeclaration;
try {
checkForAllInvalidOverrideErrorCodes2(node);
return super.visitFieldDeclaration(node);
} finally {
_isInStaticVariableDeclaration = false;
_isInInstanceVariableDeclaration = false;
}
}
Object visitFieldFormalParameter(FieldFormalParameter node) {
checkForConstFormalParameter(node);
checkForPrivateOptionalParameter(node);
checkForFieldInitializingFormalRedirectingConstructor(node);
return super.visitFieldFormalParameter(node);
}
Object visitFunctionDeclaration(FunctionDeclaration node) {
ExecutableElement outerFunction = _enclosingFunction;
try {
SimpleIdentifier identifier = node.name;
String methodName = "";
if (identifier != null) {
methodName = identifier.name;
}
_enclosingFunction = node.element;
if (node.isSetter || node.isGetter) {
checkForMismatchedAccessorTypes(node, methodName);
if (node.isSetter) {
FunctionExpression functionExpression = node.functionExpression;
if (functionExpression != null) {
checkForWrongNumberOfParametersForSetter(node.name, functionExpression.parameters);
}
TypeName returnType = node.returnType;
checkForNonVoidReturnTypeForSetter(returnType);
}
}
return super.visitFunctionDeclaration(node);
} finally {
_enclosingFunction = outerFunction;
}
}
Object visitFunctionExpression(FunctionExpression node) {
if (node.parent is! FunctionDeclaration) {
ExecutableElement outerFunction = _enclosingFunction;
try {
_enclosingFunction = node.element;
return super.visitFunctionExpression(node);
} finally {
_enclosingFunction = outerFunction;
}
} else {
return super.visitFunctionExpression(node);
}
}
Object visitFunctionExpressionInvocation(FunctionExpressionInvocation node) {
Expression functionExpression = node.function;
Type2 expressionType = functionExpression.staticType;
if (!isFunctionType(expressionType)) {
_errorReporter.reportError2(StaticTypeWarningCode.INVOCATION_OF_NON_FUNCTION_EXPRESSION, functionExpression, []);
}
return super.visitFunctionExpressionInvocation(node);
}
Object visitFunctionTypeAlias(FunctionTypeAlias node) {
checkForBuiltInIdentifierAsName(node.name, CompileTimeErrorCode.BUILT_IN_IDENTIFIER_AS_TYPEDEF_NAME);
checkForDefaultValueInFunctionTypeAlias(node);
checkForTypeAliasCannotReferenceItself_function(node);
return super.visitFunctionTypeAlias(node);
}
Object visitFunctionTypedFormalParameter(FunctionTypedFormalParameter node) {
bool old = _isInFunctionTypedFormalParameter;
_isInFunctionTypedFormalParameter = true;
try {
return super.visitFunctionTypedFormalParameter(node);
} finally {
_isInFunctionTypedFormalParameter = old;
}
}
Object visitIfStatement(IfStatement node) {
checkForNonBoolCondition(node.condition);
return super.visitIfStatement(node);
}
Object visitImportDirective(ImportDirective node) {
checkForImportDuplicateLibraryName(node);
checkForImportInternalLibrary(node);
return super.visitImportDirective(node);
}
Object visitIndexExpression(IndexExpression node) {
checkForArgumentTypeNotAssignable2(node.index);
return super.visitIndexExpression(node);
}
Object visitInstanceCreationExpression(InstanceCreationExpression node) {
_isInConstInstanceCreation = node.isConst;
try {
ConstructorName constructorName = node.constructorName;
TypeName typeName = constructorName.type;
Type2 type = typeName.type;
if (type is InterfaceType) {
InterfaceType interfaceType = type as InterfaceType;
checkForConstOrNewWithAbstractClass(node, typeName, interfaceType);
if (_isInConstInstanceCreation) {
checkForConstWithNonConst(node);
checkForConstWithUndefinedConstructor(node);
checkForConstWithTypeParameters(node);
} else {
checkForNewWithUndefinedConstructor(node);
}
}
return super.visitInstanceCreationExpression(node);
} finally {
_isInConstInstanceCreation = false;
}
}
Object visitListLiteral(ListLiteral node) {
if (node.constKeyword != null) {
TypeArgumentList typeArguments = node.typeArguments;
if (typeArguments != null) {
NodeList<TypeName> arguments = typeArguments.arguments;
if (arguments.length != 0) {
checkForInvalidTypeArgumentInConstTypedLiteral(arguments, CompileTimeErrorCode.INVALID_TYPE_ARGUMENT_IN_CONST_LIST);
}
}
}
checkForListElementTypeNotAssignable(node);
return super.visitListLiteral(node);
}
Object visitMapLiteral(MapLiteral node) {
TypeArgumentList typeArguments = node.typeArguments;
if (typeArguments != null) {
NodeList<TypeName> arguments = typeArguments.arguments;
if (arguments.length != 0) {
if (node.constKeyword != null) {
checkForInvalidTypeArgumentInConstTypedLiteral(arguments, CompileTimeErrorCode.INVALID_TYPE_ARGUMENT_IN_CONST_MAP);
}
}
}
checkForNonConstMapAsExpressionStatement(node);
checkForMapTypeNotAssignable(node);
return super.visitMapLiteral(node);
}
Object visitMethodDeclaration(MethodDeclaration node) {
ExecutableElement previousFunction = _enclosingFunction;
try {
_isInStaticMethod = node.isStatic;
_enclosingFunction = node.element;
SimpleIdentifier identifier = node.name;
String methodName = "";
if (identifier != null) {
methodName = identifier.name;
}
if (node.isSetter || node.isGetter) {
checkForMismatchedAccessorTypes(node, methodName);
checkForConflictingInstanceGetterAndSuperclassMember(node);
}
if (node.isGetter) {
checkForConflictingStaticGetterAndInstanceSetter(node);
} else if (node.isSetter) {
checkForWrongNumberOfParametersForSetter(node.name, node.parameters);
checkForNonVoidReturnTypeForSetter(node.returnType);
checkForConflictingStaticSetterAndInstanceMember(node);
} else if (node.isOperator) {
checkForOptionalParameterInOperator(node);
checkForWrongNumberOfParametersForOperator(node);
checkForNonVoidReturnTypeForOperator(node);
}
checkForConcreteClassWithAbstractMember(node);
checkForAllInvalidOverrideErrorCodes3(node);
return super.visitMethodDeclaration(node);
} finally {
_enclosingFunction = previousFunction;
_isInStaticMethod = false;
}
}
Object visitMethodInvocation(MethodInvocation node) {
Expression target = node.realTarget;
SimpleIdentifier methodName = node.methodName;
checkForStaticAccessToInstanceMember(target, methodName);
checkForInstanceAccessToStaticMember(target, methodName);
if (target == null) {
checkForUnqualifiedReferenceToNonLocalStaticMember(methodName);
}
return super.visitMethodInvocation(node);
}
Object visitNativeClause(NativeClause node) {
if (!_isInSystemLibrary) {
_errorReporter.reportError2(ParserErrorCode.NATIVE_CLAUSE_IN_NON_SDK_CODE, node, []);
}
return super.visitNativeClause(node);
}
Object visitNativeFunctionBody(NativeFunctionBody node) {
checkForNativeFunctionBodyInNonSDKCode(node);
return super.visitNativeFunctionBody(node);
}
Object visitPostfixExpression(PostfixExpression node) {
checkForAssignmentToFinal2(node.operand);
checkForIntNotAssignable(node.operand);
return super.visitPostfixExpression(node);
}
Object visitPrefixedIdentifier(PrefixedIdentifier node) {
if (node.parent is! Annotation) {
checkForStaticAccessToInstanceMember(node.prefix, node.identifier);
checkForInstanceAccessToStaticMember(node.prefix, node.identifier);
}
return super.visitPrefixedIdentifier(node);
}
Object visitPrefixExpression(PrefixExpression node) {
if (node.operator.type.isIncrementOperator) {
checkForAssignmentToFinal2(node.operand);
}
checkForIntNotAssignable(node.operand);
return super.visitPrefixExpression(node);
}
Object visitPropertyAccess(PropertyAccess node) {
Expression target = node.realTarget;
SimpleIdentifier propertyName = node.propertyName;
checkForStaticAccessToInstanceMember(target, propertyName);
checkForInstanceAccessToStaticMember(target, propertyName);
return super.visitPropertyAccess(node);
}
Object visitRedirectingConstructorInvocation(RedirectingConstructorInvocation node) {
_isInConstructorInitializer = true;
try {
return super.visitRedirectingConstructorInvocation(node);
} finally {
_isInConstructorInitializer = false;
}
}
Object visitRethrowExpression(RethrowExpression node) {
checkForRethrowOutsideCatch(node);
return super.visitRethrowExpression(node);
}
Object visitReturnStatement(ReturnStatement node) {
checkForAllReturnStatementErrorCodes(node);
return super.visitReturnStatement(node);
}
Object visitSimpleFormalParameter(SimpleFormalParameter node) {
checkForConstFormalParameter(node);
checkForPrivateOptionalParameter(node);
return super.visitSimpleFormalParameter(node);
}
Object visitSimpleIdentifier(SimpleIdentifier node) {
checkForReferenceToDeclaredVariableInInitializer(node);
checkForImplicitThisReferenceInInitializer(node);
if (!isUnqualifiedReferenceToNonLocalStaticMemberAllowed(node)) {
checkForUnqualifiedReferenceToNonLocalStaticMember(node);
}
return super.visitSimpleIdentifier(node);
}
Object visitSuperConstructorInvocation(SuperConstructorInvocation node) {
_isInConstructorInitializer = true;
try {
return super.visitSuperConstructorInvocation(node);
} finally {
_isInConstructorInitializer = false;
}
}
Object visitSwitchStatement(SwitchStatement node) {
checkForInconsistentCaseExpressionTypes(node);
checkForSwitchExpressionNotAssignable(node);
checkForCaseBlocksNotTerminated(node);
return super.visitSwitchStatement(node);
}
Object visitThisExpression(ThisExpression node) {
checkForInvalidReferenceToThis(node);
return super.visitThisExpression(node);
}
Object visitThrowExpression(ThrowExpression node) {
checkForConstEvalThrowsException(node);
return super.visitThrowExpression(node);
}
Object visitTopLevelVariableDeclaration(TopLevelVariableDeclaration node) {
checkForFinalNotInitialized2(node.variables);
return super.visitTopLevelVariableDeclaration(node);
}
Object visitTypeName(TypeName node) {
checkForTypeArgumentNotMatchingBounds(node);
checkForTypeParameterReferencedByStatic(node);
return super.visitTypeName(node);
}
Object visitTypeParameter(TypeParameter node) {
checkForBuiltInIdentifierAsName(node.name, CompileTimeErrorCode.BUILT_IN_IDENTIFIER_AS_TYPE_VARIABLE_NAME);
return super.visitTypeParameter(node);
}
Object visitVariableDeclaration(VariableDeclaration node) {
SimpleIdentifier nameNode = node.name;
Expression initializerNode = node.initializer;
checkForInvalidAssignment2(nameNode, initializerNode);
nameNode.accept(this);
String name = nameNode.name;
javaSetAdd(_namesForReferenceToDeclaredVariableInInitializer, name);
_isInInstanceVariableInitializer = _isInInstanceVariableDeclaration;
try {
if (initializerNode != null) {
initializerNode.accept(this);
}
} finally {
_isInInstanceVariableInitializer = false;
_namesForReferenceToDeclaredVariableInInitializer.remove(name);
}
return null;
}
Object visitVariableDeclarationList(VariableDeclarationList node) {
checkForBuiltInIdentifierAsName2(node);
return super.visitVariableDeclarationList(node);
}
Object visitVariableDeclarationStatement(VariableDeclarationStatement node) {
checkForFinalNotInitialized2(node.variables);
return super.visitVariableDeclarationStatement(node);
}
Object visitWhileStatement(WhileStatement node) {
checkForNonBoolCondition(node.condition);
return super.visitWhileStatement(node);
}
/**
* This verifies that the passed constructor declaration does not violate any of the error codes
* relating to the initialization of fields in the enclosing class.
*
* @param node the [ConstructorDeclaration] to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see #initialFieldElementsMap
* @see CompileTimeErrorCode#FINAL_INITIALIZED_IN_DECLARATION_AND_CONSTRUCTOR
* @see CompileTimeErrorCode#FINAL_INITIALIZED_MULTIPLE_TIMES
*/
bool checkForAllFinalInitializedErrorCodes(ConstructorDeclaration node) {
if (node.factoryKeyword != null || node.redirectedConstructor != null || node.externalKeyword != null) {
return false;
}
if (_isInNativeClass) {
return false;
}
bool foundError = false;
Map<FieldElement, INIT_STATE> fieldElementsMap = new Map<FieldElement, INIT_STATE>.from(_initialFieldElementsMap);
NodeList<FormalParameter> formalParameters = node.parameters.parameters;
for (FormalParameter formalParameter in formalParameters) {
FormalParameter parameter = formalParameter;
if (parameter is DefaultFormalParameter) {
parameter = ((parameter as DefaultFormalParameter)).parameter;
}
if (parameter is FieldFormalParameter) {
FieldElement fieldElement = ((parameter.element as FieldFormalParameterElementImpl)).field;
INIT_STATE state = fieldElementsMap[fieldElement];
if (identical(state, INIT_STATE.NOT_INIT)) {
fieldElementsMap[fieldElement] = INIT_STATE.INIT_IN_FIELD_FORMAL;
} else if (identical(state, INIT_STATE.INIT_IN_DECLARATION)) {
if (fieldElement.isFinal || fieldElement.isConst) {
_errorReporter.reportError2(StaticWarningCode.FINAL_INITIALIZED_IN_DECLARATION_AND_CONSTRUCTOR, formalParameter.identifier, [fieldElement.displayName]);
foundError = true;
}
} else if (identical(state, INIT_STATE.INIT_IN_FIELD_FORMAL)) {
if (fieldElement.isFinal || fieldElement.isConst) {
_errorReporter.reportError2(CompileTimeErrorCode.FINAL_INITIALIZED_MULTIPLE_TIMES, formalParameter.identifier, [fieldElement.displayName]);
foundError = true;
}
}
}
}
NodeList<ConstructorInitializer> initializers = node.initializers;
for (ConstructorInitializer constructorInitializer in initializers) {
if (constructorInitializer is RedirectingConstructorInvocation) {
return false;
}
if (constructorInitializer is ConstructorFieldInitializer) {
ConstructorFieldInitializer constructorFieldInitializer = constructorInitializer as ConstructorFieldInitializer;
SimpleIdentifier fieldName = constructorFieldInitializer.fieldName;
Element element = fieldName.staticElement;
if (element is FieldElement) {
FieldElement fieldElement = element as FieldElement;
INIT_STATE state = fieldElementsMap[fieldElement];
if (identical(state, INIT_STATE.NOT_INIT)) {
fieldElementsMap[fieldElement] = INIT_STATE.INIT_IN_INITIALIZERS;
} else if (identical(state, INIT_STATE.INIT_IN_DECLARATION)) {
if (fieldElement.isFinal || fieldElement.isConst) {
_errorReporter.reportError2(StaticWarningCode.FIELD_INITIALIZED_IN_INITIALIZER_AND_DECLARATION, fieldName, []);
foundError = true;
}
} else if (identical(state, INIT_STATE.INIT_IN_FIELD_FORMAL)) {
_errorReporter.reportError2(CompileTimeErrorCode.FIELD_INITIALIZED_IN_PARAMETER_AND_INITIALIZER, fieldName, []);
foundError = true;
} else if (identical(state, INIT_STATE.INIT_IN_INITIALIZERS)) {
_errorReporter.reportError2(CompileTimeErrorCode.FIELD_INITIALIZED_BY_MULTIPLE_INITIALIZERS, fieldName, [fieldElement.displayName]);
foundError = true;
}
}
}
}
for (MapEntry<FieldElement, INIT_STATE> entry in getMapEntrySet(fieldElementsMap)) {
if (identical(entry.getValue(), INIT_STATE.NOT_INIT)) {
FieldElement fieldElement = entry.getKey();
if (fieldElement.isFinal || fieldElement.isConst) {
_errorReporter.reportError2(StaticWarningCode.FINAL_NOT_INITIALIZED, node.returnType, [fieldElement.name]);
foundError = true;
}
}
}
return foundError;
}
/**
* This checks the passed executable element against override-error codes.
*
* @param executableElement a non-null [ExecutableElement] to evaluate
* @param parameters the parameters of the executable element
* @param errorNameTarget the node to report problems on
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#INSTANCE_METHOD_NAME_COLLIDES_WITH_SUPERCLASS_STATIC
* @see CompileTimeErrorCode#INVALID_OVERRIDE_REQUIRED
* @see CompileTimeErrorCode#INVALID_OVERRIDE_POSITIONAL
* @see CompileTimeErrorCode#INVALID_OVERRIDE_NAMED
* @see StaticWarningCode#INVALID_GETTER_OVERRIDE_RETURN_TYPE
* @see StaticWarningCode#INVALID_METHOD_OVERRIDE_RETURN_TYPE
* @see StaticWarningCode#INVALID_METHOD_OVERRIDE_NORMAL_PARAM_TYPE
* @see StaticWarningCode#INVALID_SETTER_OVERRIDE_NORMAL_PARAM_TYPE
* @see StaticWarningCode#INVALID_METHOD_OVERRIDE_OPTIONAL_PARAM_TYPE
* @see StaticWarningCode#INVALID_METHOD_OVERRIDE_NAMED_PARAM_TYPE
* @see StaticWarningCode#INVALID_OVERRIDE_DIFFERENT_DEFAULT_VALUES
*/
bool checkForAllInvalidOverrideErrorCodes(ExecutableElement executableElement, List<ParameterElement> parameters2, List<ASTNode> parameterLocations, SimpleIdentifier errorNameTarget) {
String executableElementName = executableElement.name;
ExecutableElement overriddenExecutable = _inheritanceManager.lookupInheritance(_enclosingClass, executableElementName);
bool isGetter = false;
bool isSetter = false;
if (executableElement is PropertyAccessorElement) {
PropertyAccessorElement accessorElement = executableElement as PropertyAccessorElement;
isGetter = accessorElement.isGetter;
isSetter = accessorElement.isSetter;
}
if (overriddenExecutable == null) {
if (!isGetter && !isSetter && !executableElement.isOperator) {
Set<ClassElement> visitedClasses = new Set<ClassElement>();
InterfaceType superclassType = _enclosingClass.supertype;
ClassElement superclassElement = superclassType == null ? null : superclassType.element;
while (superclassElement != null && !visitedClasses.contains(superclassElement)) {
javaSetAdd(visitedClasses, superclassElement);
List<FieldElement> fieldElts = superclassElement.fields;
for (FieldElement fieldElt in fieldElts) {
if (fieldElt.name == executableElementName && fieldElt.isStatic) {
_errorReporter.reportError2(StaticWarningCode.INSTANCE_METHOD_NAME_COLLIDES_WITH_SUPERCLASS_STATIC, errorNameTarget, [
executableElementName,
fieldElt.enclosingElement.displayName]);
return true;
}
}
List<MethodElement> methodElements = superclassElement.methods;
for (MethodElement methodElement in methodElements) {
if (methodElement.name == executableElementName && methodElement.isStatic) {
_errorReporter.reportError2(StaticWarningCode.INSTANCE_METHOD_NAME_COLLIDES_WITH_SUPERCLASS_STATIC, errorNameTarget, [
executableElementName,
methodElement.enclosingElement.displayName]);
return true;
}
}
superclassType = superclassElement.supertype;
superclassElement = superclassType == null ? null : superclassType.element;
}
}
return false;
}
FunctionType overridingFT = executableElement.type;
FunctionType overriddenFT = overriddenExecutable.type;
InterfaceType enclosingType = _enclosingClass.type;
overriddenFT = _inheritanceManager.substituteTypeArgumentsInMemberFromInheritance(overriddenFT, executableElementName, enclosingType);
if (overridingFT == null || overriddenFT == null) {
return false;
}
Type2 overridingFTReturnType = overridingFT.returnType;
Type2 overriddenFTReturnType = overriddenFT.returnType;
List<Type2> overridingNormalPT = overridingFT.normalParameterTypes;
List<Type2> overriddenNormalPT = overriddenFT.normalParameterTypes;
List<Type2> overridingPositionalPT = overridingFT.optionalParameterTypes;
List<Type2> overriddenPositionalPT = overriddenFT.optionalParameterTypes;
Map<String, Type2> overridingNamedPT = overridingFT.namedParameterTypes;
Map<String, Type2> overriddenNamedPT = overriddenFT.namedParameterTypes;
if (overridingNormalPT.length != overriddenNormalPT.length) {
_errorReporter.reportError2(StaticWarningCode.INVALID_OVERRIDE_REQUIRED, errorNameTarget, [
overriddenNormalPT.length,
overriddenExecutable.enclosingElement.displayName]);
return true;
}
if (overridingPositionalPT.length < overriddenPositionalPT.length) {
_errorReporter.reportError2(StaticWarningCode.INVALID_OVERRIDE_POSITIONAL, errorNameTarget, [
overriddenPositionalPT.length,
overriddenExecutable.enclosingElement.displayName]);
return true;
}
Set<String> overridingParameterNameSet = overridingNamedPT.keys.toSet();
JavaIterator<String> overriddenParameterNameIterator = new JavaIterator(overriddenNamedPT.keys.toSet());
while (overriddenParameterNameIterator.hasNext) {
String overriddenParamName = overriddenParameterNameIterator.next();
if (!overridingParameterNameSet.contains(overriddenParamName)) {
_errorReporter.reportError2(StaticWarningCode.INVALID_OVERRIDE_NAMED, errorNameTarget, [
overriddenParamName,
overriddenExecutable.enclosingElement.displayName]);
return true;
}
}
if (overriddenFTReturnType != VoidTypeImpl.instance && !overridingFTReturnType.isAssignableTo(overriddenFTReturnType)) {
_errorReporter.reportError2(!isGetter ? StaticWarningCode.INVALID_METHOD_OVERRIDE_RETURN_TYPE : StaticWarningCode.INVALID_GETTER_OVERRIDE_RETURN_TYPE, errorNameTarget, [
overridingFTReturnType.displayName,
overriddenFTReturnType.displayName,
overriddenExecutable.enclosingElement.displayName]);
return true;
}
if (parameterLocations == null) {
return false;
}
int parameterIndex = 0;
for (int i = 0; i < overridingNormalPT.length; i++) {
if (!overridingNormalPT[i].isAssignableTo(overriddenNormalPT[i])) {
_errorReporter.reportError2(!isSetter ? StaticWarningCode.INVALID_METHOD_OVERRIDE_NORMAL_PARAM_TYPE : StaticWarningCode.INVALID_SETTER_OVERRIDE_NORMAL_PARAM_TYPE, parameterLocations[parameterIndex], [
overridingNormalPT[i].displayName,
overriddenNormalPT[i].displayName,
overriddenExecutable.enclosingElement.displayName]);
return true;
}
parameterIndex++;
}
for (int i = 0; i < overriddenPositionalPT.length; i++) {
if (!overridingPositionalPT[i].isAssignableTo(overriddenPositionalPT[i])) {
_errorReporter.reportError2(StaticWarningCode.INVALID_METHOD_OVERRIDE_OPTIONAL_PARAM_TYPE, parameterLocations[parameterIndex], [
overridingPositionalPT[i].displayName,
overriddenPositionalPT[i].displayName,
overriddenExecutable.enclosingElement.displayName]);
return true;
}
parameterIndex++;
}
JavaIterator<MapEntry<String, Type2>> overriddenNamedPTIterator = new JavaIterator(getMapEntrySet(overriddenNamedPT));
while (overriddenNamedPTIterator.hasNext) {
MapEntry<String, Type2> overriddenNamedPTEntry = overriddenNamedPTIterator.next();
Type2 overridingType = overridingNamedPT[overriddenNamedPTEntry.getKey()];
if (overridingType == null) {
continue;
}
if (!overriddenNamedPTEntry.getValue().isAssignableTo(overridingType)) {
ParameterElement parameterToSelect = null;
ASTNode parameterLocationToSelect = null;
for (int i = 0; i < parameters2.length; i++) {
ParameterElement parameter = parameters2[i];
if (identical(parameter.parameterKind, ParameterKind.NAMED) && overriddenNamedPTEntry.getKey() == parameter.name) {
parameterToSelect = parameter;
parameterLocationToSelect = parameterLocations[i];
break;
}
}
if (parameterToSelect != null) {
_errorReporter.reportError2(StaticWarningCode.INVALID_METHOD_OVERRIDE_NAMED_PARAM_TYPE, parameterLocationToSelect, [
overridingType.displayName,
overriddenNamedPTEntry.getValue().displayName,
overriddenExecutable.enclosingElement.displayName]);
return true;
}
}
}
bool foundError = false;
List<ASTNode> formalParameters = new List<ASTNode>();
List<ParameterElementImpl> parameterElts = new List<ParameterElementImpl>();
List<ParameterElementImpl> overriddenParameterElts = new List<ParameterElementImpl>();
List<ParameterElement> overriddenPEs = overriddenExecutable.parameters;
for (int i = 0; i < parameters2.length; i++) {
ParameterElement parameter = parameters2[i];
if (parameter.parameterKind.isOptional) {
formalParameters.add(parameterLocations[i]);
parameterElts.add(parameter as ParameterElementImpl);
}
}
for (ParameterElement parameterElt in overriddenPEs) {
if (parameterElt.parameterKind.isOptional) {
if (parameterElt is ParameterElementImpl) {
overriddenParameterElts.add(parameterElt as ParameterElementImpl);
} else if (parameterElt is ParameterMember) {
overriddenParameterElts.add(((parameterElt as ParameterMember)).baseElement as ParameterElementImpl);
}
}
}
if (parameterElts.length > 0) {
if (identical(parameterElts[0].parameterKind, ParameterKind.NAMED)) {
for (int i = 0; i < parameterElts.length; i++) {
ParameterElementImpl parameterElt = parameterElts[i];
EvaluationResultImpl result = parameterElt.evaluationResult;
if (result == null || identical(result, ValidResult.RESULT_OBJECT)) {
continue;
}
String parameterName = parameterElt.name;
for (int j = 0; j < overriddenParameterElts.length; j++) {
ParameterElementImpl overriddenParameterElt = overriddenParameterElts[j];
String overriddenParameterName = overriddenParameterElt.name;
if (parameterName != null && parameterName == overriddenParameterName) {
EvaluationResultImpl overriddenResult = overriddenParameterElt.evaluationResult;
if (overriddenResult == null || identical(result, ValidResult.RESULT_OBJECT)) {
break;
}
if (!result.equalValues(overriddenResult)) {
_errorReporter.reportError2(StaticWarningCode.INVALID_OVERRIDE_DIFFERENT_DEFAULT_VALUES_NAMED, formalParameters[i], [
overriddenExecutable.enclosingElement.displayName,
overriddenExecutable.displayName,
parameterName]);
foundError = true;
}
}
}
}
} else {
for (int i = 0; i < parameterElts.length && i < overriddenParameterElts.length; i++) {
ParameterElementImpl parameterElt = parameterElts[i];
EvaluationResultImpl result = parameterElt.evaluationResult;
if (result == null || identical(result, ValidResult.RESULT_OBJECT)) {
continue;
}
ParameterElementImpl overriddenParameterElt = overriddenParameterElts[i];
EvaluationResultImpl overriddenResult = overriddenParameterElt.evaluationResult;
if (overriddenResult == null || identical(result, ValidResult.RESULT_OBJECT)) {
continue;
}
if (!result.equalValues(overriddenResult)) {
_errorReporter.reportError2(StaticWarningCode.INVALID_OVERRIDE_DIFFERENT_DEFAULT_VALUES_POSITIONAL, formalParameters[i], [
overriddenExecutable.enclosingElement.displayName,
overriddenExecutable.displayName]);
foundError = true;
}
}
}
}
return foundError;
}
/**
* This checks the passed field declaration against override-error codes.
*
* @param node the [MethodDeclaration] to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see #checkForAllInvalidOverrideErrorCodes(ExecutableElement)
*/
bool checkForAllInvalidOverrideErrorCodes2(FieldDeclaration node) {
if (_enclosingClass == null || node.isStatic) {
return false;
}
bool hasProblems = false;
VariableDeclarationList fields = node.fields;
for (VariableDeclaration field in fields.variables) {
FieldElement element = field.element as FieldElement;
if (element == null) {
continue;
}
PropertyAccessorElement getter = element.getter;
PropertyAccessorElement setter = element.setter;
SimpleIdentifier fieldName = field.name;
if (getter != null) {
hasProblems = javaBooleanOr(hasProblems, checkForAllInvalidOverrideErrorCodes(getter, ParameterElementImpl.EMPTY_ARRAY, ASTNode.EMPTY_ARRAY, fieldName));
}
if (setter != null) {
hasProblems = javaBooleanOr(hasProblems, checkForAllInvalidOverrideErrorCodes(setter, setter.parameters, <ASTNode> [fieldName], fieldName));
}
}
return hasProblems;
}
/**
* This checks the passed method declaration against override-error codes.
*
* @param node the [MethodDeclaration] to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see #checkForAllInvalidOverrideErrorCodes(ExecutableElement)
*/
bool checkForAllInvalidOverrideErrorCodes3(MethodDeclaration node) {
if (_enclosingClass == null || node.isStatic || node.body is NativeFunctionBody) {
return false;
}
ExecutableElement executableElement = node.element;
if (executableElement == null) {
return false;
}
SimpleIdentifier methodName = node.name;
if (methodName.isSynthetic) {
return false;
}
FormalParameterList formalParameterList = node.parameters;
NodeList<FormalParameter> parameterList = formalParameterList != null ? formalParameterList.parameters : null;
List<ASTNode> parameters = parameterList != null ? new List.from(parameterList) : null;
return checkForAllInvalidOverrideErrorCodes(executableElement, executableElement.parameters, parameters, methodName);
}
/**
* This verifies that all classes of the passed 'with' clause are valid.
*
* @param node the 'with' clause to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#MIXIN_DECLARES_CONSTRUCTOR
* @see CompileTimeErrorCode#MIXIN_INHERITS_FROM_NOT_OBJECT
* @see CompileTimeErrorCode#MIXIN_REFERENCES_SUPER
*/
bool checkForAllMixinErrorCodes(WithClause withClause) {
if (withClause == null) {
return false;
}
bool problemReported = false;
for (TypeName mixinName in withClause.mixinTypes) {
Type2 mixinType = mixinName.type;
if (mixinType is! InterfaceType) {
continue;
}
if (checkForExtendsOrImplementsDisallowedClass(mixinName, CompileTimeErrorCode.MIXIN_OF_DISALLOWED_CLASS)) {
problemReported = true;
} else {
ClassElement mixinElement = ((mixinType as InterfaceType)).element;
problemReported = javaBooleanOr(problemReported, checkForMixinDeclaresConstructor(mixinName, mixinElement));
problemReported = javaBooleanOr(problemReported, checkForMixinInheritsNotFromObject(mixinName, mixinElement));
problemReported = javaBooleanOr(problemReported, checkForMixinReferencesSuper(mixinName, mixinElement));
}
}
return problemReported;
}
/**
* This checks error related to the redirected constructors.
*
* @param node the constructor declaration to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#REDIRECT_TO_INVALID_RETURN_TYPE
* @see StaticWarningCode#REDIRECT_TO_INVALID_FUNCTION_TYPE
* @see StaticWarningCode#REDIRECT_TO_MISSING_CONSTRUCTOR
*/
bool checkForAllRedirectConstructorErrorCodes(ConstructorDeclaration node) {
ConstructorName redirectedNode = node.redirectedConstructor;
if (redirectedNode == null) {
return false;
}
ConstructorElement redirectedElement = redirectedNode.staticElement;
if (redirectedElement == null) {
TypeName constructorTypeName = redirectedNode.type;
Type2 redirectedType = constructorTypeName.type;
if (redirectedType != null && redirectedType.element != null && !redirectedType.isDynamic) {
String constructorStrName = constructorTypeName.name.name;
if (redirectedNode.name != null) {
constructorStrName += ".${redirectedNode.name.name}";
}
_errorReporter.reportError2(StaticWarningCode.REDIRECT_TO_MISSING_CONSTRUCTOR, redirectedNode, [constructorStrName, redirectedType.displayName]);
return true;
}
return false;
}
FunctionType redirectedType = redirectedElement.type;
Type2 redirectedReturnType = redirectedType.returnType;
FunctionType constructorType = node.element.type;
Type2 constructorReturnType = constructorType.returnType;
if (!redirectedReturnType.isSubtypeOf(constructorReturnType)) {
_errorReporter.reportError2(StaticWarningCode.REDIRECT_TO_INVALID_RETURN_TYPE, redirectedNode, [redirectedReturnType, constructorReturnType]);
return true;
}
if (!redirectedType.isSubtypeOf(constructorType)) {
_errorReporter.reportError2(StaticWarningCode.REDIRECT_TO_INVALID_FUNCTION_TYPE, redirectedNode, [redirectedType, constructorType]);
return true;
}
return false;
}
/**
* This checks that the return statement of the form <i>return e;</i> is not in a generative
* constructor.
*
* This checks that return statements without expressions are not in a generative constructor and
* the return type is not assignable to `null`; that is, we don't have `return;` if
* the enclosing method has a return type.
*
* This checks that the return type matches the type of the declared return type in the enclosing
* method or function.
*
* @param node the return statement to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#RETURN_IN_GENERATIVE_CONSTRUCTOR
* @see StaticWarningCode#RETURN_WITHOUT_VALUE
* @see StaticTypeWarningCode#RETURN_OF_INVALID_TYPE
*/
bool checkForAllReturnStatementErrorCodes(ReturnStatement node) {
FunctionType functionType = _enclosingFunction == null ? null : _enclosingFunction.type;
Type2 expectedReturnType = functionType == null ? DynamicTypeImpl.instance : functionType.returnType;
Expression returnExpression = node.expression;
bool isGenerativeConstructor = _enclosingFunction is ConstructorElement && !((_enclosingFunction as ConstructorElement)).isFactory;
if (isGenerativeConstructor) {
if (returnExpression == null) {
return false;
}
_errorReporter.reportError2(CompileTimeErrorCode.RETURN_IN_GENERATIVE_CONSTRUCTOR, returnExpression, []);
return true;
}
if (returnExpression == null) {
if (VoidTypeImpl.instance.isAssignableTo(expectedReturnType)) {
return false;
}
_errorReporter.reportError2(StaticWarningCode.RETURN_WITHOUT_VALUE, node, []);
return true;
}
return checkForReturnOfInvalidType(returnExpression, expectedReturnType);
}
/**
* This verifies that the export namespace of the passed export directive does not export any name
* already exported by other export directive.
*
* @param node the export directive node to report problem on
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#AMBIGUOUS_EXPORT
*/
bool checkForAmbiguousExport(ExportDirective node) {
if (node.element is! ExportElement) {
return false;
}
ExportElement exportElement = node.element as ExportElement;
LibraryElement exportedLibrary = exportElement.exportedLibrary;
if (exportedLibrary == null) {
return false;
}
Namespace namespace = new NamespaceBuilder().createExportNamespace(exportElement);
Set<String> newNames = namespace.definedNames.keys.toSet();
for (String name in newNames) {
ExportElement prevElement = _exportedNames[name];
if (prevElement != null && prevElement != exportElement) {
_errorReporter.reportError2(CompileTimeErrorCode.AMBIGUOUS_EXPORT, node, [
name,
prevElement.exportedLibrary.definingCompilationUnit.displayName,
exportedLibrary.definingCompilationUnit.displayName]);
return true;
} else {
_exportedNames[name] = exportElement;
}
}
return false;
}
/**
* This verifies that the passed argument definition test identifier is a parameter.
*
* @param node the [ArgumentDefinitionTest] to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#ARGUMENT_DEFINITION_TEST_NON_PARAMETER
*/
bool checkForArgumentDefinitionTestNonParameter(ArgumentDefinitionTest node) {
SimpleIdentifier identifier = node.identifier;
Element element = identifier.staticElement;
if (element != null && element is! ParameterElement) {
_errorReporter.reportError2(CompileTimeErrorCode.ARGUMENT_DEFINITION_TEST_NON_PARAMETER, identifier, [identifier.name]);
return true;
}
return false;
}
/**
* This verifies that the passed arguments can be assigned to their corresponding parameters.
*
* @param node the arguments to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#ARGUMENT_TYPE_NOT_ASSIGNABLE
*/
bool checkForArgumentTypeNotAssignable(ArgumentList argumentList) {
if (argumentList == null) {
return false;
}
bool problemReported = false;
for (Expression argument in argumentList.arguments) {
problemReported = javaBooleanOr(problemReported, checkForArgumentTypeNotAssignable2(argument));
}
return problemReported;
}
/**
* This verifies that the passed argument can be assigned to its corresponding parameter.
*
* @param argument the argument to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#ARGUMENT_TYPE_NOT_ASSIGNABLE
* @see CompileTimeErrorCode#ARGUMENT_TYPE_NOT_ASSIGNABLE
*/
bool checkForArgumentTypeNotAssignable2(Expression argument) {
if (argument == null) {
return false;
}
ErrorCode errorCode;
if (_isInConstInstanceCreation || _isEnclosingConstructorConst) {
errorCode = CompileTimeErrorCode.ARGUMENT_TYPE_NOT_ASSIGNABLE;
} else {
errorCode = StaticWarningCode.ARGUMENT_TYPE_NOT_ASSIGNABLE;
}
ParameterElement staticParameterElement = argument.staticParameterElement;
Type2 staticParameterType = staticParameterElement == null ? null : staticParameterElement.type;
ParameterElement propagatedParameterElement = argument.propagatedParameterElement;
Type2 propagatedParameterType = propagatedParameterElement == null ? null : propagatedParameterElement.type;
return checkForArgumentTypeNotAssignable3(argument, staticParameterType, propagatedParameterType, errorCode);
}
/**
* This verifies that the passed expression can be assigned to its corresponding parameters.
*
* @param expression the expression to evaluate
* @param expectedStaticType the expected static type
* @param expectedPropagatedType the expected propagated type, may be `null`
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#ARGUMENT_TYPE_NOT_ASSIGNABLE
* @see CompileTimeErrorCode#ARGUMENT_TYPE_NOT_ASSIGNABLE
*/
bool checkForArgumentTypeNotAssignable3(Expression expression, Type2 expectedStaticType, Type2 expectedPropagatedType, ErrorCode errorCode) => checkForArgumentTypeNotAssignable4(expression, expectedStaticType, getStaticType(expression), expectedPropagatedType, expression.propagatedType, errorCode);
/**
* This verifies that the passed expression can be assigned to its corresponding parameters.
*
* @param expression the expression to evaluate
* @param expectedStaticType the expected static type of the parameter
* @param actualStaticType the actual static type of the argument
* @param expectedPropagatedType the expected propagated type of the parameter, may be
* `null`
* @param actualPropagatedType the expected propagated type of the parameter, may be `null`
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#ARGUMENT_TYPE_NOT_ASSIGNABLE
* @see CompileTimeErrorCode#ARGUMENT_TYPE_NOT_ASSIGNABLE
*/
bool checkForArgumentTypeNotAssignable4(Expression expression, Type2 expectedStaticType, Type2 actualStaticType, Type2 expectedPropagatedType, Type2 actualPropagatedType, ErrorCode errorCode) {
if (actualStaticType == null || expectedStaticType == null) {
return false;
}
if (_strictMode) {
if (actualStaticType.isAssignableTo(expectedStaticType)) {
return false;
}
_errorReporter.reportError2(errorCode, expression, [
actualStaticType.displayName,
expectedStaticType.displayName]);
return true;
}
if (actualPropagatedType == null || expectedPropagatedType == null) {
if (actualStaticType.isAssignableTo(expectedStaticType)) {
return false;
}
_errorReporter.reportError2(errorCode, expression, [
actualStaticType.displayName,
expectedStaticType.displayName]);
return true;
}
if (actualStaticType.isAssignableTo(expectedStaticType) || actualStaticType.isAssignableTo(expectedPropagatedType) || actualPropagatedType.isAssignableTo(expectedStaticType) || actualPropagatedType.isAssignableTo(expectedPropagatedType)) {
return false;
}
_errorReporter.reportError2(errorCode, expression, [
(actualPropagatedType == null ? actualStaticType : actualPropagatedType).displayName,
(expectedPropagatedType == null ? expectedStaticType : expectedPropagatedType).displayName]);
return true;
}
/**
* This verifies that left hand side of the passed assignment expression is not final.
*
* @param node the assignment expression to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#ASSIGNMENT_TO_FINAL
*/
bool checkForAssignmentToFinal(AssignmentExpression node) {
Expression leftExpression = node.leftHandSide;
return checkForAssignmentToFinal2(leftExpression);
}
/**
* This verifies that the passed expression is not final.
*
* @param node the expression to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#ASSIGNMENT_TO_CONST
* @see StaticWarningCode#ASSIGNMENT_TO_FINAL
* @see StaticWarningCode#ASSIGNMENT_TO_METHOD
*/
bool checkForAssignmentToFinal2(Expression expression) {
Element element = null;
if (expression is Identifier) {
element = ((expression as Identifier)).staticElement;
}
if (expression is PropertyAccess) {
element = ((expression as PropertyAccess)).propertyName.staticElement;
}
if (element is PropertyAccessorElement) {
PropertyAccessorElement accessor = element as PropertyAccessorElement;
element = accessor.variable;
}
if (element is VariableElement) {
VariableElement variable = element as VariableElement;
if (variable.isConst) {
_errorReporter.reportError2(StaticWarningCode.ASSIGNMENT_TO_CONST, expression, []);
return true;
}
if (variable.isFinal) {
_errorReporter.reportError2(StaticWarningCode.ASSIGNMENT_TO_FINAL, expression, []);
return true;
}
return false;
}
if (element is MethodElement) {
_errorReporter.reportError2(StaticWarningCode.ASSIGNMENT_TO_METHOD, expression, []);
return true;
}
return false;
}
/**
* This verifies that the passed identifier is not a keyword, and generates the passed error code
* on the identifier if it is a keyword.
*
* @param identifier the identifier to check to ensure that it is not a keyword
* @param errorCode if the passed identifier is a keyword then this error code is created on the
* identifier, the error code will be one of
* [CompileTimeErrorCode#BUILT_IN_IDENTIFIER_AS_TYPE_NAME],
* [CompileTimeErrorCode#BUILT_IN_IDENTIFIER_AS_TYPE_VARIABLE_NAME] or
* [CompileTimeErrorCode#BUILT_IN_IDENTIFIER_AS_TYPEDEF_NAME]
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#BUILT_IN_IDENTIFIER_AS_TYPE_NAME
* @see CompileTimeErrorCode#BUILT_IN_IDENTIFIER_AS_TYPE_VARIABLE_NAME
* @see CompileTimeErrorCode#BUILT_IN_IDENTIFIER_AS_TYPEDEF_NAME
*/
bool checkForBuiltInIdentifierAsName(SimpleIdentifier identifier, ErrorCode errorCode) {
sc.Token token = identifier.token;
if (identical(token.type, sc.TokenType.KEYWORD)) {
_errorReporter.reportError2(errorCode, identifier, [identifier.name]);
return true;
}
return false;
}
/**
* This verifies that the passed variable declaration list does not have a built-in identifier.
*
* @param node the variable declaration list to check
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#BUILT_IN_IDENTIFIER_AS_TYPE
*/
bool checkForBuiltInIdentifierAsName2(VariableDeclarationList node) {
TypeName typeName = node.type;
if (typeName != null) {
Identifier identifier = typeName.name;
if (identifier is SimpleIdentifier) {
SimpleIdentifier simpleIdentifier = identifier as SimpleIdentifier;
sc.Token token = simpleIdentifier.token;
if (identical(token.type, sc.TokenType.KEYWORD)) {
if (((token as sc.KeywordToken)).keyword != sc.Keyword.DYNAMIC) {
_errorReporter.reportError2(CompileTimeErrorCode.BUILT_IN_IDENTIFIER_AS_TYPE, identifier, [identifier.name]);
return true;
}
}
}
}
return false;
}
/**
* This verifies that the given switch case is terminated with 'break', 'continue', 'return' or
* 'throw'.
*
* @param node the switch case to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#CASE_BLOCK_NOT_TERMINATED
*/
bool checkForCaseBlockNotTerminated(SwitchCase node) {
NodeList<Statement> statements = node.statements;
if (statements.isEmpty) {
ASTNode parent = node.parent;
if (parent is SwitchStatement) {
SwitchStatement switchStatement = parent as SwitchStatement;
NodeList<SwitchMember> members = switchStatement.members;
int index = members.indexOf(node);
if (index != -1 && index < members.length - 1) {
return false;
}
}
} else {
Statement statement = statements[statements.length - 1];
if (statement is BreakStatement || statement is ContinueStatement || statement is ReturnStatement) {
return false;
}
if (statement is ExpressionStatement) {
Expression expression = ((statement as ExpressionStatement)).expression;
if (expression is ThrowExpression) {
return false;
}
}
}
_errorReporter.reportError4(StaticWarningCode.CASE_BLOCK_NOT_TERMINATED, node.keyword, []);
return true;
}
/**
* This verifies that the switch cases in the given switch statement is terminated with 'break',
* 'continue', 'return' or 'throw'.
*
* @param node the switch statement containing the cases to be checked
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#CASE_BLOCK_NOT_TERMINATED
*/
bool checkForCaseBlocksNotTerminated(SwitchStatement node) {
bool foundError = false;
NodeList<SwitchMember> members = node.members;
int lastMember = members.length - 1;
for (int i = 0; i < lastMember; i++) {
SwitchMember member = members[i];
if (member is SwitchCase) {
foundError = javaBooleanOr(foundError, checkForCaseBlockNotTerminated(member as SwitchCase));
}
}
return foundError;
}
/**
* This verifies that the passed switch statement does not have a case expression with the
* operator '==' overridden.
*
* @param node the switch statement to evaluate
* @param type the common type of all 'case' expressions
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#CASE_EXPRESSION_TYPE_IMPLEMENTS_EQUALS
*/
bool checkForCaseExpressionTypeImplementsEquals(SwitchStatement node, Type2 type2) {
if (type2 == null || type2 == _typeProvider.intType || type2 == _typeProvider.stringType) {
return false;
}
Element element = type2.element;
if (element is! ClassElement) {
return false;
}
ClassElement classElement = element as ClassElement;
MethodElement method = classElement.lookUpMethod("==", _currentLibrary);
if (method == null || method.enclosingElement.type.isObject) {
return false;
}
_errorReporter.reportError4(CompileTimeErrorCode.CASE_EXPRESSION_TYPE_IMPLEMENTS_EQUALS, node.keyword, [element.displayName]);
return true;
}
/**
* This verifies that the passed method declaration is abstract only if the enclosing class is
* also abstract.
*
* @param node the method declaration to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#CONCRETE_CLASS_WITH_ABSTRACT_MEMBER
*/
bool checkForConcreteClassWithAbstractMember(MethodDeclaration node) {
if (node.isAbstract && _enclosingClass != null && !_enclosingClass.isAbstract) {
SimpleIdentifier methodName = node.name;
_errorReporter.reportError2(StaticWarningCode.CONCRETE_CLASS_WITH_ABSTRACT_MEMBER, methodName, [methodName.name, _enclosingClass.displayName]);
return true;
}
return false;
}
/**
* This verifies all possible conflicts of the constructor name with other constructors and
* members of the same class.
*
* @param node the constructor declaration to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#DUPLICATE_CONSTRUCTOR_DEFAULT
* @see CompileTimeErrorCode#DUPLICATE_CONSTRUCTOR_NAME
* @see CompileTimeErrorCode#CONFLICTING_CONSTRUCTOR_NAME_AND_FIELD
* @see CompileTimeErrorCode#CONFLICTING_CONSTRUCTOR_NAME_AND_METHOD
*/
bool checkForConflictingConstructorNameAndMember(ConstructorDeclaration node) {
ConstructorElement constructorElement = node.element;
SimpleIdentifier constructorName = node.name;
String name = constructorElement.name;
ClassElement classElement = constructorElement.enclosingElement;
List<ConstructorElement> constructors = classElement.constructors;
for (ConstructorElement otherConstructor in constructors) {
if (identical(otherConstructor, constructorElement)) {
continue;
}
if (name == otherConstructor.name) {
if (name == null || name.length == 0) {
_errorReporter.reportError2(CompileTimeErrorCode.DUPLICATE_CONSTRUCTOR_DEFAULT, node, []);
} else {
_errorReporter.reportError2(CompileTimeErrorCode.DUPLICATE_CONSTRUCTOR_NAME, node, [name]);
}
return true;
}
}
if (constructorName != null && constructorElement != null && !constructorName.isSynthetic) {
List<FieldElement> fields = classElement.fields;
for (FieldElement field in fields) {
if (field.name == name) {
_errorReporter.reportError2(CompileTimeErrorCode.CONFLICTING_CONSTRUCTOR_NAME_AND_FIELD, node, [name]);
return true;
}
}
List<MethodElement> methods = classElement.methods;
for (MethodElement method in methods) {
if (method.name == name) {
_errorReporter.reportError2(CompileTimeErrorCode.CONFLICTING_CONSTRUCTOR_NAME_AND_METHOD, node, [name]);
return true;
}
}
}
return false;
}
/**
* This verifies that the [enclosingClass] does not have method and getter with the same
* names.
*
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#CONFLICTING_GETTER_AND_METHOD
* @see CompileTimeErrorCode#CONFLICTING_METHOD_AND_GETTER
*/
bool checkForConflictingGetterAndMethod() {
if (_enclosingClass == null) {
return false;
}
bool hasProblem = false;
for (MethodElement method in _enclosingClass.methods) {
String name = method.name;
ExecutableElement inherited = _inheritanceManager.lookupInheritance(_enclosingClass, name);
if (inherited is! PropertyAccessorElement) {
continue;
}
hasProblem = true;
_errorReporter.reportError3(CompileTimeErrorCode.CONFLICTING_GETTER_AND_METHOD, method.nameOffset, name.length, [
_enclosingClass.displayName,
inherited.enclosingElement.displayName,
name]);
}
for (PropertyAccessorElement accessor in _enclosingClass.accessors) {
if (!accessor.isGetter) {
continue;
}
String name = accessor.name;
ExecutableElement inherited = _inheritanceManager.lookupInheritance(_enclosingClass, name);
if (inherited is! MethodElement) {
continue;
}
hasProblem = true;
_errorReporter.reportError3(CompileTimeErrorCode.CONFLICTING_METHOD_AND_GETTER, accessor.nameOffset, name.length, [
_enclosingClass.displayName,
inherited.enclosingElement.displayName,
name]);
}
return hasProblem;
}
/**
* This verifies that the superclass of the enclosing class does not declare accessible static
* member with the same name as the passed instance getter/setter method declaration.
*
* @param node the method declaration to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#CONFLICTING_INSTANCE_GETTER_AND_SUPERCLASS_MEMBER
* @see StaticWarningCode#CONFLICTING_INSTANCE_SETTER_AND_SUPERCLASS_MEMBER
*/
bool checkForConflictingInstanceGetterAndSuperclassMember(MethodDeclaration node) {
if (node.isStatic) {
return false;
}
SimpleIdentifier nameNode = node.name;
if (nameNode == null) {
return false;
}
String name = nameNode.name;
if (_enclosingClass == null) {
return false;
}
InterfaceType enclosingType = _enclosingClass.type;
ExecutableElement superElement;
superElement = enclosingType.lookUpGetterInSuperclass(name, _currentLibrary);
if (superElement == null) {
superElement = enclosingType.lookUpSetterInSuperclass(name, _currentLibrary);
}
if (superElement == null) {
superElement = enclosingType.lookUpMethodInSuperclass(name, _currentLibrary);
}
if (superElement == null) {
return false;
}
if (!superElement.isStatic) {
return false;
}
ClassElement superElementClass = superElement.enclosingElement as ClassElement;
InterfaceType superElementType = superElementClass.type;
if (node.isGetter) {
_errorReporter.reportError2(StaticWarningCode.CONFLICTING_INSTANCE_GETTER_AND_SUPERCLASS_MEMBER, nameNode, [superElementType.displayName]);
} else {
_errorReporter.reportError2(StaticWarningCode.CONFLICTING_INSTANCE_SETTER_AND_SUPERCLASS_MEMBER, nameNode, [superElementType.displayName]);
}
return true;
}
/**
* This verifies that the enclosing class does not have an instance member with the same name as
* the passed static getter method declaration.
*
* @param node the method declaration to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#CONFLICTING_STATIC_GETTER_AND_INSTANCE_SETTER
*/
bool checkForConflictingStaticGetterAndInstanceSetter(MethodDeclaration node) {
if (!node.isStatic) {
return false;
}
SimpleIdentifier nameNode = node.name;
if (nameNode == null) {
return false;
}
String name = nameNode.name;
if (_enclosingClass == null) {
return false;
}
InterfaceType enclosingType = _enclosingClass.type;
ExecutableElement setter = enclosingType.lookUpSetter(name, _currentLibrary);
if (setter == null) {
return false;
}
if (setter.isStatic) {
return false;
}
ClassElement setterClass = setter.enclosingElement as ClassElement;
InterfaceType setterType = setterClass.type;
_errorReporter.reportError2(StaticWarningCode.CONFLICTING_STATIC_GETTER_AND_INSTANCE_SETTER, nameNode, [setterType.displayName]);
return true;
}
/**
* This verifies that the enclosing class does not have an instance member with the same name as
* the passed static getter method declaration.
*
* @param node the method declaration to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#CONFLICTING_STATIC_SETTER_AND_INSTANCE_MEMBER
*/
bool checkForConflictingStaticSetterAndInstanceMember(MethodDeclaration node) {
if (!node.isStatic) {
return false;
}
SimpleIdentifier nameNode = node.name;
if (nameNode == null) {
return false;
}
String name = nameNode.name;
if (_enclosingClass == null) {
return false;
}
InterfaceType enclosingType = _enclosingClass.type;
ExecutableElement member;
member = enclosingType.lookUpMethod(name, _currentLibrary);
if (member == null) {
member = enclosingType.lookUpGetter(name, _currentLibrary);
}
if (member == null) {
member = enclosingType.lookUpSetter(name, _currentLibrary);
}
if (member == null) {
return false;
}
if (member.isStatic) {
return false;
}
ClassElement memberClass = member.enclosingElement as ClassElement;
InterfaceType memberType = memberClass.type;
_errorReporter.reportError2(StaticWarningCode.CONFLICTING_STATIC_SETTER_AND_INSTANCE_MEMBER, nameNode, [memberType.displayName]);
return true;
}
/**
* This verifies that if the passed constructor declaration is 'const' then there are no
* invocations of non-'const' super constructors.
*
* @param node the constructor declaration to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#CONST_CONSTRUCTOR_WITH_NON_CONST_SUPER
*/
bool checkForConstConstructorWithNonConstSuper(ConstructorDeclaration node) {
if (!_isEnclosingConstructorConst) {
return false;
}
if (node.factoryKeyword != null) {
return false;
}
for (ConstructorInitializer initializer in node.initializers) {
if (initializer is SuperConstructorInvocation) {
SuperConstructorInvocation superInvocation = initializer as SuperConstructorInvocation;
ConstructorElement element = superInvocation.staticElement;
if (element.isConst) {
return false;
}
_errorReporter.reportError2(CompileTimeErrorCode.CONST_CONSTRUCTOR_WITH_NON_CONST_SUPER, superInvocation, []);
return true;
}
}
InterfaceType supertype = _enclosingClass.supertype;
if (supertype == null) {
return false;
}
if (supertype.isObject) {
return false;
}
ConstructorElement unnamedConstructor = supertype.element.unnamedConstructor;
if (unnamedConstructor == null) {
return false;
}
if (unnamedConstructor.isConst) {
return false;
}
_errorReporter.reportError2(CompileTimeErrorCode.CONST_CONSTRUCTOR_WITH_NON_CONST_SUPER, node, []);
return true;
}
/**
* This verifies that if the passed constructor declaration is 'const' then there are no non-final
* instance variable.
*
* @param node the constructor declaration to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#CONST_CONSTRUCTOR_WITH_NON_FINAL_FIELD
*/
bool checkForConstConstructorWithNonFinalField(ConstructorDeclaration node) {
if (!_isEnclosingConstructorConst) {
return false;
}
ConstructorElement constructorElement = node.element;
ClassElement classElement = constructorElement.enclosingElement;
if (!classElement.hasNonFinalField()) {
return false;
}
_errorReporter.reportError2(CompileTimeErrorCode.CONST_CONSTRUCTOR_WITH_NON_FINAL_FIELD, node, []);
return true;
}
/**
* This verifies that the passed throw expression is not enclosed in a 'const' constructor
* declaration.
*
* @param node the throw expression expression to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#CONST_CONSTRUCTOR_THROWS_EXCEPTION
*/
bool checkForConstEvalThrowsException(ThrowExpression node) {
if (_isEnclosingConstructorConst) {
_errorReporter.reportError2(CompileTimeErrorCode.CONST_CONSTRUCTOR_THROWS_EXCEPTION, node, []);
return true;
}
return false;
}
/**
* This verifies that the passed normal formal parameter is not 'const'.
*
* @param node the normal formal parameter to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#CONST_FORMAL_PARAMETER
*/
bool checkForConstFormalParameter(NormalFormalParameter node) {
if (node.isConst) {
_errorReporter.reportError2(CompileTimeErrorCode.CONST_FORMAL_PARAMETER, node, []);
return true;
}
return false;
}
/**
* This verifies that the passed instance creation expression is not being invoked on an abstract
* class.
*
* @param node the instance creation expression to evaluate
* @param typeName the [TypeName] of the [ConstructorName] from the
* [InstanceCreationExpression], this is the AST node that the error is attached to
* @param type the type being constructed with this [InstanceCreationExpression]
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#CONST_WITH_ABSTRACT_CLASS
* @see StaticWarningCode#NEW_WITH_ABSTRACT_CLASS
*/
bool checkForConstOrNewWithAbstractClass(InstanceCreationExpression node, TypeName typeName, InterfaceType type) {
if (type.element.isAbstract) {
ConstructorElement element = node.staticElement;
if (element != null && !element.isFactory) {
if (identical(((node.keyword as sc.KeywordToken)).keyword, sc.Keyword.CONST)) {
_errorReporter.reportError2(StaticWarningCode.CONST_WITH_ABSTRACT_CLASS, typeName, []);
} else {
_errorReporter.reportError2(StaticWarningCode.NEW_WITH_ABSTRACT_CLASS, typeName, []);
}
return true;
}
}
return false;
}
/**
* This verifies that the passed 'const' instance creation expression is not being invoked on a
* constructor that is not 'const'.
*
* This method assumes that the instance creation was tested to be 'const' before being called.
*
* @param node the instance creation expression to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#CONST_WITH_NON_CONST
*/
bool checkForConstWithNonConst(InstanceCreationExpression node) {
ConstructorElement constructorElement = node.staticElement;
if (constructorElement != null && !constructorElement.isConst) {
_errorReporter.reportError2(CompileTimeErrorCode.CONST_WITH_NON_CONST, node, []);
return true;
}
return false;
}
/**
* This verifies that the passed 'const' instance creation expression does not reference any type
* parameters.
*
* This method assumes that the instance creation was tested to be 'const' before being called.
*
* @param node the instance creation expression to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#CONST_WITH_TYPE_PARAMETERS
*/
bool checkForConstWithTypeParameters(InstanceCreationExpression node) {
ConstructorName constructorName = node.constructorName;
if (constructorName == null) {
return false;
}
TypeName typeName = constructorName.type;
return checkForConstWithTypeParameters2(typeName);
}
/**
* This verifies that the passed type name does not reference any type parameters.
*
* @param typeName the type name to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#CONST_WITH_TYPE_PARAMETERS
*/
bool checkForConstWithTypeParameters2(TypeName typeName) {
if (typeName == null) {
return false;
}
Identifier name = typeName.name;
if (name == null) {
return false;
}
if (name.staticElement is TypeVariableElement) {
_errorReporter.reportError2(CompileTimeErrorCode.CONST_WITH_TYPE_PARAMETERS, name, []);
}
TypeArgumentList typeArguments = typeName.typeArguments;
if (typeArguments != null) {
bool hasError = false;
for (TypeName argument in typeArguments.arguments) {
hasError = javaBooleanOr(hasError, checkForConstWithTypeParameters2(argument));
}
return hasError;
}
return false;
}
/**
* This verifies that if the passed 'const' instance creation expression is being invoked on the
* resolved constructor.
*
* This method assumes that the instance creation was tested to be 'const' before being called.
*
* @param node the instance creation expression to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#CONST_WITH_UNDEFINED_CONSTRUCTOR
* @see CompileTimeErrorCode#CONST_WITH_UNDEFINED_CONSTRUCTOR_DEFAULT
*/
bool checkForConstWithUndefinedConstructor(InstanceCreationExpression node) {
if (node.staticElement != null) {
return false;
}
ConstructorName constructorName = node.constructorName;
if (constructorName == null) {
return false;
}
TypeName type = constructorName.type;
if (type == null) {
return false;
}
Identifier className = type.name;
SimpleIdentifier name = constructorName.name;
if (name != null) {
_errorReporter.reportError2(CompileTimeErrorCode.CONST_WITH_UNDEFINED_CONSTRUCTOR, name, [className, name]);
} else {
_errorReporter.reportError2(CompileTimeErrorCode.CONST_WITH_UNDEFINED_CONSTRUCTOR_DEFAULT, constructorName, [className]);
}
return true;
}
/**
* This verifies that there are no default parameters in the passed function type alias.
*
* @param node the function type alias to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#DEFAULT_VALUE_IN_FUNCTION_TYPE_ALIAS
*/
bool checkForDefaultValueInFunctionTypeAlias(FunctionTypeAlias node) {
bool result = false;
FormalParameterList formalParameterList = node.parameters;
NodeList<FormalParameter> parameters = formalParameterList.parameters;
for (FormalParameter formalParameter in parameters) {
if (formalParameter is DefaultFormalParameter) {
DefaultFormalParameter defaultFormalParameter = formalParameter as DefaultFormalParameter;
if (defaultFormalParameter.defaultValue != null) {
_errorReporter.reportError2(CompileTimeErrorCode.DEFAULT_VALUE_IN_FUNCTION_TYPE_ALIAS, node, []);
result = true;
}
}
}
return result;
}
/**
* This verifies that the given default formal parameter is not part of a function typed
* parameter.
*
* @param node the default formal parameter to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#DEFAULT_VALUE_IN_FUNCTION_TYPED_PARAMETER
*/
bool checkForDefaultValueInFunctionTypedParameter(DefaultFormalParameter node) {
if (!_isInFunctionTypedFormalParameter) {
return false;
}
if (node.defaultValue == null) {
return false;
}
_errorReporter.reportError2(CompileTimeErrorCode.DEFAULT_VALUE_IN_FUNCTION_TYPED_PARAMETER, node, []);
return true;
}
/**
* This verifies that the enclosing class does not have an instance member with the given name of
* the static member.
*
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#DUPLICATE_DEFINITION_INHERITANCE
*/
bool checkForDuplicateDefinitionInheritance() {
if (_enclosingClass == null) {
return false;
}
bool hasProblem = false;
for (ExecutableElement member in _enclosingClass.methods) {
if (!member.isStatic) {
continue;
}
hasProblem = javaBooleanOr(hasProblem, checkForDuplicateDefinitionInheritance2(member));
}
for (ExecutableElement member in _enclosingClass.accessors) {
if (!member.isStatic) {
continue;
}
hasProblem = javaBooleanOr(hasProblem, checkForDuplicateDefinitionInheritance2(member));
}
return hasProblem;
}
/**
* This verifies that the enclosing class does not have an instance member with the given name of
* the static member.
*
* @param staticMember the static member to check conflict for
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#DUPLICATE_DEFINITION_INHERITANCE
*/
bool checkForDuplicateDefinitionInheritance2(ExecutableElement staticMember) {
String name = staticMember.name;
if (name == null) {
return false;
}
ExecutableElement inheritedMember = _inheritanceManager.lookupInheritance(_enclosingClass, name);
if (inheritedMember == null) {
return false;
}
if (inheritedMember.isStatic) {
return false;
}
_errorReporter.reportError3(CompileTimeErrorCode.DUPLICATE_DEFINITION_INHERITANCE, staticMember.nameOffset, name.length, [name, inheritedMember.enclosingElement.displayName]);
return true;
}
/**
* This verifies the passed import has unique name among other exported libraries.
*
* @param node the export directive to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#EXPORT_DUPLICATED_LIBRARY_NAME
*/
bool checkForExportDuplicateLibraryName(ExportDirective node) {
Element nodeElement = node.element;
if (nodeElement is! ExportElement) {
return false;
}
ExportElement nodeExportElement = nodeElement as ExportElement;
LibraryElement nodeLibrary = nodeExportElement.exportedLibrary;
if (nodeLibrary == null) {
return false;
}
String name = nodeLibrary.name;
LibraryElement prevLibrary = _nameToExportElement[name];
if (prevLibrary != null) {
if (prevLibrary != nodeLibrary) {
_errorReporter.reportError2(StaticWarningCode.EXPORT_DUPLICATED_LIBRARY_NAME, node, [
prevLibrary.definingCompilationUnit.displayName,
nodeLibrary.definingCompilationUnit.displayName,
name]);
return true;
}
} else {
_nameToExportElement[name] = nodeLibrary;
}
return false;
}
/**
* Check that if the visiting library is not system, then any passed library should not be SDK
* internal library.
*
* @param node the export directive to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#EXPORT_INTERNAL_LIBRARY
*/
bool checkForExportInternalLibrary(ExportDirective node) {
if (_isInSystemLibrary) {
return false;
}
Element element = node.element;
if (element is! ExportElement) {
return false;
}
ExportElement exportElement = element as ExportElement;
DartSdk sdk = _currentLibrary.context.sourceFactory.dartSdk;
String uri = exportElement.uri;
SdkLibrary sdkLibrary = sdk.getSdkLibrary(uri);
if (sdkLibrary == null) {
return false;
}
if (!sdkLibrary.isInternal) {
return false;
}
_errorReporter.reportError2(CompileTimeErrorCode.EXPORT_INTERNAL_LIBRARY, node, [node.uri]);
return true;
}
/**
* This verifies that the passed extends clause does not extend classes such as num or String.
*
* @param node the extends clause to test
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#EXTENDS_DISALLOWED_CLASS
*/
bool checkForExtendsDisallowedClass(ExtendsClause extendsClause) {
if (extendsClause == null) {
return false;
}
return checkForExtendsOrImplementsDisallowedClass(extendsClause.superclass, CompileTimeErrorCode.EXTENDS_DISALLOWED_CLASS);
}
/**
* This verifies that the passed type name does not extend or implement classes such as 'num' or
* 'String'.
*
* @param node the type name to test
* @return `true` if and only if an error code is generated on the passed node
* @see #checkForExtendsDisallowedClass(ExtendsClause)
* @see #checkForImplementsDisallowedClass(ImplementsClause)
* @see CompileTimeErrorCode#EXTENDS_DISALLOWED_CLASS
* @see CompileTimeErrorCode#IMPLEMENTS_DISALLOWED_CLASS
*/
bool checkForExtendsOrImplementsDisallowedClass(TypeName typeName, ErrorCode errorCode) {
if (typeName.isSynthetic) {
return false;
}
Type2 superType = typeName.type;
for (InterfaceType disallowedType in _DISALLOWED_TYPES_TO_EXTEND_OR_IMPLEMENT) {
if (superType != null && superType == disallowedType) {
if (superType == _typeProvider.numType) {
ASTNode grandParent = typeName.parent.parent;
if (grandParent is ClassDeclaration) {
ClassElement classElement = ((grandParent as ClassDeclaration)).element;
Type2 classType = classElement.type;
if (classType != null && (classType == _typeProvider.intType || classType == _typeProvider.doubleType)) {
return false;
}
}
}
_errorReporter.reportError2(errorCode, typeName, [disallowedType.displayName]);
return true;
}
}
return false;
}
/**
* This verifies that the passed constructor field initializer has compatible field and
* initializer expression types.
*
* @param node the constructor field initializer to test
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#CONST_FIELD_INITIALIZER_NOT_ASSIGNABLE
* @see StaticWarningCode#FIELD_INITIALIZER_NOT_ASSIGNABLE
*/
bool checkForFieldInitializerNotAssignable(ConstructorFieldInitializer node) {
Element fieldNameElement = node.fieldName.staticElement;
if (fieldNameElement is! FieldElement) {
return false;
}
FieldElement fieldElement = fieldNameElement as FieldElement;
Type2 fieldType = fieldElement.type;
Expression expression = node.expression;
if (expression == null) {
return false;
}
Type2 staticType = getStaticType(expression);
if (staticType == null) {
return false;
}
if (staticType.isAssignableTo(fieldType)) {
return false;
} else if (_strictMode) {
if (_isEnclosingConstructorConst) {
_errorReporter.reportError2(CompileTimeErrorCode.CONST_FIELD_INITIALIZER_NOT_ASSIGNABLE, expression, [staticType.displayName, fieldType.displayName]);
} else {
_errorReporter.reportError2(StaticWarningCode.FIELD_INITIALIZER_NOT_ASSIGNABLE, expression, [staticType.displayName, fieldType.displayName]);
}
return true;
}
Type2 propagatedType = expression.propagatedType;
if (propagatedType != null && propagatedType.isAssignableTo(fieldType)) {
return false;
}
if (_isEnclosingConstructorConst) {
_errorReporter.reportError2(CompileTimeErrorCode.CONST_FIELD_INITIALIZER_NOT_ASSIGNABLE, expression, [
(propagatedType == null ? staticType : propagatedType).displayName,
fieldType.displayName]);
} else {
_errorReporter.reportError2(StaticWarningCode.FIELD_INITIALIZER_NOT_ASSIGNABLE, expression, [
(propagatedType == null ? staticType : propagatedType).displayName,
fieldType.displayName]);
}
return true;
}
/**
* This verifies that the passed field formal parameter is in a constructor declaration.
*
* @param node the field formal parameter to test
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#FIELD_INITIALIZER_OUTSIDE_CONSTRUCTOR
*/
bool checkForFieldInitializingFormalRedirectingConstructor(FieldFormalParameter node) {
ConstructorDeclaration constructor = node.getAncestor(ConstructorDeclaration);
if (constructor == null) {
_errorReporter.reportError2(CompileTimeErrorCode.FIELD_INITIALIZER_OUTSIDE_CONSTRUCTOR, node, []);
return true;
}
if (constructor.factoryKeyword != null) {
_errorReporter.reportError2(CompileTimeErrorCode.FIELD_INITIALIZER_FACTORY_CONSTRUCTOR, node, []);
return true;
}
for (ConstructorInitializer initializer in constructor.initializers) {
if (initializer is RedirectingConstructorInvocation) {
_errorReporter.reportError2(CompileTimeErrorCode.FIELD_INITIALIZER_REDIRECTING_CONSTRUCTOR, node, []);
return true;
}
}
return false;
}
/**
* This verifies that final fields that are declared, without any constructors in the enclosing
* class, are initialized. Cases in which there is at least one constructor are handled at the end
* of [checkForAllFinalInitializedErrorCodes].
*
* @param node the class declaration to test
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#FINAL_NOT_INITIALIZED
*/
bool checkForFinalNotInitialized(ClassDeclaration node) {
NodeList<ClassMember> classMembers = node.members;
for (ClassMember classMember in classMembers) {
if (classMember is ConstructorDeclaration) {
return false;
}
}
bool foundError = false;
for (ClassMember classMember in classMembers) {
if (classMember is FieldDeclaration) {
FieldDeclaration field = classMember as FieldDeclaration;
foundError = javaBooleanOr(foundError, checkForFinalNotInitialized2(field.fields));
}
}
return foundError;
}
/**
* This verifies that the passed variable declaration list has only initialized variables if the
* list is final or const. This method is called by
* [checkForFinalNotInitialized],
* [visitTopLevelVariableDeclaration] and
* [visitVariableDeclarationStatement].
*
* @param node the class declaration to test
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#FINAL_NOT_INITIALIZED
*/
bool checkForFinalNotInitialized2(VariableDeclarationList node) {
if (_isInNativeClass) {
return false;
}
bool foundError = false;
if (!node.isSynthetic && (node.isConst || node.isFinal)) {
NodeList<VariableDeclaration> variables = node.variables;
for (VariableDeclaration variable in variables) {
if (variable.initializer == null) {
_errorReporter.reportError2(StaticWarningCode.FINAL_NOT_INITIALIZED, variable.name, [variable.name.name]);
foundError = true;
}
}
}
return foundError;
}
/**
* This verifies that the passed implements clause does not implement classes such as 'num' or
* 'String'.
*
* @param node the implements clause to test
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#IMPLEMENTS_DISALLOWED_CLASS
*/
bool checkForImplementsDisallowedClass(ImplementsClause implementsClause) {
if (implementsClause == null) {
return false;
}
bool foundError = false;
for (TypeName type in implementsClause.interfaces) {
foundError = javaBooleanOr(foundError, checkForExtendsOrImplementsDisallowedClass(type, CompileTimeErrorCode.IMPLEMENTS_DISALLOWED_CLASS));
}
return foundError;
}
/**
* This verifies that if the passed identifier is part of constructor initializer, then it does
* not reference implicitly 'this' expression.
*
* @param node the simple identifier to test
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#IMPLICIT_THIS_REFERENCE_IN_INITIALIZER
* @see CompileTimeErrorCode#INSTANCE_MEMBER_ACCESS_FROM_STATIC TODO(scheglov) rename thid method
*/
bool checkForImplicitThisReferenceInInitializer(SimpleIdentifier node) {
if (!_isInConstructorInitializer && !_isInStaticMethod && !_isInInstanceVariableInitializer && !_isInStaticVariableDeclaration) {
return false;
}
Element element = node.staticElement;
if (!(element is MethodElement || element is PropertyAccessorElement)) {
return false;
}
ExecutableElement executableElement = element as ExecutableElement;
if (executableElement.isStatic) {
return false;
}
Element enclosingElement = element.enclosingElement;
if (enclosingElement is! ClassElement) {
return false;
}
ASTNode parent = node.parent;
if (parent is CommentReference) {
return false;
}
if (parent is MethodInvocation) {
MethodInvocation invocation = parent as MethodInvocation;
if (identical(invocation.methodName, node) && invocation.realTarget != null) {
return false;
}
}
if (parent is PropertyAccess) {
PropertyAccess access = parent as PropertyAccess;
if (identical(access.propertyName, node) && access.realTarget != null) {
return false;
}
}
if (parent is PrefixedIdentifier) {
PrefixedIdentifier prefixed = parent as PrefixedIdentifier;
if (identical(prefixed.identifier, node)) {
return false;
}
}
if (_isInStaticMethod) {
_errorReporter.reportError2(CompileTimeErrorCode.INSTANCE_MEMBER_ACCESS_FROM_STATIC, node, []);
} else {
_errorReporter.reportError2(CompileTimeErrorCode.IMPLICIT_THIS_REFERENCE_IN_INITIALIZER, node, []);
}
return true;
}
/**
* This verifies the passed import has unique name among other imported libraries.
*
* @param node the import directive to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#IMPORT_DUPLICATED_LIBRARY_NAME
*/
bool checkForImportDuplicateLibraryName(ImportDirective node) {
Element nodeElement = node.element;
if (nodeElement is! ImportElement) {
return false;
}
ImportElement nodeImportElement = nodeElement as ImportElement;
LibraryElement nodeLibrary = nodeImportElement.importedLibrary;
if (nodeLibrary == null) {
return false;
}
String name = nodeLibrary.name;
LibraryElement prevLibrary = _nameToImportElement[name];
if (prevLibrary != null) {
if (prevLibrary != nodeLibrary) {
_errorReporter.reportError2(StaticWarningCode.IMPORT_DUPLICATED_LIBRARY_NAME, node, [
prevLibrary.definingCompilationUnit.displayName,
nodeLibrary.definingCompilationUnit.displayName,
name]);
return true;
}
} else {
_nameToImportElement[name] = nodeLibrary;
}
return false;
}
/**
* Check that if the visiting library is not system, then any passed library should not be SDK
* internal library.
*
* @param node the import directive to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#IMPORT_INTERNAL_LIBRARY
*/
bool checkForImportInternalLibrary(ImportDirective node) {
if (_isInSystemLibrary) {
return false;
}
Element element = node.element;
if (element is! ImportElement) {
return false;
}
ImportElement importElement = element as ImportElement;
DartSdk sdk = _currentLibrary.context.sourceFactory.dartSdk;
String uri = importElement.uri;
SdkLibrary sdkLibrary = sdk.getSdkLibrary(uri);
if (sdkLibrary == null) {
return false;
}
if (!sdkLibrary.isInternal) {
return false;
}
_errorReporter.reportError2(CompileTimeErrorCode.IMPORT_INTERNAL_LIBRARY, node, [node.uri]);
return true;
}
/**
* This verifies that the passed switch statement case expressions all have the same type.
*
* @param node the switch statement to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#INCONSISTENT_CASE_EXPRESSION_TYPES
*/
bool checkForInconsistentCaseExpressionTypes(SwitchStatement node) {
NodeList<SwitchMember> switchMembers = node.members;
bool foundError = false;
Type2 firstType = null;
for (SwitchMember switchMember in switchMembers) {
if (switchMember is SwitchCase) {
SwitchCase switchCase = switchMember as SwitchCase;
Expression expression = switchCase.expression;
if (firstType == null) {
firstType = expression.bestType;
} else {
Type2 nType = expression.bestType;
if (firstType != nType) {
_errorReporter.reportError2(CompileTimeErrorCode.INCONSISTENT_CASE_EXPRESSION_TYPES, expression, [expression.toSource(), firstType.displayName]);
foundError = true;
}
}
}
}
if (!foundError) {
checkForCaseExpressionTypeImplementsEquals(node, firstType);
}
return foundError;
}
/**
* For each class declaration, this method is called which verifies that all inherited members are
* inherited consistently.
*
* @return `true` if and only if an error code is generated on the passed node
* @see StaticTypeWarningCode#INCONSISTENT_METHOD_INHERITANCE
*/
bool checkForInconsistentMethodInheritance() {
_inheritanceManager.getMapOfMembersInheritedFromInterfaces(_enclosingClass);
Set<AnalysisError> errors = _inheritanceManager.getErrors(_enclosingClass);
if (errors == null || errors.isEmpty) {
return false;
}
for (AnalysisError error in errors) {
_errorReporter.reportError(error);
}
return true;
}
/**
* This checks that if the given "target" is not a type reference then the "name" is reference to
* an instance member.
*
* @param target the target of the name access to evaluate
* @param name the accessed name to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see StaticTypeWarningCode#INSTANCE_ACCESS_TO_STATIC_MEMBER
*/
bool checkForInstanceAccessToStaticMember(Expression target, SimpleIdentifier name2) {
if (target == null) {
return false;
}
if (_isInComment) {
return false;
}
Element element = name2.staticElement;
if (element is! ExecutableElement) {
return false;
}
ExecutableElement executableElement = element as ExecutableElement;
if (executableElement.enclosingElement is! ClassElement) {
return false;
}
if (!executableElement.isStatic) {
return false;
}
if (isTypeReference(target)) {
return false;
}
_errorReporter.reportError2(StaticTypeWarningCode.INSTANCE_ACCESS_TO_STATIC_MEMBER, name2, [name2.name]);
return true;
}
/**
* This verifies that an 'int' can be assigned to the parameter corresponding to the given
* expression. This is used for prefix and postfix expressions where the argument value is
* implicit.
*
* @param argument the expression to which the operator is being applied
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#ARGUMENT_TYPE_NOT_ASSIGNABLE
* @see CompileTimeErrorCode#ARGUMENT_TYPE_NOT_ASSIGNABLE
*/
bool checkForIntNotAssignable(Expression argument) {
if (argument == null) {
return false;
}
ErrorCode errorCode;
if (_isInConstInstanceCreation || _isEnclosingConstructorConst) {
errorCode = CompileTimeErrorCode.ARGUMENT_TYPE_NOT_ASSIGNABLE;
} else {
errorCode = StaticWarningCode.ARGUMENT_TYPE_NOT_ASSIGNABLE;
}
ParameterElement staticParameterElement = argument.staticParameterElement;
Type2 staticParameterType = staticParameterElement == null ? null : staticParameterElement.type;
ParameterElement propagatedParameterElement = argument.propagatedParameterElement;
Type2 propagatedParameterType = propagatedParameterElement == null ? null : propagatedParameterElement.type;
return checkForArgumentTypeNotAssignable4(argument, staticParameterType, _typeProvider.intType, propagatedParameterType, _typeProvider.intType, errorCode);
}
/**
* Given an assignment using a compound assignment operator, this verifies that the given
* assignment is valid.
*
* @param node the assignment expression being tested
* @return `true` if and only if an error code is generated on the passed node
* @see StaticTypeWarningCode#INVALID_ASSIGNMENT
*/
bool checkForInvalidAssignment(AssignmentExpression node) {
Expression lhs = node.leftHandSide;
if (lhs == null) {
return false;
}
VariableElement leftElement = getVariableElement(lhs);
Type2 leftType = (leftElement == null) ? getStaticType(lhs) : leftElement.type;
MethodElement invokedMethod = node.staticElement;
if (invokedMethod == null) {
return false;
}
Type2 rightType = invokedMethod.type.returnType;
if (leftType == null || rightType == null) {
return false;
}
if (!rightType.isAssignableTo(leftType)) {
_errorReporter.reportError2(StaticTypeWarningCode.INVALID_ASSIGNMENT, node.rightHandSide, [rightType.displayName, leftType.displayName]);
return true;
}
return false;
}
/**
* This verifies that the passed left hand side and right hand side represent a valid assignment.
*
* @param lhs the left hand side expression
* @param rhs the right hand side expression
* @return `true` if and only if an error code is generated on the passed node
* @see StaticTypeWarningCode#INVALID_ASSIGNMENT
*/
bool checkForInvalidAssignment2(Expression lhs, Expression rhs) {
if (lhs == null || rhs == null) {
return false;
}
VariableElement leftElement = getVariableElement(lhs);
Type2 leftType = (leftElement == null) ? getStaticType(lhs) : leftElement.type;
Type2 staticRightType = getStaticType(rhs);
bool isStaticAssignable = staticRightType.isAssignableTo(leftType);
Type2 propagatedRightType = rhs.propagatedType;
if (_strictMode || propagatedRightType == null) {
if (!isStaticAssignable) {
_errorReporter.reportError2(StaticTypeWarningCode.INVALID_ASSIGNMENT, rhs, [staticRightType.displayName, leftType.displayName]);
return true;
}
} else {
bool isPropagatedAssignable = propagatedRightType.isAssignableTo(leftType);
if (!isStaticAssignable && !isPropagatedAssignable) {
_errorReporter.reportError2(StaticTypeWarningCode.INVALID_ASSIGNMENT, rhs, [staticRightType.displayName, leftType.displayName]);
return true;
}
}
return false;
}
/**
* This verifies that the usage of the passed 'this' is valid.
*
* @param node the 'this' expression to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#INVALID_REFERENCE_TO_THIS
*/
bool checkForInvalidReferenceToThis(ThisExpression node) {
if (!isThisInValidContext(node)) {
_errorReporter.reportError2(CompileTimeErrorCode.INVALID_REFERENCE_TO_THIS, node, []);
return true;
}
return false;
}
/**
* Checks to ensure that the passed [ListLiteral] or [MapLiteral] does not have a type
* parameter as a type argument.
*
* @param arguments a non-`null`, non-empty [TypeName] node list from the respective
* [ListLiteral] or [MapLiteral]
* @param errorCode either [CompileTimeErrorCode#INVALID_TYPE_ARGUMENT_IN_CONST_LIST] or
* [CompileTimeErrorCode#INVALID_TYPE_ARGUMENT_IN_CONST_MAP]
* @return `true` if and only if an error code is generated on the passed node
*/
bool checkForInvalidTypeArgumentInConstTypedLiteral(NodeList<TypeName> arguments, ErrorCode errorCode) {
bool foundError = false;
for (TypeName typeName in arguments) {
if (typeName.type is TypeVariableType) {
_errorReporter.reportError2(errorCode, typeName, [typeName.name]);
foundError = true;
}
}
return foundError;
}
/**
* This verifies that the elements given [ListLiteral] are subtypes of the specified element
* type.
*
* @param node the list literal to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#LIST_ELEMENT_TYPE_NOT_ASSIGNABLE
* @see StaticWarningCode#LIST_ELEMENT_TYPE_NOT_ASSIGNABLE
*/
bool checkForListElementTypeNotAssignable(ListLiteral node) {
TypeArgumentList typeArgumentList = node.typeArguments;
if (typeArgumentList == null) {
return false;
}
NodeList<TypeName> typeArguments = typeArgumentList.arguments;
if (typeArguments.length < 1) {
return false;
}
Type2 listElementType = typeArguments[0].type;
ErrorCode errorCode;
if (node.constKeyword != null) {
errorCode = CompileTimeErrorCode.LIST_ELEMENT_TYPE_NOT_ASSIGNABLE;
} else {
errorCode = StaticWarningCode.LIST_ELEMENT_TYPE_NOT_ASSIGNABLE;
}
bool hasProblems = false;
for (Expression element in node.elements) {
hasProblems = javaBooleanOr(hasProblems, checkForArgumentTypeNotAssignable3(element, listElementType, null, errorCode));
}
return hasProblems;
}
/**
* This verifies that the key/value of entries of the given [MapLiteral] are subtypes of the
* key/value types specified in the type arguments.
*
* @param node the map literal to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#MAP_KEY_TYPE_NOT_ASSIGNABLE
* @see CompileTimeErrorCode#MAP_VALUE_TYPE_NOT_ASSIGNABLE
* @see StaticWarningCode#MAP_KEY_TYPE_NOT_ASSIGNABLE
* @see StaticWarningCode#MAP_VALUE_TYPE_NOT_ASSIGNABLE
*/
bool checkForMapTypeNotAssignable(MapLiteral node) {
TypeArgumentList typeArgumentList = node.typeArguments;
if (typeArgumentList == null) {
return false;
}
NodeList<TypeName> typeArguments = typeArgumentList.arguments;
if (typeArguments.length < 2) {
return false;
}
Type2 keyType = typeArguments[0].type;
Type2 valueType = typeArguments[1].type;
ErrorCode keyErrorCode;
ErrorCode valueErrorCode;
if (node.constKeyword != null) {
keyErrorCode = CompileTimeErrorCode.MAP_KEY_TYPE_NOT_ASSIGNABLE;
valueErrorCode = CompileTimeErrorCode.MAP_VALUE_TYPE_NOT_ASSIGNABLE;
} else {
keyErrorCode = StaticWarningCode.MAP_KEY_TYPE_NOT_ASSIGNABLE;
valueErrorCode = StaticWarningCode.MAP_VALUE_TYPE_NOT_ASSIGNABLE;
}
bool hasProblems = false;
NodeList<MapLiteralEntry> entries = node.entries;
for (MapLiteralEntry entry in entries) {
Expression key = entry.key;
Expression value = entry.value;
hasProblems = javaBooleanOr(hasProblems, checkForArgumentTypeNotAssignable3(key, keyType, null, keyErrorCode));
hasProblems = javaBooleanOr(hasProblems, checkForArgumentTypeNotAssignable3(value, valueType, null, valueErrorCode));
}
return hasProblems;
}
/**
* This verifies that the [enclosingClass] does not define members with the same name as
* the enclosing class.
*
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#MEMBER_WITH_CLASS_NAME
*/
bool checkForMemberWithClassName() {
if (_enclosingClass == null) {
return false;
}
String className = _enclosingClass.name;
if (className == null) {
return false;
}
bool problemReported = false;
for (PropertyAccessorElement accessor in _enclosingClass.accessors) {
if (className == accessor.name) {
_errorReporter.reportError3(CompileTimeErrorCode.MEMBER_WITH_CLASS_NAME, accessor.nameOffset, className.length, []);
problemReported = true;
}
}
return problemReported;
}
/**
* Check to make sure that all similarly typed accessors are of the same type (including inherited
* accessors).
*
* @param node the accessor currently being visited
* @return `true` if and only if an error code is generated on the passed node
*/
bool checkForMismatchedAccessorTypes(Declaration accessorDeclaration, String accessorTextName) {
ExecutableElement accessorElement = accessorDeclaration.element as ExecutableElement;
if (accessorElement is! PropertyAccessorElement) {
return false;
}
PropertyAccessorElement counterpartAccessor = null;
PropertyAccessorElement propertyAccessorElement = accessorElement as PropertyAccessorElement;
if (propertyAccessorElement.isGetter) {
counterpartAccessor = propertyAccessorElement.correspondingSetter;
} else {
counterpartAccessor = propertyAccessorElement.correspondingGetter;
if (counterpartAccessor != null && identical(counterpartAccessor.enclosingElement, propertyAccessorElement.enclosingElement)) {
return false;
}
}
if (counterpartAccessor == null) {
return false;
}
Type2 getterType = null;
Type2 setterType = null;
if (propertyAccessorElement.isGetter) {
getterType = getGetterType(propertyAccessorElement);
setterType = getSetterType(counterpartAccessor);
} else if (propertyAccessorElement.isSetter) {
setterType = getSetterType(propertyAccessorElement);
counterpartAccessor = propertyAccessorElement.correspondingGetter;
getterType = getGetterType(counterpartAccessor);
}
if (setterType != null && getterType != null && !getterType.isAssignableTo(setterType)) {
_errorReporter.reportError2(StaticWarningCode.MISMATCHED_GETTER_AND_SETTER_TYPES, accessorDeclaration, [
accessorTextName,
setterType.displayName,
getterType.displayName]);
return true;
}
return false;
}
/**
* This verifies that the passed mixin does not have an explicitly declared constructor.
*
* @param mixinName the node to report problem on
* @param mixinElement the mixing to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#MIXIN_DECLARES_CONSTRUCTOR
*/
bool checkForMixinDeclaresConstructor(TypeName mixinName, ClassElement mixinElement) {
for (ConstructorElement constructor in mixinElement.constructors) {
if (!constructor.isSynthetic && !constructor.isFactory) {
_errorReporter.reportError2(CompileTimeErrorCode.MIXIN_DECLARES_CONSTRUCTOR, mixinName, [mixinElement.name]);
return true;
}
}
return false;
}
/**
* This verifies that the passed mixin has the 'Object' superclass.
*
* @param mixinName the node to report problem on
* @param mixinElement the mixing to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#MIXIN_INHERITS_FROM_NOT_OBJECT
*/
bool checkForMixinInheritsNotFromObject(TypeName mixinName, ClassElement mixinElement) {
InterfaceType mixinSupertype = mixinElement.supertype;
if (mixinSupertype != null) {
if (!mixinSupertype.isObject || !mixinElement.isTypedef && mixinElement.mixins.length != 0) {
_errorReporter.reportError2(CompileTimeErrorCode.MIXIN_INHERITS_FROM_NOT_OBJECT, mixinName, [mixinElement.name]);
return true;
}
}
return false;
}
/**
* This verifies that the passed mixin does not reference 'super'.
*
* @param mixinName the node to report problem on
* @param mixinElement the mixing to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#MIXIN_REFERENCES_SUPER
*/
bool checkForMixinReferencesSuper(TypeName mixinName, ClassElement mixinElement) {
if (mixinElement.hasReferenceToSuper()) {
_errorReporter.reportError2(CompileTimeErrorCode.MIXIN_REFERENCES_SUPER, mixinName, [mixinElement.name]);
}
return false;
}
/**
* This verifies that the passed constructor has at most one 'super' initializer.
*
* @param node the constructor declaration to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#MULTIPLE_SUPER_INITIALIZERS
*/
bool checkForMultipleSuperInitializers(ConstructorDeclaration node) {
int numSuperInitializers = 0;
for (ConstructorInitializer initializer in node.initializers) {
if (initializer is SuperConstructorInvocation) {
numSuperInitializers++;
if (numSuperInitializers > 1) {
_errorReporter.reportError2(CompileTimeErrorCode.MULTIPLE_SUPER_INITIALIZERS, initializer, []);
}
}
}
return numSuperInitializers > 0;
}
/**
* Checks to ensure that native function bodies can only in SDK code.
*
* @param node the native function body to test
* @return `true` if and only if an error code is generated on the passed node
* @see ParserErrorCode#NATIVE_FUNCTION_BODY_IN_NON_SDK_CODE
*/
bool checkForNativeFunctionBodyInNonSDKCode(NativeFunctionBody node) {
if (!_isInSystemLibrary) {
_errorReporter.reportError2(ParserErrorCode.NATIVE_FUNCTION_BODY_IN_NON_SDK_CODE, node, []);
return true;
}
return false;
}
/**
* This verifies that the passed 'new' instance creation expression invokes existing constructor.
*
* This method assumes that the instance creation was tested to be 'new' before being called.
*
* @param node the instance creation expression to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#NEW_WITH_UNDEFINED_CONSTRUCTOR
*/
bool checkForNewWithUndefinedConstructor(InstanceCreationExpression node) {
if (node.staticElement != null) {
return false;
}
ConstructorName constructorName = node.constructorName;
if (constructorName == null) {
return false;
}
TypeName type = constructorName.type;
if (type == null) {
return false;
}
Identifier className = type.name;
SimpleIdentifier name = constructorName.name;
if (name != null) {
_errorReporter.reportError2(StaticWarningCode.NEW_WITH_UNDEFINED_CONSTRUCTOR, name, [className, name]);
} else {
_errorReporter.reportError2(StaticWarningCode.NEW_WITH_UNDEFINED_CONSTRUCTOR_DEFAULT, constructorName, [className]);
}
return true;
}
/**
* This checks that if the passed class declaration implicitly calls default constructor of its
* superclass, there should be such default constructor - implicit or explicit.
*
* @param node the [ClassDeclaration] to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#NO_DEFAULT_SUPER_CONSTRUCTOR_IMPLICIT
*/
bool checkForNoDefaultSuperConstructorImplicit(ClassDeclaration node) {
List<ConstructorElement> constructors = _enclosingClass.constructors;
if (!constructors[0].isSynthetic) {
return false;
}
InterfaceType superType = _enclosingClass.supertype;
if (superType == null) {
return false;
}
ClassElement superElement = superType.element;
ConstructorElement superUnnamedConstructor = superElement.unnamedConstructor;
if (superUnnamedConstructor != null) {
if (superUnnamedConstructor.isFactory) {
_errorReporter.reportError2(CompileTimeErrorCode.NON_GENERATIVE_CONSTRUCTOR, node.name, [superUnnamedConstructor]);
return true;
}
if (superUnnamedConstructor.isDefaultConstructor) {
return true;
}
}
_errorReporter.reportError2(CompileTimeErrorCode.NO_DEFAULT_SUPER_CONSTRUCTOR_IMPLICIT, node.name, [superType.displayName]);
return true;
}
/**
* This checks that passed class declaration overrides all members required by its superclasses
* and interfaces.
*
* @param node the [ClassDeclaration] to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#NON_ABSTRACT_CLASS_INHERITS_ABSTRACT_MEMBER_ONE
* @see StaticWarningCode#NON_ABSTRACT_CLASS_INHERITS_ABSTRACT_MEMBER_TWO
* @see StaticWarningCode#NON_ABSTRACT_CLASS_INHERITS_ABSTRACT_MEMBER_THREE
* @see StaticWarningCode#NON_ABSTRACT_CLASS_INHERITS_ABSTRACT_MEMBER_FOUR
* @see StaticWarningCode#NON_ABSTRACT_CLASS_INHERITS_ABSTRACT_MEMBER_FIVE_PLUS
*/
bool checkForNonAbstractClassInheritsAbstractMember(ClassDeclaration node) {
if (_enclosingClass.isAbstract) {
return false;
}
List<MethodElement> methods = _enclosingClass.methods;
List<PropertyAccessorElement> accessors = _enclosingClass.accessors;
Set<String> methodsInEnclosingClass = new Set<String>();
Set<String> accessorsInEnclosingClass = new Set<String>();
for (MethodElement method in methods) {
javaSetAdd(methodsInEnclosingClass, method.name);
}
for (PropertyAccessorElement accessor in accessors) {
javaSetAdd(accessorsInEnclosingClass, accessor.name);
}
if (methodsInEnclosingClass.contains(ElementResolver.NO_SUCH_METHOD_METHOD_NAME)) {
return false;
}
Set<ExecutableElement> missingOverrides = new Set<ExecutableElement>();
Map<String, ExecutableElement> membersInheritedFromInterfaces = _inheritanceManager.getMapOfMembersInheritedFromInterfaces(_enclosingClass);
Map<String, ExecutableElement> membersInheritedFromSuperclasses = _inheritanceManager.getMapOfMembersInheritedFromClasses(_enclosingClass);
for (MapEntry<String, ExecutableElement> entry in getMapEntrySet(membersInheritedFromInterfaces)) {
ExecutableElement executableElt = entry.getValue();
ExecutableElement elt = membersInheritedFromSuperclasses[executableElt.name];
if (elt != null) {
if (elt is MethodElement && !((elt as MethodElement)).isAbstract) {
continue;
} else if (elt is PropertyAccessorElement && !((elt as PropertyAccessorElement)).isAbstract) {
continue;
}
}
if (executableElt is MethodElement) {
String methodName = entry.getKey();
if (!methodsInEnclosingClass.contains(methodName) && !memberHasConcreteMethodImplementationInSuperclassChain(_enclosingClass, methodName, new List<ClassElement>())) {
javaSetAdd(missingOverrides, executableElt);
}
} else if (executableElt is PropertyAccessorElement) {
String accessorName = entry.getKey();
if (!accessorsInEnclosingClass.contains(accessorName) && !memberHasConcreteAccessorImplementationInSuperclassChain(_enclosingClass, accessorName, new List<ClassElement>())) {
javaSetAdd(missingOverrides, executableElt);
}
}
}
int missingOverridesSize = missingOverrides.length;
if (missingOverridesSize == 0) {
return false;
}
List<ExecutableElement> missingOverridesArray = new List.from(missingOverrides);
List<String> stringMembersArrayListSet = new List<String>();
for (int i = 0; i < missingOverridesArray.length; i++) {
String newStrMember = "${missingOverridesArray[i].enclosingElement.displayName}.${missingOverridesArray[i].displayName}";
if (!stringMembersArrayListSet.contains(newStrMember)) {
stringMembersArrayListSet.add(newStrMember);
}
}
List<String> stringMembersArray = new List.from(stringMembersArrayListSet);
AnalysisErrorWithProperties analysisError;
if (stringMembersArray.length == 1) {
analysisError = _errorReporter.newErrorWithProperties(StaticWarningCode.NON_ABSTRACT_CLASS_INHERITS_ABSTRACT_MEMBER_ONE, node.name, [stringMembersArray[0]]);
} else if (stringMembersArray.length == 2) {
analysisError = _errorReporter.newErrorWithProperties(StaticWarningCode.NON_ABSTRACT_CLASS_INHERITS_ABSTRACT_MEMBER_TWO, node.name, [stringMembersArray[0], stringMembersArray[1]]);
} else if (stringMembersArray.length == 3) {
analysisError = _errorReporter.newErrorWithProperties(StaticWarningCode.NON_ABSTRACT_CLASS_INHERITS_ABSTRACT_MEMBER_THREE, node.name, [
stringMembersArray[0],
stringMembersArray[1],
stringMembersArray[2]]);
} else if (stringMembersArray.length == 4) {
analysisError = _errorReporter.newErrorWithProperties(StaticWarningCode.NON_ABSTRACT_CLASS_INHERITS_ABSTRACT_MEMBER_FOUR, node.name, [
stringMembersArray[0],
stringMembersArray[1],
stringMembersArray[2],
stringMembersArray[3]]);
} else {
analysisError = _errorReporter.newErrorWithProperties(StaticWarningCode.NON_ABSTRACT_CLASS_INHERITS_ABSTRACT_MEMBER_FIVE_PLUS, node.name, [
stringMembersArray[0],
stringMembersArray[1],
stringMembersArray[2],
stringMembersArray[3],
stringMembersArray.length - 4]);
}
analysisError.setProperty(ErrorProperty.UNIMPLEMENTED_METHODS, missingOverridesArray);
_errorReporter.reportError(analysisError);
return true;
}
/**
* Checks to ensure that the expressions that need to be of type bool, are. Otherwise an error is
* reported on the expression.
*
* @param condition the conditional expression to test
* @return `true` if and only if an error code is generated on the passed node
* @see StaticTypeWarningCode#NON_BOOL_CONDITION
*/
bool checkForNonBoolCondition(Expression condition) {
Type2 conditionType = getStaticType(condition);
if (conditionType != null && !conditionType.isAssignableTo(_typeProvider.boolType)) {
_errorReporter.reportError2(StaticTypeWarningCode.NON_BOOL_CONDITION, condition, []);
return true;
}
return false;
}
/**
* This verifies that the passed assert statement has either a 'bool' or '() -> bool' input.
*
* @param node the assert statement to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see StaticTypeWarningCode#NON_BOOL_EXPRESSION
*/
bool checkForNonBoolExpression(AssertStatement node) {
Expression expression = node.condition;
Type2 type = getStaticType(expression);
if (type is InterfaceType) {
if (!type.isAssignableTo(_typeProvider.boolType)) {
_errorReporter.reportError2(StaticTypeWarningCode.NON_BOOL_EXPRESSION, expression, []);
return true;
}
} else if (type is FunctionType) {
FunctionType functionType = type as FunctionType;
if (functionType.typeArguments.length == 0 && !functionType.returnType.isAssignableTo(_typeProvider.boolType)) {
_errorReporter.reportError2(StaticTypeWarningCode.NON_BOOL_EXPRESSION, expression, []);
return true;
}
}
return false;
}
/**
* This verifies the passed map literal either:
*
* * has `const modifier`
* * has explicit type arguments
* * is not start of the statement
*
*
* @param node the map literal to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#NON_CONST_MAP_AS_EXPRESSION_STATEMENT
*/
bool checkForNonConstMapAsExpressionStatement(MapLiteral node) {
if (node.constKeyword != null) {
return false;
}
if (node.typeArguments != null) {
return false;
}
Statement statement = node.getAncestor(ExpressionStatement);
if (statement == null) {
return false;
}
if (statement.beginToken != node.beginToken) {
return false;
}
_errorReporter.reportError2(CompileTimeErrorCode.NON_CONST_MAP_AS_EXPRESSION_STATEMENT, node, []);
return true;
}
/**
* This verifies the passed method declaration of operator `[]=`, has `void` return
* type.
*
* @param node the method declaration to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#NON_VOID_RETURN_FOR_OPERATOR
*/
bool checkForNonVoidReturnTypeForOperator(MethodDeclaration node) {
SimpleIdentifier name = node.name;
if (name.name != "[]=") {
return false;
}
TypeName typeName = node.returnType;
if (typeName != null) {
Type2 type = typeName.type;
if (type != null && !type.isVoid) {
_errorReporter.reportError2(StaticWarningCode.NON_VOID_RETURN_FOR_OPERATOR, typeName, []);
}
}
return false;
}
/**
* This verifies the passed setter has no return type or the `void` return type.
*
* @param typeName the type name to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#NON_VOID_RETURN_FOR_SETTER
*/
bool checkForNonVoidReturnTypeForSetter(TypeName typeName) {
if (typeName != null) {
Type2 type = typeName.type;
if (type != null && !type.isVoid) {
_errorReporter.reportError2(StaticWarningCode.NON_VOID_RETURN_FOR_SETTER, typeName, []);
}
}
return false;
}
/**
* This verifies the passed operator-method declaration, does not have an optional parameter.
*
* This method assumes that the method declaration was tested to be an operator declaration before
* being called.
*
* @param node the method declaration to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#OPTIONAL_PARAMETER_IN_OPERATOR
*/
bool checkForOptionalParameterInOperator(MethodDeclaration node) {
FormalParameterList parameterList = node.parameters;
if (parameterList == null) {
return false;
}
bool foundError = false;
NodeList<FormalParameter> formalParameters = parameterList.parameters;
for (FormalParameter formalParameter in formalParameters) {
if (formalParameter.kind.isOptional) {
_errorReporter.reportError2(CompileTimeErrorCode.OPTIONAL_PARAMETER_IN_OPERATOR, formalParameter, []);
foundError = true;
}
}
return foundError;
}
/**
* This checks for named optional parameters that begin with '_'.
*
* @param node the default formal parameter to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#PRIVATE_OPTIONAL_PARAMETER
*/
bool checkForPrivateOptionalParameter(FormalParameter node) {
if (node.kind != ParameterKind.NAMED) {
return false;
}
SimpleIdentifier name = node.identifier;
if (name.isSynthetic || !name.name.startsWith("_")) {
return false;
}
_errorReporter.reportError2(CompileTimeErrorCode.PRIVATE_OPTIONAL_PARAMETER, node, []);
return true;
}
/**
* This checks if the passed constructor declaration is the redirecting generative constructor and
* references itself directly or indirectly.
*
* @param node the constructor declaration to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#RECURSIVE_CONSTRUCTOR_REDIRECT
*/
bool checkForRecursiveConstructorRedirect(ConstructorDeclaration node) {
if (node.factoryKeyword != null) {
return false;
}
for (ConstructorInitializer initializer in node.initializers) {
if (initializer is RedirectingConstructorInvocation) {
ConstructorElement element = node.element;
if (!hasRedirectingFactoryConstructorCycle(element)) {
return false;
}
_errorReporter.reportError2(CompileTimeErrorCode.RECURSIVE_CONSTRUCTOR_REDIRECT, initializer, []);
return true;
}
}
return false;
}
/**
* This checks if the passed constructor declaration has redirected constructor and references
* itself directly or indirectly.
*
* @param node the constructor declaration to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#RECURSIVE_FACTORY_REDIRECT
*/
bool checkForRecursiveFactoryRedirect(ConstructorDeclaration node) {
ConstructorName redirectedConstructorNode = node.redirectedConstructor;
if (redirectedConstructorNode == null) {
return false;
}
ConstructorElement element = node.element;
if (!hasRedirectingFactoryConstructorCycle(element)) {
return false;
}
_errorReporter.reportError2(CompileTimeErrorCode.RECURSIVE_FACTORY_REDIRECT, redirectedConstructorNode, []);
return true;
}
/**
* This checks the class declaration is not a superinterface to itself.
*
* @param classElt the class element to test
* @param list a list containing the potentially cyclic implements path
* @return `true` if and only if an error code is generated on the passed element
* @see CompileTimeErrorCode#RECURSIVE_INTERFACE_INHERITANCE
* @see CompileTimeErrorCode#RECURSIVE_INTERFACE_INHERITANCE_BASE_CASE_EXTENDS
* @see CompileTimeErrorCode#RECURSIVE_INTERFACE_INHERITANCE_BASE_CASE_IMPLEMENTS
*/
bool checkForRecursiveInterfaceInheritance(ClassElement classElt, List<ClassElement> list) {
if (classElt == null) {
return false;
}
InterfaceType supertype = classElt.supertype;
list.add(classElt);
if (list.length != 1 && _enclosingClass == classElt) {
String enclosingClassName = _enclosingClass.displayName;
if (list.length > 2) {
String separator = ", ";
int listLength = list.length;
JavaStringBuilder builder = new JavaStringBuilder();
for (int i = 0; i < listLength; i++) {
builder.append(list[i].displayName);
if (i != listLength - 1) {
builder.append(separator);
}
}
_errorReporter.reportError3(CompileTimeErrorCode.RECURSIVE_INTERFACE_INHERITANCE, _enclosingClass.nameOffset, enclosingClassName.length, [enclosingClassName, builder.toString()]);
return true;
} else if (list.length == 2) {
ErrorCode errorCode = (supertype != null && _enclosingClass == supertype.element ? CompileTimeErrorCode.RECURSIVE_INTERFACE_INHERITANCE_BASE_CASE_EXTENDS : CompileTimeErrorCode.RECURSIVE_INTERFACE_INHERITANCE_BASE_CASE_IMPLEMENTS) as ErrorCode;
_errorReporter.reportError3(errorCode, _enclosingClass.nameOffset, enclosingClassName.length, [enclosingClassName]);
return true;
}
}
for (int i = 1; i < list.length - 1; i++) {
if (classElt == list[i]) {
list.removeAt(list.length - 1);
return false;
}
}
List<ClassElement> interfaceElements;
List<InterfaceType> interfaceTypes = classElt.interfaces;
if (supertype != null && !supertype.isObject) {
interfaceElements = new List<ClassElement>(interfaceTypes.length + 1);
interfaceElements[0] = supertype.element;
for (int i = 0; i < interfaceTypes.length; i++) {
interfaceElements[i + 1] = interfaceTypes[i].element;
}
} else {
interfaceElements = new List<ClassElement>(interfaceTypes.length);
for (int i = 0; i < interfaceTypes.length; i++) {
interfaceElements[i] = interfaceTypes[i].element;
}
}
for (ClassElement classElt2 in interfaceElements) {
if (checkForRecursiveInterfaceInheritance(classElt2, list)) {
return true;
}
}
list.removeAt(list.length - 1);
return false;
}
/**
* This checks the passed constructor declaration has a valid combination of redirected
* constructor invocation(s), super constructor invocations and field initializers.
*
* @param node the constructor declaration to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#MULTIPLE_REDIRECTING_CONSTRUCTOR_INVOCATIONS
* @see CompileTimeErrorCode#SUPER_IN_REDIRECTING_CONSTRUCTOR
* @see CompileTimeErrorCode#FIELD_INITIALIZER_REDIRECTING_CONSTRUCTOR
*/
bool checkForRedirectingConstructorErrorCodes(ConstructorDeclaration node) {
int numProblems = 0;
int numRedirections = 0;
for (ConstructorInitializer initializer in node.initializers) {
if (initializer is RedirectingConstructorInvocation) {
if (numRedirections > 0) {
_errorReporter.reportError2(CompileTimeErrorCode.MULTIPLE_REDIRECTING_CONSTRUCTOR_INVOCATIONS, initializer, []);
numProblems++;
}
numRedirections++;
}
}
if (numRedirections > 0) {
for (ConstructorInitializer initializer in node.initializers) {
if (initializer is SuperConstructorInvocation) {
_errorReporter.reportError2(CompileTimeErrorCode.SUPER_IN_REDIRECTING_CONSTRUCTOR, initializer, []);
numProblems++;
}
if (initializer is ConstructorFieldInitializer) {
_errorReporter.reportError2(CompileTimeErrorCode.FIELD_INITIALIZER_REDIRECTING_CONSTRUCTOR, initializer, []);
numProblems++;
}
}
}
return numProblems != 0;
}
/**
* This checks if the passed constructor declaration has redirected constructor and references
* itself directly or indirectly.
*
* @param node the constructor declaration to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#REDIRECT_TO_NON_CONST_CONSTRUCTOR
*/
bool checkForRedirectToNonConstConstructor(ConstructorDeclaration node) {
ConstructorName redirectedConstructorNode = node.redirectedConstructor;
if (redirectedConstructorNode == null) {
return false;
}
ConstructorElement element = node.element;
if (element == null) {
return false;
}
if (!element.isConst) {
return false;
}
ConstructorElement redirectedConstructor = element.redirectedConstructor;
if (redirectedConstructor == null) {
return false;
}
if (redirectedConstructor.isConst) {
return false;
}
_errorReporter.reportError2(CompileTimeErrorCode.REDIRECT_TO_NON_CONST_CONSTRUCTOR, redirectedConstructorNode, []);
return true;
}
/**
* This checks if the passed identifier is banned because it is part of the variable declaration
* with the same name.
*
* @param node the identifier to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#REFERENCE_TO_DECLARED_VARIABLE_IN_INITIALIZER
*/
bool checkForReferenceToDeclaredVariableInInitializer(SimpleIdentifier node) {
ASTNode parent = node.parent;
if (parent is PrefixedIdentifier) {
PrefixedIdentifier prefixedIdentifier = parent as PrefixedIdentifier;
if (identical(prefixedIdentifier.identifier, node)) {
return false;
}
}
if (parent is PropertyAccess) {
PropertyAccess propertyAccess = parent as PropertyAccess;
if (identical(propertyAccess.propertyName, node)) {
return false;
}
}
if (parent is MethodInvocation) {
MethodInvocation methodInvocation = parent as MethodInvocation;
if (methodInvocation.target != null && identical(methodInvocation.methodName, node)) {
return false;
}
}
if (parent is ConstructorName) {
ConstructorName constructorName = parent as ConstructorName;
if (identical(constructorName.name, node)) {
return false;
}
}
if (parent is Label) {
Label label = parent as Label;
if (identical(label.label, node)) {
return false;
}
}
String name = node.name;
if (!_namesForReferenceToDeclaredVariableInInitializer.contains(name)) {
return false;
}
_errorReporter.reportError2(CompileTimeErrorCode.REFERENCE_TO_DECLARED_VARIABLE_IN_INITIALIZER, node, [name]);
return true;
}
/**
* This checks that the rethrow is inside of a catch clause.
*
* @param node the rethrow expression to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#RETHROW_OUTSIDE_CATCH
*/
bool checkForRethrowOutsideCatch(RethrowExpression node) {
if (!_isInCatchClause) {
_errorReporter.reportError2(CompileTimeErrorCode.RETHROW_OUTSIDE_CATCH, node, []);
return true;
}
return false;
}
/**
* This checks that if the the given constructor declaration is generative, then it does not have
* an expression function body.
*
* @param node the constructor to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#RETURN_IN_GENERATIVE_CONSTRUCTOR
*/
bool checkForReturnInGenerativeConstructor(ConstructorDeclaration node) {
if (node.factoryKeyword != null) {
return false;
}
FunctionBody body = node.body;
if (body is! ExpressionFunctionBody) {
return false;
}
_errorReporter.reportError2(CompileTimeErrorCode.RETURN_IN_GENERATIVE_CONSTRUCTOR, body, []);
return true;
}
/**
* This checks that a type mis-match between the return type and the expressed return type by the
* enclosing method or function.
*
* This method is called both by [checkForAllReturnStatementErrorCodes]
* and [visitExpressionFunctionBody].
*
* @param returnExpression the returned expression to evaluate
* @param expectedReturnType the expressed return type by the enclosing method or function
* @return `true` if and only if an error code is generated on the passed node
* @see StaticTypeWarningCode#RETURN_OF_INVALID_TYPE
*/
bool checkForReturnOfInvalidType(Expression returnExpression, Type2 expectedReturnType) {
Type2 staticReturnType = getStaticType(returnExpression);
if (expectedReturnType.isVoid) {
if (staticReturnType.isVoid || staticReturnType.isDynamic || identical(staticReturnType, BottomTypeImpl.instance)) {
return false;
}
_errorReporter.reportError2(StaticTypeWarningCode.RETURN_OF_INVALID_TYPE, returnExpression, [
staticReturnType.displayName,
expectedReturnType.displayName,
_enclosingFunction.displayName]);
return true;
}
bool isStaticAssignable = staticReturnType.isAssignableTo(expectedReturnType);
Type2 propagatedReturnType = returnExpression.propagatedType;
if (_strictMode || propagatedReturnType == null) {
if (isStaticAssignable) {
return false;
}
_errorReporter.reportError2(StaticTypeWarningCode.RETURN_OF_INVALID_TYPE, returnExpression, [
staticReturnType.displayName,
expectedReturnType.displayName,
_enclosingFunction.displayName]);
return true;
} else {
bool isPropagatedAssignable = propagatedReturnType.isAssignableTo(expectedReturnType);
if (isStaticAssignable || isPropagatedAssignable) {
return false;
}
_errorReporter.reportError2(StaticTypeWarningCode.RETURN_OF_INVALID_TYPE, returnExpression, [
staticReturnType.displayName,
expectedReturnType.displayName,
_enclosingFunction.displayName]);
return true;
}
}
/**
* This checks that if the given "target" is the type reference then the "name" is not the
* reference to a instance member.
*
* @param target the target of the name access to evaluate
* @param name the accessed name to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#STATIC_ACCESS_TO_INSTANCE_MEMBER
*/
bool checkForStaticAccessToInstanceMember(Expression target, SimpleIdentifier name2) {
Element element = name2.staticElement;
if (element is! ExecutableElement) {
return false;
}
ExecutableElement memberElement = element as ExecutableElement;
if (memberElement.isStatic) {
return false;
}
if (!isTypeReference(target)) {
return false;
}
_errorReporter.reportError2(StaticWarningCode.STATIC_ACCESS_TO_INSTANCE_MEMBER, name2, [name2.name]);
return true;
}
/**
* This checks that the type of the passed 'switch' expression is assignable to the type of the
* 'case' members.
*
* @param node the 'switch' statement to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#SWITCH_EXPRESSION_NOT_ASSIGNABLE
*/
bool checkForSwitchExpressionNotAssignable(SwitchStatement node) {
Expression expression = node.expression;
Type2 expressionType = getStaticType(expression);
if (expressionType == null) {
return false;
}
NodeList<SwitchMember> members = node.members;
for (SwitchMember switchMember in members) {
if (switchMember is! SwitchCase) {
continue;
}
SwitchCase switchCase = switchMember as SwitchCase;
Expression caseExpression = switchCase.expression;
Type2 caseType = getStaticType(caseExpression);
if (expressionType.isAssignableTo(caseType)) {
return false;
}
_errorReporter.reportError2(StaticWarningCode.SWITCH_EXPRESSION_NOT_ASSIGNABLE, expression, [expressionType, caseType]);
return true;
}
return false;
}
/**
* This verifies that the passed function type alias does not reference itself directly.
*
* @param node the function type alias to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#TYPE_ALIAS_CANNOT_REFERENCE_ITSELF
*/
bool checkForTypeAliasCannotReferenceItself_function(FunctionTypeAlias node) {
FunctionTypeAliasElement element = node.element;
if (!hasTypedefSelfReference(element)) {
return false;
}
_errorReporter.reportError2(CompileTimeErrorCode.TYPE_ALIAS_CANNOT_REFERENCE_ITSELF, node, []);
return true;
}
/**
* This verifies that the given class type alias does not reference itself.
*
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#TYPE_ALIAS_CANNOT_REFERENCE_ITSELF
*/
bool checkForTypeAliasCannotReferenceItself_mixin(ClassTypeAlias node) {
ClassElement element = node.element;
if (!hasTypedefSelfReference(element)) {
return false;
}
_errorReporter.reportError2(CompileTimeErrorCode.TYPE_ALIAS_CANNOT_REFERENCE_ITSELF, node, []);
return true;
}
/**
* This verifies that the type arguments in the passed type name are all within their bounds.
*
* @param node the [TypeName] to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see StaticTypeWarningCode#TYPE_ARGUMENT_NOT_MATCHING_BOUNDS
*/
bool checkForTypeArgumentNotMatchingBounds(TypeName node) {
if (node.typeArguments == null) {
return false;
}
List<TypeVariableElement> boundingElts = null;
Type2 type = node.type;
if (type == null) {
return false;
}
Element element = type.element;
if (element is ClassElement) {
boundingElts = ((element as ClassElement)).typeVariables;
} else {
return false;
}
NodeList<TypeName> typeNameArgList = node.typeArguments.arguments;
int loopThroughIndex = Math.min(typeNameArgList.length, boundingElts.length);
bool foundError = false;
for (int i = 0; i < loopThroughIndex; i++) {
TypeName argTypeName = typeNameArgList[i];
Type2 argType = argTypeName.type;
Type2 boundType = boundingElts[i].bound;
if (argType != null && boundType != null) {
if (!argType.isSubtypeOf(boundType)) {
ErrorCode errorCode;
if (isInConstConstructorInvocation(node)) {
errorCode = CompileTimeErrorCode.TYPE_ARGUMENT_NOT_MATCHING_BOUNDS;
} else {
errorCode = StaticTypeWarningCode.TYPE_ARGUMENT_NOT_MATCHING_BOUNDS;
}
_errorReporter.reportError2(errorCode, argTypeName, [argType.displayName, boundType.displayName]);
foundError = true;
}
}
}
return foundError;
}
/**
* This checks that if the passed type name is a type parameter being used to define a static
* member.
*
* @param node the type name to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see StaticWarningCode#TYPE_PARAMETER_REFERENCED_BY_STATIC
*/
bool checkForTypeParameterReferencedByStatic(TypeName node) {
if (_isInStaticMethod || _isInStaticVariableDeclaration) {
Type2 type = node.type;
if (type is TypeVariableType) {
_errorReporter.reportError2(StaticWarningCode.TYPE_PARAMETER_REFERENCED_BY_STATIC, node, []);
return true;
}
}
return false;
}
/**
* This checks that if the passed generative constructor has neither an explicit super constructor
* invocation nor a redirecting constructor invocation, that the superclass has a default
* generative constructor.
*
* @param node the constructor declaration to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#UNDEFINED_CONSTRUCTOR_IN_INITIALIZER_DEFAULT
* @see CompileTimeErrorCode#NON_GENERATIVE_CONSTRUCTOR
* @see StaticWarningCode#NO_DEFAULT_SUPER_CONSTRUCTOR_EXPLICIT
*/
bool checkForUndefinedConstructorInInitializerImplicit(ConstructorDeclaration node) {
if (node.factoryKeyword != null) {
return false;
}
for (ConstructorInitializer constructorInitializer in node.initializers) {
if (constructorInitializer is SuperConstructorInvocation || constructorInitializer is RedirectingConstructorInvocation) {
return false;
}
}
if (_enclosingClass == null) {
return false;
}
InterfaceType superType = _enclosingClass.supertype;
if (superType == null) {
return false;
}
ClassElement superElement = superType.element;
ConstructorElement superUnnamedConstructor = superElement.unnamedConstructor;
if (superUnnamedConstructor != null) {
if (superUnnamedConstructor.isFactory) {
_errorReporter.reportError2(CompileTimeErrorCode.NON_GENERATIVE_CONSTRUCTOR, node.returnType, [superUnnamedConstructor]);
return true;
}
if (!superUnnamedConstructor.isDefaultConstructor) {
int offset;
int length;
{
Identifier returnType = node.returnType;
SimpleIdentifier name = node.name;
offset = returnType.offset;
length = (name != null ? name.end : returnType.end) - offset;
}
_errorReporter.reportError3(CompileTimeErrorCode.NO_DEFAULT_SUPER_CONSTRUCTOR_EXPLICIT, offset, length, [superType.displayName]);
}
return false;
}
_errorReporter.reportError2(CompileTimeErrorCode.UNDEFINED_CONSTRUCTOR_IN_INITIALIZER_DEFAULT, node.returnType, [superElement.name]);
return true;
}
/**
* This checks that if the given name is a reference to a static member it is defined in the
* enclosing class rather than in a superclass.
*
* @param name the name to be evaluated
* @return `true` if and only if an error code is generated on the passed node
* @see StaticTypeWarningCode#UNQUALIFIED_REFERENCE_TO_NON_LOCAL_STATIC_MEMBER
*/
bool checkForUnqualifiedReferenceToNonLocalStaticMember(SimpleIdentifier name2) {
Element element = name2.staticElement;
if (element == null || element is TypeVariableElement) {
return false;
}
Element enclosingElement = element.enclosingElement;
if (enclosingElement is! ClassElement) {
return false;
}
if ((element is MethodElement && !((element as MethodElement)).isStatic) || (element is PropertyAccessorElement && !((element as PropertyAccessorElement)).isStatic)) {
return false;
}
if (identical(enclosingElement, _enclosingClass)) {
return false;
}
_errorReporter.reportError2(StaticTypeWarningCode.UNQUALIFIED_REFERENCE_TO_NON_LOCAL_STATIC_MEMBER, name2, [name2.name]);
return true;
}
/**
* This verifies the passed operator-method declaration, has correct number of parameters.
*
* This method assumes that the method declaration was tested to be an operator declaration before
* being called.
*
* @param node the method declaration to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#WRONG_NUMBER_OF_PARAMETERS_FOR_OPERATOR
*/
bool checkForWrongNumberOfParametersForOperator(MethodDeclaration node) {
FormalParameterList parameterList = node.parameters;
if (parameterList == null) {
return false;
}
int numParameters = parameterList.parameters.length;
SimpleIdentifier nameNode = node.name;
if (nameNode == null) {
return false;
}
String name = nameNode.name;
int expected = -1;
if ("[]=" == name) {
expected = 2;
} else if ("<" == name || ">" == name || "<=" == name || ">=" == name || "==" == name || "+" == name || "/" == name || "~/" == name || "*" == name || "%" == name || "|" == name || "^" == name || "&" == name || "<<" == name || ">>" == name || "[]" == name) {
expected = 1;
} else if ("~" == name) {
expected = 0;
}
if (expected != -1 && numParameters != expected) {
_errorReporter.reportError2(CompileTimeErrorCode.WRONG_NUMBER_OF_PARAMETERS_FOR_OPERATOR, nameNode, [name, expected, numParameters]);
return true;
}
if ("-" == name && numParameters > 1) {
_errorReporter.reportError2(CompileTimeErrorCode.WRONG_NUMBER_OF_PARAMETERS_FOR_OPERATOR_MINUS, nameNode, [numParameters]);
return true;
}
return false;
}
/**
* This verifies if the passed setter parameter list have only one required parameter.
*
* This method assumes that the method declaration was tested to be a setter before being called.
*
* @param setterName the name of the setter to report problems on
* @param parameterList the parameter list to evaluate
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#WRONG_NUMBER_OF_PARAMETERS_FOR_SETTER
*/
bool checkForWrongNumberOfParametersForSetter(SimpleIdentifier setterName, FormalParameterList parameterList) {
if (setterName == null) {
return false;
}
if (parameterList == null) {
return false;
}
NodeList<FormalParameter> parameters = parameterList.parameters;
if (parameters.length != 1 || parameters[0].kind != ParameterKind.REQUIRED) {
_errorReporter.reportError2(CompileTimeErrorCode.WRONG_NUMBER_OF_PARAMETERS_FOR_SETTER, setterName, []);
return true;
}
return false;
}
/**
* This verifies that the given class declaration does not have the same class in the 'extends'
* and 'implements' clauses.
*
* @return `true` if and only if an error code is generated on the passed node
* @see CompileTimeErrorCode#IMPLEMENTS_SUPER_CLASS
*/
bool checkImplementsSuperClass(ClassDeclaration node) {
InterfaceType superType = _enclosingClass.supertype;
if (superType == null) {
return false;
}
ImplementsClause implementsClause = node.implementsClause;
if (implementsClause == null) {
return false;
}
bool hasProblem = false;
for (TypeName interfaceNode in implementsClause.interfaces) {
if (interfaceNode.type == superType) {
hasProblem = true;
_errorReporter.reportError2(CompileTimeErrorCode.IMPLEMENTS_SUPER_CLASS, interfaceNode, [superType.displayName]);
}
}
return hasProblem;
}
/**
* Returns the Type (return type) for a given getter.
*
* @param propertyAccessorElement
* @return The type of the given getter.
*/
Type2 getGetterType(PropertyAccessorElement propertyAccessorElement) {
FunctionType functionType = propertyAccessorElement.type;
if (functionType != null) {
return functionType.returnType;
} else {
return null;
}
}
/**
* Returns the Type (first and only parameter) for a given setter.
*
* @param propertyAccessorElement
* @return The type of the given setter.
*/
Type2 getSetterType(PropertyAccessorElement propertyAccessorElement) {
List<ParameterElement> setterParameters = propertyAccessorElement.parameters;
if (setterParameters.length == 0) {
return null;
}
return setterParameters[0].type;
}
/**
* Return the static type of the given expression that is to be used for type analysis.
*
* @param expression the expression whose type is to be returned
* @return the static type of the given expression
*/
Type2 getStaticType(Expression expression) {
Type2 type = expression.staticType;
if (type == null) {
return _dynamicType;
}
return type;
}
/**
* Return the variable element represented by the given expression, or `null` if there is no
* such element.
*
* @param expression the expression whose element is to be returned
* @return the variable element represented by the expression
*/
VariableElement getVariableElement(Expression expression) {
if (expression is Identifier) {
Element element = ((expression as Identifier)).staticElement;
if (element is VariableElement) {
return element as VariableElement;
}
}
return null;
}
/**
* @return `true` if the given constructor redirects to itself, directly or indirectly
*/
bool hasRedirectingFactoryConstructorCycle(ConstructorElement element) {
Set<ConstructorElement> constructors = new Set<ConstructorElement>();
ConstructorElement current = element;
while (current != null) {
if (constructors.contains(current)) {
return identical(current, element);
}
javaSetAdd(constructors, current);
current = current.redirectedConstructor;
if (current is ConstructorMember) {
current = ((current as ConstructorMember)).baseElement;
}
}
return false;
}
/**
* @return <code>true</code> if given [Element] has direct or indirect reference to itself
* form anywhere except [ClassElement] or type variable bounds.
*/
bool hasTypedefSelfReference(Element target) {
Set<Element> checked = new Set<Element>();
List<Element> toCheck = new List<Element>();
toCheck.add(target);
bool firstIteration = true;
while (true) {
Element current;
while (true) {
if (toCheck.isEmpty) {
return false;
}
current = toCheck.removeAt(toCheck.length - 1);
if (target == current) {
if (firstIteration) {
firstIteration = false;
break;
} else {
return true;
}
}
if (current != null && !checked.contains(current)) {
break;
}
}
current.accept(new GeneralizingElementVisitor_11(target, toCheck));
javaSetAdd(checked, current);
}
}
bool isFunctionType(Type2 type) {
if (type.isDynamic || identical(type, BottomTypeImpl.instance)) {
return true;
} else if (type is InterfaceType) {
if (identical(type, _typeProvider.functionType)) {
return true;
}
MethodElement callMethod = ((type as InterfaceType)).lookUpMethod(ElementResolver.CALL_METHOD_NAME, _currentLibrary);
return callMethod != null;
} else if (type is FunctionType || type.isDartCoreFunction) {
return true;
}
return false;
}
/**
* @return `true` if the given [ASTNode] is the part of constant constructor
* invocation.
*/
bool isInConstConstructorInvocation(ASTNode node) {
InstanceCreationExpression creation = node.getAncestor(InstanceCreationExpression);
if (creation == null) {
return false;
}
return creation.isConst;
}
/**
* @param node the 'this' expression to analyze
* @return `true` if the given 'this' expression is in the valid context
*/
bool isThisInValidContext(ThisExpression node) {
for (ASTNode n = node; n != null; n = n.parent) {
if (n is CompilationUnit) {
return false;
}
if (n is ConstructorDeclaration) {
ConstructorDeclaration constructor = n as ConstructorDeclaration;
return constructor.factoryKeyword == null;
}
if (n is ConstructorInitializer) {
return false;
}
if (n is MethodDeclaration) {
MethodDeclaration method = n as MethodDeclaration;
return !method.isStatic;
}
}
return false;
}
/**
* Return `true` if the given identifier is in a location where it is allowed to resolve to
* a static member of a supertype.
*
* @param node the node being tested
* @return `true` if the given identifier is in a location where it is allowed to resolve to
* a static member of a supertype
*/
bool isUnqualifiedReferenceToNonLocalStaticMemberAllowed(SimpleIdentifier node) {
if (node.inDeclarationContext()) {
return true;
}
ASTNode parent = node.parent;
if (parent is ConstructorName || parent is MethodInvocation || parent is PropertyAccess || parent is SuperConstructorInvocation) {
return true;
}
if (parent is PrefixedIdentifier && identical(((parent as PrefixedIdentifier)).identifier, node)) {
return true;
}
if (parent is Annotation && identical(((parent as Annotation)).constructorName, node)) {
return true;
}
return false;
}
/**
* Return `true` iff the passed [ClassElement] has a concrete implementation of the
* passed accessor name in the superclass chain.
*/
bool memberHasConcreteAccessorImplementationInSuperclassChain(ClassElement classElement, String accessorName, List<ClassElement> superclassChain) {
if (superclassChain.contains(classElement)) {
return false;
} else {
superclassChain.add(classElement);
}
for (PropertyAccessorElement accessor in classElement.accessors) {
if (accessor.name == accessorName) {
if (!accessor.isAbstract) {
return true;
}
}
}
for (InterfaceType mixinType in classElement.mixins) {
if (mixinType != null) {
ClassElement mixinElement = mixinType.element;
if (mixinElement != null) {
for (PropertyAccessorElement accessor in mixinElement.accessors) {
if (accessor.name == accessorName) {
if (!accessor.isAbstract) {
return true;
}
}
}
}
}
}
InterfaceType superType = classElement.supertype;
if (superType != null) {
ClassElement superClassElt = superType.element;
if (superClassElt != null) {
return memberHasConcreteAccessorImplementationInSuperclassChain(superClassElt, accessorName, superclassChain);
}
}
return false;
}
/**
* Return `true` iff the passed [ClassElement] has a concrete implementation of the
* passed method name in the superclass chain.
*/
bool memberHasConcreteMethodImplementationInSuperclassChain(ClassElement classElement, String methodName, List<ClassElement> superclassChain) {
if (superclassChain.contains(classElement)) {
return false;
} else {
superclassChain.add(classElement);
}
for (MethodElement method in classElement.methods) {
if (method.name == methodName) {
if (!method.isAbstract) {
return true;
}
}
}
for (InterfaceType mixinType in classElement.mixins) {
if (mixinType != null) {
ClassElement mixinElement = mixinType.element;
if (mixinElement != null) {
for (MethodElement method in mixinElement.methods) {
if (method.name == methodName) {
if (!method.isAbstract) {
return true;
}
}
}
}
}
}
InterfaceType superType = classElement.supertype;
if (superType != null) {
ClassElement superClassElt = superType.element;
if (superClassElt != null) {
return memberHasConcreteMethodImplementationInSuperclassChain(superClassElt, methodName, superclassChain);
}
}
return false;
}
}
/**
* This enum holds one of four states of a field initialization state through a constructor
* signature, not initialized, initialized in the field declaration, initialized in the field
* formal, and finally, initialized in the initializers list.
*/
class INIT_STATE extends Enum<INIT_STATE> {
static final INIT_STATE NOT_INIT = new INIT_STATE('NOT_INIT', 0);
static final INIT_STATE INIT_IN_DECLARATION = new INIT_STATE('INIT_IN_DECLARATION', 1);
static final INIT_STATE INIT_IN_FIELD_FORMAL = new INIT_STATE('INIT_IN_FIELD_FORMAL', 2);
static final INIT_STATE INIT_IN_INITIALIZERS = new INIT_STATE('INIT_IN_INITIALIZERS', 3);
static final List<INIT_STATE> values = [
NOT_INIT,
INIT_IN_DECLARATION,
INIT_IN_FIELD_FORMAL,
INIT_IN_INITIALIZERS];
INIT_STATE(String name, int ordinal) : super(name, ordinal);
}
class GeneralizingElementVisitor_11 extends GeneralizingElementVisitor<Object> {
Element target;
List<Element> toCheck;
GeneralizingElementVisitor_11(this.target, this.toCheck) : super();
bool _inClass = false;
Object visitClassElement(ClassElement element) {
addTypeToCheck(element.supertype);
for (InterfaceType mixin in element.mixins) {
addTypeToCheck(mixin);
}
_inClass = !element.isTypedef;
try {
return super.visitClassElement(element);
} finally {
_inClass = false;
}
}
Object visitExecutableElement(ExecutableElement element) {
if (element.isSynthetic) {
return null;
}
addTypeToCheck(element.returnType);
return super.visitExecutableElement(element);
}
Object visitFunctionTypeAliasElement(FunctionTypeAliasElement element) {
addTypeToCheck(element.returnType);
return super.visitFunctionTypeAliasElement(element);
}
Object visitParameterElement(ParameterElement element) {
addTypeToCheck(element.type);
return super.visitParameterElement(element);
}
Object visitTypeVariableElement(TypeVariableElement element) => null;
Object visitVariableElement(VariableElement element) {
addTypeToCheck(element.type);
return super.visitVariableElement(element);
}
void addTypeToCheck(Type2 type) {
if (type == null) {
return;
}
Element element = type.element;
if (_inClass && target == element) {
return;
}
toCheck.add(element);
if (type is InterfaceType) {
InterfaceType interfaceType = type as InterfaceType;
for (Type2 typeArgument in interfaceType.typeArguments) {
addTypeToCheck(typeArgument);
}
}
}
}
/**
* The enumeration `ResolverErrorCode` defines the error codes used for errors detected by the
* resolver. The convention for this class is for the name of the error code to indicate the problem
* that caused the error to be generated and for the error message to explain what is wrong and,
* when appropriate, how the problem can be corrected.
*
* @coverage dart.engine.resolver
*/
class ResolverErrorCode extends Enum<ResolverErrorCode> implements ErrorCode {
static final ResolverErrorCode BREAK_LABEL_ON_SWITCH_MEMBER = new ResolverErrorCode.con1('BREAK_LABEL_ON_SWITCH_MEMBER', 0, ErrorType.COMPILE_TIME_ERROR, "Break label resolves to case or default statement");
static final ResolverErrorCode CONTINUE_LABEL_ON_SWITCH = new ResolverErrorCode.con1('CONTINUE_LABEL_ON_SWITCH', 1, ErrorType.COMPILE_TIME_ERROR, "A continue label resolves to switch, must be loop or switch member");
static final ResolverErrorCode MISSING_LIBRARY_DIRECTIVE_WITH_PART = new ResolverErrorCode.con1('MISSING_LIBRARY_DIRECTIVE_WITH_PART', 2, ErrorType.COMPILE_TIME_ERROR, "Libraries that have parts must have a library directive");
static final List<ResolverErrorCode> values = [
BREAK_LABEL_ON_SWITCH_MEMBER,
CONTINUE_LABEL_ON_SWITCH,
MISSING_LIBRARY_DIRECTIVE_WITH_PART];
/**
* The type of this error.
*/
ErrorType _type;
/**
* The template used to create the message to be displayed for this error.
*/
String _message;
/**
* The template used to create the correction to be displayed for this error, or `null` if
* there is no correction information for this error.
*/
String correction9;
/**
* Initialize a newly created error code to have the given type and message.
*
* @param type the type of this error
* @param message the message template used to create the message to be displayed for the error
*/
ResolverErrorCode.con1(String name, int ordinal, ErrorType type, String message) : super(name, ordinal) {
this._type = type;
this._message = message;
}
/**
* Initialize a newly created error code to have the given type, message and correction.
*
* @param type the type of this error
* @param message the template used to create the message to be displayed for the error
* @param correction the template used to create the correction to be displayed for the error
*/
ResolverErrorCode.con2(String name, int ordinal, ErrorType type, String message, String correction) : super(name, ordinal) {
this._type = type;
this._message = message;
this.correction9 = correction;
}
String get correction => correction9;
ErrorSeverity get errorSeverity => _type.severity;
String get message => _message;
ErrorType get type => _type;
}