blob: c298e06bc32dbce718a3418bbf9c026f97daf853 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
part of ssa;
/**
* Replaces some instructions with specialized versions to make codegen easier.
* Caches codegen information on nodes.
*/
class SsaInstructionSelection extends HBaseVisitor {
final Compiler compiler;
HGraph graph;
SsaInstructionSelection(this.compiler);
JavaScriptBackend get backend => compiler.backend;
void visitGraph(HGraph graph) {
this.graph = graph;
visitDominatorTree(graph);
}
visitBasicBlock(HBasicBlock block) {
HInstruction instruction = block.first;
while (instruction != null) {
HInstruction next = instruction.next;
HInstruction replacement = instruction.accept(this);
if (replacement != instruction && replacement != null) {
block.rewrite(instruction, replacement);
// If the replacement instruction does not know its source element, use
// the source element of the instruction.
if (replacement.sourceElement == null) {
replacement.sourceElement = instruction.sourceElement;
}
if (replacement.sourceInformation == null) {
replacement.sourceInformation = instruction.sourceInformation;
}
if (!replacement.isInBasicBlock()) {
// The constant folding can return an instruction that is already
// part of the graph (like an input), so we only add the replacement
// if necessary.
block.addAfter(instruction, replacement);
// Visit the replacement as the next instruction in case it can also
// be constant folded away.
next = replacement;
}
block.remove(instruction);
}
instruction = next;
}
}
HInstruction visitInstruction(HInstruction node) {
return node;
}
HInstruction visitIs(HIs node) {
if (node.kind == HIs.RAW_CHECK) {
HInstruction interceptor = node.interceptor;
if (interceptor != null) {
return new HIsViaInterceptor(node.typeExpression, interceptor,
backend.boolType);
}
}
return node;
}
HInstruction visitIdentity(HIdentity node) {
node.singleComparisonOp = simpleOp(node.left, node.right);
return node;
}
String simpleOp(HInstruction left, HInstruction right) {
// Returns the single identity comparison (== or ===) or null if a more
// complex expression is required.
TypeMask leftType = left.instructionType;
TypeMask rightType = right.instructionType;
if (leftType.isNullable && rightType.isNullable) {
if (left.isConstantNull() ||
right.isConstantNull() ||
(left.isPrimitive(compiler) &&
leftType == rightType)) {
return '==';
}
return null;
}
return '===';
}
HInstruction visitInvokeDynamic(HInvokeDynamic node) {
if (node.isInterceptedCall) {
// Calls of the form
//
// a.foo$1(a, x)
//
// where the interceptor calling convention is used come from recognizing
// that 'a' is a 'self-interceptor'. If the selector matches only methods
// that ignore the explicit receiver parameter, replace occurences of the
// receiver argument with a dummy receiver '0':
//
// a.foo$1(a, x) ---> a.foo$1(0, x)
//
// This often reduces the number of references to 'a' to one, allowing 'a'
// to be generated at use to avoid a temporary, e.g.
//
// t1 = b.get$thing();
// t1.foo$1(t1, x)
// --->
// b.get$thing().foo$1(0, x)
//
Selector selector = node.selector;
if (backend.isInterceptedSelector(selector) &&
!backend.isInterceptedMixinSelector(selector)) {
HInstruction interceptor = node.inputs[0];
HInstruction receiverArgument = node.inputs[1];
if (interceptor.nonCheck() == receiverArgument.nonCheck()) {
// TODO(15933): Make automatically generated property extraction
// closures work with the dummy receiver optimization.
if (!selector.isGetter) {
ConstantValue constant = new DummyConstantValue(
receiverArgument.instructionType);
HConstant dummy = graph.addConstant(constant, compiler);
receiverArgument.usedBy.remove(node);
node.inputs[1] = dummy;
dummy.usedBy.add(node);
}
}
}
}
return node;
}
HInstruction visitFieldSet(HFieldSet setter) {
// Pattern match
// t1 = x.f; t2 = t1 + 1; x.f = t2; use(t2) --> ++x.f
// t1 = x.f; t2 = t1 op y; x.f = t2; use(t2) --> x.f op= y
// t1 = x.f; t2 = t1 + 1; x.f = t2; use(t1) --> x.f++
HBasicBlock block = setter.block;
HInstruction op = setter.value;
HInstruction receiver = setter.receiver;
bool isMatchingRead(HInstruction candidate) {
if (candidate is HFieldGet) {
if (candidate.element != setter.element) return false;
if (candidate.receiver != setter.receiver) return false;
// Recognize only three instructions in sequence in the same block. This
// could be broadened to allow non-interfering interleaved instructions.
if (op.block != block) return false;
if (candidate.block != block) return false;
if (setter.previous != op) return false;
if (op.previous != candidate) return false;
return true;
}
return false;
}
HInstruction noMatchingRead() {
// If we have other HFieldSet optimizations, they go here.
return null;
}
HInstruction replaceOp(HInstruction replacement, HInstruction getter) {
block.addBefore(setter, replacement);
block.remove(setter);
block.rewrite(op, replacement);
block.remove(op);
block.remove(getter);
return null;
}
HInstruction plusOrMinus(String assignOp, String incrementOp) {
HInvokeBinary binary = op;
HInstruction left = binary.left;
HInstruction right = binary.right;
if (isMatchingRead(left)) {
if (left.usedBy.length == 1) {
if (right is HConstant && right.constant.isOne) {
HInstruction rmw = new HReadModifyWrite.preOp(
setter.element, incrementOp, receiver, op.instructionType);
return replaceOp(rmw, left);
} else {
HInstruction rmw = new HReadModifyWrite.assignOp(
setter.element,
assignOp,
receiver, right, op.instructionType);
return replaceOp(rmw, left);
}
} else if (op.usedBy.length == 1 &&
right is HConstant &&
right.constant.isOne) {
HInstruction rmw = new HReadModifyWrite.postOp(
setter.element, incrementOp, receiver, op.instructionType);
block.addAfter(left, rmw);
block.remove(setter);
block.remove(op);
block.rewrite(left, rmw);
block.remove(left);
return null;
}
}
return noMatchingRead();
}
HInstruction simple(String assignOp,
HInstruction left, HInstruction right) {
if (isMatchingRead(left)) {
if (left.usedBy.length == 1) {
HInstruction rmw = new HReadModifyWrite.assignOp(
setter.element,
assignOp,
receiver, right, op.instructionType);
return replaceOp(rmw, left);
}
}
return noMatchingRead();
}
HInstruction simpleBinary(String assignOp) {
HInvokeBinary binary = op;
return simple(assignOp, binary.left, binary.right);
}
HInstruction bitop(String assignOp) {
// HBitAnd, HBitOr etc. are more difficult because HBitAnd(a.x, y)
// sometimes needs to be forced to unsigned: a.x = (a.x & y) >>> 0.
if (op.isUInt31(compiler)) return simpleBinary(assignOp);
return noMatchingRead();
}
if (op is HAdd) return plusOrMinus('+', '++');
if (op is HSubtract) return plusOrMinus('-', '--');
if (op is HStringConcat) return simple('+', op.left, op.right);
if (op is HMultiply) return simpleBinary('*');
if (op is HDivide) return simpleBinary('/');
if (op is HBitAnd) return bitop('&');
if (op is HBitOr) return bitop('|');
if (op is HBitXor) return bitop('^');
return noMatchingRead();
}
}
/**
* Remove [HTypeKnown] instructions from the graph, to make codegen
* analysis easier.
*/
class SsaTypeKnownRemover extends HBaseVisitor {
void visitGraph(HGraph graph) {
visitDominatorTree(graph);
}
void visitBasicBlock(HBasicBlock block) {
HInstruction instruction = block.first;
while (instruction != null) {
HInstruction next = instruction.next;
instruction.accept(this);
instruction = next;
}
}
void visitTypeKnown(HTypeKnown instruction) {
instruction.block.rewrite(instruction, instruction.checkedInput);
instruction.block.remove(instruction);
}
}
/**
* Remove [HTypeConversion] instructions from the graph in '--trust-primitives'
* mode.
*/
class SsaTrustedCheckRemover extends HBaseVisitor {
Compiler compiler;
SsaTrustedCheckRemover(this.compiler);
void visitGraph(HGraph graph) {
if (!compiler.trustPrimitives) return;
visitDominatorTree(graph);
}
void visitBasicBlock(HBasicBlock block) {
HInstruction instruction = block.first;
while (instruction != null) {
HInstruction next = instruction.next;
instruction.accept(this);
instruction = next;
}
}
void visitTypeConversion(HTypeConversion instruction) {
if (instruction.isReceiverTypeCheck || instruction.isArgumentTypeCheck) {
instruction.block.rewrite(instruction, instruction.checkedInput);
instruction.block.remove(instruction);
}
}
}
/**
* Instead of emitting each SSA instruction with a temporary variable
* mark instructions that can be emitted at their use-site.
* For example, in:
* t0 = 4;
* t1 = 3;
* t2 = add(t0, t1);
* t0 and t1 would be marked and the resulting code would then be:
* t2 = add(4, 3);
*/
class SsaInstructionMerger extends HBaseVisitor {
final Compiler compiler;
/**
* List of [HInstruction] that the instruction merger expects in
* order when visiting the inputs of an instruction.
*/
List<HInstruction> expectedInputs;
/**
* Set of pure [HInstruction] that the instruction merger expects to
* find. The order of pure instructions do not matter, as they will
* not be affected by side effects.
*/
Set<HInstruction> pureInputs;
Set<HInstruction> generateAtUseSite;
void markAsGenerateAtUseSite(HInstruction instruction) {
assert(!instruction.isJsStatement());
generateAtUseSite.add(instruction);
}
SsaInstructionMerger(this.generateAtUseSite, this.compiler);
void visitGraph(HGraph graph) {
visitDominatorTree(graph);
}
void analyzeInputs(HInstruction user, int start) {
List<HInstruction> inputs = user.inputs;
for (int i = start; i < inputs.length; i++) {
HInstruction input = inputs[i];
if (!generateAtUseSite.contains(input)
&& !input.isCodeMotionInvariant()
&& input.usedBy.length == 1
&& input is !HPhi
&& input is !HLocalValue
&& !input.isJsStatement()) {
if (input.isPure()) {
// Only consider a pure input if it is in the same loop.
// Otherwise, we might move GVN'ed instruction back into the
// loop.
if (user.hasSameLoopHeaderAs(input)) {
// Move it closer to [user], so that instructions in
// between do not prevent making it generate at use site.
input.moveBefore(user);
pureInputs.add(input);
// Previous computations done on [input] are now invalid
// because we moved [input] to another place. So all
// non code motion invariant instructions need
// to be removed from the [generateAtUseSite] set.
input.inputs.forEach((instruction) {
if (!instruction.isCodeMotionInvariant()) {
generateAtUseSite.remove(instruction);
}
});
// Visit the pure input now so that the expected inputs
// are after the expected inputs of [user].
input.accept(this);
}
} else {
expectedInputs.add(input);
}
}
}
}
void visitInstruction(HInstruction instruction) {
// A code motion invariant instruction is dealt before visiting it.
assert(!instruction.isCodeMotionInvariant());
analyzeInputs(instruction, 0);
}
void visitIs(HIs instruction) {
// In the general case the input might be used multple multiple times, so it
// must not be set generate at use site. If the code will generate
// 'instanceof' then we can generate at use site.
if (instruction.useInstanceOf) {
analyzeInputs(instruction, 0);
}
}
// A bounds check method must not have its first input generated at use site,
// because it's using it twice.
void visitBoundsCheck(HBoundsCheck instruction) {
analyzeInputs(instruction, 1);
}
// An identity operation must only have its inputs generated at use site if
// does not require an expression with multiple uses (because of null /
// undefined).
void visitIdentity(HIdentity instruction) {
if (instruction.singleComparisonOp != null) {
super.visitIdentity(instruction);
}
// Do nothing.
}
void visitTypeConversion(HTypeConversion instruction) {
if (!instruction.isArgumentTypeCheck
&& !instruction.isReceiverTypeCheck) {
assert(instruction.isCheckedModeCheck || instruction.isCastTypeCheck);
// Checked mode checks and cast checks compile to code that
// only use their input once, so we can safely visit them
// and try to merge the input.
visitInstruction(instruction);
}
}
void visitTypeKnown(HTypeKnown instruction) {
// [HTypeKnown] instructions are removed before code generation.
assert(false);
}
void tryGenerateAtUseSite(HInstruction instruction) {
if (instruction.isControlFlow()) return;
markAsGenerateAtUseSite(instruction);
}
bool isBlockSinglePredecessor(HBasicBlock block) {
return block.successors.length == 1
&& block.successors[0].predecessors.length == 1;
}
void visitBasicBlock(HBasicBlock block) {
// Compensate from not merging blocks: if the block is the
// single predecessor of its single successor, let the successor
// visit it.
if (isBlockSinglePredecessor(block)) return;
tryMergingExpressions(block);
}
void tryMergingExpressions(HBasicBlock block) {
// Visit each instruction of the basic block in last-to-first order.
// Keep a list of expected inputs of the current "expression" being
// merged. If instructions occur in the expected order, they are
// included in the expression.
// The expectedInputs list holds non-trivial instructions that may
// be generated at their use site, if they occur in the correct order.
if (expectedInputs == null) expectedInputs = new List<HInstruction>();
if (pureInputs == null) pureInputs = new Set<HInstruction>();
// Pop instructions from expectedInputs until instruction is found.
// Return true if it is found, or false if not.
bool findInInputsAndPopNonMatching(HInstruction instruction) {
assert(!instruction.isPure());
while (!expectedInputs.isEmpty) {
HInstruction nextInput = expectedInputs.removeLast();
assert(!generateAtUseSite.contains(nextInput));
assert(nextInput.usedBy.length == 1);
if (identical(nextInput, instruction)) {
return true;
}
}
return false;
}
block.last.accept(this);
for (HInstruction instruction = block.last.previous;
instruction != null;
instruction = instruction.previous) {
if (generateAtUseSite.contains(instruction)) {
continue;
}
if (instruction.isCodeMotionInvariant()) {
markAsGenerateAtUseSite(instruction);
continue;
}
if (instruction.isPure()) {
if (pureInputs.contains(instruction)) {
tryGenerateAtUseSite(instruction);
} else {
// If the input is not in the [pureInputs] set, it has not
// been visited or should not be generated at use-site. The most
// likely reason for the latter, is that the instruction is used
// in more than one location.
// We must either clear the expectedInputs, or move the pure
// instruction's inputs in front of the existing ones.
// Example:
// t1 = foo(); // side-effect.
// t2 = bar(); // side-effect.
// t3 = pure(t2); // used more than once.
// f(t1, t3); // expected inputs of 'f': t1.
// use(t3);
//
// If we don't clear the expected inputs we end up in a situation
// where pure pushes "t2" on top of "t1" leading to:
// t3 = pure(bar());
// f(foo(), t3);
// use(t3);
//
// If we clear the expected-inputs list we have the correct
// output:
// t1 = foo();
// t3 = pure(bar());
// f(t1, t3);
// use(t3);
//
// Clearing is, however, not optimal.
// Example:
// t1 = foo(); // t1 is now used by `pure`.
// t2 = bar(); // t2 is now used by `f`.
// t3 = pure(t1);
// f(t2, t3);
// use(t3);
//
// If we clear the expected-inputs we can't generate-at-use any of
// the instructions.
//
// The optimal solution is to move the inputs of 'pure' in
// front of the expectedInputs list. This makes sense, since we
// push expected-inputs from left-to right, and the `pure` function
// invocation is "more left" (i.e. before) the first argument of `f`.
// With that approach we end up with:
// t3 = pure(foo();
// f(bar(), t3);
// use(t3);
//
int oldLength = expectedInputs.length;
instruction.accept(this);
if (oldLength != 0 && oldLength != expectedInputs.length) {
// Move the pure instruction's inputs to the front.
List<HInstruction> newInputs = expectedInputs.sublist(oldLength);
int newCount = newInputs.length;
expectedInputs.setRange(
newCount, newCount + oldLength, expectedInputs);
expectedInputs.setRange(0, newCount, newInputs);
}
}
} else {
if (findInInputsAndPopNonMatching(instruction)) {
// The current instruction is the next non-trivial
// expected input.
tryGenerateAtUseSite(instruction);
} else {
assert(expectedInputs.isEmpty);
}
instruction.accept(this);
}
}
if (block.predecessors.length == 1
&& isBlockSinglePredecessor(block.predecessors[0])) {
assert(block.phis.isEmpty);
tryMergingExpressions(block.predecessors[0]);
} else {
expectedInputs = null;
pureInputs = null;
}
}
}
/**
* Detect control flow arising from short-circuit logical and
* conditional operators, and prepare the program to be generated
* using these operators instead of nested ifs and boolean variables.
*/
class SsaConditionMerger extends HGraphVisitor {
Set<HInstruction> generateAtUseSite;
Set<HInstruction> controlFlowOperators;
void markAsGenerateAtUseSite(HInstruction instruction) {
assert(!instruction.isJsStatement());
generateAtUseSite.add(instruction);
}
SsaConditionMerger(this.generateAtUseSite, this.controlFlowOperators);
void visitGraph(HGraph graph) {
visitPostDominatorTree(graph);
}
/**
* Check if a block has at least one statement other than
* [instruction].
*/
bool hasAnyStatement(HBasicBlock block, HInstruction instruction) {
// If [instruction] is not in [block], then if the block is not
// empty, we know there will be a statement to emit.
if (!identical(instruction.block, block)) return !identical(block.last, block.first);
// If [instruction] is not the last instruction of the block
// before the control flow instruction, or the last instruction,
// then we will have to emit a statement for that last instruction.
if (instruction != block.last
&& !identical(instruction, block.last.previous)) return true;
// If one of the instructions in the block until [instruction] is
// not generated at use site, then we will have to emit a
// statement for it.
// TODO(ngeoffray): we could generate a comma separated
// list of expressions.
for (HInstruction temp = block.first;
!identical(temp, instruction);
temp = temp.next) {
if (!generateAtUseSite.contains(temp)) return true;
}
return false;
}
bool isSafeToGenerateAtUseSite(HInstruction user, HInstruction input) {
// A [HForeign] instruction uses operators and if we generate
// [input] at use site, the precedence might be wrong.
if (user is HForeign) return false;
// A [HCheck] instruction with control flow uses its input
// multiple times, so we avoid generating it at use site.
if (user is HCheck && user.isControlFlow()) return false;
// A [HIs] instruction uses its input multiple times, so we
// avoid generating it at use site.
if (user is HIs) return false;
return true;
}
void visitBasicBlock(HBasicBlock block) {
if (block.last is !HIf) return;
HIf startIf = block.last;
HBasicBlock end = startIf.joinBlock;
// We check that the structure is the following:
// If
// / \
// / \
// 1 expr goto
// goto /
// \ /
// \ /
// phi(expr, true|false)
//
// and the same for nested nodes:
//
// If
// / \
// / \
// 1 expr1 \
// If \
// / \ \
// / \ goto
// 1 expr2 |
// goto goto |
// \ / |
// \ / |
// phi1(expr2, true|false)
// \ |
// \ |
// phi(phi1, true|false)
if (end == null) return;
if (end.phis.isEmpty) return;
if (!identical(end.phis.first, end.phis.last)) return;
HBasicBlock elseBlock = startIf.elseBlock;
if (!identical(end.predecessors[1], elseBlock)) return;
HPhi phi = end.phis.first;
HInstruction thenInput = phi.inputs[0];
HInstruction elseInput = phi.inputs[1];
if (thenInput.isJsStatement() || elseInput.isJsStatement()) return;
if (hasAnyStatement(elseBlock, elseInput)) return;
assert(elseBlock.successors.length == 1);
assert(end.predecessors.length == 2);
HBasicBlock thenBlock = startIf.thenBlock;
// Skip trivial goto blocks.
while (thenBlock.successors[0] != end && thenBlock.first is HGoto) {
thenBlock = thenBlock.successors[0];
}
// If the [thenBlock] is already a control flow operation, and does not
// have any statement and its join block is [end], we can emit a
// sequence of control flow operation.
if (controlFlowOperators.contains(thenBlock.last)) {
HIf otherIf = thenBlock.last;
if (!identical(otherIf.joinBlock, end)) {
// This could be a join block that just feeds into our join block.
HBasicBlock otherJoin = otherIf.joinBlock;
if (otherJoin.first != otherJoin.last) return;
if (otherJoin.successors.length != 1) return;
if (otherJoin.successors[0] != end) return;
if (otherJoin.phis.isEmpty) return;
if (!identical(otherJoin.phis.first, otherJoin.phis.last)) return;
HPhi otherPhi = otherJoin.phis.first;
if (thenInput != otherPhi) return;
if (elseInput != otherPhi.inputs[1]) return;
}
if (hasAnyStatement(thenBlock, otherIf)) return;
} else {
if (!identical(end.predecessors[0], thenBlock)) return;
if (hasAnyStatement(thenBlock, thenInput)) return;
assert(thenBlock.successors.length == 1);
}
// From now on, we have recognized a control flow operation built from
// the builder. Mark the if instruction as such.
controlFlowOperators.add(startIf);
// Find the next non-HGoto instruction following the phi.
HInstruction nextInstruction = phi.block.first;
while (nextInstruction is HGoto) {
nextInstruction = nextInstruction.block.successors[0].first;
}
// If the operation is only used by the first instruction
// of its block and is safe to be generated at use site, mark it
// so.
if (phi.usedBy.length == 1
&& phi.usedBy[0] == nextInstruction
&& isSafeToGenerateAtUseSite(phi.usedBy[0], phi)) {
markAsGenerateAtUseSite(phi);
}
if (identical(elseInput.block, elseBlock)) {
assert(elseInput.usedBy.length == 1);
markAsGenerateAtUseSite(elseInput);
}
// If [thenInput] is defined in the first predecessor, then it is only used
// by [phi] and can be generated at use site.
if (identical(thenInput.block, end.predecessors[0])) {
assert(thenInput.usedBy.length == 1);
markAsGenerateAtUseSite(thenInput);
}
}
}