blob: 8c351c203181515dd59255ee802a027e6501539b [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
part of dart2js;
class EnqueueTask extends CompilerTask {
final ResolutionEnqueuer resolution;
final CodegenEnqueuer codegen;
String get name => 'Enqueue';
EnqueueTask(Compiler compiler)
: resolution = new ResolutionEnqueuer(
compiler, compiler.backend.createItemCompilationContext),
codegen = new CodegenEnqueuer(
compiler, compiler.backend.createItemCompilationContext),
super(compiler) {
codegen.task = this;
resolution.task = this;
codegen.nativeEnqueuer = compiler.backend.nativeCodegenEnqueuer(codegen);
resolution.nativeEnqueuer =
compiler.backend.nativeResolutionEnqueuer(resolution);
}
}
abstract class Enqueuer {
final String name;
final Compiler compiler; // TODO(ahe): Remove this dependency.
final Function itemCompilationContextCreator;
final Map<String, Link<Element>> instanceMembersByName;
final Set<ClassElement> seenClasses;
final Universe universe;
bool queueIsClosed = false;
EnqueueTask task;
native.NativeEnqueuer nativeEnqueuer; // Set by EnqueueTask
Enqueuer(this.name, this.compiler,
ItemCompilationContext itemCompilationContextCreator())
: this.itemCompilationContextCreator = itemCompilationContextCreator,
instanceMembersByName = new Map<String, Link<Element>>(),
universe = new Universe(),
seenClasses = new Set<ClassElement>();
/// Returns [:true:] if this enqueuer is the resolution enqueuer.
bool get isResolutionQueue => false;
/// Returns [:true:] if [member] has been processed by this enqueuer.
bool isProcessed(Element member);
/**
* Documentation wanted -- johnniwinther
*
* Invariant: [element] must be a declaration element.
*/
void addToWorkList(Element element, [TreeElements elements]) {
assert(invariant(element, element.isDeclaration));
if (element.isForeign(compiler)) return;
if (!addElementToWorkList(element, elements)) return;
// Enable runtime type support if we discover a getter called runtimeType.
// We have to enable runtime type before hitting the codegen, so
// that constructors know whether they need to generate code for
// runtime type.
if (element.isGetter() && element.name == Compiler.RUNTIME_TYPE) {
compiler.enabledRuntimeType = true;
// TODO(ahe): Record precise dependency here.
compiler.backend.registerRuntimeType(compiler.globalDependencies);
} else if (element == compiler.functionApplyMethod) {
compiler.enabledFunctionApply = true;
} else if (element == compiler.invokeOnMethod) {
compiler.enabledInvokeOn = true;
}
nativeEnqueuer.registerElement(element);
}
/**
* Adds [element] to the work list if it has not already been processed.
*
* Returns [:true:] if the [element] should be processed.
*/
// TODO(johnniwinther): Change to 'Returns true if the element was added to
// the work list'?
bool addElementToWorkList(Element element, [TreeElements elements]);
void registerInstantiatedType(InterfaceType type, TreeElements elements) {
ClassElement cls = type.element;
elements.registerDependency(cls);
cls.ensureResolved(compiler);
universe.instantiatedTypes.add(type);
if (universe.instantiatedClasses.contains(cls)) return;
if (!cls.isAbstract(compiler)) {
universe.instantiatedClasses.add(cls);
}
onRegisterInstantiatedClass(cls);
// We only tell the backend once that [cls] was instantiated, so
// any additional dependencies must be treated as global
// dependencies.
compiler.backend.registerInstantiatedClass(
cls, this, compiler.globalDependencies);
}
void registerInstantiatedClass(ClassElement cls, TreeElements elements) {
cls.ensureResolved(compiler);
registerInstantiatedType(cls.rawType, elements);
}
bool checkNoEnqueuedInvokedInstanceMethods() {
task.measure(() {
// Run through the classes and see if we need to compile methods.
for (ClassElement classElement in universe.instantiatedClasses) {
for (ClassElement currentClass = classElement;
currentClass != null;
currentClass = currentClass.superclass) {
processInstantiatedClass(currentClass);
}
}
});
return true;
}
void processInstantiatedClass(ClassElement cls) {
cls.implementation.forEachMember(processInstantiatedClassMember);
}
/**
* Documentation wanted -- johnniwinther
*/
void processInstantiatedClassMember(ClassElement cls, Element member) {
assert(invariant(member, member.isDeclaration));
if (isProcessed(member)) return;
if (!member.isInstanceMember()) return;
if (member.isField()) {
// Fields are implicitly used by the constructor of the
// instantiated class they are part of.
compiler.world.registerUsedElement(member);
// Native fields need to go into instanceMembersByName as they
// are virtual instantiation points and escape points. Test the
// enclosing class, since the metadata has not been parsed yet.
if (!member.enclosingElement.isNative()) return;
}
String memberName = member.name.slowToString();
if (member.kind == ElementKind.FUNCTION) {
if (member.name == Compiler.NO_SUCH_METHOD) {
enableNoSuchMethod(member);
}
if (universe.hasInvocation(member, compiler)) {
return addToWorkList(member);
}
// If there is a property access with the same name as a method we
// need to emit the method.
if (universe.hasInvokedGetter(member, compiler)) {
// We will emit a closure, so make sure the closure class is
// generated.
compiler.closureClass.ensureResolved(compiler);
registerInstantiatedClass(compiler.closureClass,
// Precise dependency is not important here.
compiler.globalDependencies);
return addToWorkList(member);
}
} else if (member.kind == ElementKind.GETTER) {
if (universe.hasInvokedGetter(member, compiler)) {
return addToWorkList(member);
}
// We don't know what selectors the returned closure accepts. If
// the set contains any selector we have to assume that it matches.
if (universe.hasInvocation(member, compiler)) {
return addToWorkList(member);
}
} else if (member.kind == ElementKind.SETTER) {
if (universe.hasInvokedSetter(member, compiler)) {
return addToWorkList(member);
}
} else if (member.kind == ElementKind.FIELD &&
member.enclosingElement.isNative()) {
nativeEnqueuer.handleFieldAnnotations(member);
if (universe.hasInvokedGetter(member, compiler) ||
universe.hasInvocation(member, compiler)) {
nativeEnqueuer.registerFieldLoad(member);
// In handleUnseenSelector we can't tell if the field is loaded or
// stored. We need the basic algorithm to be Church-Rosser, since the
// resolution 'reduction' order is different to the codegen order. So
// register that the field is also stored. In other words: if we don't
// register the store here during resolution, the store could be
// registered during codegen on the handleUnseenSelector path, and cause
// the set of codegen elements to include unresolved elements.
nativeEnqueuer.registerFieldStore(member);
return;
}
if (universe.hasInvokedSetter(member, compiler)) {
nativeEnqueuer.registerFieldStore(member);
// See comment after registerFieldLoad above.
nativeEnqueuer.registerFieldLoad(member);
return;
}
}
// The element is not yet used. Add it to the list of instance
// members to still be processed.
Link<Element> members = instanceMembersByName.putIfAbsent(
memberName, () => const Link<Element>());
instanceMembersByName[memberName] = members.prepend(member);
}
void enableNoSuchMethod(Element element) {}
void onRegisterInstantiatedClass(ClassElement cls) {
task.measure(() {
// The class must be resolved to compute the set of all
// supertypes.
cls.ensureResolved(compiler);
void processClass(ClassElement cls) {
if (seenClasses.contains(cls)) return;
seenClasses.add(cls);
cls.ensureResolved(compiler);
cls.implementation.forEachMember(processInstantiatedClassMember);
if (isResolutionQueue) {
compiler.resolver.checkClass(cls);
}
}
processClass(cls);
for (Link<DartType> supertypes = cls.allSupertypes;
!supertypes.isEmpty; supertypes = supertypes.tail) {
processClass(supertypes.head.element);
}
});
}
void registerNewSelector(SourceString name,
Selector selector,
Map<SourceString, Set<Selector>> selectorsMap) {
if (name != selector.name) {
String message = "$name != ${selector.name} (${selector.kind})";
compiler.internalError("Wrong selector name: $message.");
}
Set<Selector> selectors =
selectorsMap.putIfAbsent(name, () => new Set<Selector>());
if (!selectors.contains(selector)) {
selectors.add(selector);
handleUnseenSelector(name, selector);
}
}
void registerInvocation(SourceString methodName, Selector selector) {
task.measure(() {
registerNewSelector(methodName, selector, universe.invokedNames);
});
}
void registerInvokedGetter(SourceString getterName, Selector selector) {
task.measure(() {
registerNewSelector(getterName, selector, universe.invokedGetters);
});
}
void registerInvokedSetter(SourceString setterName, Selector selector) {
task.measure(() {
registerNewSelector(setterName, selector, universe.invokedSetters);
});
}
processInstanceMembers(SourceString n, bool f(Element e)) {
String memberName = n.slowToString();
Link<Element> members = instanceMembersByName[memberName];
if (members != null) {
LinkBuilder<Element> remaining = new LinkBuilder<Element>();
for (; !members.isEmpty; members = members.tail) {
if (!f(members.head)) remaining.addLast(members.head);
}
instanceMembersByName[memberName] = remaining.toLink();
}
}
void handleUnseenSelector(SourceString methodName, Selector selector) {
processInstanceMembers(methodName, (Element member) {
if (selector.appliesUnnamed(member, compiler)) {
if (member.isField() && member.enclosingElement.isNative()) {
if (selector.isGetter() || selector.isCall()) {
nativeEnqueuer.registerFieldLoad(member);
// We have to also handle storing to the field because we only get
// one look at each member and there might be a store we have not
// seen yet.
// TODO(sra): Process fields for storing separately.
nativeEnqueuer.registerFieldStore(member);
} else {
nativeEnqueuer.registerFieldStore(member);
// We have to also handle loading from the field because we only get
// one look at each member and there might be a load we have not
// seen yet.
// TODO(sra): Process fields for storing separately.
nativeEnqueuer.registerFieldLoad(member);
}
} else {
addToWorkList(member);
}
return true;
}
return false;
});
}
/**
* Documentation wanted -- johnniwinther
*
* Invariant: [element] must be a declaration element.
*/
void registerStaticUse(Element element) {
if (element == null) return;
assert(invariant(element, element.isDeclaration));
addToWorkList(element);
}
void registerGetOfStaticFunction(FunctionElement element) {
registerStaticUse(element);
universe.staticFunctionsNeedingGetter.add(element);
}
void registerDynamicInvocation(SourceString methodName, Selector selector) {
assert(selector != null);
registerInvocation(methodName, selector);
}
void registerDynamicInvocationOf(Element element, Selector selector) {
assert(selector.isCall()
|| selector.isOperator()
|| selector.isIndex()
|| selector.isIndexSet());
if (element.isFunction() || element.isGetter()) {
addToWorkList(element);
} else if (element.isAbstractField()) {
AbstractFieldElement field = element;
// Since the invocation is a dynamic call on a getter, we only
// need to schedule the getter on the work list.
addToWorkList(field.getter);
} else {
assert(element.isField());
}
// We also need to add the selector to the invoked names map,
// because the emitter uses that map to generate parameter stubs.
Set<Selector> selectors = universe.invokedNames.putIfAbsent(
element.name, () => new Set<Selector>());
selectors.add(selector);
}
void registerSelectorUse(Selector selector) {
if (selector.isGetter()) {
registerInvokedGetter(selector.name, selector);
} else if (selector.isSetter()) {
registerInvokedSetter(selector.name, selector);
} else {
registerInvocation(selector.name, selector);
}
}
void registerDynamicGetter(SourceString methodName, Selector selector) {
registerInvokedGetter(methodName, selector);
}
void registerDynamicSetter(SourceString methodName, Selector selector) {
registerInvokedSetter(methodName, selector);
}
void registerFieldGetter(Element element) {
universe.fieldGetters.add(element);
}
void registerFieldSetter(Element element) {
universe.fieldSetters.add(element);
}
void registerIsCheck(DartType type, TreeElements elements) {
// Even in checked mode, type annotations for return type and argument
// types do not imply type checks, so there should never be a check
// against the type variable of a typedef.
assert(type.kind != TypeKind.TYPE_VARIABLE ||
!type.element.enclosingElement.isTypedef());
universe.isChecks.add(type);
compiler.backend.registerIsCheck(type, this, elements);
}
void registerAsCheck(DartType type, TreeElements elements) {
registerIsCheck(type, elements);
compiler.backend.registerAsCheck(type, elements);
}
void forEach(f(WorkItem work));
void logSummary(log(message)) {
_logSpecificSummary(log);
nativeEnqueuer.logSummary(log);
}
/// Log summary specific to the concrete enqueuer.
void _logSpecificSummary(log(message));
String toString() => 'Enqueuer($name)';
}
/// [Enqueuer] which is specific to resolution.
class ResolutionEnqueuer extends Enqueuer {
/**
* Map from declaration elements to the [TreeElements] object holding the
* resolution mapping for the element implementation.
*
* Invariant: Key elements are declaration elements.
*/
final Map<Element, TreeElements> resolvedElements;
final Queue<ResolutionWorkItem> queue;
ResolutionEnqueuer(Compiler compiler,
ItemCompilationContext itemCompilationContextCreator())
: super('resolution enqueuer', compiler, itemCompilationContextCreator),
resolvedElements = new Map<Element, TreeElements>(),
queue = new Queue<ResolutionWorkItem>();
bool get isResolutionQueue => true;
bool isProcessed(Element member) => resolvedElements.containsKey(member);
TreeElements getCachedElements(Element element) {
// TODO(ngeoffray): Get rid of this check.
if (element.enclosingElement.isClosure()) {
closureMapping.ClosureClassElement cls = element.enclosingElement;
element = cls.methodElement;
}
Element owner = element.getOutermostEnclosingMemberOrTopLevel();
if (owner == null) {
owner = element;
}
return resolvedElements[owner.declaration];
}
/**
* Sets the resolved elements of [element] to [elements], or if [elements] is
* [:null:], to the elements found through [getCachedElements].
*
* Returns the resolved elements.
*/
TreeElements ensureCachedElements(Element element, TreeElements elements) {
if (elements == null) {
elements = getCachedElements(element);
}
resolvedElements[element] = elements;
return elements;
}
bool addElementToWorkList(Element element, [TreeElements elements]) {
if (queueIsClosed) {
if (getCachedElements(element) != null) return false;
throw new SpannableAssertionFailure(element,
"Resolution work list is closed.");
}
if (elements == null) {
elements = getCachedElements(element);
}
compiler.world.registerUsedElement(element);
if (elements == null) {
queue.add(
new ResolutionWorkItem(element, itemCompilationContextCreator()));
}
// Enable isolate support if we start using something from the
// isolate library, or timers for the async library.
LibraryElement library = element.getLibrary();
if (!compiler.hasIsolateSupport()) {
String uri = library.canonicalUri.toString();
if (uri == 'dart:isolate') {
enableIsolateSupport(library);
} else if (uri == 'dart:async') {
ClassElement cls = element.getEnclosingClass();
if (cls != null && cls.name == const SourceString('Timer')) {
// The [:Timer:] class uses the event queue of the isolate
// library, so we make sure that event queue is generated.
enableIsolateSupport(library);
}
}
}
return true;
}
void enableIsolateSupport(LibraryElement element) {
compiler.isolateLibrary = element.patch;
var startRootIsolate =
compiler.isolateHelperLibrary.find(Compiler.START_ROOT_ISOLATE);
addToWorkList(startRootIsolate);
compiler.globalDependencies.registerDependency(startRootIsolate);
addToWorkList(compiler.isolateHelperLibrary.find(
const SourceString('_currentIsolate')));
addToWorkList(compiler.isolateHelperLibrary.find(
const SourceString('_callInIsolate')));
}
void enableNoSuchMethod(Element element) {
if (compiler.enabledNoSuchMethod) return;
if (element.getEnclosingClass() == compiler.objectClass) return;
Selector selector = new Selector.noSuchMethod();
compiler.enabledNoSuchMethod = true;
registerInvocation(Compiler.NO_SUCH_METHOD, selector);
compiler.createInvocationMirrorElement =
compiler.findHelper(Compiler.CREATE_INVOCATION_MIRROR);
addToWorkList(compiler.createInvocationMirrorElement);
}
void forEach(f(WorkItem work)) {
while (!queue.isEmpty) {
// TODO(johnniwinther): Find an optimal process order for resolution.
f(queue.removeLast());
}
}
void registerJsCall(Send node, ResolverVisitor resolver) {
nativeEnqueuer.registerJsCall(node, resolver);
}
void _logSpecificSummary(log(message)) {
log('Resolved ${resolvedElements.length} elements.');
}
}
/// [Enqueuer] which is specific to code generation.
class CodegenEnqueuer extends Enqueuer {
final Queue<CodegenWorkItem> queue;
final Map<Element, js.Expression> generatedCode =
new Map<Element, js.Expression>();
CodegenEnqueuer(Compiler compiler,
ItemCompilationContext itemCompilationContextCreator())
: super('codegen enqueuer', compiler, itemCompilationContextCreator),
queue = new Queue<CodegenWorkItem>();
bool isProcessed(Element member) =>
member.isAbstract(compiler) || generatedCode.containsKey(member);
bool addElementToWorkList(Element element, [TreeElements elements]) {
if (queueIsClosed) {
throw new SpannableAssertionFailure(element,
"Codegen work list is closed.");
}
elements =
compiler.enqueuer.resolution.ensureCachedElements(element, elements);
CodegenWorkItem workItem = new CodegenWorkItem(
element, elements, itemCompilationContextCreator());
queue.add(workItem);
return true;
}
void forEach(f(WorkItem work)) {
while(!queue.isEmpty) {
// TODO(johnniwinther): Find an optimal process order for codegen.
f(queue.removeLast());
}
}
void _logSpecificSummary(log(message)) {
log('Compiled ${generatedCode.length} methods.');
}
}