blob: 8a1e32f798e516089d3905f8724af31ea54326bb [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_IA32.
#if defined(TARGET_ARCH_IA32)
#include "vm/intermediate_language.h"
#include "lib/error.h"
#include "vm/flow_graph_compiler.h"
#include "vm/locations.h"
#include "vm/object_store.h"
#include "vm/parser.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
#define __ compiler->assembler()->
namespace dart {
DECLARE_FLAG(int, optimization_counter_threshold);
DECLARE_FLAG(bool, propagate_ic_data);
// Generic summary for call instructions that have all arguments pushed
// on the stack and return the result in a fixed register EAX.
LocationSummary* Instruction::MakeCallSummary() {
LocationSummary* result = new LocationSummary(0, 0, LocationSummary::kCall);
result->set_out(Location::RegisterLocation(EAX));
return result;
}
LocationSummary* ReturnInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(EAX));
locs->set_temp(0, Location::RegisterLocation(EDX));
return locs;
}
// Attempt optimized compilation at return instruction instead of at the entry.
// The entry needs to be patchable, no inlined objects are allowed in the area
// that will be overwritten by the patch instruction: a jump).
void ReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Function& function =
Function::ZoneHandle(compiler->parsed_function().function().raw());
Register result = locs()->in(0).reg();
Register func_reg = locs()->temp(0).reg();
ASSERT(result == EAX);
if (compiler->is_optimizing()) {
if (compiler->may_reoptimize()) {
// Increment of counter occurs only in optimized IC calls, as they
// can cause reoptimization.
Label done;
__ LoadObject(func_reg, function);
__ cmpl(FieldAddress(func_reg, Function::usage_counter_offset()),
Immediate(FLAG_optimization_counter_threshold));
__ j(LESS, &done, Assembler::kNearJump);
// Equal (or greater), optimize. Note that counter can reach equality
// only at return instruction.
// The stub call preserves result register (EAX).
ASSERT(func_reg == EDX);
compiler->GenerateCall(0, // no token position.
&StubCode::OptimizeFunctionLabel(),
PcDescriptors::kOther,
locs());
__ Bind(&done);
}
} else {
__ LoadObject(func_reg, function);
__ incl(FieldAddress(func_reg, Function::usage_counter_offset()));
if (FlowGraphCompiler::CanOptimize() &&
compiler->parsed_function().function().is_optimizable()) {
// Do not optimize if usage count must be reported.
__ cmpl(FieldAddress(func_reg, Function::usage_counter_offset()),
Immediate(FLAG_optimization_counter_threshold));
Label not_yet_hot;
__ j(LESS, &not_yet_hot, Assembler::kNearJump);
// Equal (or greater), optimize.
// The stub call preserves result register (EAX).
ASSERT(func_reg == EDX);
compiler->GenerateCall(0, // no token position.
&StubCode::OptimizeFunctionLabel(),
PcDescriptors::kOther,
locs());
__ Bind(&not_yet_hot);
}
}
#if defined(DEBUG)
// TODO(srdjan): Fix for functions with finally clause.
// A finally clause may leave a previously pushed return value if it
// has its own return instruction. Method that have finally are currently
// not optimized.
if (!compiler->HasFinally()) {
__ Comment("Stack Check");
Label done;
__ movl(EDI, EBP);
__ subl(EDI, ESP);
// + 1 for Pc marker.
__ cmpl(EDI, Immediate((compiler->StackSize() + 1) * kWordSize));
__ j(EQUAL, &done, Assembler::kNearJump);
__ int3();
__ Bind(&done);
}
#endif
__ LeaveFrame();
__ ret();
// Generate 1 byte NOP so that the debugger can patch the
// return pattern with a call to the debug stub.
__ nop(1);
compiler->AddCurrentDescriptor(PcDescriptors::kReturn,
Isolate::kNoDeoptId,
token_pos());
}
LocationSummary* ClosureCallInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 1;
LocationSummary* result =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
result->set_out(Location::RegisterLocation(EAX));
result->set_temp(0, Location::RegisterLocation(EDX)); // Arg. descriptor.
return result;
}
LocationSummary* LoadLocalInstr::MakeLocationSummary() const {
return LocationSummary::Make(0,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register result = locs()->out().reg();
__ movl(result, Address(EBP, local().index() * kWordSize));
}
LocationSummary* StoreLocalInstr::MakeLocationSummary() const {
return LocationSummary::Make(1,
Location::SameAsFirstInput(),
LocationSummary::kNoCall);
}
void StoreLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register result = locs()->out().reg();
ASSERT(result == value); // Assert that register assignment is correct.
__ movl(Address(EBP, local().index() * kWordSize), value);
}
LocationSummary* ConstantInstr::MakeLocationSummary() const {
return LocationSummary::Make(0,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void ConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The register allocator drops constant definitions that have no uses.
if (!locs()->out().IsInvalid()) {
Register result = locs()->out().reg();
__ LoadObject(result, value());
}
}
LocationSummary* AssertAssignableInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(EAX)); // Value.
summary->set_in(1, Location::RegisterLocation(ECX)); // Instantiator.
summary->set_in(2, Location::RegisterLocation(EDX)); // Type arguments.
summary->set_out(Location::RegisterLocation(EAX));
return summary;
}
LocationSummary* AssertBooleanInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(EAX));
locs->set_out(Location::RegisterLocation(EAX));
return locs;
}
static void EmitAssertBoolean(Register reg,
intptr_t token_pos,
LocationSummary* locs,
FlowGraphCompiler* compiler) {
// Check that the type of the value is allowed in conditional context.
// Call the runtime if the object is not bool::true or bool::false.
ASSERT(locs->always_calls());
Label done;
__ CompareObject(reg, compiler->bool_true());
__ j(EQUAL, &done, Assembler::kNearJump);
__ CompareObject(reg, compiler->bool_false());
__ j(EQUAL, &done, Assembler::kNearJump);
__ pushl(reg); // Push the source object.
compiler->GenerateCallRuntime(token_pos,
kConditionTypeErrorRuntimeEntry,
locs);
// We should never return here.
__ int3();
__ Bind(&done);
}
void AssertBooleanInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register obj = locs()->in(0).reg();
Register result = locs()->out().reg();
if (!is_eliminated()) {
EmitAssertBoolean(obj, token_pos(), locs(), compiler);
}
ASSERT(obj == result);
}
LocationSummary* ArgumentDefinitionTestInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(EAX));
locs->set_out(Location::RegisterLocation(EAX));
return locs;
}
void ArgumentDefinitionTestInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register saved_args_desc = locs()->in(0).reg();
Register result = locs()->out().reg();
// Push the result place holder initialized to NULL.
__ PushObject(Object::ZoneHandle());
__ pushl(Immediate(Smi::RawValue(formal_parameter_index())));
__ PushObject(formal_parameter_name());
__ pushl(saved_args_desc);
compiler->GenerateCallRuntime(token_pos(),
kArgumentDefinitionTestRuntimeEntry,
locs());
__ Drop(3);
__ popl(result); // Pop bool result.
}
static Condition TokenKindToSmiCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ: return EQUAL;
case Token::kNE: return NOT_EQUAL;
case Token::kLT: return LESS;
case Token::kGT: return GREATER;
case Token::kLTE: return LESS_EQUAL;
case Token::kGTE: return GREATER_EQUAL;
default:
UNREACHABLE();
return OVERFLOW;
}
}
LocationSummary* EqualityCompareInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const bool is_checked_strict_equal =
HasICData() && ic_data()->AllTargetsHaveSameOwner(kInstanceCid);
if (receiver_class_id() == kMintCid) {
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresXmmRegister());
locs->set_in(1, Location::RequiresXmmRegister());
locs->set_temp(0, Location::RequiresRegister());
locs->set_out(Location::RequiresRegister());
return locs;
}
if (receiver_class_id() == kDoubleCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresXmmRegister());
locs->set_in(1, Location::RequiresXmmRegister());
locs->set_out(Location::RequiresRegister());
return locs;
}
if (receiver_class_id() == kSmiCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterOrConstant(left()));
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
locs->set_in(1, locs->in(0).IsConstant()
? Location::RequiresRegister()
: Location::RegisterOrConstant(right()));
locs->set_out(Location::RequiresRegister());
return locs;
}
if (is_checked_strict_equal) {
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_in(1, Location::RequiresRegister());
locs->set_temp(0, Location::RequiresRegister());
locs->set_out(Location::RequiresRegister());
return locs;
}
if (IsPolymorphic()) {
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(ECX));
locs->set_in(1, Location::RegisterLocation(EDX));
locs->set_temp(0, Location::RegisterLocation(EBX));
locs->set_out(Location::RegisterLocation(EAX));
return locs;
}
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(EBX));
locs->set_in(1, Location::RegisterLocation(EDX));
locs->set_temp(0, Location::RegisterLocation(ECX));
locs->set_out(Location::RegisterLocation(EAX));
return locs;
}
static void EmitEqualityAsInstanceCall(FlowGraphCompiler* compiler,
intptr_t deopt_id,
intptr_t token_pos,
Token::Kind kind,
LocationSummary* locs,
const ICData& original_ic_data) {
if (!compiler->is_optimizing()) {
compiler->AddCurrentDescriptor(PcDescriptors::kDeoptBefore,
deopt_id,
token_pos);
}
const String& operator_name = String::ZoneHandle(Symbols::EqualOperator());
const int kNumberOfArguments = 2;
const Array& kNoArgumentNames = Array::Handle();
const int kNumArgumentsChecked = 2;
const Immediate raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
Label check_identity;
__ cmpl(Address(ESP, 0 * kWordSize), raw_null);
__ j(EQUAL, &check_identity, Assembler::kNearJump);
__ cmpl(Address(ESP, 1 * kWordSize), raw_null);
__ j(EQUAL, &check_identity, Assembler::kNearJump);
ICData& equality_ic_data = ICData::ZoneHandle();
if (compiler->is_optimizing() && FLAG_propagate_ic_data) {
ASSERT(!original_ic_data.IsNull());
if (original_ic_data.NumberOfChecks() == 0) {
// IC call for reoptimization populates original ICData.
equality_ic_data = original_ic_data.raw();
} else {
// Megamorphic call.
equality_ic_data = original_ic_data.AsUnaryClassChecks();
}
} else {
equality_ic_data = ICData::New(compiler->parsed_function().function(),
operator_name,
deopt_id,
kNumArgumentsChecked);
}
compiler->GenerateInstanceCall(deopt_id,
token_pos,
kNumberOfArguments,
kNoArgumentNames,
locs,
equality_ic_data);
Label check_ne;
__ jmp(&check_ne);
__ Bind(&check_identity);
Label equality_done;
if (compiler->is_optimizing()) {
// No need to update IC data.
Label is_true;
__ popl(EAX);
__ popl(EDX);
__ cmpl(EAX, EDX);
__ j(EQUAL, &is_true);
__ LoadObject(EAX, (kind == Token::kEQ) ? compiler->bool_false()
: compiler->bool_true());
__ jmp(&equality_done);
__ Bind(&is_true);
__ LoadObject(EAX, (kind == Token::kEQ) ? compiler->bool_true()
: compiler->bool_false());
if (kind == Token::kNE) {
// Skip not-equal result conversion.
__ jmp(&equality_done);
}
} else {
// Call stub, load IC data in register. The stub will update ICData if
// necessary.
Register ic_data_reg = locs->temp(0).reg();
ASSERT(ic_data_reg == ECX); // Stub depends on it.
__ LoadObject(ic_data_reg, equality_ic_data);
compiler->GenerateCall(token_pos,
&StubCode::EqualityWithNullArgLabel(),
PcDescriptors::kOther,
locs);
__ Drop(2);
}
__ Bind(&check_ne);
if (kind == Token::kNE) {
Label false_label, true_label, done;
// Negate the condition: true label returns false and vice versa.
__ CompareObject(EAX, compiler->bool_true());
__ j(EQUAL, &true_label, Assembler::kNearJump);
__ Bind(&false_label);
__ LoadObject(EAX, compiler->bool_true());
__ jmp(&done, Assembler::kNearJump);
__ Bind(&true_label);
__ LoadObject(EAX, compiler->bool_false());
__ Bind(&done);
}
__ Bind(&equality_done);
}
static void EmitEqualityAsPolymorphicCall(FlowGraphCompiler* compiler,
const ICData& orig_ic_data,
LocationSummary* locs,
BranchInstr* branch,
Token::Kind kind,
intptr_t deopt_id,
intptr_t token_pos) {
ASSERT((kind == Token::kEQ) || (kind == Token::kNE));
const ICData& ic_data = ICData::Handle(orig_ic_data.AsUnaryClassChecks());
ASSERT(ic_data.NumberOfChecks() > 0);
ASSERT(ic_data.num_args_tested() == 1);
Label* deopt = compiler->AddDeoptStub(deopt_id, kDeoptEquality);
Register left = locs->in(0).reg();
Register right = locs->in(1).reg();
__ testl(left, Immediate(kSmiTagMask));
Register temp = locs->temp(0).reg();
if (ic_data.GetReceiverClassIdAt(0) == kSmiCid) {
Label done, load_class_id;
__ j(NOT_ZERO, &load_class_id, Assembler::kNearJump);
__ movl(temp, Immediate(kSmiCid));
__ jmp(&done, Assembler::kNearJump);
__ Bind(&load_class_id);
__ LoadClassId(temp, left);
__ Bind(&done);
} else {
__ j(ZERO, deopt); // Smi deopts.
__ LoadClassId(temp, left);
}
// 'temp' contains class-id of the left argument.
ObjectStore* object_store = Isolate::Current()->object_store();
Condition cond = TokenKindToSmiCondition(kind);
Label done;
const intptr_t len = ic_data.NumberOfChecks();
for (intptr_t i = 0; i < len; i++) {
// Assert that the Smi is at position 0, if at all.
ASSERT((ic_data.GetReceiverClassIdAt(i) != kSmiCid) || (i == 0));
Label next_test;
__ cmpl(temp, Immediate(ic_data.GetReceiverClassIdAt(i)));
__ j(NOT_EQUAL, &next_test);
const Function& target = Function::ZoneHandle(ic_data.GetTargetAt(i));
if (target.Owner() == object_store->object_class()) {
// Object.== is same as ===.
__ Drop(2);
__ cmpl(left, right);
if (branch != NULL) {
branch->EmitBranchOnCondition(compiler, cond);
} else {
Register result = locs->out().reg();
Label load_true;
__ j(cond, &load_true, Assembler::kNearJump);
__ LoadObject(result, compiler->bool_false());
__ jmp(&done);
__ Bind(&load_true);
__ LoadObject(result, compiler->bool_true());
}
} else {
const int kNumberOfArguments = 2;
const Array& kNoArgumentNames = Array::Handle();
compiler->GenerateStaticCall(deopt_id,
token_pos,
target,
kNumberOfArguments,
kNoArgumentNames,
locs);
if (branch == NULL) {
if (kind == Token::kNE) {
Label false_label;
__ CompareObject(EAX, compiler->bool_true());
__ j(EQUAL, &false_label, Assembler::kNearJump);
__ LoadObject(EAX, compiler->bool_true());
__ jmp(&done);
__ Bind(&false_label);
__ LoadObject(EAX, compiler->bool_false());
__ jmp(&done);
}
} else {
if (branch->is_checked()) {
EmitAssertBoolean(EAX, token_pos, locs, compiler);
}
__ CompareObject(EAX, compiler->bool_true());
branch->EmitBranchOnCondition(compiler, cond);
}
}
__ jmp(&done);
__ Bind(&next_test);
}
// Fall through leads to deoptimization
__ jmp(deopt);
__ Bind(&done);
}
// Emit code when ICData's targets are all Object == (which is ===).
static void EmitCheckedStrictEqual(FlowGraphCompiler* compiler,
const ICData& ic_data,
const LocationSummary& locs,
Token::Kind kind,
BranchInstr* branch,
intptr_t deopt_id) {
ASSERT((kind == Token::kEQ) || (kind == Token::kNE));
Register left = locs.in(0).reg();
Register right = locs.in(1).reg();
Register temp = locs.temp(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id, kDeoptEquality);
__ testl(left, Immediate(kSmiTagMask));
__ j(ZERO, deopt);
// 'left' is not Smi.
const Immediate raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
Label identity_compare;
__ cmpl(right, raw_null);
__ j(EQUAL, &identity_compare);
__ cmpl(left, raw_null);
__ j(EQUAL, &identity_compare);
__ LoadClassId(temp, left);
const intptr_t len = ic_data.NumberOfChecks();
for (intptr_t i = 0; i < len; i++) {
__ cmpl(temp, Immediate(ic_data.GetReceiverClassIdAt(i)));
if (i == (len - 1)) {
__ j(NOT_EQUAL, deopt);
} else {
__ j(EQUAL, &identity_compare);
}
}
__ Bind(&identity_compare);
__ cmpl(left, right);
if (branch == NULL) {
Label done, is_equal;
Register result = locs.out().reg();
__ j(EQUAL, &is_equal, Assembler::kNearJump);
// Not equal.
__ LoadObject(result, (kind == Token::kEQ) ? compiler->bool_false()
: compiler->bool_true());
__ jmp(&done, Assembler::kNearJump);
__ Bind(&is_equal);
__ LoadObject(result, (kind == Token::kEQ) ? compiler->bool_true()
: compiler->bool_false());
__ Bind(&done);
} else {
Condition cond = TokenKindToSmiCondition(kind);
branch->EmitBranchOnCondition(compiler, cond);
}
}
// First test if receiver is NULL, in which case === is applied.
// If type feedback was provided (lists of <class-id, target>), do a
// type by type check (either === or static call to the operator.
static void EmitGenericEqualityCompare(FlowGraphCompiler* compiler,
LocationSummary* locs,
Token::Kind kind,
BranchInstr* branch,
const ICData& ic_data,
intptr_t deopt_id,
intptr_t token_pos) {
ASSERT((kind == Token::kEQ) || (kind == Token::kNE));
ASSERT(!ic_data.IsNull() && (ic_data.NumberOfChecks() > 0));
Register left = locs->in(0).reg();
Register right = locs->in(1).reg();
const Immediate raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
Label done, identity_compare, non_null_compare;
__ cmpl(right, raw_null);
__ j(EQUAL, &identity_compare, Assembler::kNearJump);
__ cmpl(left, raw_null);
__ j(NOT_EQUAL, &non_null_compare, Assembler::kNearJump);
// Comparison with NULL is "===".
__ Bind(&identity_compare);
__ cmpl(left, right);
Condition cond = TokenKindToSmiCondition(kind);
if (branch != NULL) {
branch->EmitBranchOnCondition(compiler, cond);
} else {
Register result = locs->out().reg();
Label load_true;
__ j(cond, &load_true, Assembler::kNearJump);
__ LoadObject(result, compiler->bool_false());
__ jmp(&done);
__ Bind(&load_true);
__ LoadObject(result, compiler->bool_true());
}
__ jmp(&done);
__ Bind(&non_null_compare); // Receiver is not null.
__ pushl(left);
__ pushl(right);
EmitEqualityAsPolymorphicCall(compiler, ic_data, locs, branch, kind,
deopt_id, token_pos);
__ Bind(&done);
}
static void EmitSmiComparisonOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind,
BranchInstr* branch) {
Location left = locs.in(0);
Location right = locs.in(1);
ASSERT(!left.IsConstant() || !right.IsConstant());
Condition true_condition = TokenKindToSmiCondition(kind);
if (left.IsConstant()) {
__ CompareObject(right.reg(), left.constant());
true_condition = FlowGraphCompiler::FlipCondition(true_condition);
} else if (right.IsConstant()) {
__ CompareObject(left.reg(), right.constant());
} else {
__ cmpl(left.reg(), right.reg());
}
if (branch != NULL) {
branch->EmitBranchOnCondition(compiler, true_condition);
} else {
Register result = locs.out().reg();
Label done, is_true;
__ j(true_condition, &is_true);
__ LoadObject(result, compiler->bool_false());
__ jmp(&done);
__ Bind(&is_true);
__ LoadObject(result, compiler->bool_true());
__ Bind(&done);
}
}
static Condition TokenKindToMintCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ: return EQUAL;
case Token::kNE: return NOT_EQUAL;
case Token::kLT: return LESS;
case Token::kGT: return GREATER;
case Token::kLTE: return LESS_EQUAL;
case Token::kGTE: return GREATER_EQUAL;
default:
UNREACHABLE();
return OVERFLOW;
}
}
static void EmitUnboxedMintEqualityOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind,
BranchInstr* branch) {
ASSERT(Token::IsEqualityOperator(kind));
XmmRegister left = locs.in(0).xmm_reg();
XmmRegister right = locs.in(1).xmm_reg();
Register temp = locs.temp(0).reg();
__ movaps(XMM0, left);
__ pcmpeqq(XMM0, right);
__ movd(temp, XMM0);
Condition true_condition = TokenKindToMintCondition(kind);
__ cmpl(temp, Immediate(-1));
if (branch != NULL) {
branch->EmitBranchOnCondition(compiler, true_condition);
} else {
Register result = locs.out().reg();
Label done, is_true;
__ j(true_condition, &is_true);
__ LoadObject(result, compiler->bool_false());
__ jmp(&done);
__ Bind(&is_true);
__ LoadObject(result, compiler->bool_true());
__ Bind(&done);
}
}
static void EmitUnboxedMintComparisonOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind,
BranchInstr* branch) {
XmmRegister left = locs.in(0).xmm_reg();
XmmRegister right = locs.in(1).xmm_reg();
Register left_tmp = locs.temp(0).reg();
Register right_tmp = locs.temp(1).reg();
Register result = branch == NULL ? locs.out().reg() : kNoRegister;
Condition hi_cond = OVERFLOW, lo_cond = OVERFLOW;
switch (kind) {
case Token::kLT:
hi_cond = LESS;
lo_cond = BELOW;
break;
case Token::kGT:
hi_cond = GREATER;
lo_cond = ABOVE;
break;
case Token::kLTE:
hi_cond = LESS;
lo_cond = BELOW_EQUAL;
break;
case Token::kGTE:
hi_cond = GREATER;
lo_cond = ABOVE_EQUAL;
break;
default:
break;
}
ASSERT(hi_cond != OVERFLOW && lo_cond != OVERFLOW);
Label is_true, is_false;
// Compare upper halves first.
__ pextrd(left_tmp, left, Immediate(1));
__ pextrd(right_tmp, right, Immediate(1));
__ cmpl(left_tmp, right_tmp);
if (branch != NULL) {
__ j(hi_cond, compiler->GetBlockLabel(branch->true_successor()));
__ j(FlowGraphCompiler::FlipCondition(hi_cond),
compiler->GetBlockLabel(branch->false_successor()));
} else {
__ j(hi_cond, &is_true);
__ j(FlowGraphCompiler::FlipCondition(hi_cond), &is_false);
}
// If upper is equal, compare lower half.
__ pextrd(left_tmp, left, Immediate(0));
__ pextrd(right_tmp, right, Immediate(0));
__ cmpl(left_tmp, right_tmp);
if (branch != NULL) {
branch->EmitBranchOnCondition(compiler, lo_cond);
} else {
Label done;
__ j(lo_cond, &is_true);
__ Bind(&is_false);
__ LoadObject(result, compiler->bool_false());
__ jmp(&done);
__ Bind(&is_true);
__ LoadObject(result, compiler->bool_true());
__ Bind(&done);
}
}
static Condition TokenKindToDoubleCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ: return EQUAL;
case Token::kNE: return NOT_EQUAL;
case Token::kLT: return BELOW;
case Token::kGT: return ABOVE;
case Token::kLTE: return BELOW_EQUAL;
case Token::kGTE: return ABOVE_EQUAL;
default:
UNREACHABLE();
return OVERFLOW;
}
}
static void EmitDoubleComparisonOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind,
BranchInstr* branch) {
XmmRegister left = locs.in(0).xmm_reg();
XmmRegister right = locs.in(1).xmm_reg();
Condition true_condition = TokenKindToDoubleCondition(kind);
if (branch != NULL) {
compiler->EmitDoubleCompareBranch(
true_condition, left, right, branch);
} else {
compiler->EmitDoubleCompareBool(
true_condition, left, right, locs.out().reg());
}
}
void EqualityCompareInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT((kind() == Token::kNE) || (kind() == Token::kEQ));
BranchInstr* kNoBranch = NULL;
if (receiver_class_id() == kSmiCid) {
// Deoptimizes if both arguments not Smi.
EmitSmiComparisonOp(compiler, *locs(), kind(), kNoBranch);
return;
}
if (receiver_class_id() == kMintCid) {
EmitUnboxedMintEqualityOp(compiler, *locs(), kind(), kNoBranch);
return;
}
if (receiver_class_id() == kDoubleCid) {
EmitDoubleComparisonOp(compiler, *locs(), kind(), kNoBranch);
return;
}
const bool is_checked_strict_equal =
HasICData() && ic_data()->AllTargetsHaveSameOwner(kInstanceCid);
if (is_checked_strict_equal) {
EmitCheckedStrictEqual(compiler, *ic_data(), *locs(), kind(), kNoBranch,
deopt_id());
return;
}
if (IsPolymorphic()) {
EmitGenericEqualityCompare(compiler, locs(), kind(), kNoBranch, *ic_data(),
deopt_id(), token_pos());
return;
}
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
__ pushl(left);
__ pushl(right);
EmitEqualityAsInstanceCall(compiler,
deopt_id(),
token_pos(),
kind(),
locs(),
*ic_data());
ASSERT(locs()->out().reg() == EAX);
}
void EqualityCompareInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
ASSERT((kind() == Token::kNE) || (kind() == Token::kEQ));
if (receiver_class_id() == kSmiCid) {
// Deoptimizes if both arguments not Smi.
EmitSmiComparisonOp(compiler, *locs(), kind(), branch);
return;
}
if (receiver_class_id() == kMintCid) {
EmitUnboxedMintEqualityOp(compiler, *locs(), kind(), branch);
return;
}
if (receiver_class_id() == kDoubleCid) {
EmitDoubleComparisonOp(compiler, *locs(), kind(), branch);
return;
}
const bool is_checked_strict_equal =
HasICData() && ic_data()->AllTargetsHaveSameOwner(kInstanceCid);
if (is_checked_strict_equal) {
EmitCheckedStrictEqual(compiler, *ic_data(), *locs(), kind(), branch,
deopt_id());
return;
}
if (IsPolymorphic()) {
EmitGenericEqualityCompare(compiler, locs(), kind(), branch, *ic_data(),
deopt_id(), token_pos());
return;
}
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
__ pushl(left);
__ pushl(right);
EmitEqualityAsInstanceCall(compiler,
deopt_id(),
token_pos(),
Token::kEQ, // kNE reverse occurs at branch.
locs(),
*ic_data());
if (branch->is_checked()) {
EmitAssertBoolean(EAX, token_pos(), locs(), compiler);
}
Condition branch_condition = (kind() == Token::kNE) ? NOT_EQUAL : EQUAL;
__ CompareObject(EAX, compiler->bool_true());
branch->EmitBranchOnCondition(compiler, branch_condition);
}
LocationSummary* RelationalOpInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
if (operands_class_id() == kMintCid) {
const intptr_t kNumTemps = 2;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresXmmRegister());
locs->set_in(1, Location::RequiresXmmRegister());
locs->set_temp(0, Location::RequiresRegister());
locs->set_temp(1, Location::RequiresRegister());
locs->set_out(Location::RequiresRegister());
return locs;
}
if (operands_class_id() == kDoubleCid) {
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresXmmRegister());
summary->set_in(1, Location::RequiresXmmRegister());
summary->set_out(Location::RequiresRegister());
return summary;
} else if (operands_class_id() == kSmiCid) {
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RegisterOrConstant(left()));
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
summary->set_in(1, summary->in(0).IsConstant()
? Location::RequiresRegister()
: Location::RegisterOrConstant(right()));
summary->set_out(Location::RequiresRegister());
return summary;
}
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
// Pick arbitrary fixed input registers because this is a call.
locs->set_in(0, Location::RegisterLocation(EAX));
locs->set_in(1, Location::RegisterLocation(ECX));
locs->set_out(Location::RegisterLocation(EAX));
return locs;
}
void RelationalOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (operands_class_id() == kSmiCid) {
EmitSmiComparisonOp(compiler, *locs(), kind(), NULL);
return;
}
if (operands_class_id() == kMintCid) {
EmitUnboxedMintComparisonOp(compiler, *locs(), kind(), NULL);
return;
}
if (operands_class_id() == kDoubleCid) {
EmitDoubleComparisonOp(compiler, *locs(), kind(), NULL);
return;
}
// Push arguments for the call.
// TODO(fschneider): Split this instruction into different types to avoid
// explicitly pushing arguments to the call here.
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
__ pushl(left);
__ pushl(right);
if (HasICData() && (ic_data()->NumberOfChecks() > 0)) {
Label* deopt = compiler->AddDeoptStub(deopt_id(), kDeoptRelationalOp);
// Load class into EDI. Since this is a call, any register except
// the fixed input registers would be ok.
ASSERT((left != EDI) && (right != EDI));
Label done;
const intptr_t kNumArguments = 2;
__ movl(EDI, Immediate(kSmiCid));
__ testl(left, Immediate(kSmiTagMask));
__ j(ZERO, &done);
__ LoadClassId(EDI, left);
__ Bind(&done);
compiler->EmitTestAndCall(ICData::Handle(ic_data()->AsUnaryClassChecks()),
EDI, // Class id register.
kNumArguments,
Array::Handle(), // No named arguments.
deopt, // Deoptimize target.
deopt_id(),
token_pos(),
locs());
return;
}
const String& function_name =
String::ZoneHandle(Symbols::New(Token::Str(kind())));
if (!compiler->is_optimizing()) {
compiler->AddCurrentDescriptor(PcDescriptors::kDeoptBefore,
deopt_id(),
token_pos());
}
const intptr_t kNumArguments = 2;
const intptr_t kNumArgsChecked = 2; // Type-feedback.
ICData& relational_ic_data = ICData::ZoneHandle(ic_data()->raw());
if (compiler->is_optimizing() && FLAG_propagate_ic_data) {
ASSERT(!ic_data()->IsNull());
if (ic_data()->NumberOfChecks() == 0) {
// IC call for reoptimization populates original ICData.
relational_ic_data = ic_data()->raw();
} else {
// Megamorphic call.
relational_ic_data = ic_data()->AsUnaryClassChecks();
}
} else {
relational_ic_data = ICData::New(compiler->parsed_function().function(),
function_name,
deopt_id(),
kNumArgsChecked);
}
compiler->GenerateInstanceCall(deopt_id(),
token_pos(),
kNumArguments,
Array::ZoneHandle(), // No optional arguments.
locs(),
relational_ic_data);
}
void RelationalOpInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
if (operands_class_id() == kSmiCid) {
EmitSmiComparisonOp(compiler, *locs(), kind(), branch);
return;
}
if (operands_class_id() == kMintCid) {
EmitUnboxedMintComparisonOp(compiler, *locs(), kind(), branch);
return;
}
if (operands_class_id() == kDoubleCid) {
EmitDoubleComparisonOp(compiler, *locs(), kind(), branch);
return;
}
EmitNativeCode(compiler);
__ CompareObject(EAX, compiler->bool_true());
branch->EmitBranchOnCondition(compiler, EQUAL);
}
LocationSummary* NativeCallInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 3;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_temp(0, Location::RegisterLocation(EAX));
locs->set_temp(1, Location::RegisterLocation(ECX));
locs->set_temp(2, Location::RegisterLocation(EDX));
locs->set_out(Location::RegisterLocation(EAX));
return locs;
}
void NativeCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->temp(0).reg() == EAX);
ASSERT(locs()->temp(1).reg() == ECX);
ASSERT(locs()->temp(2).reg() == EDX);
Register result = locs()->out().reg();
// Push the result place holder initialized to NULL.
__ PushObject(Object::ZoneHandle());
// Pass a pointer to the first argument in EAX.
if (!function().HasOptionalParameters()) {
__ leal(EAX, Address(EBP, (1 + function().NumParameters()) * kWordSize));
} else {
__ leal(EAX,
Address(EBP, ParsedFunction::kFirstLocalSlotIndex * kWordSize));
}
__ movl(ECX, Immediate(reinterpret_cast<uword>(native_c_function())));
__ movl(EDX, Immediate(NativeArguments::ComputeArgcTag(function())));
compiler->GenerateCall(token_pos(),
&StubCode::CallNativeCFunctionLabel(),
PcDescriptors::kOther,
locs());
__ popl(result);
}
static bool CanBeImmediateIndex(Value* index) {
if (!index->definition()->IsConstant()) return false;
const Object& constant = index->definition()->AsConstant()->value();
if (!constant.IsSmi()) return false;
const Smi& smi_const = Smi::Cast(constant);
int64_t disp = smi_const.AsInt64Value() * kWordSize + sizeof(RawArray);
return Utils::IsInt(32, disp);
}
LocationSummary* StringCharCodeAtInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
// TODO(fschneider): Allow immediate operands for the index.
locs->set_in(1, Location::RequiresRegister());
locs->set_out(Location::RequiresRegister());
return locs;
}
void StringCharCodeAtInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register str = locs()->in(0).reg();
Register index = locs()->in(1).reg();
Register result = locs()->out().reg();
ASSERT((class_id() == kOneByteStringCid) ||
(class_id() == kTwoByteStringCid));
if (class_id() == kOneByteStringCid) {
__ SmiUntag(index);
__ movzxb(result, FieldAddress(str,
index,
TIMES_1,
OneByteString::data_offset()));
__ SmiTag(index); // Retag index.
__ SmiTag(result);
} else {
// Don't untag smi-index and use TIMES_1 for two byte strings.
__ movzxw(result, FieldAddress(str,
index,
TIMES_1,
TwoByteString::data_offset()));
__ SmiTag(result);
}
}
LocationSummary* StringFromCharCodeInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
// TODO(fschneider): Allow immediate operands for the char code.
locs->set_in(0, Location::RequiresRegister());
locs->set_out(Location::RequiresRegister());
return locs;
}
void StringFromCharCodeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register char_code = locs()->in(0).reg();
Register result = locs()->out().reg();
__ movl(result,
Immediate(reinterpret_cast<uword>(Symbols::PredefinedAddress())));
__ movl(result, Address(result,
char_code,
TIMES_HALF_WORD_SIZE, // Char code is a smi.
Symbols::kNullCharId * kWordSize));
}
LocationSummary* LoadIndexedInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_in(1, CanBeImmediateIndex(index())
? Location::RegisterOrConstant(index())
: Location::RequiresRegister());
if (representation() == kUnboxedDouble) {
locs->set_out(Location::RequiresXmmRegister());
} else {
locs->set_out(Location::RequiresRegister());
}
return locs;
}
void LoadIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register array = locs()->in(0).reg();
Location index = locs()->in(1);
if (class_id() == kExternalUint8ArrayCid) {
Register result = locs()->out().reg();
Address element_address = index.IsRegister()
? Address(result, index.reg(), TIMES_1, 0)
: Address(result, Smi::Cast(index.constant()).Value());
if (index.IsRegister()) {
__ SmiUntag(index.reg());
}
__ movl(result,
FieldAddress(array, ExternalUint8Array::external_data_offset()));
__ movl(result,
Address(result, ExternalByteArrayData<uint8_t>::data_offset()));
__ movzxb(result, element_address);
__ SmiTag(result);
if (index.IsRegister()) {
__ SmiTag(index.reg()); // Re-tag.
}
return;
}
FieldAddress element_address = index.IsRegister() ?
FlowGraphCompiler::ElementAddressForRegIndex(
class_id(), array, index.reg()) :
FlowGraphCompiler::ElementAddressForIntIndex(
class_id(), array, Smi::Cast(index.constant()).Value());
if (representation() == kUnboxedDouble) {
XmmRegister result = locs()->out().xmm_reg();
if (class_id() == kFloat32ArrayCid) {
// Load single precision float.
__ movss(result, element_address);
// Promote to double.
__ cvtss2sd(result, locs()->out().xmm_reg());
} else {
ASSERT(class_id() == kFloat64ArrayCid);
__ movsd(result, element_address);
}
return;
}
Register result = locs()->out().reg();
if (class_id() == kUint8ArrayCid) {
if (index.IsRegister()) {
__ SmiUntag(index.reg());
}
__ movzxb(result, element_address);
__ SmiTag(result);
if (index.IsRegister()) {
__ SmiTag(index.reg()); // Re-tag.
}
return;
}
ASSERT((class_id() == kArrayCid) || (class_id() == kImmutableArrayCid));
__ movl(result, element_address);
}
LocationSummary* StoreIndexedInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = class_id() == kFloat32ArrayCid ? 1 : 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
if (class_id() == kFloat32ArrayCid) {
locs->set_temp(0, Location::RequiresXmmRegister());
}
locs->set_in(0, Location::RequiresRegister());
locs->set_in(1, CanBeImmediateIndex(index())
? Location::RegisterOrConstant(index())
: Location::RequiresRegister());
if (RequiredInputRepresentation(2) == kUnboxedDouble) {
// TODO(srdjan): Support Float64 constants.
locs->set_in(2, Location::RequiresXmmRegister());
} else {
locs->set_in(2, ShouldEmitStoreBarrier()
? Location::WritableRegister()
: Location::RegisterOrConstant(value()));
}
return locs;
}
void StoreIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register array = locs()->in(0).reg();
Location index = locs()->in(1);
FieldAddress element_address = index.IsRegister() ?
FlowGraphCompiler::ElementAddressForRegIndex(
class_id(), array, index.reg()) :
FlowGraphCompiler::ElementAddressForIntIndex(
class_id(), array, Smi::Cast(index.constant()).Value());
if (class_id() == kFloat32ArrayCid) {
// Convert to single precision.
__ cvtsd2ss(locs()->temp(0).xmm_reg(), locs()->in(2).xmm_reg());
// Store.
__ movss(element_address, locs()->temp(0).xmm_reg());
return;
}
if (class_id() == kFloat64ArrayCid) {
__ movsd(element_address, locs()->in(2).xmm_reg());
return;
}
ASSERT(class_id() == kArrayCid);
if (ShouldEmitStoreBarrier()) {
Register value = locs()->in(2).reg();
__ StoreIntoObject(array, element_address, value);
return;
}
if (locs()->in(2).IsConstant()) {
const Object& constant = locs()->in(2).constant();
__ StoreIntoObjectNoBarrier(array, element_address, constant);
} else {
Register value = locs()->in(2).reg();
__ StoreIntoObjectNoBarrier(array, element_address, value);
}
}
LocationSummary* StoreInstanceFieldInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t num_temps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, num_temps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, ShouldEmitStoreBarrier()
? Location::WritableRegister()
: Location::RegisterOrConstant(value()));
return summary;
}
void StoreInstanceFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register instance_reg = locs()->in(0).reg();
if (ShouldEmitStoreBarrier()) {
Register value_reg = locs()->in(1).reg();
__ StoreIntoObject(instance_reg,
FieldAddress(instance_reg, field().Offset()), value_reg);
} else {
if (locs()->in(1).IsConstant()) {
__ StoreIntoObjectNoBarrier(
instance_reg,
FieldAddress(instance_reg, field().Offset()),
locs()->in(1).constant());
} else {
Register value_reg = locs()->in(1).reg();
__ StoreIntoObjectNoBarrier(instance_reg,
FieldAddress(instance_reg, field().Offset()), value_reg);
}
}
}
LocationSummary* LoadStaticFieldInstr::MakeLocationSummary() const {
return LocationSummary::Make(0,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register result = locs()->out().reg();
__ LoadObject(result, field());
__ movl(result, FieldAddress(result, Field::value_offset()));
}
LocationSummary* StoreStaticFieldInstr::MakeLocationSummary() const {
LocationSummary* locs = new LocationSummary(1, 1, LocationSummary::kNoCall);
locs->set_in(0, value()->NeedsStoreBuffer() ? Location::WritableRegister()
: Location::RequiresRegister());
locs->set_temp(0, Location::RequiresRegister());
return locs;
}
void StoreStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register temp = locs()->temp(0).reg();
__ LoadObject(temp, field());
if (this->value()->NeedsStoreBuffer()) {
__ StoreIntoObject(temp, FieldAddress(temp, Field::value_offset()), value);
} else {
__ StoreIntoObjectNoBarrier(
temp, FieldAddress(temp, Field::value_offset()), value);
}
}
LocationSummary* InstanceOfInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(EAX));
summary->set_in(1, Location::RegisterLocation(ECX));
summary->set_in(2, Location::RegisterLocation(EDX));
summary->set_out(Location::RegisterLocation(EAX));
return summary;
}
void InstanceOfInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->in(0).reg() == EAX); // Value.
ASSERT(locs()->in(1).reg() == ECX); // Instantiator.
ASSERT(locs()->in(2).reg() == EDX); // Instantiator type arguments.
compiler->GenerateInstanceOf(token_pos(),
type(),
negate_result(),
locs());
ASSERT(locs()->out().reg() == EAX);
}
LocationSummary* CreateArrayInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(ECX));
locs->set_out(Location::RegisterLocation(EAX));
return locs;
}
void CreateArrayInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Allocate the array. EDX = length, ECX = element type.
ASSERT(locs()->in(0).reg() == ECX);
__ movl(EDX, Immediate(Smi::RawValue(ArgumentCount())));
compiler->GenerateCall(token_pos(),
&StubCode::AllocateArrayLabel(),
PcDescriptors::kOther,
locs());
ASSERT(locs()->out().reg() == EAX);
// Pop the element values from the stack into the array.
__ leal(EDX, FieldAddress(EAX, Array::data_offset()));
for (int i = ArgumentCount() - 1; i >= 0; --i) {
__ popl(Address(EDX, i * kWordSize));
}
}
LocationSummary*
AllocateObjectWithBoundsCheckInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(EAX));
locs->set_in(1, Location::RegisterLocation(ECX));
locs->set_out(Location::RegisterLocation(EAX));
return locs;
}
void AllocateObjectWithBoundsCheckInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
const Class& cls = Class::ZoneHandle(constructor().Owner());
Register type_arguments = locs()->in(0).reg();
Register instantiator_type_arguments = locs()->in(1).reg();
Register result = locs()->out().reg();
// Push the result place holder initialized to NULL.
__ PushObject(Object::ZoneHandle());
__ PushObject(cls);
__ pushl(type_arguments);
__ pushl(instantiator_type_arguments);
compiler->GenerateCallRuntime(token_pos(),
kAllocateObjectWithBoundsCheckRuntimeEntry,
locs());
// Pop instantiator type arguments, type arguments, and class.
// source location.
__ Drop(3);
__ popl(result); // Pop new instance.
}
LocationSummary* LoadFieldInstr::MakeLocationSummary() const {
return LocationSummary::Make(1,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register instance_reg = locs()->in(0).reg();
Register result_reg = locs()->out().reg();
__ movl(result_reg, FieldAddress(instance_reg, offset_in_bytes()));
}
LocationSummary* InstantiateTypeArgumentsInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(EAX));
locs->set_temp(0, Location::RegisterLocation(ECX));
locs->set_out(Location::RegisterLocation(EAX));
return locs;
}
void InstantiateTypeArgumentsInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
Register instantiator_reg = locs()->in(0).reg();
Register temp = locs()->temp(0).reg();
Register result_reg = locs()->out().reg();
// 'instantiator_reg' is the instantiator AbstractTypeArguments object
// (or null).
// If the instantiator is null and if the type argument vector
// instantiated from null becomes a vector of dynamic, then use null as
// the type arguments.
Label type_arguments_instantiated;
const intptr_t len = type_arguments().Length();
if (type_arguments().IsRawInstantiatedRaw(len)) {
const Immediate raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
__ cmpl(instantiator_reg, raw_null);
__ j(EQUAL, &type_arguments_instantiated, Assembler::kNearJump);
}
// Instantiate non-null type arguments.
if (type_arguments().IsUninstantiatedIdentity()) {
// Check if the instantiator type argument vector is a TypeArguments of a
// matching length and, if so, use it as the instantiated type_arguments.
// No need to check the instantiator ('instantiator_reg') for null here,
// because a null instantiator will have the wrong class (Null instead of
// TypeArguments).
Label type_arguments_uninstantiated;
__ CompareClassId(instantiator_reg, kTypeArgumentsCid, temp);
__ j(NOT_EQUAL, &type_arguments_uninstantiated, Assembler::kNearJump);
__ cmpl(FieldAddress(instantiator_reg, TypeArguments::length_offset()),
Immediate(Smi::RawValue(len)));
__ j(EQUAL, &type_arguments_instantiated, Assembler::kNearJump);
__ Bind(&type_arguments_uninstantiated);
}
// A runtime call to instantiate the type arguments is required.
__ PushObject(Object::ZoneHandle()); // Make room for the result.
__ PushObject(type_arguments());
__ pushl(instantiator_reg); // Push instantiator type arguments.
compiler->GenerateCallRuntime(token_pos(),
kInstantiateTypeArgumentsRuntimeEntry,
locs());
__ Drop(2); // Drop instantiator and uninstantiated type arguments.
__ popl(result_reg); // Pop instantiated type arguments.
__ Bind(&type_arguments_instantiated);
ASSERT(instantiator_reg == result_reg);
// 'result_reg': Instantiated type arguments.
}
LocationSummary*
ExtractConstructorTypeArgumentsInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_out(Location::SameAsFirstInput());
locs->set_temp(0, Location::RequiresRegister());
return locs;
}
void ExtractConstructorTypeArgumentsInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
Register instantiator_reg = locs()->in(0).reg();
Register result_reg = locs()->out().reg();
ASSERT(instantiator_reg == result_reg);
Register temp_reg = locs()->temp(0).reg();
// instantiator_reg is the instantiator type argument vector, i.e. an
// AbstractTypeArguments object (or null).
// If the instantiator is null and if the type argument vector
// instantiated from null becomes a vector of dynamic, then use null as
// the type arguments.
Label type_arguments_instantiated;
const intptr_t len = type_arguments().Length();
if (type_arguments().IsRawInstantiatedRaw(len)) {
const Immediate raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
__ cmpl(instantiator_reg, raw_null);
__ j(EQUAL, &type_arguments_instantiated, Assembler::kNearJump);
}
// Instantiate non-null type arguments.
if (type_arguments().IsUninstantiatedIdentity()) {
// Check if the instantiator type argument vector is a TypeArguments of a
// matching length and, if so, use it as the instantiated type_arguments.
// No need to check instantiator_reg for null here, because a null
// instantiator will have the wrong class (Null instead of TypeArguments).
Label type_arguments_uninstantiated;
__ CompareClassId(instantiator_reg, kTypeArgumentsCid, temp_reg);
__ j(NOT_EQUAL, &type_arguments_uninstantiated, Assembler::kNearJump);
Immediate arguments_length =
Immediate(Smi::RawValue(type_arguments().Length()));
__ cmpl(FieldAddress(instantiator_reg, TypeArguments::length_offset()),
arguments_length);
__ j(EQUAL, &type_arguments_instantiated, Assembler::kNearJump);
__ Bind(&type_arguments_uninstantiated);
}
// In the non-factory case, we rely on the allocation stub to
// instantiate the type arguments.
__ LoadObject(result_reg, type_arguments());
// result_reg: uninstantiated type arguments.
__ Bind(&type_arguments_instantiated);
// result_reg: uninstantiated or instantiated type arguments.
}
LocationSummary*
ExtractConstructorInstantiatorInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_out(Location::SameAsFirstInput());
locs->set_temp(0, Location::RequiresRegister());
return locs;
}
void ExtractConstructorInstantiatorInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
Register instantiator_reg = locs()->in(0).reg();
ASSERT(locs()->out().reg() == instantiator_reg);
Register temp_reg = locs()->temp(0).reg();
// instantiator_reg is the instantiator AbstractTypeArguments object
// (or null). If the instantiator is null and if the type argument vector
// instantiated from null becomes a vector of dynamic, then use null as
// the type arguments and do not pass the instantiator.
Label done;
const intptr_t len = type_arguments().Length();
if (type_arguments().IsRawInstantiatedRaw(len)) {
const Immediate raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
Label instantiator_not_null;
__ cmpl(instantiator_reg, raw_null);
__ j(NOT_EQUAL, &instantiator_not_null, Assembler::kNearJump);
// Null was used in VisitExtractConstructorTypeArguments as the
// instantiated type arguments, no proper instantiator needed.
__ movl(instantiator_reg,
Immediate(Smi::RawValue(StubCode::kNoInstantiator)));
__ jmp(&done);
__ Bind(&instantiator_not_null);
}
// Instantiate non-null type arguments.
if (type_arguments().IsUninstantiatedIdentity()) {
// TODO(regis): The following emitted code is duplicated in
// VisitExtractConstructorTypeArguments above. The reason is that the code
// is split between two computations, so that each one produces a
// single value, rather than producing a pair of values.
// If this becomes an issue, we should expose these tests at the IL level.
// Check if the instantiator type argument vector is a TypeArguments of a
// matching length and, if so, use it as the instantiated type_arguments.
// No need to check the instantiator (RAX) for null here, because a null
// instantiator will have the wrong class (Null instead of TypeArguments).
__ CompareClassId(instantiator_reg, kTypeArgumentsCid, temp_reg);
__ j(NOT_EQUAL, &done, Assembler::kNearJump);
Immediate arguments_length =
Immediate(Smi::RawValue(type_arguments().Length()));
__ cmpl(FieldAddress(instantiator_reg, TypeArguments::length_offset()),
arguments_length);
__ j(NOT_EQUAL, &done, Assembler::kNearJump);
// The instantiator was used in VisitExtractConstructorTypeArguments as the
// instantiated type arguments, no proper instantiator needed.
__ movl(instantiator_reg,
Immediate(Smi::RawValue(StubCode::kNoInstantiator)));
}
__ Bind(&done);
// instantiator_reg: instantiator or kNoInstantiator.
}
LocationSummary* AllocateContextInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_temp(0, Location::RegisterLocation(EDX));
locs->set_out(Location::RegisterLocation(EAX));
return locs;
}
void AllocateContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->temp(0).reg() == EDX);
ASSERT(locs()->out().reg() == EAX);
__ movl(EDX, Immediate(num_context_variables()));
const ExternalLabel label("alloc_context",
StubCode::AllocateContextEntryPoint());
compiler->GenerateCall(token_pos(),
&label,
PcDescriptors::kOther,
locs());
}
LocationSummary* CloneContextInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(EAX));
locs->set_out(Location::RegisterLocation(EAX));
return locs;
}
void CloneContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register context_value = locs()->in(0).reg();
Register result = locs()->out().reg();
__ PushObject(Object::ZoneHandle()); // Make room for the result.
__ pushl(context_value);
compiler->GenerateCallRuntime(token_pos(),
kCloneContextRuntimeEntry,
locs());
__ popl(result); // Remove argument.
__ popl(result); // Get result (cloned context).
}
LocationSummary* CatchEntryInstr::MakeLocationSummary() const {
return LocationSummary::Make(0,
Location::NoLocation(),
LocationSummary::kNoCall);
}
// Restore stack and initialize the two exception variables:
// exception and stack trace variables.
void CatchEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Restore RSP from RBP as we are coming from a throw and the code for
// popping arguments has not been run.
const intptr_t locals_space_size = compiler->StackSize() * kWordSize;
ASSERT(locals_space_size >= 0);
const intptr_t offset_size =
-locals_space_size + FlowGraphCompiler::kLocalsOffsetFromFP;
__ leal(ESP, Address(EBP, offset_size));
ASSERT(!exception_var().is_captured());
ASSERT(!stacktrace_var().is_captured());
__ movl(Address(EBP, exception_var().index() * kWordSize),
kExceptionObjectReg);
__ movl(Address(EBP, stacktrace_var().index() * kWordSize),
kStackTraceObjectReg);
}
LocationSummary* CheckStackOverflowInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs,
kNumTemps,
LocationSummary::kCallOnSlowPath);
return summary;
}
class CheckStackOverflowSlowPath : public SlowPathCode {
public:
explicit CheckStackOverflowSlowPath(CheckStackOverflowInstr* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Bind(entry_label());
compiler->SaveLiveRegisters(instruction_->locs());
compiler->GenerateCallRuntime(instruction_->token_pos(),
kStackOverflowRuntimeEntry,
instruction_->locs());
compiler->RestoreLiveRegisters(instruction_->locs());
__ jmp(exit_label());
}
private:
CheckStackOverflowInstr* instruction_;
};
void CheckStackOverflowInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
CheckStackOverflowSlowPath* slow_path = new CheckStackOverflowSlowPath(this);
compiler->AddSlowPathCode(slow_path);
__ cmpl(ESP,
Address::Absolute(Isolate::Current()->stack_limit_address()));
__ j(BELOW_EQUAL, slow_path->entry_label());
__ Bind(slow_path->exit_label());
}
LocationSummary* BinarySmiOpInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
if (op_kind() == Token::kTRUNCDIV) {
const intptr_t kNumTemps = 3;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RegisterLocation(EAX));
summary->set_in(1, Location::RegisterLocation(ECX));
summary->set_out(Location::SameAsFirstInput());
summary->set_temp(0, Location::RegisterLocation(EBX));
// Will be used for for sign extension.
summary->set_temp(1, Location::RegisterLocation(EDX));
summary->set_temp(2, Location::RequiresRegister());
return summary;
} else if (op_kind() == Token::kSHR) {
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::FixedRegisterOrSmiConstant(right(), ECX));
summary->set_out(Location::SameAsFirstInput());
return summary;
} else if (op_kind() == Token::kSHL) {
const intptr_t kNumTemps = 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::FixedRegisterOrSmiConstant(right(), ECX));
summary->set_temp(0, Location::RequiresRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
} else {
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RegisterOrSmiConstant(right()));
summary->set_out(Location::SameAsFirstInput());
return summary;
}
}
void BinarySmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register left = locs()->in(0).reg();
Register result = locs()->out().reg();
ASSERT(left == result);
Label* deopt = NULL;
if (CanDeoptimize()) {
deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptBinarySmiOp);
}
if (locs()->in(1).IsConstant()) {
const Object& constant = locs()->in(1).constant();
ASSERT(constant.IsSmi());
const int32_t imm =
reinterpret_cast<int32_t>(constant.raw());
switch (op_kind()) {
case Token::kADD:
__ addl(left, Immediate(imm));
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
case Token::kSUB: {
__ subl(left, Immediate(imm));
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kMUL: {
// Keep left value tagged and untag right value.
const intptr_t value = Smi::Cast(constant).Value();
__ imull(left, Immediate(value));
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kBIT_AND: {
// No overflow check.
__ andl(left, Immediate(imm));
break;
}
case Token::kBIT_OR: {
// No overflow check.
__ orl(left, Immediate(imm));
break;
}
case Token::kBIT_XOR: {
// No overflow check.
__ xorl(left, Immediate(imm));
break;
}
case Token::kSHR: {
// sarl operation masks the count to 5 bits.
const intptr_t kCountLimit = 0x1F;
intptr_t value = Smi::Cast(constant).Value();
if (value == 0) {
// TODO(vegorov): should be handled outside.
break;
} else if (value < 0) {
// TODO(vegorov): should be handled outside.
__ jmp(deopt);
break;
}
value = value + kSmiTagSize;
if (value >= kCountLimit) value = kCountLimit;
__ sarl(left, Immediate(value));
__ SmiTag(left);
break;
}
case Token::kSHL: {
// shll operation masks the count to 5 bits.
const intptr_t kCountLimit = 0x1F;
intptr_t value = Smi::Cast(constant).Value();
if (value == 0) break;
if ((value < 0) || (value >= kCountLimit)) {
// This condition may not be known earlier in some cases because
// of constant propagation, inlining, etc.
__ jmp(deopt);
break;
}
Register temp = locs()->temp(0).reg();
__ movl(temp, left);
__ shll(left, Immediate(value));
__ sarl(left, Immediate(value));
__ cmpl(left, temp);
__ j(NOT_EQUAL, deopt); // Overflow.
// Shift for result now we know there is no overflow.
__ shll(left, Immediate(value));
break;
}
default:
UNREACHABLE();
break;
}
return;
}
Register right = locs()->in(1).reg();
switch (op_kind()) {
case Token::kADD: {
__ addl(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kSUB: {
__ subl(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kMUL: {
__ SmiUntag(left);
__ imull(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kBIT_AND: {
// No overflow check.
__ andl(left, right);
break;
}
case Token::kBIT_OR: {
// No overflow check.
__ orl(left, right);
break;
}
case Token::kBIT_XOR: {
// No overflow check.
__ xorl(left, right);
break;
}
case Token::kTRUNCDIV: {
Register temp = locs()->temp(0).reg();
// Handle divide by zero in runtime.
// Deoptimization requires that temp and right are preserved.
__ testl(right, right);
__ j(ZERO, deopt);
ASSERT(left == EAX);
ASSERT((right != EDX) && (right != EAX));
ASSERT((temp != EDX) && (temp != EAX));
ASSERT(locs()->temp(1).reg() == EDX);
ASSERT(result == EAX);
Register right_temp = locs()->temp(2).reg();
__ movl(right_temp, right);
__ SmiUntag(left);
__ SmiUntag(right_temp);
__ cdq(); // Sign extend EAX -> EDX:EAX.
__ idivl(right_temp); // EAX: quotient, EDX: remainder.
// Check the corner case of dividing the 'MIN_SMI' with -1, in which
// case we cannot tag the result.
__ cmpl(result, Immediate(0x40000000));
__ j(EQUAL, deopt);
__ SmiTag(result);
break;
}
case Token::kSHR: {
if (CanDeoptimize()) {
__ cmpl(right, Immediate(0));
__ j(LESS, deopt);
}
__ SmiUntag(right);
// sarl operation masks the count to 5 bits.
const intptr_t kCountLimit = 0x1F;
Range* right_range = this->right()->definition()->range();
if ((right_range == NULL) ||
!right_range->IsWithin(RangeBoundary::kMinusInfinity, kCountLimit)) {
__ cmpl(right, Immediate(kCountLimit));
Label count_ok;
__ j(LESS, &count_ok, Assembler::kNearJump);
__ movl(right, Immediate(kCountLimit));
__ Bind(&count_ok);
}
ASSERT(right == ECX); // Count must be in ECX
__ SmiUntag(left);
__ sarl(left, right);
__ SmiTag(left);
break;
}
case Token::kSHL: {
Register temp = locs()->temp(0).reg();
// Check if count too large for handling it inlined.
__ movl(temp, left);
Range* right_range = this->right()->definition()->range();
const bool right_needs_check =
(right_range == NULL) || !right_range->IsWithin(0, (Smi::kBits - 1));
if (right_needs_check) {
__ cmpl(right,
Immediate(reinterpret_cast<int32_t>(Smi::New(Smi::kBits))));
__ j(ABOVE_EQUAL, deopt);
}
ASSERT(right == ECX); // Count must be in ECX
__ SmiUntag(right);
// Overflow test (preserve temp and right);
__ shll(left, right);
__ sarl(left, right);
__ cmpl(left, temp);
__ j(NOT_EQUAL, deopt); // Overflow.
// Shift for result now we know there is no overflow.
__ shll(left, right);
break;
}
case Token::kDIV: {
// Dispatches to 'Double./'.
// TODO(srdjan): Implement as conversion to double and double division.
UNREACHABLE();
break;
}
case Token::kMOD: {
// TODO(srdjan): Implement.
UNREACHABLE();
break;
}
case Token::kOR:
case Token::kAND: {
// Flow graph builder has dissected this operation to guarantee correct
// behavior (short-circuit evaluation).
UNREACHABLE();
break;
}
default:
UNREACHABLE();
break;
}
}
LocationSummary* CheckEitherNonSmiInstr::MakeLocationSummary() const {
ASSERT((left()->ResultCid() != kDoubleCid) &&
(right()->ResultCid() != kDoubleCid));
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
return summary;
}
void CheckEitherNonSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt = compiler->AddDeoptStub(deopt_id(), kDeoptBinaryDoubleOp);
Register temp = locs()->temp(0).reg();
__ movl(temp, locs()->in(0).reg());
__ orl(temp, locs()->in(1).reg());
__ testl(temp, Immediate(kSmiTagMask));
__ j(ZERO, deopt);
}
LocationSummary* BoxDoubleInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs,
kNumTemps,
LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresXmmRegister());
summary->set_out(Location::RequiresRegister());
return summary;
}
class BoxDoubleSlowPath : public SlowPathCode {
public:
explicit BoxDoubleSlowPath(BoxDoubleInstr* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Bind(entry_label());
const Class& double_class = compiler->double_class();
const Code& stub =
Code::Handle(StubCode::GetAllocationStubForClass(double_class));
const ExternalLabel label(double_class.ToCString(), stub.EntryPoint());
LocationSummary* locs = instruction_->locs();
locs->live_registers()->Remove(locs->out());
compiler->SaveLiveRegisters(locs);
compiler->GenerateCall(instruction_->token_pos(),
&label,
PcDescriptors::kOther,
locs);
if (EAX != locs->out().reg()) __ movl(locs->out().reg(), EAX);
compiler->RestoreLiveRegisters(locs);
__ jmp(exit_label());
}
private:
BoxDoubleInstr* instruction_;
};
void BoxDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
BoxDoubleSlowPath* slow_path = new BoxDoubleSlowPath(this);
compiler->AddSlowPathCode(slow_path);
Register out_reg = locs()->out().reg();
XmmRegister value = locs()->in(0).xmm_reg();
AssemblerMacros::TryAllocate(compiler->assembler(),
compiler->double_class(),
slow_path->entry_label(),
Assembler::kFarJump,
out_reg);
__ Bind(slow_path->exit_label());
__ movsd(FieldAddress(out_reg, Double::value_offset()), value);
}
LocationSummary* UnboxDoubleInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = CanDeoptimize() ? 1 : 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (CanDeoptimize()) summary->set_temp(0, Location::RequiresRegister());
summary->set_out(Location::RequiresXmmRegister());
return summary;
}
void UnboxDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const intptr_t value_cid = value()->ResultCid();
const Register value = locs()->in(0).reg();
const XmmRegister result = locs()->out().xmm_reg();
if (value_cid == kDoubleCid) {
__ movsd(result, FieldAddress(value, Double::value_offset()));
} else if (value_cid == kSmiCid) {
__ SmiUntag(value); // Untag input before conversion.
__ cvtsi2sd(result, value);
__ SmiTag(value); // Restore input register.
} else {
Label* deopt = compiler->AddDeoptStub(deopt_id_, kDeoptBinaryDoubleOp);
compiler->LoadDoubleOrSmiToXmm(result,
value,
locs()->temp(0).reg(),
deopt);
}
}
LocationSummary* BinaryDoubleOpInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresXmmRegister());
summary->set_in(1, Location::RequiresXmmRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void BinaryDoubleOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).xmm_reg();
XmmRegister right = locs()->in(1).xmm_reg();
ASSERT(locs()->out().xmm_reg() == left);
switch (op_kind()) {
case Token::kADD: __ addsd(left, right); break;
case Token::kSUB: __ subsd(left, right); break;
case Token::kMUL: __ mulsd(left, right); break;
case Token::kDIV: __ divsd(left, right); break;
default: UNREACHABLE();
}
}
LocationSummary* MathSqrtInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresXmmRegister());
summary->set_out(Location::RequiresXmmRegister());
return summary;
}
void MathSqrtInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ sqrtsd(locs()->out().xmm_reg(), locs()->in(0).xmm_reg());
}
LocationSummary* UnarySmiOpInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void UnarySmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
ASSERT(value == locs()->out().reg());
switch (op_kind()) {
case Token::kNEGATE: {
Label* deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptUnaryOp);
__ negl(value);
__ j(OVERFLOW, deopt);
break;
}
case Token::kBIT_NOT:
__ notl(value);
__ andl(value, Immediate(~kSmiTagMask)); // Remove inverted smi-tag.
break;
default:
UNREACHABLE();
}
}
LocationSummary* SmiToDoubleInstr::MakeLocationSummary() const {
return MakeCallSummary(); // Calls a stub to allocate result.
}
void SmiToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register result = locs()->out().reg();
Label* deopt = compiler->AddDeoptStub(instance_call()->deopt_id(),
kDeoptIntegerToDouble);
const Class& double_class = compiler->double_class();
const Code& stub =
Code::Handle(StubCode::GetAllocationStubForClass(double_class));
const ExternalLabel label(double_class.ToCString(), stub.EntryPoint());
// TODO(vegorov): allocate box in the driver loop to avoid spilling.
compiler->GenerateCall(instance_call()->token_pos(),
&label,
PcDescriptors::kOther,
locs());
ASSERT(result == EAX);
Register value = EBX;
// Preserve argument on the stack until after the deoptimization point.
__ movl(value, Address(ESP, 0));
__ testl(value, Immediate(kSmiTagMask));
__ j(NOT_ZERO, deopt); // Deoptimize if not Smi.
__ SmiUntag(value);
__ cvtsi2sd(XMM0, value);
__ movsd(FieldAddress(result, Double::value_offset()), XMM0);
__ Drop(1);
}
LocationSummary* DoubleToIntegerInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
result->set_in(0, Location::RegisterLocation(ECX));
result->set_out(Location::RegisterLocation(EAX));
return result;
}
void DoubleToIntegerInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register result = locs()->out().reg();
Register value_obj = locs()->in(0).reg();
XmmRegister value_double = XMM0;
ASSERT(result == EAX);
ASSERT(result != value_obj);
__ movsd(value_double, FieldAddress(value_obj, Double::value_offset()));
__ cvttsd2si(result, value_double);
// Overflow is signalled with minint.
Label do_call, done;
// Check for overflow and that it fits into Smi.
__ cmpl(result, Immediate(0xC0000000));
__ j(NEGATIVE, &do_call, Assembler::kNearJump);
__ SmiTag(result);
__ jmp(&done);
__ Bind(&do_call);
__ pushl(value_obj);
ASSERT(instance_call()->HasICData());
const ICData& ic_data = *instance_call()->ic_data();
ASSERT((ic_data.NumberOfChecks() == 1));
const Function& target = Function::ZoneHandle(ic_data.GetTargetAt(0));
const intptr_t kNumberOfArguments = 1;
compiler->GenerateStaticCall(instance_call()->deopt_id(),
instance_call()->token_pos(),
target,
kNumberOfArguments,
Array::Handle(), // No argument names.,
locs());
__ Bind(&done);
}
LocationSummary* PolymorphicInstanceCallInstr::MakeLocationSummary() const {
return MakeCallSummary();
}
void PolymorphicInstanceCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt = compiler->AddDeoptStub(instance_call()->deopt_id(),
kDeoptPolymorphicInstanceCallTestFail);
if (ic_data().NumberOfChecks() == 0) {
__ jmp(deopt);
return;
}
ASSERT(ic_data().num_args_tested() == 1);
if (!with_checks()) {
const Function& target = Function::ZoneHandle(ic_data().GetTargetAt(0));
compiler->GenerateStaticCall(instance_call()->deopt_id(),
instance_call()->token_pos(),
target,
instance_call()->ArgumentCount(),
instance_call()->argument_names(),
locs());
return;
}
// Load receiver into EAX.
__ movl(EAX,
Address(ESP, (instance_call()->ArgumentCount() - 1) * kWordSize));
Label done;
if (ic_data().GetReceiverClassIdAt(0) == kSmiCid) {
__ movl(EDI, Immediate(kSmiCid));
__ testl(EAX, Immediate(kSmiTagMask));
__ j(ZERO, &done, Assembler::kNearJump);
} else {
__ testl(EAX, Immediate(kSmiTagMask));
__ j(ZERO, deopt);
}
__ LoadClassId(EDI, EAX);
__ Bind(&done);
compiler->EmitTestAndCall(ic_data(),
EDI, // Class id register.
instance_call()->ArgumentCount(),
instance_call()->argument_names(),
deopt,
instance_call()->deopt_id(),
instance_call()->token_pos(),
locs());
}
LocationSummary* BranchInstr::MakeLocationSummary() const {
UNREACHABLE();
return NULL;
}
void BranchInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
comparison()->EmitBranchCode(compiler, this);
}
LocationSummary* CheckClassInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
return summary;
}
void CheckClassInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT((unary_checks().GetReceiverClassIdAt(0) != kSmiCid) ||
(unary_checks().NumberOfChecks() > 1));
Register value = locs()->in(0).reg();
Register temp = locs()->temp(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptCheckClass);
Label is_ok;
intptr_t cix = 0;
if (unary_checks().GetReceiverClassIdAt(cix) == kSmiCid) {
__ testl(value, Immediate(kSmiTagMask));
__ j(ZERO, &is_ok);
cix++; // Skip first check.
} else {
__ testl(value, Immediate(kSmiTagMask));
__ j(ZERO, deopt);
}
__ LoadClassId(temp, value);
const intptr_t num_checks = unary_checks().NumberOfChecks();
const bool use_near_jump = num_checks < 5;
for (intptr_t i = cix; i < num_checks; i++) {
ASSERT(unary_checks().GetReceiverClassIdAt(i) != kSmiCid);
__ cmpl(temp, Immediate(unary_checks().GetReceiverClassIdAt(i)));
if (i == (num_checks - 1)) {
__ j(NOT_EQUAL, deopt);
} else {
if (use_near_jump) {
__ j(EQUAL, &is_ok, Assembler::kNearJump);
} else {
__ j(EQUAL, &is_ok);
}
}
}
__ Bind(&is_ok);
}
LocationSummary* CheckSmiInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
return summary;
}
void CheckSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// TODO(srdjan): Check if we can remove this by reordering CSE and LICM.
if (value()->ResultCid() == kSmiCid) return;
Register value = locs()->in(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptCheckSmi);
__ testl(value, Immediate(kSmiTagMask));
__ j(NOT_ZERO, deopt);
}
LocationSummary* CheckArrayBoundInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterOrSmiConstant(array()));
locs->set_in(1, Location::RegisterOrSmiConstant(index()));
return locs;
}
void CheckArrayBoundInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptCheckArrayBound);
if (locs()->in(0).IsConstant() && locs()->in(1).IsConstant()) {
// Unconditionally deoptimize for constant bounds checks because they
// only occur only when index is out-of-bounds.
__ jmp(deopt);
return;
}
intptr_t length_offset = LengthOffsetFor(array_type());
if (locs()->in(1).IsConstant()) {
Register receiver = locs()->in(0).reg();
const Object& constant = locs()->in(1).constant();
ASSERT(constant.IsSmi());
const int32_t imm =
reinterpret_cast<int32_t>(constant.raw());
__ cmpl(FieldAddress(receiver, length_offset), Immediate(imm));
__ j(BELOW_EQUAL, deopt);
} else if (locs()->in(0).IsConstant()) {
ASSERT(locs()->in(0).constant().IsArray() ||
locs()->in(0).constant().IsString());
intptr_t length = locs()->in(0).constant().IsArray()
? Array::Cast(locs()->in(0).constant()).Length()
: String::Cast(locs()->in(0).constant()).Length();
Register index = locs()->in(1).reg();
__ cmpl(index,
Immediate(reinterpret_cast<int32_t>(Smi::New(length))));
__ j(ABOVE_EQUAL, deopt);
} else {
Register receiver = locs()->in(0).reg();
Register index = locs()->in(1).reg();
__ cmpl(index, FieldAddress(receiver, length_offset));
__ j(ABOVE_EQUAL, deopt);
}
}
LocationSummary* UnboxIntegerInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = CanDeoptimize() ? 1 : 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (CanDeoptimize()) summary->set_temp(0, Location::RequiresRegister());
summary->set_out(Location::RequiresXmmRegister());
return summary;
}
void UnboxIntegerInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const intptr_t value_cid = value()->ResultCid();
const Register value = locs()->in(0).reg();
const XmmRegister result = locs()->out().xmm_reg();
if (value_cid == kMintCid) {
__ movsd(result, FieldAddress(value, Mint::value_offset()));
} else if (value_cid == kSmiCid) {
__ SmiUntag(value); // Untag input before conversion.
__ movd(result, value);
__ pmovsxdq(result, result);
__ SmiTag(value); // Restore input register.
} else {
Register temp = locs()->temp(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id_, kDeoptUnboxInteger);
Label is_smi, done;
__ testl(value, Immediate(kSmiTagMask));
__ j(ZERO, &is_smi);
__ CompareClassId(value, kMintCid, temp);
__ j(NOT_EQUAL, deopt);
__ movsd(result, FieldAddress(value, Mint::value_offset()));
__ jmp(&done);
__ Bind(&is_smi);
__ movl(temp, value);
__ SmiUntag(temp);
__ movd(result, temp);
__ pmovsxdq(result, result);
__ Bind(&done);
}
}
LocationSummary* BoxIntegerInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 2;
LocationSummary* summary =
new LocationSummary(kNumInputs,
kNumTemps,
LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresXmmRegister());
summary->set_temp(0, Location::RegisterLocation(EAX));
summary->set_temp(1, Location::RegisterLocation(EDX));
// TODO(fschneider): Save one temp by using result register as a temp.
summary->set_out(Location::RequiresRegister());
return summary;
}
class BoxIntegerSlowPath : public SlowPathCode {
public:
explicit BoxIntegerSlowPath(BoxIntegerInstr* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Bind(entry_label());
const Class& mint_class =
Class::ZoneHandle(Isolate::Current()->object_store()->mint_class());
const Code& stub =
Code::Handle(StubCode::GetAllocationStubForClass(mint_class));
const ExternalLabel label(mint_class.ToCString(), stub.EntryPoint());
LocationSummary* locs = instruction_->locs();
locs->live_registers()->Remove(locs->out());
compiler->SaveLiveRegisters(locs);
compiler->GenerateCall(0, // No token pos.
&label,
PcDescriptors::kOther,
locs);
if (EAX != locs->out().reg()) __ movl(locs->out().reg(), EAX);
compiler->RestoreLiveRegisters(locs);
__ jmp(exit_label());
}
private:
BoxIntegerInstr* instruction_;
};
void BoxIntegerInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
BoxIntegerSlowPath* slow_path = new BoxIntegerSlowPath(this);
compiler->AddSlowPathCode(slow_path);
Register out_reg = locs()->out().reg();
XmmRegister value = locs()->in(0).xmm_reg();
// Unboxed operations produce smis or mint-sized values.
// Check if value fits into a smi.
Label not_smi, done;
__ pextrd(EDX, value, Immediate(1)); // Upper half.
__ pextrd(EAX, value, Immediate(0)); // Lower half.
// 1. Compute (x + -kMinSmi) which has to be in the range
// 0 .. -kMinSmi+kMaxSmi for x to fit into a smi.
__ addl(EAX, Immediate(0x40000000));
__ adcl(EDX, Immediate(0));
// 2. Unsigned compare to -kMinSmi+kMaxSmi.
__ cmpl(EAX, Immediate(0x80000000));
__ sbbl(EDX, Immediate(0));
__ j(ABOVE_EQUAL, &not_smi);
// 3. Restore lower half if result is a smi.
__ subl(EAX, Immediate(0x40000000));
__ SmiTag(EAX);
__ movl(out_reg, EAX);
__ jmp(&done);
__ Bind(&not_smi);
AssemblerMacros::TryAllocate(
compiler->assembler(),
Class::ZoneHandle(Isolate::Current()->object_store()->mint_class()),
slow_path->entry_label(),
Assembler::kFarJump,
out_reg);
__ Bind(slow_path->exit_label());
__ movsd(FieldAddress(out_reg, Mint::value_offset()), value);
__ Bind(&done);
}
LocationSummary* BinaryMintOpInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
switch (op_kind()) {
case Token::kBIT_AND:
case Token::kBIT_OR:
case Token::kBIT_XOR: {
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresXmmRegister());
summary->set_in(1, Location::RequiresXmmRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
case Token::kADD:
case Token::kSUB: {
const intptr_t kNumTemps = 2;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresXmmRegister());
summary->set_in(1, Location::RequiresXmmRegister());
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
default:
UNREACHABLE();
return NULL;
}
}
void BinaryMintOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).xmm_reg();
XmmRegister right = locs()->in(1).xmm_reg();
ASSERT(locs()->out().xmm_reg() == left);
switch (op_kind()) {
case Token::kBIT_AND: __ andpd(left, right); break;
case Token::kBIT_OR: __ orpd(left, right); break;
case Token::kBIT_XOR: __ xorpd(left, right); break;
case Token::kADD:
case Token::kSUB: {
Register lo = locs()->temp(0).reg();
Register hi = locs()->temp(1).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptBinaryMintOp);
Label done, overflow;
__ pextrd(lo, right, Immediate(0)); // Lower half
__ pextrd(hi, right, Immediate(1)); // Upper half
__ subl(ESP, Immediate(2 * kWordSize));
__ movq(Address(ESP, 0), left);
if (op_kind() == Token::kADD) {
__ addl(Address(ESP, 0), lo);
__ adcl(Address(ESP, 1 * kWordSize), hi);
} else {
__ subl(Address(ESP, 0), lo);
__ sbbl(Address(ESP, 1 * kWordSize), hi);
}
__ j(OVERFLOW, &overflow);
__ movq(left, Address(ESP, 0));
__ addl(ESP, Immediate(2 * kWordSize));
__ jmp(&done);
__ Bind(&overflow);
__ addl(ESP, Immediate(2 * kWordSize));
__ jmp(deopt);
__ Bind(&done);
break;
}
default: UNREACHABLE();
}
}
LocationSummary* ShiftMintOpInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = op_kind() == Token::kSHL ? 2 : 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresXmmRegister());
summary->set_in(1, Location::RegisterLocation(ECX));
summary->set_temp(0, Location::RequiresRegister());
if (op_kind() == Token::kSHL) {
summary->set_temp(1, Location::RequiresRegister());
}
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void ShiftMintOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).xmm_reg();
ASSERT(locs()->in(1).reg() == ECX);
ASSERT(locs()->out().xmm_reg() == left);
Label* deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptShiftMintOp);
Label done;
__ testl(ECX, ECX);
__ j(ZERO, &done); // Shift by 0 is a nop.
__ subl(ESP, Immediate(2 * kWordSize));
__ movq(Address(ESP, 0), left);
// Deoptimize if shift count is > 31.
// sarl operation masks the count to 5 bits and
// shrd is undefined with count > operand size (32)
// TODO(fschneider): Support shift counts > 31 without deoptimization.
__ SmiUntag(ECX);
const Immediate kCountLimit = Immediate(31);
__ cmpl(ECX, kCountLimit);
__ j(ABOVE, deopt);
switch (op_kind()) {
case Token::kSHR: {
Register temp = locs()->temp(0).reg();
__ movl(temp, Address(ESP, 1 * kWordSize)); // High half.
__ shrd(Address(ESP, 0), temp); // Shift count in CL.
__ sarl(Address(ESP, 1 * kWordSize), ECX); // Shift count in CL.
break;
}
case Token::kSHL: {
Register temp1 = locs()->temp(0).reg();
Register temp2 = locs()->temp(1).reg();
__ movl(temp1, Address(ESP, 0 * kWordSize)); // Low 32 bits.
__ movl(temp2, Address(ESP, 1 * kWordSize)); // High 32 bits.
__ shll(Address(ESP, 0 * kWordSize), ECX); // Shift count in CL.
__ shld(Address(ESP, 1 * kWordSize), temp1); // Shift count in CL.
// Check for overflow by shifting back the high 32 bits
// and comparing with the input.
__ movl(temp1, temp2);
__ movl(temp2, Address(ESP, 1 * kWordSize));
__ sarl(temp2, ECX);
__ cmpl(temp1, temp2);
__ j(NOT_EQUAL, deopt);
break;
}
default:
UNREACHABLE();
break;
}
__ movq(left, Address(ESP, 0));
__ addl(ESP, Immediate(2 * kWordSize));
__ Bind(&done);
}
LocationSummary* UnaryMintOpInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresXmmRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void UnaryMintOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(op_kind() == Token::kBIT_NOT);
XmmRegister value = locs()->in(0).xmm_reg();
ASSERT(value == locs()->out().xmm_reg());
__ pcmpeqq(XMM0, XMM0); // Generate all 1's.
__ pxor(value, XMM0);
}
} // namespace dart
#undef __
#endif // defined TARGET_ARCH_X64