blob: f2fd58e08e380bdb102e15e78981d4ffb9a41369 [file] [log] [blame]
// Copyright (c) 2020, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
/// This file implements the AST of a Dart-like language suitable for testing
/// flow analysis. Callers may use the top level methods in this file to create
/// AST nodes and then feed them to [Harness.run] to run them through flow
/// analysis testing.
library;
import 'package:_fe_analyzer_shared/src/flow_analysis/flow_analysis.dart'
show
CascadePropertyTarget,
ExpressionInfo,
ExpressionPropertyTarget,
FlowAnalysis,
PropertyTarget,
SuperPropertyTarget,
ThisPropertyTarget;
import 'package:_fe_analyzer_shared/src/flow_analysis/flow_analysis_operations.dart';
import 'package:_fe_analyzer_shared/src/type_inference/assigned_variables.dart';
import 'package:_fe_analyzer_shared/src/type_inference/nullability_suffix.dart';
import 'package:_fe_analyzer_shared/src/type_inference/type_analysis_result.dart'
as shared;
import 'package:_fe_analyzer_shared/src/type_inference/type_analysis_result.dart';
import 'package:_fe_analyzer_shared/src/type_inference/type_analyzer.dart'
as shared;
import 'package:_fe_analyzer_shared/src/type_inference/type_analyzer.dart'
hide MapPatternEntry, RecordPatternField;
import 'package:_fe_analyzer_shared/src/type_inference/type_analyzer_operations.dart';
import 'package:_fe_analyzer_shared/src/type_inference/variable_bindings.dart';
import 'package:_fe_analyzer_shared/src/types/shared_type.dart';
import 'package:test/test.dart';
import 'mini_ir.dart';
import 'mini_types.dart';
final RegExp _locationRegExp =
RegExp('(file:)?[a-zA-Z0-9_./]+.dart:[0-9]+:[0-9]+');
SwitchHeadDefault get default_ =>
SwitchHeadDefault._(location: computeLocation());
ConstExpression get nullLiteral =>
new NullLiteral._(location: computeLocation());
Expression get this_ => new This._(location: computeLocation());
Statement assert_(ProtoExpression condition, [ProtoExpression? message]) {
var location = computeLocation();
return new Assert._(condition.asExpression(location: location),
message?.asExpression(location: location),
location: location);
}
Statement block(List<ProtoStatement> statements) =>
new Block._(statements, location: computeLocation());
Expression booleanLiteral(bool value) =>
BooleanLiteral._(value, location: computeLocation());
Statement break_([Label? target]) =>
new Break(target, location: computeLocation());
/// Creates a pseudo-expression whose function is to verify that flow analysis
/// considers [variable]'s assigned state to be [expectedAssignedState].
Expression checkAssigned(Var variable, bool expectedAssignedState) =>
new CheckAssigned._(variable, expectedAssignedState,
location: computeLocation());
/// Creates a pseudo-expression whose function is to verify that flow analysis
/// considers [promotable] to be un-promoted.
Expression checkNotPromoted(Promotable promotable) =>
new CheckPromoted._(promotable, null, location: computeLocation());
/// Creates a pseudo-expression whose function is to verify that flow analysis
/// considers [promotable]'s assigned state to be promoted to [expectedTypeStr].
Expression checkPromoted(Promotable promotable, String? expectedTypeStr) =>
new CheckPromoted._(promotable, expectedTypeStr,
location: computeLocation());
/// Creates a pseudo-expression whose function is to verify that flow analysis
/// considers the current location's reachability state to be
/// [expectedReachable].
Expression checkReachable(bool expectedReachable) =>
new CheckReachable(expectedReachable, location: computeLocation());
/// Creates a pseudo-expression whose function is to verify that flow analysis
/// considers [variable]'s unassigned state to be [expectedUnassignedState].
Expression checkUnassigned(Var variable, bool expectedUnassignedState) =>
new CheckUnassigned._(variable, expectedUnassignedState,
location: computeLocation());
/// Computes a "location" string using `StackTrace.current` to find the source
/// location of the caller's caller.
///
/// Note: this is highly dependent on the behavior of VM stack traces. This
/// won't work in code compiled with dart2js for example. That's fine, though,
/// since we only run these tests under the VM.
String computeLocation() {
var callStack = StackTrace.current.toString().split('\n');
assert(callStack[0].contains('mini_ast.dart'));
assert(callStack[1].contains('mini_ast.dart'));
String stackLine;
if (callStack[3].contains('joinPatternVariables')) {
stackLine = callStack[3];
} else {
stackLine = callStack[2];
assert(
stackLine.contains('type_inference_test.dart') ||
stackLine.contains('flow_analysis_test.dart'),
'Unexpected file: $stackLine');
}
var match = _locationRegExp.firstMatch(stackLine);
if (match == null) {
throw AssertionError(
'_locationRegExp failed to match $stackLine in $callStack');
}
return match.group(0)!;
}
Statement continue_([Label? target]) =>
new Continue._(target, location: computeLocation());
Statement declare(Var variable,
{bool isLate = false,
bool isFinal = false,
String? type,
ProtoExpression? initializer,
String? expectInferredType}) {
var location = computeLocation();
return new Declare._(
new VariablePattern._(
type == null ? null : Type(type), variable, expectInferredType,
location: location),
initializer?.asExpression(location: location),
isLate: isLate,
isFinal: isFinal,
location: location);
}
Statement do_(List<ProtoStatement> body, ProtoExpression condition) {
var location = computeLocation();
return Do._(Block._(body, location: location),
condition.asExpression(location: location),
location: location);
}
/// Creates a pseudo-expression having type [typeStr] that otherwise has no
/// effect on flow analysis.
ConstExpression expr(String typeStr) =>
new PlaceholderExpression._(new Type(typeStr), location: computeLocation());
/// Creates a conventional `for` statement. Optional boolean [forCollection]
/// indicates that this `for` statement is actually a collection element, so
/// `null` should be passed to [FlowAnalysis.for_bodyBegin].
Statement for_(ProtoStatement? initializer, ProtoExpression? condition,
ProtoExpression? updater, List<ProtoStatement> body,
{bool forCollection = false}) {
var location = computeLocation();
return new For._(
initializer?.asStatement(location: location),
condition?.asExpression(location: location),
updater?.asExpression(location: location),
Block._(body, location: location),
forCollection,
location: location);
}
/// Creates a "for each" statement where the identifier being assigned to by the
/// iteration is not a local variable.
///
/// This models code like:
/// var x; // Top level variable
/// f(Iterable iterable) {
/// for (x in iterable) { ... }
/// }
Statement forEachWithNonVariable(
ProtoExpression iterable, List<ProtoStatement> body) {
var location = computeLocation();
return new ForEach._(null, iterable.asExpression(location: location),
Block._(body, location: location), false,
location: location);
}
/// Creates a "for each" statement where the identifier being assigned to by the
/// iteration is a variable that is being declared by the "for each" statement.
///
/// This models code like:
/// f(Iterable iterable) {
/// for (var x in iterable) { ... }
/// }
Statement forEachWithVariableDecl(
Var variable, ProtoExpression iterable, List<ProtoStatement> body) {
var location = computeLocation();
return new ForEach._(
variable, iterable.asExpression(location: location), block(body), true,
location: location);
}
/// Creates a "for each" statement where the identifier being assigned to by the
/// iteration is a local variable that is declared elsewhere in the function.
///
/// This models code like:
/// f(Iterable iterable) {
/// var x;
/// for (x in iterable) { ... }
/// }
Statement forEachWithVariableSet(
Var variable, ProtoExpression iterable, List<ProtoStatement> body) {
var location = computeLocation();
return new ForEach._(variable, iterable.asExpression(location: location),
Block._(body, location: location), false,
location: location);
}
Statement if_(ProtoExpression condition, List<ProtoStatement> ifTrue,
[List<ProtoStatement>? ifFalse]) {
var location = computeLocation();
return new If._(
condition.asExpression(location: location),
Block._(ifTrue, location: location),
ifFalse == null ? null : Block._(ifFalse, location: location),
location: location);
}
Statement ifCase(ProtoExpression expression, PossiblyGuardedPattern pattern,
List<ProtoStatement> ifTrue,
[List<ProtoStatement>? ifFalse]) {
var location = computeLocation();
var guardedPattern = pattern._asGuardedPattern;
return IfCase(
expression.asExpression(location: location),
guardedPattern.pattern,
guardedPattern.guard,
Block._(ifTrue, location: location),
ifFalse != null ? Block._(ifFalse, location: location) : null,
location: location,
);
}
CollectionElement ifCaseElement(
ProtoExpression expression,
PossiblyGuardedPattern pattern,
ProtoCollectionElement ifTrue, [
ProtoCollectionElement? ifFalse,
]) {
var location = computeLocation();
var guardedPattern = pattern._asGuardedPattern;
return new IfCaseElement(
expression.asExpression(location: location),
guardedPattern.pattern,
guardedPattern.guard,
ifTrue.asCollectionElement(location: location),
ifFalse?.asCollectionElement(location: location),
location: location,
);
}
CollectionElement ifElement(
ProtoExpression condition, ProtoCollectionElement ifTrue,
[ProtoCollectionElement? ifFalse]) {
var location = computeLocation();
return new IfElement._(
condition.asExpression(location: location),
ifTrue.asCollectionElement(location: location),
ifFalse?.asCollectionElement(location: location),
location: location);
}
ConstExpression intLiteral(int value, {bool? expectConversionToDouble}) =>
new IntLiteral(value,
expectConversionToDouble: expectConversionToDouble,
location: computeLocation());
/// Creates a list literal containing the given [elements].
///
/// [elementType] is the explicit type argument of the list literal.
/// TODO(paulberry): support list literals with an inferred type argument.
Expression listLiteral(List<ProtoCollectionElement> elements,
{required String elementType}) {
var location = computeLocation();
return ListLiteral._([
for (var element in elements)
element.asCollectionElement(location: location)
], Type(elementType), location: location);
}
Pattern listPattern(List<ListPatternElement> elements, {String? elementType}) =>
ListPattern._(elementType == null ? null : Type(elementType), elements,
location: computeLocation());
Expression localFunction(List<ProtoStatement> body) {
var location = computeLocation();
return LocalFunction._(Block._(body, location: location), location: location);
}
/// Creates a map entry containing the given [key] and [value] subexpressions.
CollectionElement mapEntry(ProtoExpression key, ProtoExpression value) {
var location = computeLocation();
return MapEntry._(key.asExpression(location: location),
value.asExpression(location: location),
location: location);
}
/// Creates a map literal containing the given [elements].
///
/// [keyType] and [valueType] are the explicit type arguments of the map
/// literal. TODO(paulberry): support map literals with inferred type arguments.
Expression mapLiteral(List<ProtoCollectionElement> elements,
{required String keyType, required String valueType}) {
var location = computeLocation();
return MapLiteral._([
for (var element in elements)
element.asCollectionElement(location: location)
], Type(keyType), Type(valueType), location: location);
}
Pattern mapPattern(List<MapPatternElement> elements,
{String? keyType, String? valueType}) {
var location = computeLocation();
return MapPattern._(
keyType == null && valueType == null
? null
: (keyType: Type(keyType!), valueType: Type(valueType!)),
elements,
location: location);
}
MapPatternElement mapPatternEntry(ProtoExpression key, Pattern value) {
var location = computeLocation();
return MapPatternEntry._(key.asExpression(location: location), value,
location: location);
}
Pattern mapPatternWithTypeArguments({
required String keyType,
required String valueType,
required List<MapPatternElement> elements,
}) {
var location = computeLocation();
return MapPattern._(
(
keyType: Type(keyType),
valueType: Type(valueType),
),
elements,
location: location,
);
}
Statement match(Pattern pattern, ProtoExpression initializer,
{bool isLate = false, bool isFinal = false}) {
var location = computeLocation();
return new Declare._(pattern, initializer.asExpression(location: location),
isLate: isLate, isFinal: isFinal, location: location);
}
Pattern objectPattern({
required String requiredType,
required List<RecordPatternField> fields,
}) {
var parsedType = Type(requiredType);
if (parsedType is! PrimaryType ||
parsedType.nullabilitySuffix != NullabilitySuffix.none) {
fail('Expected a primary type, got $parsedType');
}
return ObjectPattern._(
requiredType: parsedType,
fields: fields,
location: computeLocation(),
);
}
/// Creates a "pattern-for-in" statement.
///
/// This models code like:
/// void f(Iterable<(int, String)> iterable) {
/// for (var (a, b) in iterable) { ... }
/// }
Statement patternForIn(
Pattern pattern,
ProtoExpression expression,
List<ProtoStatement> body, {
bool hasAwait = false,
}) {
var location = computeLocation();
return new PatternForIn(pattern, expression.asExpression(location: location),
Block._(body, location: location),
hasAwait: hasAwait, location: location);
}
/// Creates a "pattern-for-in" element.
///
/// This models code like:
/// void f(Iterable<(int, String)> iterable) {
/// [for (var (a, b) in iterable) '$a $b']
/// }
CollectionElement patternForInElement(
Pattern pattern,
ProtoExpression expression,
ProtoCollectionElement body, {
bool hasAwait = false,
}) {
var location = computeLocation();
return new PatternForInElement(
pattern,
expression.asExpression(location: location),
body.asCollectionElement(location: location),
hasAwait: hasAwait,
location: location);
}
Pattern recordPattern(List<RecordPatternField> fields) =>
RecordPattern._(fields, location: computeLocation());
Pattern relationalPattern(String operator, ProtoExpression operand,
{String? errorId}) {
var location = computeLocation();
var result = RelationalPattern._(
operator, operand.asExpression(location: location),
location: location);
if (errorId != null) {
result.errorId = errorId;
}
return result;
}
/// Creates a "rest" pattern with optional [subPattern], for use in a list
/// pattern.
///
/// Although using a rest pattern inside a map pattern is an error, it's allowed
/// syntactically (since this leads to better error recovery). To facilitate
/// testing of the error recovery logic, the returned type ([RestPattern]) may
/// be used were a [MapPatternElement] is expected.
RestPattern restPattern([Pattern? subPattern]) =>
RestPattern._(subPattern, location: computeLocation());
Statement return_() => new Return._(location: computeLocation());
/// Models a call to a generic Dart function that takes two arguments and
/// returns the second argument; in other words, a function defined this way:
///
/// T second(dynamic x, T y) => y;
///
/// This can be useful in situations where a test needs to verify certain
/// properties, or establish certain preconditions, before the analysis reaches
/// a certain subexpression.
Expression second(ProtoExpression first, ProtoExpression second) {
var location = computeLocation();
return Second._(first.asExpression(location: location),
second.asExpression(location: location),
location: location);
}
PromotableLValue superProperty(String name) => new ThisOrSuperProperty._(name,
location: computeLocation(), isSuperAccess: true);
Statement switch_(ProtoExpression expression, List<SwitchStatementMember> cases,
{bool? isLegacyExhaustive,
bool? expectHasDefault,
bool? expectIsExhaustive,
bool? expectLastCaseTerminates,
bool? expectRequiresExhaustivenessValidation,
String? expectScrutineeType}) {
var location = computeLocation();
return new SwitchStatement(
expression.asExpression(location: location), cases, isLegacyExhaustive,
location: location,
expectHasDefault: expectHasDefault,
expectIsExhaustive: expectIsExhaustive,
expectLastCaseTerminates: expectLastCaseTerminates,
expectRequiresExhaustivenessValidation:
expectRequiresExhaustivenessValidation,
expectScrutineeType: expectScrutineeType);
}
Expression switchExpr(ProtoExpression expression, List<ExpressionCase> cases) {
var location = computeLocation();
return new SwitchExpression._(
expression.asExpression(location: location), cases,
location: location);
}
SwitchStatementMember switchStatementMember(
List<ProtoSwitchHead> cases,
List<ProtoStatement> body, {
bool hasLabels = false,
}) {
var location = computeLocation();
return SwitchStatementMember._(
[for (var case_ in cases) case_.asSwitchHead],
Block._(body, location: location),
hasLabels: hasLabels,
location: computeLocation(),
);
}
PromotableLValue thisProperty(String name) => new ThisOrSuperProperty._(name,
location: computeLocation(), isSuperAccess: false);
Expression throw_(ProtoExpression operand) {
var location = computeLocation();
return new Throw._(operand.asExpression(location: location),
location: location);
}
TryBuilder try_(List<ProtoStatement> body) {
var location = computeLocation();
return new TryStatementImpl(Block._(body, location: location), [], null,
location: location);
}
Statement while_(ProtoExpression condition, List<ProtoStatement> body) {
var location = computeLocation();
return new While._(condition.asExpression(location: location),
Block._(body, location: location),
location: location);
}
Pattern wildcard({String? type, String? expectInferredType}) {
return WildcardPattern._(
declaredType: type == null ? null : Type(type),
expectInferredType: expectInferredType,
location: computeLocation(),
);
}
typedef SharedMatchContext
= shared.MatchContext<Node, Expression, Pattern, SharedTypeView<Type>, Var>;
typedef SharedRecordPatternField = shared.RecordPatternField<Node, Pattern>;
class As extends Expression {
final Expression target;
final Type type;
As._(this.target, this.type, {required super.location});
@override
void preVisit(PreVisitor visitor) {
target.preVisit(visitor);
}
@override
String toString() => '$target as $type';
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
return h.typeAnalyzer.analyzeTypeCast(this, target, type);
}
}
class Assert extends Statement {
final Expression condition;
final Expression? message;
Assert._(this.condition, this.message, {required super.location});
@override
void preVisit(PreVisitor visitor) {
condition.preVisit(visitor);
message?.preVisit(visitor);
}
@override
String toString() =>
'assert($condition${message == null ? '' : ', $message'});';
@override
void visit(Harness h) {
h.typeAnalyzer.analyzeAssertStatement(this, condition, message);
h.irBuilder.apply(
'assert', [Kind.expression, Kind.expression], Kind.statement,
location: location);
}
}
class Block extends Statement {
final List<Statement> statements;
Block._(List<ProtoStatement> statements, {required super.location})
: statements = [
for (var s in statements) s.asStatement(location: location)
];
@override
void preVisit(PreVisitor visitor) {
for (var statement in statements) {
statement.preVisit(visitor);
}
}
@override
String toString() =>
statements.isEmpty ? '{}' : '{ ${statements.join(' ')} }';
@override
void visit(Harness h) {
h.typeAnalyzer.analyzeBlock(statements);
h.irBuilder.apply(
'block', List.filled(statements.length, Kind.statement), Kind.statement,
location: location);
}
}
class BooleanLiteral extends Expression {
final bool value;
BooleanLiteral._(this.value, {required super.location});
@override
void preVisit(PreVisitor visitor) {}
@override
String toString() => '$value';
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
var type = h.typeAnalyzer.analyzeBoolLiteral(this, value);
h.irBuilder.atom('$value', Kind.expression, location: location);
return new SimpleTypeAnalysisResult<Type>(type: SharedTypeView(type));
}
}
/// Normal implementation of [Label].
class BoundLabel extends Label {
final String name;
Statement? _binding;
BoundLabel._(this.name) : super._(location: computeLocation());
@override
Statement thenStmt(Statement statement) {
if (statement is! LabeledStatement) {
statement = LabeledStatement._(statement, location: computeLocation());
}
statement.labels.insert(0, this);
_binding = statement;
return statement;
}
@override
String toString() => name;
@override
Statement? _getBinding() {
var binding = _binding;
if (binding == null) {
fail("Unbound label $name");
}
return binding;
}
}
class Break extends Statement {
final Label? target;
Break(this.target, {required super.location});
@override
void preVisit(PreVisitor visitor) {}
@override
String toString() => 'break;';
@override
void visit(Harness h) {
var target = this.target;
h.typeAnalyzer.analyzeBreakStatement(target == null
? h.typeAnalyzer._currentBreakTarget
: target._getBinding());
h.irBuilder.apply('break', [], Kind.statement, location: location);
}
}
/// Representation of a cascade expression in the pseudo-Dart language used for
/// flow analysis testing.
class Cascade extends Expression {
/// The expression appearing before the first `..` (or `?..`).
final Expression target;
/// List of the cascade sections. Each cascade section is an ordinary
/// expression, built around a [Property] or [InvokeMethod] expression whose
/// target is a [CascadePlaceholder]. See [CascadePlaceholder] for more
/// information.
final List<Expression> sections;
/// Indicates whether the cascade is null-aware (i.e. its first section is
/// preceded by `?..` instead of `..`).
final bool isNullAware;
Cascade._(this.target, this.sections,
{required this.isNullAware, required super.location});
@override
void preVisit(PreVisitor visitor) {
target.preVisit(visitor);
for (var section in sections) {
section.preVisit(visitor);
}
}
@override
String toString() {
return [target, if (isNullAware) '?', ...sections].join('');
}
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
// Form the IR for evaluating the LHS
var targetType =
h.typeAnalyzer.dispatchExpression(target, schema).resolveShorting();
var previousCascadeTargetIR = h.typeAnalyzer._currentCascadeTargetIR;
var previousCascadeType = h.typeAnalyzer._currentCascadeTargetType;
// Create a let-variable that will be initialized to the value of the LHS
var targetTmp =
h.typeAnalyzer._currentCascadeTargetIR = h.irBuilder.allocateTmp();
h.typeAnalyzer._currentCascadeTargetType = h.flow
.cascadeExpression_afterTarget(target, targetType,
isNullAware: isNullAware)
.unwrapTypeView();
if (isNullAware) {
h.flow.nullAwareAccess_rightBegin(target, targetType);
// Push `targetTmp == null` and `targetTmp` on the IR builder stack,
// because they'll be needed later to form the conditional expression that
// does the null-aware guarding.
h.irBuilder.readTmp(targetTmp, location: location);
h.irBuilder.atom('null', Kind.expression, location: location);
h.irBuilder.apply(
'==', [Kind.expression, Kind.expression], Kind.expression,
location: location);
h.irBuilder.readTmp(targetTmp, location: location);
}
// Form the IR for evaluating each section
List<MiniIRTmp> sectionTmps = [];
for (var section in sections) {
h.typeAnalyzer.dispatchExpression(section, h.operations.unknownType);
// Create a let-variable that will be initialized to the value of the
// section (which will be discarded)
sectionTmps.add(h.irBuilder.allocateTmp());
}
// For the final IR, `let targetTmp = target in let section1Tmp = section1
// in section2Tmp = section2 ... in targetTmp`, or, for null-aware cascades,
// `let targetTmp = target in targetTmp == null ? targetTmp : let
// section1Tmp = section1 in section2Tmp = section2 ... in targetTmp`.
h.irBuilder.readTmp(targetTmp, location: location);
for (int i = sectionTmps.length; i-- > 0;) {
h.irBuilder.let(sectionTmps[i], location: location);
}
if (isNullAware) {
h.irBuilder.apply('if',
[Kind.expression, Kind.expression, Kind.expression], Kind.expression,
location: location);
h.flow.nullAwareAccess_end();
}
h.irBuilder.let(targetTmp, location: location);
h.flow.cascadeExpression_end(this);
h.typeAnalyzer._currentCascadeTargetIR = previousCascadeTargetIR;
h.typeAnalyzer._currentCascadeTargetType = previousCascadeType;
return SimpleTypeAnalysisResult(type: targetType);
}
}
/// Representation of the implicit reference to a cascade target in a cascade
/// section, in the pseudo-Dart language used for flow analysis testing.
///
/// For example, in the cascade expression `x..f()`, the cascade section `..f()`
/// is represented as an [InvokeMethod] expression whose `target` is a
/// [CascadePlaceholder].
class CascadePlaceholder extends Expression {
CascadePlaceholder._({required super.location});
@override
void preVisit(PreVisitor visitor) {}
@override
String toString() {
// We use an empty string as the string representation of a cascade
// placeholder. This ensures that in a cascade expression like `x..f()`, the
// cascade section will have the string representation `..f()`.
return '.';
}
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
h.irBuilder
.readTmp(h.typeAnalyzer._currentCascadeTargetIR!, location: location);
return SimpleTypeAnalysisResult(
type: SharedTypeView(h.typeAnalyzer._currentCascadeTargetType!));
}
}
class CastPattern extends Pattern {
final Pattern inner;
final Type type;
CastPattern(this.inner, this.type, {required super.location}) : super._();
@override
SharedTypeSchemaView<Type> computeSchema(Harness h) =>
h.typeAnalyzer.analyzeCastPatternSchema();
@override
void preVisit(PreVisitor visitor, VariableBinder<Node, Var> variableBinder,
{required bool isInAssignment}) {
inner.preVisit(visitor, variableBinder, isInAssignment: isInAssignment);
}
@override
PatternResult<Type> visit(Harness h, SharedMatchContext context) {
var analysisResult = h.typeAnalyzer.analyzeCastPattern(
context: context,
pattern: this,
innerPattern: inner,
requiredType: SharedTypeView(type),
);
var matchedType = analysisResult.matchedValueType.unwrapTypeView();
h.irBuilder.atom(type.type, Kind.type, location: location);
h.irBuilder.atom(matchedType.type, Kind.type, location: location);
h.irBuilder.apply(
'castPattern', [Kind.pattern, Kind.type, Kind.type], Kind.pattern,
names: ['matchedType'], location: location);
return analysisResult;
}
@override
String _debugString({required bool needsKeywordOrType}) =>
'${inner._debugString(needsKeywordOrType: needsKeywordOrType)} as '
'${type.type}';
}
/// Representation of a single catch clause in a try/catch statement. Use
/// [TryBuilder.catch_] to create instances of this class.
class CatchClause {
final Statement body;
final Var? exception;
final Var? stackTrace;
CatchClause._(this.body, this.exception, this.stackTrace);
@override
String toString() {
String initialPart;
if (stackTrace != null) {
initialPart = 'catch (${exception!.name}, ${stackTrace!.name})';
} else if (exception != null) {
initialPart = 'catch (${exception!.name})';
} else {
initialPart = 'on ...';
}
return '$initialPart $body';
}
void _preVisit(PreVisitor visitor) {
body.preVisit(visitor);
}
}
class CheckAssigned extends Expression {
final Var variable;
final bool expectedAssignedState;
CheckAssigned._(this.variable, this.expectedAssignedState,
{required super.location});
@override
void preVisit(PreVisitor visitor) {}
@override
String toString() {
var verb = expectedAssignedState ? 'is' : 'is not';
return 'check $variable $verb definitely assigned;';
}
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
expect(h.flow.isAssigned(variable), expectedAssignedState,
reason: 'at $location');
h.irBuilder.atom('null', Kind.expression, location: location);
return SimpleTypeAnalysisResult(
type: SharedTypeView(h.typeAnalyzer.nullType));
}
}
class CheckCollectionElementIR extends CollectionElement {
final CollectionElement inner;
final String expectedIR;
CheckCollectionElementIR._(this.inner, this.expectedIR,
{required super.location});
@override
void preVisit(PreVisitor visitor) {
inner.preVisit(visitor);
}
@override
String toString() => '$inner (should produce IR $expectedIR)';
@override
void visit(Harness h, CollectionElementContext context) {
h.typeAnalyzer.dispatchCollectionElement(inner, context);
h.irBuilder.check(expectedIR, Kind.collectionElement, location: location);
}
}
class CheckExpressionIR extends Expression {
final Expression inner;
final String expectedIR;
CheckExpressionIR._(this.inner, this.expectedIR, {required super.location});
@override
void preVisit(PreVisitor visitor) {
inner.preVisit(visitor);
}
@override
String toString() => '$inner (should produce IR $expectedIR)';
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
var result =
h.typeAnalyzer.analyzeParenthesizedExpression(this, inner, schema);
h.irBuilder.check(expectedIR, Kind.expression, location: location);
return result;
}
}
class CheckExpressionSchema extends Expression {
final Expression inner;
final String expectedSchema;
CheckExpressionSchema._(this.inner, this.expectedSchema,
{required super.location});
@override
void preVisit(PreVisitor visitor) {
inner.preVisit(visitor);
}
@override
String toString() => '$inner (should be in schema $expectedSchema)';
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
expect(schema.unwrapTypeSchemaView().type, expectedSchema);
var result =
h.typeAnalyzer.analyzeParenthesizedExpression(this, inner, schema);
return result;
}
}
class CheckExpressionType extends Expression {
final Expression target;
final String expectedType;
CheckExpressionType(this.target, this.expectedType,
{required super.location});
@override
void preVisit(PreVisitor visitor) {
target.preVisit(visitor);
}
@override
String toString() => '$target (expected type: $expectedType)';
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
var result =
h.typeAnalyzer.analyzeParenthesizedExpression(this, target, schema);
expect(result.type.unwrapTypeView().type, expectedType,
reason: 'at $location');
return result;
}
}
class CheckPromoted extends Expression {
final Promotable promotable;
final String? expectedTypeStr;
CheckPromoted._(this.promotable, this.expectedTypeStr,
{required super.location});
@override
void preVisit(PreVisitor visitor) {
promotable.preVisit(visitor);
}
@override
String toString() {
var predicate = expectedTypeStr == null
? 'not promoted'
: 'promoted to $expectedTypeStr';
return 'check $promotable $predicate;';
}
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
var promotedType = promotable._getPromotedType(h);
expect(promotedType?.type, expectedTypeStr, reason: 'at $location');
return SimpleTypeAnalysisResult(type: SharedTypeView(NullType.instance));
}
}
class CheckReachable extends Expression {
final bool expectedReachable;
CheckReachable(this.expectedReachable, {required super.location});
@override
void preVisit(PreVisitor visitor) {}
@override
String toString() => 'check reachable';
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
expect(h.flow.isReachable, expectedReachable, reason: 'at $location');
h.irBuilder.atom('null', Kind.expression, location: location);
return new SimpleTypeAnalysisResult(
type: SharedTypeView(NullType.instance));
}
}
class CheckStatementIR extends Statement {
final Statement inner;
final String expectedIR;
CheckStatementIR._(this.inner, this.expectedIR, {required super.location});
@override
void preVisit(PreVisitor visitor) {
inner.preVisit(visitor);
}
@override
String toString() => '$inner (should produce IR $expectedIR)';
@override
void visit(Harness h) {
h.typeAnalyzer.dispatchStatement(inner);
h.irBuilder.check(expectedIR, Kind.statement, location: location);
}
}
class CheckUnassigned extends Expression {
final Var variable;
final bool expectedUnassignedState;
CheckUnassigned._(this.variable, this.expectedUnassignedState,
{required super.location});
@override
void preVisit(PreVisitor visitor) {}
@override
String toString() {
var verb = expectedUnassignedState ? 'is' : 'is not';
return 'check $variable $verb definitely unassigned;';
}
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
expect(h.flow.isUnassigned(variable), expectedUnassignedState,
reason: 'at $location');
h.irBuilder.atom('null', Kind.expression, location: location);
return SimpleTypeAnalysisResult(
type: SharedTypeView(h.typeAnalyzer.nullType));
}
}
/// Representation of a collection element in the pseudo-Dart language used for
/// type analysis testing.
abstract class CollectionElement extends Node
with ProtoCollectionElement<CollectionElement> {
CollectionElement({required super.location}) : super._();
@override
CollectionElement asCollectionElement({required String location}) => this;
@override
CollectionElement checkIR(String expectedIR) {
var location = computeLocation();
return CheckCollectionElementIR._(
asCollectionElement(location: location), expectedIR,
location: location);
}
void preVisit(PreVisitor visitor);
void visit(Harness h, CollectionElementContext context);
}
abstract class CollectionElementContext {}
class CollectionElementContextMapEntry extends CollectionElementContext {
final Type keyType;
final Type valueType;
CollectionElementContextMapEntry._(this.keyType, this.valueType);
}
class CollectionElementContextType extends CollectionElementContext {
final SharedTypeSchemaView<Type> elementTypeSchema;
CollectionElementContextType._(this.elementTypeSchema);
}
class Conditional extends Expression {
final Expression condition;
final Expression ifTrue;
final Expression ifFalse;
Conditional._(this.condition, this.ifTrue, this.ifFalse,
{required super.location});
@override
void preVisit(PreVisitor visitor) {
condition.preVisit(visitor);
visitor._assignedVariables.beginNode();
ifTrue.preVisit(visitor);
visitor._assignedVariables.endNode(this);
ifFalse.preVisit(visitor);
}
@override
String toString() => '$condition ? $ifTrue : $ifFalse';
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
var result = h.typeAnalyzer
.analyzeConditionalExpression(this, condition, ifTrue, ifFalse);
h.irBuilder.apply('if', [Kind.expression, Kind.expression, Kind.expression],
Kind.expression,
location: location);
return result;
}
}
class ConstantPattern extends Pattern {
final Expression constant;
ConstantPattern(this.constant, {required super.location}) : super._();
@override
SharedTypeSchemaView<Type> computeSchema(Harness h) =>
h.typeAnalyzer.analyzeConstantPatternSchema();
@override
void preVisit(PreVisitor visitor, VariableBinder<Node, Var> variableBinder,
{required bool isInAssignment}) {
constant.preVisit(visitor);
}
@override
PatternResult<Type> visit(Harness h, SharedMatchContext context) {
var analysisResult =
h.typeAnalyzer.analyzeConstantPattern(context, this, constant);
var matchedType = analysisResult.matchedValueType.unwrapTypeView();
h.irBuilder.atom(matchedType.type, Kind.type, location: location);
h.irBuilder.apply('const', [Kind.expression, Kind.type], Kind.pattern,
names: ['matchedType'], location: location);
return analysisResult;
}
@override
_debugString({required bool needsKeywordOrType}) => constant.toString();
}
/// Common interface shared by constructs that represent constant expressions,
/// in the pseudo-Dart language used for flow analysis testing.
abstract class ConstExpression extends Expression {
ConstExpression._({required super.location});
/// Converts this expression into a constant pattern.
Pattern get pattern => ConstantPattern(this, location: computeLocation());
}
class Continue extends Statement {
final Label? target;
Continue._(this.target, {required super.location});
@override
void preVisit(PreVisitor visitor) {}
@override
String toString() => 'continue;';
@override
void visit(Harness h) {
var target = this.target;
h.typeAnalyzer.analyzeContinueStatement(target == null
? h.typeAnalyzer._currentContinueTarget
: target._getBinding());
h.irBuilder.apply('continue', [], Kind.statement, location: location);
}
}
class Declare extends Statement {
final bool isLate;
final bool isFinal;
final Pattern pattern;
final Expression? initializer;
Declare._(this.pattern, this.initializer,
{required this.isLate, required this.isFinal, required super.location});
@override
void preVisit(PreVisitor visitor) {
var variableBinder = _VariableBinder(visitor);
variableBinder.casePatternStart();
pattern.preVisit(visitor, variableBinder, isInAssignment: false);
variableBinder.casePatternFinish();
variableBinder.finish();
if (isLate) {
visitor._assignedVariables.beginNode();
}
initializer?.preVisit(visitor);
if (isLate) {
visitor._assignedVariables.endNode(this);
}
}
@override
String toString() {
var parts = <String>[
if (isLate) 'late',
if (isFinal) 'final',
pattern._debugString(needsKeywordOrType: !isFinal),
if (initializer != null) '= $initializer'
];
return '${parts.join(' ')};';
}
@override
void visit(Harness h) {
String irName;
List<Kind> argKinds;
List<String> names = const [];
var initializer = this.initializer;
if (isLate) {
// Late declarations are not allowed using patterns, so interpret the
// declaration as an old-fashioned variable declaration.
var pattern = this.pattern as VariablePattern;
var variable = pattern.variable;
h.irBuilder.atom(variable.name, Kind.variable, location: location);
var declaredType = pattern.declaredType;
Type staticType;
if (initializer == null) {
// Use the shared logic for analyzing uninitialized variable
// declarations.
staticType = h.typeAnalyzer
.analyzeUninitializedVariableDeclaration(
this, pattern.variable, declaredType?.wrapSharedTypeView(),
isFinal: isFinal)
.unwrapTypeView();
irName = 'declare';
argKinds = [Kind.variable];
} else {
// There's no shared logic for analyzing initialized late variable
// declarations, so analyze the declaration directly.
h.flow.lateInitializer_begin(this);
var initializerType = h.typeAnalyzer
.analyzeExpression(
initializer,
declaredType?.wrapSharedTypeSchemaView() ??
h.operations.unknownType)
.unwrapTypeView();
h.flow.lateInitializer_end();
staticType = variable.type = declaredType ?? initializerType;
h.flow.declare(variable, SharedTypeView(staticType), initialized: true);
h.flow.initialize(
variable, SharedTypeView(initializerType), initializer,
isFinal: isFinal,
isLate: true,
isImplicitlyTyped: declaredType == null);
h.irBuilder.atom(initializerType.type, Kind.type, location: location);
h.irBuilder.atom(staticType.type, Kind.type, location: location);
irName = 'declare';
argKinds = [Kind.variable, Kind.expression, Kind.type, Kind.type];
names = (['initializerType', 'staticType']);
}
// Finally, double check the inferred variable type, if necessary for the
// test.
var expectInferredType = pattern.expectInferredType;
if (expectInferredType != null) {
expect(staticType, expectInferredType);
}
} else if (initializer == null) {
var pattern = this.pattern as VariablePattern;
var declaredType = pattern.declaredType;
var staticType = h.typeAnalyzer
.analyzeUninitializedVariableDeclaration(
this, pattern.variable, declaredType?.wrapSharedTypeView(),
isFinal: isFinal)
.unwrapTypeView();
h.typeAnalyzer.handleDeclaredVariablePattern(pattern,
matchedType: staticType, staticType: staticType);
irName = 'declare';
argKinds = [Kind.pattern];
} else {
h.typeAnalyzer.analyzePatternVariableDeclaration(
this, pattern, initializer,
isFinal: isFinal);
irName = 'match';
argKinds = [Kind.expression, Kind.pattern];
}
h.irBuilder.apply(
[irName, if (isLate) 'late', if (isFinal) 'final'].join('_'),
argKinds,
Kind.statement,
location: location,
names: names);
}
}
class Do extends Statement {
final Statement body;
final Expression condition;
Do._(this.body, this.condition, {required super.location});
@override
void preVisit(PreVisitor visitor) {
visitor._assignedVariables.beginNode();
body.preVisit(visitor);
condition.preVisit(visitor);
visitor._assignedVariables.endNode(this);
}
@override
String toString() => 'do $body while ($condition);';
@override
void visit(Harness h) {
h.typeAnalyzer.analyzeDoLoop(this, body, condition);
h.irBuilder.apply('do', [Kind.statement, Kind.expression], Kind.statement,
location: location);
}
}
class Equal extends Expression {
final Expression lhs;
final Expression rhs;
final bool isInverted;
Equal._(this.lhs, this.rhs, this.isInverted, {required super.location});
@override
void preVisit(PreVisitor visitor) {
lhs.preVisit(visitor);
rhs.preVisit(visitor);
}
@override
String toString() => '$lhs ${isInverted ? '!=' : '=='} $rhs';
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
var operatorName = isInverted ? '!=' : '==';
var result =
h.typeAnalyzer.analyzeBinaryExpression(this, lhs, operatorName, rhs);
h.irBuilder.apply(
operatorName, [Kind.expression, Kind.expression], Kind.expression,
location: location);
return result;
}
}
/// Representation of an expression in the pseudo-Dart language used for flow
/// analysis testing. Methods in this class may be used to create more complex
/// expressions based on this one.
abstract class Expression extends Node
with
ProtoStatement<Expression>,
ProtoCollectionElement<Expression>,
ProtoExpression {
Expression({required super.location}) : super._();
@override
Expression asExpression({required String location}) => this;
void preVisit(PreVisitor visitor);
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema);
}
/// Representation of a single case clause in a switch expression. Use
/// [PossiblyGuardedPattern.thenExpr] or [SwitchHead.thenExpr] to create
/// instances of this class.
class ExpressionCase extends Node {
final GuardedPattern? guardedPattern;
final Expression expression;
ExpressionCase._(this.guardedPattern, this.expression,
{required super.location})
: super._();
@override
String toString() => [
guardedPattern == null ? 'default' : 'case $guardedPattern',
': $expression'
].join('');
void _preVisit(PreVisitor visitor) {
final guardedPattern = this.guardedPattern;
if (guardedPattern != null) {
var variableBinder = _VariableBinder(visitor);
variableBinder.casePatternStart();
guardedPattern.pattern
.preVisit(visitor, variableBinder, isInAssignment: false);
guardedPattern.variables = variableBinder.casePatternFinish();
variableBinder.finish();
}
expression.preVisit(visitor);
}
}
class ExpressionCollectionElement extends CollectionElement {
final Expression expression;
ExpressionCollectionElement(this.expression, {required super.location});
@override
void preVisit(PreVisitor visitor) {
expression.preVisit(visitor);
}
@override
String toString() => '$expression;';
@override
void visit(Harness h, CollectionElementContext context) {
SharedTypeSchemaView<Type> typeSchema =
context is CollectionElementContextType
? context.elementTypeSchema
: h.operations.unknownType;
h.typeAnalyzer.dispatchExpression(expression, typeSchema);
h.irBuilder.apply('celt', [Kind.expression], Kind.collectionElement,
location: location);
}
}
class ExpressionInTypeSchema extends Statement {
final Expression expr;
final SharedTypeSchemaView<Type> typeSchema;
ExpressionInTypeSchema._(this.expr, this.typeSchema,
{required super.location});
@override
void preVisit(PreVisitor visitor) {
expr.preVisit(visitor);
}
@override
String toString() => '$expr (in type schema $typeSchema);';
@override
void visit(Harness h) {
h.typeAnalyzer.analyzeExpression(expr, typeSchema);
h.irBuilder
.apply('stmt', [Kind.expression], Kind.statement, location: location);
}
}
class ExpressionStatement extends Statement {
final Expression expr;
ExpressionStatement._(this.expr, {required super.location});
@override
void preVisit(PreVisitor visitor) {
expr.preVisit(visitor);
}
@override
String toString() => '$expr;';
@override
void visit(Harness h) {
h.typeAnalyzer.analyzeExpressionStatement(expr);
h.irBuilder
.apply('stmt', [Kind.expression], Kind.statement, location: location);
}
}
class For extends Statement {
final Statement? initializer;
final Expression? condition;
final Expression? updater;
final Statement body;
final bool forCollection;
For._(this.initializer, this.condition, this.updater, this.body,
this.forCollection,
{required super.location});
@override
void preVisit(PreVisitor visitor) {
initializer?.preVisit(visitor);
visitor._assignedVariables.beginNode();
condition?.preVisit(visitor);
body.preVisit(visitor);
updater?.preVisit(visitor);
visitor._assignedVariables.endNode(this);
}
@override
String toString() {
var buffer = StringBuffer('for (');
if (initializer == null) {
buffer.write(';');
} else {
buffer.write(initializer);
}
if (condition == null) {
buffer.write(';');
} else {
buffer.write(' $condition;');
}
if (updater != null) {
buffer.write(' $updater');
}
buffer.write(') $body');
return buffer.toString();
}
@override
void visit(Harness h) {
if (initializer != null) {
h.typeAnalyzer.dispatchStatement(initializer!);
} else {
h.typeAnalyzer.handleNoInitializer(this);
}
h.flow.for_conditionBegin(this);
if (condition != null) {
h.typeAnalyzer.analyzeExpression(condition!, h.operations.unknownType);
} else {
h.typeAnalyzer.handleNoCondition(this);
}
h.flow.for_bodyBegin(forCollection ? null : this, condition);
h.typeAnalyzer._visitLoopBody(this, body);
h.flow.for_updaterBegin();
if (updater != null) {
h.typeAnalyzer.analyzeExpression(updater!, h.operations.unknownType);
} else {
h.typeAnalyzer.handleNoCondition(this);
}
h.flow.for_end();
h.irBuilder.apply(
'for',
[Kind.statement, Kind.expression, Kind.statement, Kind.expression],
Kind.statement,
location: location);
}
}
class ForEach extends Statement {
final Var? variable;
final Expression iterable;
final Statement body;
final bool declaresVariable;
ForEach._(this.variable, this.iterable, this.body, this.declaresVariable,
{required super.location});
@override
void preVisit(PreVisitor visitor) {
iterable.preVisit(visitor);
if (variable != null) {
if (declaresVariable) {
visitor._assignedVariables.declare(variable!);
} else {
visitor._assignedVariables.write(variable!);
}
}
visitor._assignedVariables.beginNode();
body.preVisit(visitor);
visitor._assignedVariables.endNode(this);
}
@override
String toString() {
String declarationPart;
if (variable == null) {
declarationPart = '<identifier>';
} else if (declaresVariable) {
declarationPart = variable.toString();
} else {
declarationPart = variable!.name;
}
return 'for ($declarationPart in $iterable) $body';
}
@override
void visit(Harness h) {
var iteratedType = h._getIteratedType(h.typeAnalyzer
.analyzeExpression(iterable, h.operations.unknownType)
.unwrapTypeView());
h.flow.forEach_bodyBegin(this);
var variable = this.variable;
if (variable != null && !declaresVariable) {
h.flow.write(this, variable, SharedTypeView(iteratedType), null);
}
h.typeAnalyzer._visitLoopBody(this, body);
h.flow.forEach_end();
h.irBuilder.apply(
'forEach', [Kind.expression, Kind.statement], Kind.statement,
location: location);
}
}
class GuardedPattern extends Node with PossiblyGuardedPattern {
final Pattern pattern;
late final Map<String, Var> variables;
final Expression? guard;
GuardedPattern._({
required this.pattern,
required this.guard,
required super.location,
}) : super._();
@override
GuardedPattern get _asGuardedPattern => this;
}
class Harness {
static Map<String, Type> _coreMemberTypes = {
'int.<': Type('bool Function(num)'),
'int.<=': Type('bool Function(num)'),
'int.>': Type('bool Function(num)'),
'int.>=': Type('bool Function(num)'),
'num.sign': Type('num'),
'Object.toString': Type('String Function()'),
};
final MiniAstOperations operations = MiniAstOperations();
bool _started = false;
late final FlowAnalysis<Node, Statement, Expression, Var,
SharedTypeView<Type>> flow;
bool? _inferenceUpdate3Enabled;
bool? _patternsEnabled;
Type? _thisType;
late final Map<String, _PropertyElement?> _members = {
for (var entry in _coreMemberTypes.entries)
entry.key: _PropertyElement(entry.value,
isPromotable: false, whyNotPromotable: null)
};
late final typeAnalyzer = _MiniAstTypeAnalyzer(
this,
TypeAnalyzerOptions(
nullSafetyEnabled: !operations.legacy,
patternsEnabled: patternsEnabled,
inferenceUpdate3Enabled: inferenceUpdate3Enabled));
/// Indicates whether initializers of implicitly typed variables should be
/// accounted for by SSA analysis. (In an ideal world, they always would be,
/// but due to https://github.com/dart-lang/language/issues/1785, they weren't
/// always, and we need to be able to replicate the old behavior when
/// analyzing old language versions).
bool _respectImplicitlyTypedVarInitializers = true;
bool _fieldPromotionEnabled = true;
bool get inferenceUpdate3Enabled =>
_inferenceUpdate3Enabled ?? !operations.legacy;
MiniIRBuilder get irBuilder => typeAnalyzer._irBuilder;
bool get patternsEnabled => _patternsEnabled ?? !operations.legacy;
set thisType(String type) {
assert(!_started);
_thisType = Type(type);
}
/// Updates the harness with a new result for
/// [MiniAstOperations.downwardInfer].
void addDownwardInfer({
required String name,
required String context,
required String result,
}) {
operations.addDownwardInfer(
name: name,
context: context,
result: result,
);
}
/// Updates the harness so that when an
/// [TypeAnalyzerOperations.isAlwaysExhaustiveType] query is invoked on type
/// [type], [isExhaustive] will be returned.
void addExhaustiveness(String type, bool isExhaustive) {
operations.addExhaustiveness(type, isExhaustive);
}
/// Updates the harness so that when an extension type erasure query is
/// invoked on type [type], [representation] will be returned.
void addExtensionTypeErasure(String type, String representation) {
operations.addExtensionTypeErasure(type, representation);
}
void addLub(String type1, String type2, String resultType) {
operations.addLub(type1, type2, resultType);
}
/// Updates the harness so that when member [memberName] is looked up on type
/// [targetType], a member is found having the given [type].
///
/// If [type] is `null`, then an attempt to look up [memberName] on type
/// [targetType] should result in `null` (no such member) rather than a test
/// failure.
void addMember(String targetType, String memberName, String? type,
{bool promotable = false,
PropertyNonPromotabilityReason? whyNotPromotable}) {
if (promotable) {
assert(whyNotPromotable == null);
}
var query = '$targetType.$memberName';
if (type == null) {
if (promotable) {
fail("It doesn't make sense to specify `promotable: true` "
"when the type is `null`");
}
_members[query] = null;
return;
}
_members[query] = _PropertyElement(Type(type),
isPromotable: promotable, whyNotPromotable: whyNotPromotable);
}
void addPromotionException(String from, String to, String result) {
operations.addPromotionException(from, to, result);
}
void addSuperInterfaces(
String className, List<Type> Function(List<Type>) template) {
operations.addSuperInterfaces(className, template);
}
void addTypeVariable(String name, {String? bound}) {
operations.addTypeVariable(name, bound: bound);
}
void disableFieldPromotion() {
assert(!_started);
_fieldPromotionEnabled = false;
}
void disableInferenceUpdate3() {
assert(!_started);
_inferenceUpdate3Enabled = false;
}
void disablePatterns() {
assert(!_started);
_patternsEnabled = false;
}
void disableRespectImplicitlyTypedVarInitializers() {
assert(!_started);
_respectImplicitlyTypedVarInitializers = false;
}
void enableLegacy() {
assert(!_started);
operations.legacy = true;
}
/// Attempts to look up a member named [memberName] in the given [type]. If
/// a member is found, returns its [_PropertyElement] object; otherwise `null`
/// is returned.
///
/// If test hasn't been configured in such a way that the result of the query
/// is known, the test fails.
_PropertyElement? getMember(Type type, String memberName) {
var query = '$type.$memberName';
var member = _members[query];
// If an explicit map entry was found for this member, return the associated
// value (even if it is `null`; `null` means the test has been explicitly
// configured so that the member lookup is supposed to find nothing).
if (member != null || _members.containsKey(query)) return member;
switch (memberName) {
case 'toString':
// Assume that all types implement `Object.toString`.
return _members['Object.$memberName']!;
default:
// It's legal to look up any member on the type `dynamic`.
if (type is DynamicType) {
return null;
}
// But an attempt to look up an unknown member on any other type
// results in a test failure. This is to catch mistakes in unit tests;
// if the unit test is deliberately trying to exercise a member lookup
// that should find nothing, please use `addMember` to store an
// explicit `null` value in the `_members` map.
fail('Unknown member query: $query');
}
}
/// See [TypeAnalyzer.resolveRelationalPatternOperator].
RelationalOperatorResolution<Type>? resolveRelationalPatternOperator(
Type matchedValueType, String operator) {
if (operator == '==' || operator == '!=') {
return RelationalOperatorResolution(
kind: operator == '=='
? RelationalOperatorKind.equals
: RelationalOperatorKind.notEquals,
parameterType: SharedTypeView(Type('Object')),
returnType: SharedTypeView(Type('bool')));
}
var member = getMember(matchedValueType, operator);
if (member == null) return null;
var memberType = member._type;
if (memberType is! FunctionType ||
memberType.nullabilitySuffix != NullabilitySuffix.none) {
fail('$matchedValueType.operator$operator has type $memberType; '
'must be a function type');
}
if (memberType.positionalParameters.isEmpty) {
fail('$matchedValueType.operator$operator has type $memberType; '
'must accept a parameter');
}
return RelationalOperatorResolution(
kind: RelationalOperatorKind.other,
parameterType: SharedTypeView(memberType.positionalParameters[0]),
returnType: SharedTypeView(memberType.returnType));
}
/// Runs the given [statements] through flow analysis, checking any assertions
/// they contain.
void run(List<ProtoStatement> statements,
{bool errorRecoveryOK = false, Set<String> expectedErrors = const {}}) {
try {
_started = true;
if (operations.legacy && patternsEnabled) {
fail('Patterns cannot be enabled in legacy mode');
}
var visitor = PreVisitor(typeAnalyzer.errors);
var b = Block._(statements, location: computeLocation());
b.preVisit(visitor);
flow = operations.legacy
? FlowAnalysis<Node, Statement, Expression, Var,
SharedTypeView<Type>>.legacy(
operations, visitor._assignedVariables)
: FlowAnalysis<Node, Statement, Expression, Var,
SharedTypeView<Type>>(operations, visitor._assignedVariables,
respectImplicitlyTypedVarInitializers:
_respectImplicitlyTypedVarInitializers,
fieldPromotionEnabled: _fieldPromotionEnabled);
typeAnalyzer.dispatchStatement(b);
typeAnalyzer.finish();
expect(typeAnalyzer.errors._accumulatedErrors, expectedErrors);
var assertInErrorRecoveryStack =
typeAnalyzer.errors._assertInErrorRecoveryStack;
if (!errorRecoveryOK && assertInErrorRecoveryStack != null) {
fail('assertInErrorRecovery called but no errors reported: '
'$assertInErrorRecoveryStack');
}
if (Node._nodesWithUnusedErrorIds.isNotEmpty) {
var ids = [
for (var node in Node._nodesWithUnusedErrorIds) node._errorId
].join(', ');
fail('Unused error ids: $ids');
}
} finally {
Node._nodesWithUnusedErrorIds.clear();
}
}
Type _getIteratedType(Type iterableType) {
var typeStr = iterableType.type;
if (typeStr.startsWith('List<') && typeStr.endsWith('>')) {
return Type(typeStr.substring(5, typeStr.length - 1));
} else {
throw UnimplementedError('TODO(paulberry): getIteratedType($typeStr)');
}
}
}
class If extends IfBase {
final Expression condition;
If._(this.condition, super.ifTrue, super.ifFalse, {required super.location})
: super._();
@override
String get _conditionPartString => condition.toString();
@override
void preVisit(PreVisitor visitor) {
condition.preVisit(visitor);
super.preVisit(visitor);
}
@override
void visit(Harness h) {
h.typeAnalyzer.analyzeIfStatement(this, condition, ifTrue, ifFalse);
h.irBuilder.apply(
'if', [Kind.expression, Kind.statement, Kind.statement], Kind.statement,
location: location);
}
}
abstract class IfBase extends Statement {
final Statement ifTrue;
final Statement? ifFalse;
IfBase._(this.ifTrue, this.ifFalse, {required super.location});
String get _conditionPartString;
@override
void preVisit(PreVisitor visitor) {
visitor._assignedVariables.beginNode();
ifTrue.preVisit(visitor);
visitor._assignedVariables.endNode(this);
ifFalse?.preVisit(visitor);
}
@override
String toString() =>
'if ($_conditionPartString) $ifTrue' +
(ifFalse == null ? '' : 'else $ifFalse');
}
class IfCase extends IfBase {
final Expression expression;
final Pattern pattern;
final Expression? guard;
/// These variables are set during pre-visit, and some of them are joins of
/// pattern variable declarations. We don't know their types until we do
/// type analysis. So, some of these variables might become unavailable.
late final Map<String, Var> _candidateVariables;
IfCase(this.expression, this.pattern, this.guard, super.ifTrue, super.ifFalse,
{required super.location})
: super._();
@override
String get _conditionPartString => '$expression case $pattern';
@override
void preVisit(PreVisitor visitor) {
expression.preVisit(visitor);
var variableBinder = _VariableBinder(visitor);
variableBinder.casePatternStart();
pattern.preVisit(visitor, variableBinder, isInAssignment: false);
_candidateVariables = variableBinder.casePatternFinish();
variableBinder.finish();
guard?.preVisit(visitor);
super.preVisit(visitor);
}
@override
void visit(Harness h) {
h.typeAnalyzer.analyzeIfCaseStatement(
this, expression, pattern, guard, ifTrue, ifFalse, _candidateVariables);
h.irBuilder.apply(
'ifCase',
[
Kind.expression,
Kind.pattern,
Kind.variables,
Kind.expression,
Kind.statement,
Kind.statement,
],
Kind.statement,
location: location,
);
}
}
class IfCaseElement extends IfElementBase {
final Expression expression;
final Pattern pattern;
final Expression? guard;
late final Map<String, Var> _variables;
IfCaseElement(
this.expression, this.pattern, this.guard, super.ifTrue, super.ifFalse,
{required super.location})
: super._();
@override
String get _conditionPartString => '$expression case $pattern';
@override
void preVisit(PreVisitor visitor) {
expression.preVisit(visitor);
var variableBinder = _VariableBinder(visitor);
variableBinder.casePatternStart();
pattern.preVisit(visitor, variableBinder, isInAssignment: false);
_variables = variableBinder.casePatternFinish();
variableBinder.finish();
guard?.preVisit(visitor);
super.preVisit(visitor);
}
@override
void visit(Harness h, Object context) {
h.typeAnalyzer.analyzeIfCaseElement(
node: this,
expression: expression,
pattern: pattern,
variables: _variables,
guard: guard,
ifTrue: ifTrue,
ifFalse: ifFalse,
context: context,
);
h.irBuilder.apply(
'if',
[
Kind.expression,
Kind.pattern,
Kind.expression,
Kind.collectionElement,
Kind.collectionElement,
],
Kind.collectionElement,
names: ['expression', 'pattern', 'guard', 'ifTrue', 'ifFalse'],
location: location,
);
}
}
class IfElement extends IfElementBase {
final Expression condition;
IfElement._(this.condition, super.ifTrue, super.ifFalse,
{required super.location})
: super._();
@override
String get _conditionPartString => condition.toString();
@override
void preVisit(PreVisitor visitor) {
condition.preVisit(visitor);
super.preVisit(visitor);
}
@override
void visit(Harness h, Object context) {
h.typeAnalyzer.analyzeIfElement(
node: this,
condition: condition,
ifTrue: ifTrue,
ifFalse: ifFalse,
context: context,
);
h.irBuilder.apply(
'if',
[Kind.expression, Kind.collectionElement, Kind.collectionElement],
Kind.collectionElement,
location: location,
);
}
}
abstract class IfElementBase extends CollectionElement {
final CollectionElement ifTrue;
final CollectionElement? ifFalse;
IfElementBase._(this.ifTrue, this.ifFalse, {required super.location});
String get _conditionPartString;
@override
void preVisit(PreVisitor visitor) {
visitor._assignedVariables.beginNode();
ifTrue.preVisit(visitor);
visitor._assignedVariables.endNode(this);
ifFalse?.preVisit(visitor);
}
@override
String toString() =>
'if ($_conditionPartString) $ifTrue' +
(ifFalse == null ? '' : 'else $ifFalse');
}
class IfNull extends Expression {
final Expression lhs;
final Expression rhs;
IfNull._(this.lhs, this.rhs, {required super.location});
@override
void preVisit(PreVisitor visitor) {
lhs.preVisit(visitor);
rhs.preVisit(visitor);
}
@override
String toString() => '$lhs ?? $rhs';
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
var result = h.typeAnalyzer.analyzeIfNullExpression(this, lhs, rhs);
h.irBuilder.apply(
'ifNull', [Kind.expression, Kind.expression], Kind.expression,
location: location);
return result;
}
}
class IntLiteral extends ConstExpression {
final int value;
/// `true` or `false` if we should assert that int->double conversion either
/// does, or does not, happen. `null` if no assertion should be done.
final bool? expectConversionToDouble;
IntLiteral(this.value,
{this.expectConversionToDouble, required super.location})
: super._();
@override
void preVisit(PreVisitor visitor) {}
@override
String toString() => '$value';
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
var result = h.typeAnalyzer.analyzeIntLiteral(schema);
if (expectConversionToDouble != null) {
expect(result.convertedToDouble, expectConversionToDouble);
}
h.irBuilder.atom(
result.convertedToDouble ? '${value.toDouble()}f' : '$value',
Kind.expression,
location: location);
return result;
}
}
/// Representation of a method invocation in the pseudo-Dart language used for
/// flow analysis testing.
class InvokeMethod extends Expression {
// The expression appering before the `.`.
final Expression target;
// The name of the method being invoked.
final String methodName;
// The arguments being passed to the invocation.
final List<Expression> arguments;
InvokeMethod._(this.target, this.methodName, this.arguments,
{required super.location});
@override
void preVisit(PreVisitor visitor) {
target.preVisit(visitor);
for (var argument in arguments) {
argument.preVisit(visitor);
}
}
@override
String toString() =>
'$target.$methodName(${[for (var arg in arguments) arg].join(', ')})';
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
return h.typeAnalyzer.analyzeMethodInvocation(this,
target is CascadePlaceholder ? null : target, methodName, arguments);
}
}
class Is extends Expression {
final Expression target;
final Type type;
final bool isInverted;
Is._(this.target, this.type, this.isInverted, {required super.location});
@override
void preVisit(PreVisitor visitor) {
target.preVisit(visitor);
}
@override
String toString() => '$target is${isInverted ? '!' : ''} $type';
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
return h.typeAnalyzer
.analyzeTypeTest(this, target, type, isInverted: isInverted);
}
}
abstract class Label extends Node {
factory Label(String name) = BoundLabel._;
factory Label.unbound() = UnboundLabel._;
Label._({required super.location}) : super._();
Statement thenStmt(Statement statement);
/// Returns the statement this label has been bound to, or `null` for labels
/// constructed with [Label.unbound].
Statement? _getBinding();
}
class LabeledStatement extends Statement {
final List<Label> labels = [];
final Statement body;
LabeledStatement._(this.body, {required super.location});
@override
void preVisit(PreVisitor visitor) {
body.preVisit(visitor);
}
@override
String toString() => [...labels, body].join(': ');
@override
void visit(Harness h) {
h.typeAnalyzer.analyzeLabeledStatement(this, body);
}
}
/// Representation of a list literal in the pseudo-Dart language used for flow
/// analysis testing.
class ListLiteral extends Expression {
final List<CollectionElement> elements;
final Type elementType;
ListLiteral._(this.elements, this.elementType, {required super.location});
@override
void preVisit(PreVisitor visitor) {
for (var element in elements) {
element.preVisit(visitor);
}
}
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
for (var element in elements) {
element.visit(
h, CollectionElementContextType._(SharedTypeSchemaView(elementType)));
}
h.irBuilder.apply('list', [for (var _ in elements) Kind.collectionElement],
Kind.expression,
location: location);
return SimpleTypeAnalysisResult(
type: h.operations.listType(SharedTypeView(elementType)));
}
}
abstract class ListOrMapPatternElement implements Node {
ListOrMapPatternElement._();
void preVisit(PreVisitor visitor, VariableBinder<Node, Var> variableBinder,
{required bool isInAssignment});
String _debugString({required bool needsKeywordOrType});
}
class ListPattern extends Pattern {
final Type? elementType;
final List<ListPatternElement> elements;
ListPattern._(this.elementType, this.elements, {required super.location})
: super._();
@override
SharedTypeSchemaView<Type> computeSchema(Harness h) =>
h.typeAnalyzer.analyzeListPatternSchema(
elementType: elementType?.wrapSharedTypeView(), elements: elements);
@override
void preVisit(PreVisitor visitor, VariableBinder<Node, Var> variableBinder,
{required bool isInAssignment}) {
for (var element in elements) {
element.preVisit(visitor, variableBinder, isInAssignment: isInAssignment);
}
}
@override
PatternResult<Type> visit(Harness h, SharedMatchContext context) {
var listPatternResult = h.typeAnalyzer.analyzeListPattern(context, this,
elementType: elementType?.wrapSharedTypeView(), elements: elements);
var matchedType = listPatternResult.matchedValueType.unwrapTypeView();
var requiredType = listPatternResult.requiredType.unwrapTypeView();
h.irBuilder.atom(matchedType.type, Kind.type, location: location);
h.irBuilder.atom(requiredType.type, Kind.type, location: location);
h.irBuilder.apply(
'listPattern',
[...List.filled(elements.length, Kind.pattern), Kind.type, Kind.type],
Kind.pattern,
names: ['matchedType', 'requiredType'],
location: location);
return listPatternResult;
}
@override
String _debugString({required bool needsKeywordOrType}) {
var elements = [
for (var element in this.elements)
element._debugString(needsKeywordOrType: needsKeywordOrType)
];
return '[${elements.join(', ')}]';
}
}
abstract class ListPatternElement implements ListOrMapPatternElement {}
class LocalFunction extends Expression {
final Statement body;
final Type type;
LocalFunction._(this.body, {String? type, required super.location})
: type = Type(type ?? 'void Function()');
@override
void preVisit(PreVisitor visitor) {
visitor._assignedVariables.beginNode();
body.preVisit(visitor);
visitor._assignedVariables
.endNode(this, isClosureOrLateVariableInitializer: true);
}
@override
String toString() => '() $body';
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
h.flow.functionExpression_begin(this);
h.typeAnalyzer.dispatchStatement(body);
h.flow.functionExpression_end();
h.irBuilder.apply('localFunction', [Kind.statement], Kind.expression,
location: location);
return SimpleTypeAnalysisResult(type: SharedTypeView(type));
}
}
class Logical extends Expression {
final Expression lhs;
final Expression rhs;
final bool isAnd;
Logical._(this.lhs, this.rhs, {required this.isAnd, required super.location});
@override
void preVisit(PreVisitor visitor) {
lhs.preVisit(visitor);
visitor._assignedVariables.beginNode();
rhs.preVisit(visitor);
visitor._assignedVariables.endNode(this);
}
@override
String toString() => '$lhs ${isAnd ? '&&' : '||'} $rhs';
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
var operatorName = isAnd ? '&&' : '||';
var result =
h.typeAnalyzer.analyzeBinaryExpression(this, lhs, operatorName, rhs);
h.irBuilder.apply(
operatorName, [Kind.expression, Kind.expression], Kind.expression,
location: location);
return result;
}
}
class LogicalAndPattern extends Pattern {
final Pattern lhs;
final Pattern rhs;
LogicalAndPattern._(this.lhs, this.rhs, {required super.location})
: super._();
@override
SharedTypeSchemaView<Type> computeSchema(Harness h) =>
h.typeAnalyzer.analyzeLogicalAndPatternSchema(lhs, rhs);
@override
void preVisit(PreVisitor visitor, VariableBinder<Node, Var> variableBinder,
{required bool isInAssignment}) {
lhs.preVisit(visitor, variableBinder, isInAssignment: isInAssignment);
rhs.preVisit(visitor, variableBinder, isInAssignment: isInAssignment);
}
@override
PatternResult<Type> visit(Harness h, SharedMatchContext context) {
var analysisResult =
h.typeAnalyzer.analyzeLogicalAndPattern(context, this, lhs, rhs);
var matchedType = analysisResult.matchedValueType.unwrapTypeView();
h.irBuilder.atom(matchedType.type, Kind.type, location: location);
h.irBuilder.apply('logicalAndPattern',
[Kind.pattern, Kind.pattern, Kind.type], Kind.pattern,
names: ['matchedType'], location: location);
return analysisResult;
}
@override
_debugString({required bool needsKeywordOrType}) => [
lhs._debugString(needsKeywordOrType: false),
'&&',
rhs._debugString(needsKeywordOrType: false)
].join(' ');
}
class LogicalOrPattern extends Pattern {
final Pattern lhs;
final Pattern rhs;
LogicalOrPattern(this.lhs, this.rhs, {required super.location}) : super._();
@override
SharedTypeSchemaView<Type> computeSchema(Harness h) =>
h.typeAnalyzer.analyzeLogicalOrPatternSchema(lhs, rhs);
@override
void preVisit(PreVisitor visitor, VariableBinder<Node, Var> variableBinder,
{required bool isInAssignment}) {
variableBinder.logicalOrPatternStart();
lhs.preVisit(visitor, variableBinder, isInAssignment: isInAssignment);
variableBinder.logicalOrPatternFinishLeft();
rhs.preVisit(visitor, variableBinder, isInAssignment: isInAssignment);
variableBinder.logicalOrPatternFinish(this);
}
@override
PatternResult<Type> visit(Harness h, SharedMatchContext context) {
var analysisResult =
h.typeAnalyzer.analyzeLogicalOrPattern(context, this, lhs, rhs);
var matchedType = analysisResult.matchedValueType.unwrapTypeView();
h.irBuilder.atom(matchedType.type, Kind.type, location: location);
h.irBuilder.apply('logicalOrPattern',
[Kind.pattern, Kind.pattern, Kind.type], Kind.pattern,
names: ['matchedType'], location: location);
return analysisResult;
}
@override
_debugString({required bool needsKeywordOrType}) => [
lhs._debugString(needsKeywordOrType: false),
'||',
rhs._debugString(needsKeywordOrType: false)
].join(' ');
}
/// Representation of an expression that can appear on the left hand side of an
/// assignment (or as the target of `++` or `--`). Methods in this class may be
/// used to create more complex expressions based on this one.
abstract class LValue extends Expression {
LValue._({required super.location});
@override
void preVisit(PreVisitor visitor, {_LValueDisposition disposition});
/// Creates an expression representing a write to this L-value.
Expression write(ProtoExpression? value) {
var location = computeLocation();
return new Write(this, value?.asExpression(location: location),
location: location);
}
void _visitWrite(Harness h, Expression assignmentExpression, Type writtenType,
Expression? rhs);
}
/// Representation of a map entry in the pseudo-Dart language used for flow
/// analysis testing.
class MapEntry extends CollectionElement {
final Expression key;
final Expression value;
MapEntry._(this.key, this.value, {required super.location});
@override
void preVisit(PreVisitor visitor) {
key.preVisit(visitor);
value.preVisit(visitor);
}
@override
String toString() => '$key: $value';
@override
void visit(Harness h, CollectionElementContext context) {
SharedTypeSchemaView<Type> keySchema;
SharedTypeSchemaView<Type> valueSchema;
switch (context) {
case CollectionElementContextMapEntry(:var keyType, :var valueType):
keySchema = SharedTypeSchemaView(keyType);
valueSchema = SharedTypeSchemaView(valueType);
default:
keySchema = valueSchema = h.operations.unknownType;
}
h.typeAnalyzer.analyzeExpression(key, keySchema);
h.typeAnalyzer.analyzeExpression(value, valueSchema);
h.irBuilder.apply(
'mapEntry', [Kind.expression, Kind.expression], Kind.collectionElement,
location: location);
}
}
/// Representation of a list literal in the pseudo-Dart language used for flow
/// analysis testing.
class MapLiteral extends Expression {
final List<CollectionElement> elements;
final Type keyType;
final Type valueType;
MapLiteral._(this.elements, this.keyType, this.valueType,
{required super.location});
@override
void preVisit(PreVisitor visitor) {
for (var element in elements) {
element.preVisit(visitor);
}
}
@override
ExpressionTypeAnalysisResult<Type> visit(
Harness h, SharedTypeSchemaView<Type> schema) {
var context = CollectionElementContextMapEntry._(keyType, valueType);
for (var element in elements) {
element.visit(h, context);
}
h.irBuilder.apply('map', [for (var _ in elements) Kind.collectionElement],
Kind.expression,
location: location);
return SimpleTypeAnalysisResult(
type: h.operations.mapType(
keyType: SharedTypeView(keyType),
valueType: SharedTypeView(valueType)));
}
}
class MapPattern extends Pattern {
final ({Type keyType, Type valueType})? typeArguments;
final List<MapPatternElement> elements;
MapPattern._(this.typeArguments, this.elements, {required super.location})
: super._();
@override
SharedTypeSchemaView<Type> computeSchema(Harness h) =>
h.typeAnalyzer.analyzeMapPatternSchema(
typeArguments: typeArguments?.wrapSharedTypeMapEntryView(),
elements: elements);
@override
void preVisit(PreVisitor visitor, VariableBinder<Node, Var> variableBinder,
{required bool isInAssignment}) {
for (var element in elements) {
element.preVisit(visitor, variableBinder, isInAssignment: isInAssignment);
}
}
@override
PatternResult<Type> visit(Harness h, SharedMatchContext context) {
var mapPatternResult = h.typeAnalyzer.analyzeMapPattern(context, this,
typeArguments: typeArguments?.wrapSharedTypeMapEntryView(),
elements: elements);
var matchedType = mapPatternResult.matchedValueType.unwrapTypeView();
var requiredType = mapPatternResult.requiredType.unwrapTypeView();
h.irBuilder.atom(matchedType.type, Kind.type, location: location);
h.irBuilder.atom(requiredType.type, Kind.type, location: location);
h.irBuilder.apply(
'mapPattern',
[
...List.filled(elements.length, Kind.mapPatternElement),
Kind.type,
Kind.type,
],
Kind.pattern,
names: ['matchedType', 'requiredType'],
location: location,
);
return mapPatternResult;
}
@override
String _debugString({required bool needsKeywordOrType}) {
var elements = [
for (var element in this.elements)
element._debugString(needsKeywordOrType: needsKeywordOrType)
];
return '[${elements.join(', ')}]';
}
}
abstract class MapPatternElement implements ListOrMapPatternElement {}
class MapPatternEntry extends Node implements MapPatternElement {
final Expression key;
final Pattern value;
MapPatternEntry._(this.key, this.value, {required super.location})
: super._();
@override
void preVisit(PreVisitor visitor, VariableBinder<Node, Var> variableBinder,
{required bool isInAssignment}) {
value.preVisit(visitor, variableBinder, isInAssignment: isInAssignment);
}
@override
String _debugString({required bool needsKeywordOrType}) {
return '$key: $value';
}
}
class MiniAstOperations
with
TypeAnalyzerOperationsMixin<Type, Var, PromotedTypeVariableType, Type,
String>
implements
TypeAnalyzerOperations<Type, Var, PromotedTypeVariableType, Type,
String> {
static const Map<String, bool> _coreExhaustiveness = const {
'()': true,
'(int, int?)': false,
'bool': true,
'dynamic': false,
'int': false,
'int?': false,
'List<int>': false,
'Never': false,
'num': false,
'num?': false,
'Object': false,
'Object?': false,
'String': false,
'String?': false,
};
static final Map<String, Type> _coreGlbs = {
'_, int': Type('int'),
'(int,), _': Type('(int,)'),
'(num,), _': Type('(num,)'),
'Object?, double': Type('double'),
'Object?, int': Type('int'),
'double, int': Type('Never'),
'double?, int?': Type('Null'),
'int?, num': Type('int'),
'Null, int': Type('Never'),
};
static final Map<String, Type> _coreLubs = {
'double, int': Type('num'),
'double?, int?': Type('num?'),
'int, num': Type('num'),
'Null, int': Type('int?'),
'Null, Object': Type('Object?'),
'int, _': Type('int'),
'List<_>, _': Type('List<_>'),
'Null, _': Type('Null'),
};
static final Map<String, Type> _coreDownwardInferenceResults = {
'bool <: bool': Type('bool'),
'dynamic <: int': Type('dynamic'),
'error <: int': Type('error'),
'error <: num': Type('error'),
'int <: dynamic': Type('int'),
'int <: int': Type('int'),
'int <: num': Type('int'),
'int <: Object': Type('int'),
'int <: Object?': Type('int'),
'List <: Iterable<int>': Type('List<int>'),
'Never <: int': Type('Never'),
'num <: int': Type('num'),
'num <: Object': Type('num'),
'Object <: num': Type('Object'),
'String <: num': Type('String'),
};
static final Map<String, Type> _coreNormalizeResults = {
'Object': Type('Object'),
'FutureOr<Object>': Type('Object'),
'double': Type('double'),
'int': Type('int'),
'int?': Type('int?'),
'num': Type('num'),
'String?': Type('String?'),
'List<int>': Type('List<int>'),
};
@override
late final SharedTypeView<Type> objectQuestionType =
SharedTypeView(Type('Object?'));
@override
late final SharedTypeView<Type> objectType = SharedTypeView(Type('Object'));
@override
late final SharedTypeSchemaView<Type> unknownType =
SharedTypeSchemaView(Type('_'));
@override
late final SharedTypeView<Type> intType = SharedTypeView(Type('int'));
@override
late final SharedTypeView<Type> doubleType = SharedTypeView(Type('double'));
bool? _legacy;
final Map<String, bool> _exhaustiveness = Map.of(_coreExhaustiveness);
final Map<String, Type> _extensionTypeErasure = {};
final Map<String, Type> _glbs = Map.of(_coreGlbs);
final Map<String, Type> _lubs = Map.of(_coreLubs);
final Map<String, Type> _downwardInferenceResults =
Map.of(_coreDownwardInferenceResults);
Map<String, Map<String, String>> _promotionExceptions = {};
Map<String, Type> _normalizeResults = Map.of(_coreNormalizeResults);
final TypeSystem _typeSystem = TypeSystem();
@override
final SharedTypeView<Type> boolType = SharedTypeView(Type('bool'));
@override
SharedTypeView<Type> get dynamicType => SharedTypeView(DynamicType.instance);
@override
SharedTypeView<Type> get errorType => SharedTypeView(InvalidType.instance);
bool get legacy => _legacy ?? false;
set legacy(bool value) {
_legacy = value;
}
@override
SharedTypeView<Type> get neverType => SharedTypeView(NeverType.instance);
@override
SharedTypeView<Type> get nullType => SharedTypeView(NullType.instance);
/// Updates the harness with a new result for [downwardInfer].
void addDownwardInfer({
required String name,
required String context,
required String result,
}) {
var query = '$name <: $context';
_downwardInferenceResults[query] = Type(result);
}
/// Updates the harness so that when an [isAlwaysExhaustiveType] query is
/// invoked on type [type], [isExhaustive] will be returned.
void addExhaustiveness(String type, bool isExhaustive) {
_exhaustiveness[type] = isExhaustive;
}
/// Updates the harness so that when an extension type erasure query is
/// invoked on type [type], [representation] will be returned.
void addExtensionTypeErasure(String type, String representation) {
_extensionTypeErasure[type] = Type(representation);
}
void addLub(String type1, String type2, String resultType) {
_lubs['$type1, $type2'] = Type(resultType);
}
void addPromotionException(String from, String to, String result) {
(_promotionExceptions[from] ??= {})[to] = result;
}
void addSuperInterfaces(
String className, List<Type> Function(List<Type>) template) {
_typeSystem.addSuperInterfaces(className, template);
}
void addTypeVariable(String name, {String? bound}) {
_typeSystem.addTypeVariable(name, bound: bound);
}
@override
TypeClassification classifyType(SharedTypeView<Type> type) {
if (isSubtypeOfInternal(type.unwrapTypeView(), Type('Object'))) {
return TypeClassification.nonNullable;
} else if (isSubtypeOfInternal(type.unwrapTypeView(), NullType.instance)) {
return TypeClassification.nullOrEquivalent;
} else {
return TypeClassification.potentiallyNullable;
}
}
/// Returns the downward inference result of a type with the given [name],
/// in the [context]. For example infer `List<int>` from `Iterable<int>`.
Type downwardInfer(String name, Type context) {
var query = '$name <: $context';
return _downwardInferenceResults[query] ??
fail('Unknown downward inference query: $query');
}
@override
SharedTypeView<Type> extensionTypeErasure(SharedTypeView<Type> type) {
var query = '${type.unwrapTypeView()}';
return SharedTypeView(
_extensionTypeErasure[query] ?? type.unwrapTypeView());
}
@override
SharedTypeView<Type> factor(
SharedTypeView<Type> from, SharedTypeView<Type> what) {
return SharedTypeView(
_typeSystem.factor(from.unwrapTypeView(), what.unwrapTypeView()));
}
@override
Type futureTypeInternal(Type argumentType) {
return PrimaryType('Future', args: [argumentType]);
}
@override
TypeDeclarationKind? getTypeDeclarationKindInternal(Type type) {
if (isInterfaceType(SharedTypeView(type))) {
return TypeDeclarationKind.interfaceDeclaration;
} else if (isExtensionType(SharedTypeView(type))) {
return TypeDeclarationKind.extensionTypeDeclaration;
} else {
return null;
}
}
@override
Variance getTypeParameterVariance(
String typeDeclaration, int parameterIndex) {
// TODO(cstefantsova): Support variance of type parameters in Mini AST.
return Variance.covariant;
}
@override
Type glbInternal(Type type1, Type type2) {
if (type1.type == type2.type) return type1;
var typeNames = [type1.type, type2.type];
typeNames.sort();
var query = typeNames.join(', ');
return _glbs[query] ?? fail('Unknown glb query: $query');
}
@override
SharedTypeView<Type> greatestClosure(SharedTypeSchemaView<Type> schema) {
return SharedTypeView(schema
.unwrapTypeSchemaView()
.closureWithRespectToUnknown(covariant: true) ??
schema.unwrapTypeSchemaView());
}
@override
bool isAlwaysExhaustiveType(SharedTypeView<Type> type) {
var query = type.unwrapTypeView().type;
return _exhaustiveness[query] ??
fail('Unknown exhaustiveness query: $query');
}
@override
bool isAssignableTo(
SharedTypeView<Type> fromType, SharedTypeView<Type> toType) {
if (legacy &&
isSubtypeOfInternal(
toType.unwrapTypeView(), fromType.unwrapTypeView())) {
return true;
}
if (fromType is DynamicType) return true;
if (fromType is InvalidType) return true;
return isSubtypeOfInternal(
fromType.unwrapTypeView(), toType.unwrapTypeView());
}
@override
bool isDartCoreFunction(SharedTypeView<Type> type) {
Type unwrappedType = type.unwrapTypeView();
return unwrappedType is PrimaryType &&
unwrappedType.nullabilitySuffix == NullabilitySuffix.none &&
unwrappedType.name == 'Function' &&
unwrappedType.args.isEmpty;
}
@override
bool isExtensionType(SharedTypeView<Type> type) {
// TODO(cstefantsova): Add the support for extension types in the mini ast
// testing framework.
return false;
}
@override
bool isFunctionType(SharedTypeView<Type> type) {
return type.unwrapTypeView() is FunctionType;
}
@override
bool isInterfaceType(SharedTypeView<Type> type) {
Type unwrappedType = type.unwrapTypeView();
return unwrappedType is PrimaryType && unwrappedType.isInterfaceType;
}
@override
bool isNever(SharedTypeView<Type> type) {
Type unwrappedType = type.unwrapTypeView();
return unwrappedType is NeverType &&
unwrappedType.nullabilitySuffix == NullabilitySuffix.none;
}
@override
bool isNonNullable(SharedTypeSchemaView<Type> type) {
Type unwrappedType = type.unwrapTypeSchemaView();
if (unwrappedType is DynamicType ||
unwrappedType is SharedUnknownTypeStructure ||
unwrappedType is VoidType ||
unwrappedType is NullType) {
return false;
} else if (unwrappedType is PromotedTypeVariableType &&
unwrappedType.nullabilitySuffix == NullabilitySuffix.none) {
return isNonNullable(SharedTypeSchemaView(unwrappedType.promotion));
} else if (type.nullabilitySuffix == NullabilitySuffix.question) {
return false;
} else