blob: 21387ea8f698d760324afafc74d0e37e5549e16d [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
part of ssa;
class SsaCodeGeneratorTask extends CompilerTask {
final JavaScriptBackend backend;
SsaCodeGeneratorTask(JavaScriptBackend backend)
: this.backend = backend,
super(backend.compiler);
String get name => 'SSA code generator';
NativeEmitter get nativeEmitter => backend.emitter.nativeEmitter;
js.Node attachPosition(js.Node node, AstElement element) {
return node.withSourceInformation(
StartEndSourceInformation.computeSourceInformation(element));
}
js.Fun buildJavaScriptFunction(FunctionElement element,
List<js.Parameter> parameters,
js.Block body) {
js.AsyncModifier asyncModifier = element.asyncMarker.isAsync
? (element.asyncMarker.isYielding
? const js.AsyncModifier.asyncStar()
: const js.AsyncModifier.async())
: (element.asyncMarker.isYielding
? const js.AsyncModifier.syncStar()
: const js.AsyncModifier.sync());
return attachPosition(
new js.Fun(parameters, body, asyncModifier: asyncModifier), element);
}
js.Expression generateCode(CodegenWorkItem work, HGraph graph) {
if (work.element.isField) {
return generateLazyInitializer(work, graph);
} else {
return generateMethod(work, graph);
}
}
js.Expression generateLazyInitializer(work, graph) {
return measure(() {
compiler.tracer.traceGraph("codegen", graph);
SsaCodeGenerator codegen = new SsaCodeGenerator(backend, work);
codegen.visitGraph(graph);
return new js.Fun(codegen.parameters,
attachPosition(codegen.body, work.element));
});
}
js.Expression generateMethod(CodegenWorkItem work, HGraph graph) {
return measure(() {
FunctionElement element = work.element;
if (element.asyncMarker != AsyncMarker.SYNC) {
work.registry.registerAsyncMarker(element);
}
SsaCodeGenerator codegen = new SsaCodeGenerator(backend, work);
codegen.visitGraph(graph);
compiler.tracer.traceGraph("codegen", graph);
return buildJavaScriptFunction(element, codegen.parameters, codegen.body);
});
}
}
typedef void EntityAction(Entity element);
class SsaCodeGenerator implements HVisitor, HBlockInformationVisitor {
/**
* Returned by [expressionType] to tell how code can be generated for
* a subgraph.
* - [TYPE_STATEMENT] means that the graph must be generated as a statement,
* which is always possible.
* - [TYPE_EXPRESSION] means that the graph can be generated as an expression,
* or possibly several comma-separated expressions.
* - [TYPE_DECLARATION] means that the graph can be generated as an
* expression, and that it only generates expressions of the form
* variable = expression
* which are also valid as parts of a "var" declaration.
*/
static const int TYPE_STATEMENT = 0;
static const int TYPE_EXPRESSION = 1;
static const int TYPE_DECLARATION = 2;
/**
* Whether we are currently generating expressions instead of statements.
* This includes declarations, which are generated as expressions.
*/
bool isGeneratingExpression = false;
final JavaScriptBackend backend;
final CodegenWorkItem work;
final Set<HInstruction> generateAtUseSite;
final Set<HInstruction> controlFlowOperators;
final Map<Entity, EntityAction> breakAction;
final Map<Entity, EntityAction> continueAction;
final List<js.Parameter> parameters;
js.Block currentContainer;
js.Block get body => currentContainer;
List<js.Expression> expressionStack;
List<js.Block> oldContainerStack;
/**
* Contains the names of the instructions, as well as the parallel
* copies to perform on block transitioning.
*/
VariableNames variableNames;
bool shouldGroupVarDeclarations = false;
/**
* While generating expressions, we can't insert variable declarations.
* Instead we declare them at the start of the function. When minifying
* we do this most of the time, because it reduces the size unless there
* is only one variable.
*/
final Set<String> collectedVariableDeclarations;
/**
* Set of variables and parameters that have already been declared.
*/
final Set<String> declaredLocals;
HGraph currentGraph;
// Records a block-information that is being handled specially.
// Used to break bad recursion.
HBlockInformation currentBlockInformation;
// The subgraph is used to delimit traversal for some constructions, e.g.,
// if branches.
SubGraph subGraph;
SsaCodeGenerator(this.backend, CodegenWorkItem work)
: this.work = work,
declaredLocals = new Set<String>(),
collectedVariableDeclarations = new Set<String>(),
currentContainer = new js.Block.empty(),
parameters = <js.Parameter>[],
expressionStack = <js.Expression>[],
oldContainerStack = <js.Block>[],
generateAtUseSite = new Set<HInstruction>(),
controlFlowOperators = new Set<HInstruction>(),
breakAction = new Map<Entity, EntityAction>(),
continueAction = new Map<Entity, EntityAction>();
Compiler get compiler => backend.compiler;
NativeEmitter get nativeEmitter => backend.emitter.nativeEmitter;
CodegenRegistry get registry => work.registry;
bool isGenerateAtUseSite(HInstruction instruction) {
return generateAtUseSite.contains(instruction);
}
bool hasNonBitOpUser(HInstruction instruction, Set<HPhi> phiSet) {
for (HInstruction user in instruction.usedBy) {
if (user is HPhi) {
if (!phiSet.contains(user)) {
phiSet.add(user);
if (hasNonBitOpUser(user, phiSet)) return true;
}
} else if (user is! HBitNot && user is! HBinaryBitOp) {
return true;
}
}
return false;
}
bool requiresUintConversion(instruction) {
if (instruction.isUInt31(compiler)) return false;
// If the result of a bit-operation is only used by other bit
// operations, we do not have to convert to an unsigned integer.
return hasNonBitOpUser(instruction, new Set<HPhi>());
}
/**
* If the [instruction] is not `null` it will be used to attach the position
* to the [statement].
*/
void pushStatement(js.Statement statement, [HInstruction instruction]) {
assert(expressionStack.isEmpty);
if (instruction != null) {
statement = attachLocation(statement, instruction);
}
currentContainer.statements.add(statement);
}
void insertStatementAtStart(js.Statement statement) {
currentContainer.statements.insert(0, statement);
}
/**
* If the [instruction] is not `null` it will be used to attach the position
* to the [expression].
*/
pushExpressionAsStatement(js.Expression expression,
[HInstruction instruction]) {
pushStatement(new js.ExpressionStatement(expression), instruction);
}
/**
* If the [instruction] is not `null` it will be used to attach the position
* to the [expression].
*/
push(js.Expression expression, [HInstruction instruction]) {
if (instruction != null) {
expression = attachLocation(expression, instruction);
}
expressionStack.add(expression);
}
js.Expression pop() {
return expressionStack.removeLast();
}
attachLocationToLast(HInstruction instruction) {
int index = expressionStack.length - 1;
expressionStack[index] =
attachLocation(expressionStack[index], instruction);
}
js.Node attachLocation(js.Node jsNode, HInstruction instruction) {
return attachSourceInformation(jsNode, instruction.sourceInformation);
}
js.Node attachSourceInformation(js.Node jsNode,
SourceInformation sourceInformation) {
return jsNode.withSourceInformation(sourceInformation);
}
void preGenerateMethod(HGraph graph) {
new SsaInstructionSelection(compiler).visitGraph(graph);
new SsaTypeKnownRemover().visitGraph(graph);
new SsaTrustedCheckRemover(compiler).visitGraph(graph);
new SsaInstructionMerger(generateAtUseSite, compiler).visitGraph(graph);
new SsaConditionMerger(
generateAtUseSite, controlFlowOperators).visitGraph(graph);
SsaLiveIntervalBuilder intervalBuilder = new SsaLiveIntervalBuilder(
compiler, generateAtUseSite, controlFlowOperators);
intervalBuilder.visitGraph(graph);
SsaVariableAllocator allocator = new SsaVariableAllocator(
compiler,
intervalBuilder.liveInstructions,
intervalBuilder.liveIntervals,
generateAtUseSite);
allocator.visitGraph(graph);
variableNames = allocator.names;
shouldGroupVarDeclarations = allocator.names.numberOfVariables > 1;
}
void handleDelayedVariableDeclarations() {
// If we have only one variable declaration and the first statement is an
// assignment to that variable then we can merge the two. We count the
// number of variables in the variable allocator to try to avoid this issue,
// but it sometimes happens that the variable allocator introduces a
// temporary variable that it later eliminates.
if (!collectedVariableDeclarations.isEmpty) {
if (collectedVariableDeclarations.length == 1 &&
currentContainer.statements.length >= 1 &&
currentContainer.statements[0] is js.ExpressionStatement) {
String name = collectedVariableDeclarations.first;
js.ExpressionStatement statement = currentContainer.statements[0];
if (statement.expression is js.Assignment) {
js.Assignment assignment = statement.expression;
if (!assignment.isCompound &&
assignment.leftHandSide is js.VariableReference) {
js.VariableReference variableReference = assignment.leftHandSide;
if (variableReference.name == name) {
js.VariableDeclaration decl = new js.VariableDeclaration(name);
js.VariableInitialization initialization =
new js.VariableInitialization(decl, assignment.value);
currentContainer.statements[0] = new js.ExpressionStatement(
new js.VariableDeclarationList([initialization]));
return;
}
}
}
}
// If we can't merge the declaration with the first assignment then we
// just do it with a new var z,y,x; statement.
List<js.VariableInitialization> declarations =
<js.VariableInitialization>[];
collectedVariableDeclarations.forEach((String name) {
declarations.add(new js.VariableInitialization(
new js.VariableDeclaration(name), null));
});
var declarationList = new js.VariableDeclarationList(declarations);
insertStatementAtStart(new js.ExpressionStatement(declarationList));
}
}
visitGraph(HGraph graph) {
preGenerateMethod(graph);
currentGraph = graph;
subGraph = new SubGraph(graph.entry, graph.exit);
visitBasicBlock(graph.entry);
handleDelayedVariableDeclarations();
}
void visitSubGraph(SubGraph newSubGraph) {
SubGraph oldSubGraph = subGraph;
subGraph = newSubGraph;
visitBasicBlock(subGraph.start);
subGraph = oldSubGraph;
}
/**
* Check whether a sub-graph can be generated as an expression, or even
* as a declaration, or if it has to fall back to being generated as
* a statement.
* Expressions are anything that doesn't generate control flow constructs.
* Declarations must only generate assignments on the form "id = expression",
* and not, e.g., expressions where the value isn't assigned, or where it's
* assigned to something that's not a simple variable.
*/
int expressionType(HExpressionInformation info) {
// The only HExpressionInformation used as part of a HBlockInformation is
// current HSubExpressionBlockInformation, so it's the only one reaching
// here. If we start using the other HExpressionInformation types too,
// this code should be generalized.
assert(info is HSubExpressionBlockInformation);
HSubExpressionBlockInformation expressionInfo = info;
SubGraph limits = expressionInfo.subExpression;
// Start assuming that we can generate declarations. If we find a
// counter-example, we degrade our assumption to either expression or
// statement, and in the latter case, we can return immediately since
// it can't get any worse. E.g., a function call where the return value
// isn't used can't be in a declaration.
int result = TYPE_DECLARATION;
HBasicBlock basicBlock = limits.start;
do {
HInstruction current = basicBlock.first;
while (current != basicBlock.last) {
// E.g, bounds check.
if (current.isControlFlow()) {
return TYPE_STATEMENT;
}
// HFieldSet generates code on the form x.y = ..., which isn't
// valid in a declaration, but it also always have no uses, so
// it's caught by that test too.
assert(current is! HFieldSet || current.usedBy.isEmpty);
if (current.usedBy.isEmpty) {
result = TYPE_EXPRESSION;
}
current = current.next;
}
if (current is HGoto) {
basicBlock = basicBlock.successors[0];
} else if (current is HConditionalBranch) {
if (generateAtUseSite.contains(current)) {
// Short-circuit control flow operator trickery.
// Check the second half, which will continue into the join.
// (The first half is [inputs[0]], the second half is [successors[0]],
// and [successors[1]] is the join-block).
basicBlock = basicBlock.successors[0];
} else {
// We allow an expression to end on an HIf (a condition expression).
return identical(basicBlock, limits.end) ? result : TYPE_STATEMENT;
}
} else {
// Expression-incompatible control flow.
return TYPE_STATEMENT;
}
} while (limits.contains(basicBlock));
return result;
}
bool isJSExpression(HExpressionInformation info) {
return !identical(expressionType(info), TYPE_STATEMENT);
}
bool isJSCondition(HExpressionInformation info) {
HSubExpressionBlockInformation graph = info;
SubExpression limits = graph.subExpression;
return !identical(expressionType(info), TYPE_STATEMENT) &&
(limits.end.last is HConditionalBranch);
}
/**
* Generate statements from block information.
* If the block information contains expressions, generate only
* assignments, and if it ends in a conditional branch, don't generate
* the condition.
*/
void generateStatements(HBlockInformation block) {
if (block is HStatementInformation) {
block.accept(this);
} else {
HSubExpressionBlockInformation expression = block;
visitSubGraph(expression.subExpression);
}
}
js.Block generateStatementsInNewBlock(HBlockInformation block) {
js.Block result = new js.Block.empty();
js.Block oldContainer = currentContainer;
currentContainer = result;
generateStatements(block);
currentContainer = oldContainer;
return result;
}
/**
* If the [block] only contains one statement returns that statement. If the
* that statement itself is a block, recursively calls this method.
*
* If the block is empty, returns a new instance of [js.NOP].
*/
js.Statement unwrapStatement(js.Block block) {
int len = block.statements.length;
if (len == 0) return new js.EmptyStatement();
if (len == 1) {
js.Statement result = block.statements[0];
if (result is ast.Block) return unwrapStatement(result);
return result;
}
return block;
}
/**
* Generate expressions from block information.
*/
js.Expression generateExpression(HExpressionInformation expression) {
// Currently we only handle sub-expression graphs.
assert(expression is HSubExpressionBlockInformation);
bool oldIsGeneratingExpression = isGeneratingExpression;
isGeneratingExpression = true;
List<js.Expression> oldExpressionStack = expressionStack;
List<js.Expression> sequenceElements = <js.Expression>[];
expressionStack = sequenceElements;
HSubExpressionBlockInformation expressionSubGraph = expression;
visitSubGraph(expressionSubGraph.subExpression);
expressionStack = oldExpressionStack;
isGeneratingExpression = oldIsGeneratingExpression;
if (sequenceElements.isEmpty) {
// Happens when the initializer, condition or update of a loop is empty.
return null;
} else if (sequenceElements.length == 1) {
return sequenceElements[0];
} else {
js.Expression result = sequenceElements.removeLast();
while (sequenceElements.isNotEmpty) {
result = new js.Binary(',', sequenceElements.removeLast(), result);
}
return result;
}
}
/**
* Only visits the arguments starting at inputs[HInvoke.ARGUMENTS_OFFSET].
*/
List<js.Expression> visitArguments(List<HInstruction> inputs,
{int start: HInvoke.ARGUMENTS_OFFSET}) {
assert(inputs.length >= start);
List<js.Expression> result = new List<js.Expression>(inputs.length - start);
for (int i = start; i < inputs.length; i++) {
use(inputs[i]);
result[i - start] = pop();
}
return result;
}
bool isVariableDeclared(String variableName) {
return declaredLocals.contains(variableName) ||
collectedVariableDeclarations.contains(variableName);
}
js.Expression generateExpressionAssignment(String variableName,
js.Expression value) {
if (value is js.Binary) {
js.Binary binary = value;
String op = binary.op;
if (op == '+' || op == '-' || op == '/' || op == '*' || op == '%' ||
op == '^' || op == '&' || op == '|') {
if (binary.left is js.VariableUse &&
(binary.left as js.VariableUse).name == variableName) {
// We know now, that we can shorten x = x + y into x += y.
// Also check for the shortcut where y equals 1: x++ and x--.
if ((op == '+' || op == '-') &&
binary.right is js.LiteralNumber &&
(binary.right as js.LiteralNumber).value == "1") {
return new js.Prefix(op == '+' ? '++' : '--', binary.left);
}
return new js.Assignment.compound(binary.left, op, binary.right);
}
}
}
return new js.Assignment(new js.VariableUse(variableName), value);
}
void assignVariable(String variableName, js.Expression value) {
if (isGeneratingExpression) {
// If we are in an expression then we can't declare the variable here.
// We have no choice, but to use it and then declare it separately.
if (!isVariableDeclared(variableName)) {
collectedVariableDeclarations.add(variableName);
}
push(generateExpressionAssignment(variableName, value));
// Otherwise if we are trying to declare inline and we are in a statement
// then we declare (unless it was already declared).
} else if (!shouldGroupVarDeclarations &&
!declaredLocals.contains(variableName)) {
// It may be necessary to remove it from the ones to be declared later.
collectedVariableDeclarations.remove(variableName);
declaredLocals.add(variableName);
js.VariableDeclaration decl = new js.VariableDeclaration(variableName);
js.VariableInitialization initialization =
new js.VariableInitialization(decl, value);
pushExpressionAsStatement(new js.VariableDeclarationList(
<js.VariableInitialization>[initialization]));
} else {
// Otherwise we are just going to use it. If we have not already declared
// it then we make sure we will declare it later.
if (!declaredLocals.contains(variableName)) {
collectedVariableDeclarations.add(variableName);
}
pushExpressionAsStatement(
generateExpressionAssignment(variableName, value));
}
}
void define(HInstruction instruction) {
// For simple type checks like i = intTypeCheck(i), we don't have to
// emit an assignment, because the intTypeCheck just returns its
// argument.
bool needsAssignment = true;
if (instruction is HTypeConversion) {
HTypeConversion typeConversion = instruction;
String inputName = variableNames.getName(typeConversion.checkedInput);
if (variableNames.getName(instruction) == inputName) {
needsAssignment = false;
}
}
if (instruction is HLocalValue) {
needsAssignment = false;
}
if (needsAssignment &&
!instruction.isControlFlow() && variableNames.hasName(instruction)) {
visitExpression(instruction);
assignVariable(variableNames.getName(instruction), pop());
return;
}
if (isGeneratingExpression) {
visitExpression(instruction);
} else {
visitStatement(instruction);
}
}
void use(HInstruction argument) {
if (isGenerateAtUseSite(argument)) {
visitExpression(argument);
} else if (argument is HCheck && !variableNames.hasName(argument)) {
HCheck check = argument;
// This can only happen if the checked node does not have a name.
assert(!variableNames.hasName(check.checkedInput));
use(check.checkedInput);
} else {
assert(variableNames.hasName(argument));
push(new js.VariableUse(variableNames.getName(argument)));
}
}
visit(HInstruction node) {
node.accept(this);
}
visitExpression(HInstruction node) {
bool oldIsGeneratingExpression = isGeneratingExpression;
isGeneratingExpression = true;
visit(node);
isGeneratingExpression = oldIsGeneratingExpression;
}
visitStatement(HInstruction node) {
assert(!isGeneratingExpression);
visit(node);
if (!expressionStack.isEmpty) {
assert(expressionStack.length == 1);
pushExpressionAsStatement(pop());
}
}
void continueAsBreak(LabelDefinition target) {
pushStatement(new js.Break(backend.namer.continueLabelName(target)));
}
void implicitContinueAsBreak(JumpTarget target) {
pushStatement(new js.Break(
backend.namer.implicitContinueLabelName(target)));
}
void implicitBreakWithLabel(JumpTarget target) {
pushStatement(new js.Break(backend.namer.implicitBreakLabelName(target)));
}
js.Statement wrapIntoLabels(js.Statement result, List<LabelDefinition> labels) {
for (LabelDefinition label in labels) {
if (label.isTarget) {
String breakLabelString = backend.namer.breakLabelName(label);
result = new js.LabeledStatement(breakLabelString, result);
}
}
return result;
}
// The regular [visitIf] method implements the needed logic.
bool visitIfInfo(HIfBlockInformation info) => false;
bool visitSwitchInfo(HSwitchBlockInformation info) {
bool isExpression = isJSExpression(info.expression);
if (!isExpression) {
generateStatements(info.expression);
}
if (isExpression) {
push(generateExpression(info.expression));
} else {
use(info.expression.conditionExpression);
}
js.Expression key = pop();
List<js.SwitchClause> cases = <js.SwitchClause>[];
HSwitch switchInstruction = info.expression.end.last;
List<HInstruction> inputs = switchInstruction.inputs;
List<HBasicBlock> successors = switchInstruction.block.successors;
js.Block oldContainer = currentContainer;
for (int inputIndex = 1, statementIndex = 0;
inputIndex < inputs.length;
statementIndex++) {
HBasicBlock successor = successors[inputIndex - 1];
// If liveness analysis has figured out that this case is dead,
// omit the code for it.
if (successor.isLive) {
do {
visit(inputs[inputIndex]);
currentContainer = new js.Block.empty();
cases.add(new js.Case(pop(), currentContainer));
inputIndex++;
} while ((successors[inputIndex - 1] == successor)
&& (inputIndex < inputs.length));
generateStatements(info.statements[statementIndex]);
} else {
// Skip all the case statements that belong to this
// block.
while ((successors[inputIndex - 1] == successor)
&& (inputIndex < inputs.length)) {
++inputIndex;
}
}
}
// If the default case is dead, we omit it. Likewise, if it is an
// empty block, we omit it, too.
if (info.statements.last.start.isLive) {
currentContainer = new js.Block.empty();
generateStatements(info.statements.last);
if (currentContainer.statements.isNotEmpty) {
cases.add(new js.Default(currentContainer));
}
}
currentContainer = oldContainer;
js.Statement result = new js.Switch(key, cases);
pushStatement(wrapIntoLabels(result, info.labels));
return true;
}
bool visitSequenceInfo(HStatementSequenceInformation info) {
return false;
}
bool visitSubGraphInfo(HSubGraphBlockInformation info) {
visitSubGraph(info.subGraph);
return true;
}
bool visitSubExpressionInfo(HSubExpressionBlockInformation info) {
return false;
}
bool visitAndOrInfo(HAndOrBlockInformation info) {
return false;
}
bool visitTryInfo(HTryBlockInformation info) {
js.Block body = generateStatementsInNewBlock(info.body);
js.Catch catchPart = null;
js.Block finallyPart = null;
if (info.catchBlock != null) {
void register(ClassElement classElement) {
if (classElement != null) {
registry.registerInstantiatedClass(classElement);
}
}
register(backend.jsPlainJavaScriptObjectClass);
register(backend.jsUnknownJavaScriptObjectClass);
HLocalValue exception = info.catchVariable;
String name = variableNames.getName(exception);
js.VariableDeclaration decl = new js.VariableDeclaration(name);
js.Block catchBlock = generateStatementsInNewBlock(info.catchBlock);
catchPart = new js.Catch(decl, catchBlock);
}
if (info.finallyBlock != null) {
finallyPart = generateStatementsInNewBlock(info.finallyBlock);
}
pushStatement(new js.Try(body, catchPart, finallyPart));
return true;
}
void visitBodyIgnoreLabels(HLoopBlockInformation info) {
if (info.body.start.isLabeledBlock()) {
HBlockInformation oldInfo = currentBlockInformation;
currentBlockInformation = info.body.start.blockFlow.body;
generateStatements(info.body);
currentBlockInformation = oldInfo;
} else {
generateStatements(info.body);
}
}
bool visitLoopInfo(HLoopBlockInformation info) {
HExpressionInformation condition = info.condition;
bool isConditionExpression = isJSCondition(condition);
js.Loop loop;
switch (info.kind) {
// Treate all three "test-first" loops the same way.
case HLoopBlockInformation.FOR_LOOP:
case HLoopBlockInformation.WHILE_LOOP:
case HLoopBlockInformation.FOR_IN_LOOP:
case HLoopBlockInformation.SWITCH_CONTINUE_LOOP:
HBlockInformation initialization = info.initializer;
int initializationType = TYPE_STATEMENT;
if (initialization != null) {
initializationType = expressionType(initialization);
if (initializationType == TYPE_STATEMENT) {
generateStatements(initialization);
initialization = null;
}
}
// We inserted a basic block to avoid critical edges. This block is
// part of the LoopBlockInformation and must therefore be handled here.
js.Block oldContainer = currentContainer;
js.Block avoidContainer = new js.Block.empty();
currentContainer = avoidContainer;
assignPhisOfSuccessors(condition.end.successors.last);
bool hasPhiUpdates = !avoidContainer.statements.isEmpty;
currentContainer = oldContainer;
if (isConditionExpression &&
!hasPhiUpdates &&
info.updates != null && isJSExpression(info.updates)) {
// If we have an updates graph, and it's expressible as an
// expression, generate a for-loop.
js.Expression jsInitialization = null;
if (initialization != null) {
int delayedVariablesCount = collectedVariableDeclarations.length;
jsInitialization = generateExpression(initialization);
if (!shouldGroupVarDeclarations &&
delayedVariablesCount < collectedVariableDeclarations.length) {
// We just added a new delayed variable-declaration. See if we can
// put in a 'var' in front of the initialization to make it go
// away. We walk the 'tree' of comma-operators to find the
// expressions and see if they are all assignments that can be
// converted into declarations.
List<js.Assignment> assignments;
bool allSimpleAssignments(js.Expression expression) {
if (expression is js.Assignment) {
js.Assignment assignment = expression;
if (assignment.leftHandSide is js.VariableUse &&
!assignment.isCompound) {
if (assignments == null) assignments = <js.Assignment>[];
assignments.add(expression);
return true;
}
} else if (expression.isCommaOperator) {
js.Binary binary = expression;
return allSimpleAssignments(binary.left)
&& allSimpleAssignments(binary.right);
}
return false;
}
if (allSimpleAssignments(jsInitialization)) {
List<js.VariableInitialization> inits =
<js.VariableInitialization>[];
for (js.Assignment assignment in assignments) {
String id = (assignment.leftHandSide as js.VariableUse).name;
js.Node declaration = new js.VariableDeclaration(id);
inits.add(new js.VariableInitialization(declaration,
assignment.value));
collectedVariableDeclarations.remove(id);
declaredLocals.add(id);
}
jsInitialization = new js.VariableDeclarationList(inits);
}
}
}
js.Expression jsCondition = generateExpression(condition);
js.Expression jsUpdates = generateExpression(info.updates);
// The body might be labeled. Ignore this when recursing on the
// subgraph.
// TODO(lrn): Remove this extra labeling when handling all loops
// using subgraphs.
oldContainer = currentContainer;
js.Statement body = new js.Block.empty();
currentContainer = body;
visitBodyIgnoreLabels(info);
currentContainer = oldContainer;
body = unwrapStatement(body);
loop = new js.For(jsInitialization, jsCondition, jsUpdates, body);
} else {
// We have either no update graph, or it's too complex to
// put in an expression.
if (initialization != null) {
generateStatements(initialization);
}
js.Expression jsCondition;
js.Block oldContainer = currentContainer;
js.Statement body = new js.Block.empty();
if (isConditionExpression && !hasPhiUpdates) {
jsCondition = generateExpression(condition);
currentContainer = body;
} else {
jsCondition = newLiteralBool(true);
currentContainer = body;
generateStatements(condition);
use(condition.conditionExpression);
js.Expression ifTest = new js.Prefix("!", pop());
js.Statement jsBreak = new js.Break(null);
js.Statement exitLoop;
if (avoidContainer.statements.isEmpty) {
exitLoop = jsBreak;
} else {
avoidContainer.statements.add(jsBreak);
exitLoop = avoidContainer;
}
pushStatement(new js.If.noElse(ifTest, exitLoop));
}
if (info.updates != null) {
wrapLoopBodyForContinue(info);
generateStatements(info.updates);
} else {
visitBodyIgnoreLabels(info);
}
currentContainer = oldContainer;
body = unwrapStatement(body);
loop = new js.While(jsCondition, body);
}
break;
case HLoopBlockInformation.DO_WHILE_LOOP:
if (info.initializer != null) {
generateStatements(info.initializer);
}
// We inserted a basic block to avoid critical edges. This block is
// part of the LoopBlockInformation and must therefore be handled here.
js.Block oldContainer = currentContainer;
js.Block exitAvoidContainer = new js.Block.empty();
currentContainer = exitAvoidContainer;
assignPhisOfSuccessors(condition.end.successors.last);
bool hasExitPhiUpdates = !exitAvoidContainer.statements.isEmpty;
currentContainer = oldContainer;
oldContainer = currentContainer;
js.Block body = new js.Block.empty();
// If there are phi copies in the block that jumps to the
// loop entry, we must emit the condition like this:
// do {
// body;
// if (condition) {
// phi updates;
// continue;
// } else {
// break;
// }
// } while (true);
HBasicBlock avoidEdge = info.end.successors[0];
js.Block updateBody = new js.Block.empty();
currentContainer = updateBody;
assignPhisOfSuccessors(avoidEdge);
bool hasPhiUpdates = !updateBody.statements.isEmpty;
currentContainer = body;
visitBodyIgnoreLabels(info);
if (info.updates != null) {
generateStatements(info.updates);
}
if (isConditionExpression) {
push(generateExpression(condition));
} else {
generateStatements(condition);
use(condition.conditionExpression);
}
js.Expression jsCondition = pop();
if (jsCondition == null) {
// If the condition is dead code, we turn the do-while into
// a simpler while because we will never reach the condition
// at the end of the loop anyway.
loop = new js.While(newLiteralBool(true), unwrapStatement(body));
} else {
if (hasPhiUpdates || hasExitPhiUpdates) {
updateBody.statements.add(new js.Continue(null));
js.Statement jsBreak = new js.Break(null);
js.Statement exitLoop;
if (exitAvoidContainer.statements.isEmpty) {
exitLoop = jsBreak;
} else {
exitAvoidContainer.statements.add(jsBreak);
exitLoop = exitAvoidContainer;
}
body.statements.add(
new js.If(jsCondition, updateBody, exitLoop));
jsCondition = newLiteralBool(true);
}
loop = new js.Do(unwrapStatement(body), jsCondition);
}
currentContainer = oldContainer;
break;
default:
compiler.internalError(condition.conditionExpression,
'Unexpected loop kind: ${info.kind}.');
}
js.Statement result = attachSourceInformation(loop, info.sourceInformation);
if (info.kind == HLoopBlockInformation.SWITCH_CONTINUE_LOOP) {
String continueLabelString =
backend.namer.implicitContinueLabelName(info.target);
result = new js.LabeledStatement(continueLabelString, result);
}
pushStatement(wrapIntoLabels(result, info.labels));
return true;
}
bool visitLabeledBlockInfo(HLabeledBlockInformation labeledBlockInfo) {
Link<Entity> continueOverrides = const Link<Entity>();
js.Block oldContainer = currentContainer;
js.Block body = new js.Block.empty();
js.Statement result = body;
currentContainer = body;
// If [labeledBlockInfo.isContinue], the block is an artificial
// block around the body of a loop with an update block, so that
// continues of the loop can be written as breaks of the body
// block.
if (labeledBlockInfo.isContinue) {
for (LabelDefinition label in labeledBlockInfo.labels) {
if (label.isContinueTarget) {
String labelName = backend.namer.continueLabelName(label);
result = new js.LabeledStatement(labelName, result);
continueAction[label] = continueAsBreak;
continueOverrides = continueOverrides.prepend(label);
}
}
// For handling unlabeled continues from the body of a loop.
// TODO(lrn): Consider recording whether the target is in fact
// a target of an unlabeled continue, and not generate this if it isn't.
JumpTarget target = labeledBlockInfo.target;
String labelName = backend.namer.implicitContinueLabelName(target);
result = new js.LabeledStatement(labelName, result);
continueAction[target] = implicitContinueAsBreak;
continueOverrides = continueOverrides.prepend(target);
} else {
for (LabelDefinition label in labeledBlockInfo.labels) {
if (label.isBreakTarget) {
String labelName = backend.namer.breakLabelName(label);
result = new js.LabeledStatement(labelName, result);
}
}
}
JumpTarget target = labeledBlockInfo.target;
if (target.isSwitch) {
// This is an extra block around a switch that is generated
// as a nested if/else chain. We add an extra break target
// so that case code can break.
String labelName = backend.namer.implicitBreakLabelName(target);
result = new js.LabeledStatement(labelName, result);
breakAction[target] = implicitBreakWithLabel;
}
currentContainer = body;
generateStatements(labeledBlockInfo.body);
if (labeledBlockInfo.isContinue) {
while (!continueOverrides.isEmpty) {
continueAction.remove(continueOverrides.head);
continueOverrides = continueOverrides.tail;
}
} else {
breakAction.remove(labeledBlockInfo.target);
}
currentContainer = oldContainer;
pushStatement(result);
return true;
}
// Wraps a loop body in a block to make continues have a target to break
// to (if necessary).
void wrapLoopBodyForContinue(HLoopBlockInformation info) {
JumpTarget target = info.target;
if (target != null && target.isContinueTarget) {
js.Block oldContainer = currentContainer;
js.Block body = new js.Block.empty();
currentContainer = body;
js.Statement result = body;
for (LabelDefinition label in info.labels) {
if (label.isContinueTarget) {
String labelName = backend.namer.continueLabelName(label);
result = new js.LabeledStatement(labelName, result);
continueAction[label] = continueAsBreak;
}
}
String labelName = backend.namer.implicitContinueLabelName(target);
result = new js.LabeledStatement(labelName, result);
continueAction[info.target] = implicitContinueAsBreak;
visitBodyIgnoreLabels(info);
continueAction.remove(info.target);
for (LabelDefinition label in info.labels) {
if (label.isContinueTarget) {
continueAction.remove(label);
}
}
currentContainer = oldContainer;
pushStatement(result);
} else {
// Loop body contains no continues, so we don't need a break target.
generateStatements(info.body);
}
}
bool handleBlockFlow(HBlockFlow block) {
HBlockInformation info = block.body;
// If we reach here again while handling the attached information,
// e.g., because we call visitSubGraph on a subgraph starting on
// the same block, don't handle it again.
// When the structure graph is complete, we will be able to have
// different structures starting on the same basic block (e.g., an
// "if" and its condition).
if (identical(info, currentBlockInformation)) return false;
HBlockInformation oldBlockInformation = currentBlockInformation;
currentBlockInformation = info;
bool success = info.accept(this);
currentBlockInformation = oldBlockInformation;
if (success) {
HBasicBlock continuation = block.continuation;
if (continuation != null) {
visitBasicBlock(continuation);
}
}
return success;
}
void visitBasicBlock(HBasicBlock node) {
if (!node.isLive) return;
// Abort traversal if we are leaving the currently active sub-graph.
if (!subGraph.contains(node)) return;
// If this node has block-structure based information attached,
// try using that to traverse from here.
if (node.blockFlow != null && handleBlockFlow(node.blockFlow)) {
return;
}
iterateBasicBlock(node);
}
void emitAssignment(String destination, String source) {
assignVariable(destination, new js.VariableUse(source));
}
/**
* Sequentialize a list of conceptually parallel copies. Parallel
* copies may contain cycles, that this method breaks.
*/
void sequentializeCopies(Iterable<Copy> copies,
String tempName,
void doAssignment(String target, String source)) {
// Map to keep track of the current location (ie the variable that
// holds the initial value) of a variable.
Map<String, String> currentLocation = new Map<String, String>();
// Map to keep track of the initial value of a variable.
Map<String, String> initialValue = new Map<String, String>();
// List of variables to assign a value.
List<String> worklist = <String>[];
// List of variables that we can assign a value to (ie are not
// being used anymore).
List<String> ready = <String>[];
// Prune [copies] by removing self-copies.
List<Copy> prunedCopies = <Copy>[];
for (Copy copy in copies) {
if (copy.source != copy.destination) {
prunedCopies.add(copy);
}
}
copies = prunedCopies;
// For each copy, set the current location of the source to
// itself, and the initial value of the destination to the source.
// Add the destination to the list of copies to make.
for (Copy copy in copies) {
currentLocation[copy.source] = copy.source;
initialValue[copy.destination] = copy.source;
worklist.add(copy.destination);
}
// For each copy, if the destination does not have a current
// location, then we can safely assign to it.
for (Copy copy in copies) {
if (currentLocation[copy.destination] == null) {
ready.add(copy.destination);
}
}
while (!worklist.isEmpty) {
while (!ready.isEmpty) {
String destination = ready.removeLast();
String source = initialValue[destination];
// Since [source] might have been updated, use the current
// location of [source]
String copy = currentLocation[source];
doAssignment(destination, copy);
// Now [destination] is the current location of [source].
currentLocation[source] = destination;
// If [source] hasn't been updated and needs to have a value,
// add it to the list of variables that can be updated. Copies
// of [source] will now use [destination].
if (source == copy && initialValue[source] != null) {
ready.add(source);
}
}
// Check if we have a cycle.
String current = worklist.removeLast();
// If [current] is used as a source, and the assignment has been
// done, we are done with this variable. Otherwise there is a
// cycle that we break by using a temporary name.
if (currentLocation[current] != null
&& current != currentLocation[initialValue[current]]) {
doAssignment(tempName, current);
currentLocation[current] = tempName;
// [current] can now be safely updated. Copies of [current]
// will now use [tempName].
ready.add(current);
}
}
}
void assignPhisOfSuccessors(HBasicBlock node) {
CopyHandler handler = variableNames.getCopyHandler(node);
if (handler == null) return;
// Map the instructions to strings.
Iterable<Copy> copies = handler.copies.map((Copy copy) {
return new Copy(variableNames.getName(copy.source),
variableNames.getName(copy.destination));
});
sequentializeCopies(copies, variableNames.getSwapTemp(), emitAssignment);
for (Copy copy in handler.assignments) {
String name = variableNames.getName(copy.destination);
use(copy.source);
assignVariable(name, pop());
}
}
void iterateBasicBlock(HBasicBlock node) {
HInstruction instruction = node.first;
while (!identical(instruction, node.last)) {
if (!isGenerateAtUseSite(instruction)) {
define(instruction);
}
instruction = instruction.next;
}
assignPhisOfSuccessors(node);
visit(instruction);
}
visitInvokeBinary(HInvokeBinary node, String op) {
use(node.left);
js.Expression jsLeft = pop();
use(node.right);
push(new js.Binary(op, jsLeft, pop()), node);
}
visitRelational(HRelational node, String op) => visitInvokeBinary(node, op);
// We want the outcome of bit-operations to be positive. We use the unsigned
// shift operator to achieve this.
visitBitInvokeBinary(HBinaryBitOp node, String op) {
visitInvokeBinary(node, op);
if (op != '>>>' && requiresUintConversion(node)) {
push(new js.Binary(">>>", pop(), new js.LiteralNumber("0")), node);
}
}
visitInvokeUnary(HInvokeUnary node, String op) {
use(node.operand);
push(new js.Prefix(op, pop()), node);
}
// We want the outcome of bit-operations to be positive. We use the unsigned
// shift operator to achieve this.
visitBitInvokeUnary(HInvokeUnary node, String op) {
visitInvokeUnary(node, op);
if (requiresUintConversion(node)) {
push(new js.Binary(">>>", pop(), new js.LiteralNumber("0")), node);
}
}
void emitIdentityComparison(HIdentity instruction, bool inverse) {
String op = instruction.singleComparisonOp;
HInstruction left = instruction.left;
HInstruction right = instruction.right;
if (op != null) {
use(left);
js.Expression jsLeft = pop();
use(right);
push(new js.Binary(mapRelationalOperator(op, inverse), jsLeft, pop()));
} else {
assert(NullConstantValue.JsNull == 'null');
use(left);
js.Binary leftEqualsNull =
new js.Binary("==", pop(), new js.LiteralNull());
use(right);
js.Binary rightEqualsNull =
new js.Binary(mapRelationalOperator("==", inverse),
pop(), new js.LiteralNull());
use(right);
use(left);
js.Binary tripleEq = new js.Binary(mapRelationalOperator("===", inverse),
pop(), pop());
push(new js.Conditional(leftEqualsNull, rightEqualsNull, tripleEq));
}
}
visitIdentity(HIdentity node) {
emitIdentityComparison(node, false);
}
visitAdd(HAdd node) => visitInvokeBinary(node, '+');
visitDivide(HDivide node) => visitInvokeBinary(node, '/');
visitMultiply(HMultiply node) => visitInvokeBinary(node, '*');
visitSubtract(HSubtract node) => visitInvokeBinary(node, '-');
visitBitAnd(HBitAnd node) => visitBitInvokeBinary(node, '&');
visitBitNot(HBitNot node) => visitBitInvokeUnary(node, '~');
visitBitOr(HBitOr node) => visitBitInvokeBinary(node, '|');
visitBitXor(HBitXor node) => visitBitInvokeBinary(node, '^');
visitShiftLeft(HShiftLeft node) => visitBitInvokeBinary(node, '<<');
visitShiftRight(HShiftRight node) => visitBitInvokeBinary(node, '>>>');
visitTruncatingDivide(HTruncatingDivide node) {
assert(node.left.isUInt31(compiler));
assert(node.right.isPositiveInteger(compiler));
use(node.left);
js.Expression jsLeft = pop();
use(node.right);
push(new js.Binary('/', jsLeft, pop()), node);
push(new js.Binary('|', pop(), new js.LiteralNumber("0")), node);
}
visitNegate(HNegate node) => visitInvokeUnary(node, '-');
visitLess(HLess node) => visitRelational(node, '<');
visitLessEqual(HLessEqual node) => visitRelational(node, '<=');
visitGreater(HGreater node) => visitRelational(node, '>');
visitGreaterEqual(HGreaterEqual node) => visitRelational(node, '>=');
visitBoolify(HBoolify node) {
assert(node.inputs.length == 1);
use(node.inputs[0]);
push(new js.Binary('===', pop(), newLiteralBool(true)), node);
}
visitExit(HExit node) {
// Don't do anything.
}
visitGoto(HGoto node) {
HBasicBlock block = node.block;
assert(block.successors.length == 1);
List<HBasicBlock> dominated = block.dominatedBlocks;
// With the exception of the entry-node which dominates its successor
// and the exit node, no block finishing with a 'goto' can have more than
// one dominated block (since it has only one successor).
// If the successor is dominated by another block, then the other block
// is responsible for visiting the successor.
if (dominated.isEmpty) return;
if (dominated.length > 2) {
compiler.internalError(node, 'dominated.length = ${dominated.length}');
}
if (dominated.length == 2 && block != currentGraph.entry) {
compiler.internalError(node, 'node.block != currentGraph.entry');
}
assert(dominated[0] == block.successors[0]);
visitBasicBlock(dominated[0]);
}
visitLoopBranch(HLoopBranch node) {
assert(node.block == subGraph.end);
// We are generating code for a loop condition.
// If we are generating the subgraph as an expression, the
// condition will be generated as the expression.
// Otherwise, we don't generate the expression, and leave that
// to the code that called [visitSubGraph].
if (isGeneratingExpression) {
use(node.inputs[0]);
}
}
/**
* Checks if [map] contains an [EntityAction] for [entity], and
* if so calls that action and returns true.
* Otherwise returns false.
*/
bool tryCallAction(Map<Entity, EntityAction> map, Entity entity) {
EntityAction action = map[entity];
if (action == null) return false;
action(entity);
return true;
}
visitBreak(HBreak node) {
assert(node.block.successors.length == 1);
if (node.label != null) {
LabelDefinition label = node.label;
if (!tryCallAction(breakAction, label)) {
pushStatement(new js.Break(backend.namer.breakLabelName(label)), node);
}
} else {
JumpTarget target = node.target;
if (!tryCallAction(breakAction, target)) {
if (node.breakSwitchContinueLoop) {
pushStatement(new js.Break(
backend.namer.implicitContinueLabelName(target)), node);
} else {
pushStatement(new js.Break(null), node);
}
}
}
}
visitContinue(HContinue node) {
assert(node.block.successors.length == 1);
if (node.label != null) {
LabelDefinition label = node.label;
if (!tryCallAction(continueAction, label)) {
// TODO(floitsch): should this really be the breakLabelName?
pushStatement(new js.Continue(backend.namer.breakLabelName(label)),
node);
}
} else {
JumpTarget target = node.target;
if (!tryCallAction(continueAction, target)) {
if (target.statement is ast.SwitchStatement) {
pushStatement(new js.Continue(
backend.namer.implicitContinueLabelName(target)), node);
} else {
pushStatement(new js.Continue(null), node);
}
}
}
}
visitExitTry(HExitTry node) {
// An [HExitTry] is used to represent the control flow graph of a
// try/catch block, ie the try body is always a predecessor
// of the catch and finally. Here, we continue visiting the try
// body by visiting the block that contains the user-level control
// flow instruction.
visitBasicBlock(node.bodyTrySuccessor);
}
visitTry(HTry node) {
// We should never get here. Try/catch/finally is always handled using block
// information in [visitTryInfo].
compiler.internalError(node, 'visitTry should not be called.');
}
bool tryControlFlowOperation(HIf node) {
if (!controlFlowOperators.contains(node)) return false;
HPhi phi = node.joinBlock.phis.first;
bool atUseSite = isGenerateAtUseSite(phi);
// Don't generate a conditional operator in this situation:
// i = condition ? bar() : i;
// But generate this instead:
// if (condition) i = bar();
// Usually, the variable name is longer than 'if' and it takes up
// more space to duplicate the name.
if (!atUseSite
&& variableNames.getName(phi) == variableNames.getName(phi.inputs[1])) {
return false;
}
if (!atUseSite) define(phi);
visitBasicBlock(node.joinBlock);
return true;
}
void generateIf(HIf node, HIfBlockInformation info) {
use(node.inputs[0]);
js.Expression test = pop();
HStatementInformation thenGraph = info.thenGraph;
HStatementInformation elseGraph = info.elseGraph;
js.Statement thenPart =
unwrapStatement(generateStatementsInNewBlock(thenGraph));
js.Statement elsePart =
unwrapStatement(generateStatementsInNewBlock(elseGraph));
pushStatement(new js.If(test, thenPart, elsePart), node);
}
visitIf(HIf node) {
if (tryControlFlowOperation(node)) return;
HInstruction condition = node.inputs[0];
HIfBlockInformation info = node.blockInformation.body;
if (condition.isConstant()) {
HConstant constant = condition;
if (constant.constant.isTrue) {
generateStatements(info.thenGraph);
} else {
generateStatements(info.elseGraph);
}
} else {
generateIf(node, info);
}
HBasicBlock joinBlock = node.joinBlock;
if (joinBlock != null && !identical(joinBlock.dominator, node.block)) {
// The join block is dominated by a block in one of the branches.
// The subgraph traversal never reached it, so we visit it here
// instead.
visitBasicBlock(joinBlock);
}
// Visit all the dominated blocks that are not part of the then or else
// branches, and is not the join block.
// Depending on how the then/else branches terminate
// (e.g., return/throw/break) there can be any number of these.
List<HBasicBlock> dominated = node.block.dominatedBlocks;
for (int i = 2; i < dominated.length; i++) {
visitBasicBlock(dominated[i]);
}
}
void visitInterceptor(HInterceptor node) {
registry.registerSpecializedGetInterceptor(node.interceptedClasses);
String name = backend.namer.getInterceptorName(
backend.getInterceptorMethod, node.interceptedClasses);
var isolate = new js.VariableUse(
backend.namer.globalObjectFor(backend.interceptorsLibrary));
use(node.receiver);
List<js.Expression> arguments = <js.Expression>[pop()];
push(js.propertyCall(isolate, name, arguments), node);
registry.registerUseInterceptor();
}
visitInvokeDynamicMethod(HInvokeDynamicMethod node) {
use(node.receiver);
js.Expression object = pop();
String name = node.selector.name;
String methodName;
List<js.Expression> arguments = visitArguments(node.inputs);
Element target = node.element;
if (target != null && !node.isInterceptedCall) {
if (target == backend.jsArrayAdd) {
methodName = 'push';
} else if (target == backend.jsArrayRemoveLast) {
methodName = 'pop';
} else if (target == backend.jsStringSplit) {
methodName = 'split';
// Split returns a List, so we make sure the backend knows the
// list class is instantiated.
registry.registerInstantiatedClass(compiler.listClass);
} else if (target.isNative && target.isFunction
&& !node.isInterceptedCall) {
// A direct (i.e. non-interceptor) native call is the result of
// optimization. The optimization ensures any type checks or
// conversions have been satisified.
methodName = target.fixedBackendName;
}
}
if (methodName == null) {
methodName = backend.namer.invocationName(node.selector);
registerMethodInvoke(node);
}
push(js.propertyCall(object, methodName, arguments), node);
}
void visitInvokeConstructorBody(HInvokeConstructorBody node) {
use(node.inputs[0]);
js.Expression object = pop();
String methodName = backend.namer.getNameOfInstanceMember(node.element);
List<js.Expression> arguments = visitArguments(node.inputs);
push(js.propertyCall(object, methodName, arguments), node);
registry.registerStaticUse(node.element);
}
void visitOneShotInterceptor(HOneShotInterceptor node) {
List<js.Expression> arguments = visitArguments(node.inputs);
var isolate = new js.VariableUse(
backend.namer.globalObjectFor(backend.interceptorsLibrary));
Selector selector = getOptimizedSelectorFor(node, node.selector);
String methodName = backend.registerOneShotInterceptor(selector);
push(js.propertyCall(isolate, methodName, arguments), node);
if (selector.isGetter) {
registerGetter(node);
} else if (selector.isSetter) {
registerSetter(node);
} else {
registerMethodInvoke(node);
}
registry.registerUseInterceptor();
}
Selector getOptimizedSelectorFor(HInvokeDynamic node, Selector selector) {
if (node.element != null) {
// Create an artificial type mask to make sure only
// [node.element] will be enqueued. We're not using the receiver
// type because our optimizations might end up in a state where the
// invoke dynamic knows more than the receiver.
ClassElement enclosing = node.element.enclosingClass;
TypeMask receiverType =
new TypeMask.nonNullExact(enclosing.declaration, compiler.world);
return new TypedSelector(receiverType, selector, compiler.world);
}
// If [JSInvocationMirror._invokeOn] is enabled, and this call
// might hit a `noSuchMethod`, we register an untyped selector.
return selector.extendIfReachesAll(compiler);
}
void registerMethodInvoke(HInvokeDynamic node) {
Selector selector = getOptimizedSelectorFor(node, node.selector);
// If we don't know what we're calling or if we are calling a getter,
// we need to register that fact that we may be calling a closure
// with the same arguments.
Element target = node.element;
if (target == null || target.isGetter) {
// TODO(kasperl): If we have a typed selector for the call, we
// may know something about the types of closures that need
// the specific closure call method.
Selector call = new Selector.callClosureFrom(selector);
registry.registerDynamicInvocation(call);
}
registry.registerDynamicInvocation(selector);
}
void registerSetter(HInvokeDynamic node) {
Selector selector = getOptimizedSelectorFor(node, node.selector);
registry.registerDynamicSetter(selector);
}
void registerGetter(HInvokeDynamic node) {
Selector selector = getOptimizedSelectorFor(node, node.selector);
registry.registerDynamicGetter(selector);
}
visitInvokeDynamicSetter(HInvokeDynamicSetter node) {
use(node.receiver);
String name = backend.namer.invocationName(node.selector);
push(js.propertyCall(pop(), name, visitArguments(node.inputs)), node);
registerSetter(node);
}
visitInvokeDynamicGetter(HInvokeDynamicGetter node) {
use(node.receiver);
String name = backend.namer.invocationName(node.selector);
push(js.propertyCall(pop(), name, visitArguments(node.inputs)), node);
registerGetter(node);
}
visitInvokeClosure(HInvokeClosure node) {
Selector call = new Selector.callClosureFrom(node.selector);
use(node.receiver);
push(js.propertyCall(pop(),
backend.namer.invocationName(call),
visitArguments(node.inputs)),
node);
registry.registerDynamicInvocation(call);
}
visitInvokeStatic(HInvokeStatic node) {
Element element = node.element;
List<DartType> instantiatedTypes = node.instantiatedTypes;
registry.registerStaticInvocation(element);
if (instantiatedTypes != null && !instantiatedTypes.isEmpty) {
instantiatedTypes.forEach((type) {
registry.registerInstantiatedType(type);
});
}
push(backend.emitter.staticFunctionAccess(node.element));
push(new js.Call(pop(), visitArguments(node.inputs, start: 0)), node);
}
visitInvokeSuper(HInvokeSuper node) {
Element superMethod = node.element;
registry.registerSuperInvocation(superMethod);
ClassElement superClass = superMethod.enclosingClass;
if (superMethod.kind == ElementKind.FIELD) {
String fieldName = backend.namer.instanceFieldPropertyName(superMethod);
use(node.inputs[0]);
js.PropertyAccess access =
new js.PropertyAccess.field(pop(), fieldName);
if (node.isSetter) {
use(node.value);
push(new js.Assignment(access, pop()), node);
} else {
push(access, node);
}
} else {
Selector selector = node.selector;
if (!backend.maybeRegisterAliasedSuperMember(superMethod, selector)) {
String methodName;
if (selector.isGetter) {
// If the selector we need to register a typed getter to the
// [world]. The emitter needs to know if it needs to emit a
// bound closure for a method.
TypeMask receiverType =
new TypeMask.nonNullExact(superClass, compiler.world);
selector = new TypedSelector(receiverType, selector, compiler.world);
// TODO(floitsch): we know the target. We shouldn't register a
// dynamic getter.
registry.registerDynamicGetter(selector);
registry.registerGetterForSuperMethod(node.element);
methodName = backend.namer.invocationName(selector);
} else {
assert(invariant(node, compiler.hasIncrementalSupport));
methodName = backend.namer.getNameOfInstanceMember(superMethod);
}
push(js.js('#.#.call(#)',
[backend.emitter.prototypeAccess(superClass,
hasBeenInstantiated: true),
methodName, visitArguments(node.inputs, start: 0)]),
node);
} else {
use(node.receiver);
push(
js.js('#.#(#)', [
pop(), backend.namer.getNameOfAliasedSuperMember(superMethod),
visitArguments(node.inputs, start: 1)]), // Skip receiver argument.
node);
}
}
}
visitFieldGet(HFieldGet node) {
use(node.receiver);
Element element = node.element;
if (node.isNullCheck) {
// We access a JavaScript member we know all objects besides
// null and undefined have: V8 does not like accessing a member
// that does not exist.
push(new js.PropertyAccess.field(pop(), 'toString'), node);
} else if (element == backend.jsIndexableLength) {
// We're accessing a native JavaScript property called 'length'
// on a JS String or a JS array. Therefore, the name of that
// property should not be mangled.
push(new js.PropertyAccess.field(pop(), 'length'), node);
} else {
String name = backend.namer.instanceFieldPropertyName(element);
push(new js.PropertyAccess.field(pop(), name), node);
registry.registerFieldGetter(element);
}
}
visitFieldSet(HFieldSet node) {
Element element = node.element;
registry.registerFieldSetter(element);
String name = backend.namer.instanceFieldPropertyName(element);
use(node.receiver);
js.Expression receiver = pop();
use(node.value);
push(new js.Assignment(new js.PropertyAccess.field(receiver, name), pop()),
node);
}
visitReadModifyWrite(HReadModifyWrite node) {
Element element = node.element;
registry.registerFieldSetter(element);
String name = backend.namer.instanceFieldPropertyName(element);
use(node.receiver);
js.Expression fieldReference = new js.PropertyAccess.field(pop(), name);
if (node.isPreOp) {
push(new js.Prefix(node.jsOp, fieldReference), node);
} else if (node.isPostOp) {
push(new js.Postfix(node.jsOp, fieldReference), node);
} else {
use(node.value);
push(new js.Assignment.compound(fieldReference, node.jsOp, pop()), node);
}
}
visitLocalGet(HLocalGet node) {
use(node.receiver);
}
visitLocalSet(HLocalSet node) {
use(node.value);
assignVariable(variableNames.getName(node.receiver), pop());
}
void registerForeignTypes(HForeign node) {
native.NativeBehavior nativeBehavior = node.nativeBehavior;
if (nativeBehavior == null) return;
nativeBehavior.typesReturned.forEach((type) {
if (type is InterfaceType) {
registry.registerInstantiatedType(type);
}
});
}
visitForeign(HForeign node) {
List<HInstruction> inputs = node.inputs;
if (node.isJsStatement()) {
List<js.Expression> interpolatedExpressions = <js.Expression>[];
for (int i = 0; i < inputs.length; i++) {
use(inputs[i]);
interpolatedExpressions.add(pop());
}
pushStatement(node.codeTemplate.instantiate(interpolatedExpressions));
} else {
List<js.Expression> interpolatedExpressions = <js.Expression>[];
for (int i = 0; i < inputs.length; i++) {
use(inputs[i]);
interpolatedExpressions.add(pop());
}
push(node.codeTemplate.instantiate(interpolatedExpressions));
}
// TODO(sra): Tell world.nativeEnqueuer about the types created here.
registerForeignTypes(node);
}
visitForeignNew(HForeignNew node) {
js.Expression jsClassReference =
backend.emitter.constructorAccess(node.element);
List<js.Expression> arguments = visitArguments(node.inputs, start: 0);
push(new js.New(jsClassReference, arguments), node);
registerForeignTypes(node);
if (node.instantiatedTypes == null) {
return;
}
node.instantiatedTypes.forEach((type) {
registry.registerInstantiatedType(type);
});
}
js.Expression newLiteralBool(bool value) {
if (compiler.enableMinification) {
// Use !0 for true, !1 for false.
return new js.Prefix("!", new js.LiteralNumber(value ? "0" : "1"));
} else {
return new js.LiteralBool(value);
}
}
void generateConstant(ConstantValue constant) {
if (constant.isFunction) {
FunctionConstantValue function = constant;
registry.registerStaticUse(function.element);
}
if (constant.isType) {
// If the type is a web component, we need to ensure the constructors are
// available to 'upgrade' the native object.
TypeConstantValue type = constant;
Element element = type.representedType.element;
if (element != null && element.isClass) {
registry.registerTypeConstant(element);
}
}
push(backend.emitter.constantReference(constant));
}
visitConstant(HConstant node) {
assert(isGenerateAtUseSite(node));
generateConstant(node.constant);
registry.registerCompileTimeConstant(node.constant);
backend.constants.addCompileTimeConstantForEmission(node.constant);
}
visitNot(HNot node) {
assert(node.inputs.length == 1);
generateNot(node.inputs[0]);
attachLocationToLast(node);
}
static String mapRelationalOperator(String op, bool inverse) {
Map<String, String> inverseOperator = const <String, String>{
"==" : "!=",
"!=" : "==",
"===": "!==",
"!==": "===",
"<" : ">=",
"<=" : ">",
">" : "<=",
">=" : "<"
};
return inverse ? inverseOperator[op] : op;
}
void generateNot(HInstruction input) {
bool canGenerateOptimizedComparison(HInstruction instruction) {
if (instruction is !HRelational) return false;
HRelational relational = instruction;
BinaryOperation operation = relational.operation(backend.constantSystem);
HInstruction left = relational.left;
HInstruction right = relational.right;
if (left.isStringOrNull(compiler) && right.isStringOrNull(compiler)) {
return true;
}
// This optimization doesn't work for NaN, so we only do it if the
// type is known to be an integer.
return left.isInteger(compiler) && right.isInteger(compiler);
}
bool handledBySpecialCase = false;
if (isGenerateAtUseSite(input)) {
handledBySpecialCase = true;
if (input is HIs) {
emitIs(input, '!==');
} else if (input is HIsViaInterceptor) {
emitIsViaInterceptor(input, true);
} else if (input is HNot) {
use(input.inputs[0]);
} else if (input is HIdentity) {
emitIdentityComparison(input, true);
} else if (input is HBoolify) {
use(input.inputs[0]);
push(new js.Binary("!==", pop(), newLiteralBool(true)), input);
} else if (canGenerateOptimizedComparison(input)) {
HRelational relational = input;
BinaryOperation operation =
relational.operation(backend.constantSystem);
String op = mapRelationalOperator(operation.name, true);
visitRelational(input, op);
} else {
handledBySpecialCase = false;
}
}
if (!handledBySpecialCase) {
use(input);
push(new js.Prefix("!", pop()));
}
}
visitParameterValue(HParameterValue node) {
assert(!isGenerateAtUseSite(node));
String name = variableNames.getName(node);
parameters.add(new js.Parameter(name));
declaredLocals.add(name);
}
visitLocalValue(HLocalValue node) {
assert(!isGenerateAtUseSite(node));
String name = variableNames.getName(node);
collectedVariableDeclarations.add(name);
}
visitPhi(HPhi node) {
// This method is only called for phis that are generated at use
// site. A phi can be generated at use site only if it is the
// result of a control flow operation.
HBasicBlock ifBlock = node.block.dominator;
assert(controlFlowOperators.contains(ifBlock.last));
HInstruction input = ifBlock.last.inputs[0];
if (input.isConstantFalse()) {
use(node.inputs[1]);
} else if (input.isConstantTrue()) {
use(node.inputs[0]);
} else if (node.inputs[1].isConstantBoolean()) {
String operation = node.inputs[1].isConstantFalse() ? '&&' : '||';
if (operation == '||') {
generateNot(input);
} else {
use(input);
}
js.Expression left = pop();
use(node.inputs[0]);
push(new js.Binary(operation, left, pop()));
} else {
use(input);
js.Expression test = pop();
use(node.inputs[0]);
js.Expression then = pop();
use(node.inputs[1]);
push(new js.Conditional(test, then, pop()));
}
}
visitReturn(HReturn node) {
assert(node.inputs.length == 1);
HInstruction input = node.inputs[0];
if (input.isConstantNull()) {
pushStatement(new js.Return(null), node);
} else {
use(node.inputs[0]);
pushStatement(new js.Return(pop()), node);
}
}
visitThis(HThis node) {
push(new js.This());
}
visitThrow(HThrow node) {
if (node.isRethrow) {
use(node.inputs[0]);
pushStatement(new js.Throw(pop()), node);
} else {
generateThrowWithHelper('wrapException', node.inputs[0]);
}
}
visitAwait(HAwait node) {
use(node.inputs[0]);
push(new js.Await(pop()), node);
}
visitYield(HYield node) {
use(node.inputs[0]);
pushStatement(new js.DartYield(pop(), node.hasStar), node);
}
visitRangeConversion(HRangeConversion node) {
// Range conversion instructions are removed by the value range
// analyzer.
assert(false);
}
visitBoundsCheck(HBoundsCheck node) {
// TODO(ngeoffray): Separate the two checks of the bounds check, so,
// e.g., the zero checks can be shared if possible.
// If the checks always succeeds, we would have removed the bounds check
// completely.
assert(node.staticChecks != HBoundsCheck.ALWAYS_TRUE);
if (node.staticChecks != HBoundsCheck.ALWAYS_FALSE) {
js.Expression under;
js.Expression over;
if (node.staticChecks != HBoundsCheck.ALWAYS_ABOVE_ZERO) {
use(node.index);
if (node.index.isInteger(compiler)) {
under = js.js("# < 0", pop());
} else {
js.Expression jsIndex = pop();
under = js.js("# >>> 0 !== #", [jsIndex, jsIndex]);
}
} else if (!node.index.isInteger(compiler)) {
checkInt(node.index, '!==');
under = pop();
}
if (node.staticChecks != HBoundsCheck.ALWAYS_BELOW_LENGTH) {
var index = node.index;
use(index);
js.Expression jsIndex = pop();
use(node.length);
over = new js.Binary(">=", jsIndex, pop());
}
assert(over != null || under != null);
js.Expression underOver = under == null
? over
: over == null
? under
: new js.Binary("||", under, over);
js.Statement thenBody = new js.Block.empty();
js.Block oldContainer = currentContainer;
currentContainer = thenBody;
generateThrowWithHelper('ioore', [node.array, node.index]);
currentContainer = oldContainer;
thenBody = unwrapStatement(thenBody);
pushStatement(new js.If.noElse(underOver, thenBody), node);
} else {
generateThrowWithHelper('ioore', [node.array, node.index]);
}
}
void generateThrowWithHelper(String helperName, argument) {
Element helper = backend.findHelper(helperName);
registry.registerStaticUse(helper);
js.Expression jsHelper = backend.emitter.staticFunctionAccess(helper);
List arguments = [];
var location;
if (argument is List) {
location = argument[0];
argument.forEach((instruction) {
use(instruction);
arguments.add(pop());
});
} else {
location = argument;
use(argument);
arguments.add(pop());
}
js.Call value = new js.Call(jsHelper, arguments.toList(growable: false));
value = attachLocation(value, location);
// BUG(4906): Using throw/return here adds to the size of the generated code
// but it has the advantage of explicitly telling the JS engine that
// this code path will terminate abruptly. Needs more work.
if (helperName == 'wrapException') {
pushStatement(new js.Throw(value));
} else {
Element element = work.element;
if (element is FunctionElement && element.asyncMarker.isYielding) {
// `return <expr>;` is illegal in a sync* or async* function.
// To have the the async-translator working, we avoid introducing
// `return` nodes.
pushStatement(new js.ExpressionStatement(value));
} else {
pushStatement(new js.Return(value));
}
}
}
visitThrowExpression(HThrowExpression node) {
HInstruction argument = node.inputs[0];
use(argument);
Element helper = backend.findHelper("throwExpression");
registry.registerStaticUse(helper);
js.Expression jsHelper = backend.emitter.staticFunctionAccess(helper);
js.Call value = new js.Call(jsHelper, [pop()]);
value = attachLocation(value, argument);
push(value, node);
}
void visitSwitch(HSwitch node) {
// Switches are handled using [visitSwitchInfo].
}
void visitStatic(HStatic node) {
Element element = node.element;
assert(element.isFunction || element.isField);
if (element.isFunction) {
push(backend.emitter.isolateStaticClosureAccess(node.element));
} else {
push(backend.emitter.staticFieldAccess(node.element));
}
registry.registerStaticUse(element);
}
void visitLazyStatic(HLazyStatic node) {
Element element = node.element;
registry.registerStaticUse(element);
js.Expression lazyGetter =
backend.emitter.isolateLazyInitializerAccess(element);
js.Call call = new js.Call(lazyGetter, <js.Expression>[]);
push(call, node);
}
void visitStaticStore(HStaticStore node) {
registry.registerStaticUse(node.element);
js.Node variable = backend.emitter.staticFieldAccess(node.element);
use(node.inputs[0]);
push(new js.Assignment(variable, pop()), node);
}
void visitStringConcat(HStringConcat node) {
use(node.left);
js.Expression jsLeft = pop();
use(node.right);
push(new js.Binary('+', jsLeft, pop()), node);
}
void visitStringify(HStringify node) {
HInstruction input = node.inputs.first;
if (input.isString(compiler)) {
use(input);
} else if (input.isInteger(compiler) || input.isBoolean(compiler)) {
// JavaScript's + operator with a string for the left operand will convert
// the right operand to a string, and the conversion result is correct.
use(input);
if (node.usedBy.length == 1
&& node.usedBy[0] is HStringConcat
&& node.usedBy[0].inputs[1] == node) {
// The context is already <string> + value.
} else {
// Force an empty string for the first operand.
push(new js.Binary('+', js.string(""), pop()), node);
}
} else {
Element convertToString = backend.getStringInterpolationHelper();
registry.registerStaticUse(convertToString);
js.Expression jsHelper =
backend.emitter.staticFunctionAccess(convertToString);
use(input);
push(new js.Call(jsHelper, <js.Expression>[pop()]), node);
}
}
void visitLiteralList(HLiteralList node) {
registry.registerInstantiatedClass(compiler.listClass);
generateArrayLiteral(node);
}
void generateArrayLiteral(HLiteralList node) {
List<js.Expression> elements = node.inputs.map((HInstruction input) {
use(input);
return pop();
}).toList();
push(new js.ArrayInitializer(elements), node);
}
void visitIndex(HIndex node) {
use(node.receiver);
js.Expression receiver = pop();
use(node.index);
push(new js.PropertyAccess(receiver, pop()), node);
}
void visitIndexAssign(HIndexAssign node) {
use(node.receiver);
js.Expression receiver = pop();
use(node.index);
js.Expression index = pop();
use(node.value);
push(new js.Assignment(new js.PropertyAccess(receiver, index), pop()),
node);
}
void checkInt(HInstruction input, String cmp) {
use(input);
js.Expression left = pop();
use(input);
js.Expression or0 = new js.Binary("|", pop(), new js.LiteralNumber("0"));
push(new js.Binary(cmp, left, or0));
}
void checkBigInt(HInstruction input, String cmp) {
use(input);
js.Expression left = pop();
use(input);
js.Expression right = pop();
// TODO(4984): Deal with infinity and -0.0.
push(js.js('Math.floor(#) $cmp #', <js.Expression>[left, right]));
}
void checkTypeOf(HInstruction input, String cmp, String typeName) {
use(input);
js.Expression typeOf = new js.Prefix("typeof", pop());
push(new js.Binary(cmp, typeOf, js.string(typeName)));
}
void checkNum(HInstruction input, String cmp)
=> checkTypeOf(input, cmp, 'number');
void checkDouble(HInstruction input, String cmp) => checkNum(input, cmp);
void checkString(HInstruction input, String cmp)
=> checkTypeOf(input, cmp, 'string');
void checkBool(HInstruction input, String cmp)
=> checkTypeOf(input, cmp, 'boolean');
void checkObject(HInstruction input, String cmp) {
assert(NullConstantValue.JsNull == 'null');
if (cmp == "===") {
checkTypeOf(input, '===', 'object');
js.Expression left = pop();
use(input);
js.Expression notNull = new js.Binary("!==", pop(), new js.LiteralNull());
push(new js.Binary("&&", left, notNull));
} else {
assert(cmp == "!==");
checkTypeOf(input, '!==', 'object');
js.Expression left = pop();
use(input);
js.Expression eqNull = new js.Binary("===", pop(), new js.LiteralNull());
push(new js.Binary("||", left, eqNull));
}
}
void checkArray(HInstruction input, String cmp) {
use(input);
js.PropertyAccess constructor =
new js.PropertyAccess.field(pop(), 'constructor');
push(new js.Binary(cmp, constructor, new js.VariableUse('Array')));
}
void checkFieldExists(HInstruction input, String fieldName) {
use(input);
js.PropertyAccess field = new js.PropertyAccess.field(pop(), fieldName);
// Double negate to boolify the result.
push(new js.Prefix('!', new js.Prefix('!', field)));
}
void checkFieldDoesNotExist(HInstruction input, String fieldName) {
use(input);
js.PropertyAccess field = new js.PropertyAccess.field(pop(), fieldName);
push(new js.Prefix('!', field));
}
void checkImmutableArray(HInstruction input) {
checkFieldExists(input, 'immutable\$list');
}
void checkMutableArray(HInstruction input) {
checkFieldDoesNotExist(input, 'immutable\$list');
}
void checkExtendableArray(HInstruction input) {
checkFieldDoesNotExist(input, 'fixed\$length');
}
void checkFixedArray(HInstruction input) {
checkFieldExists(input, 'fixed\$length');
}
void checkNull(HInstruction input) {
use(input);
push(new js.Binary('==', pop(), new js.LiteralNull()));
}
void checkNonNull(HInstruction input) {
use(input);
push(new js.Binary('!=', pop(), new js.LiteralNull()));
}
void checkType(HInstruction input, HInstruction interceptor,
DartType type, {bool negative: false}) {
Element element = type.element;
if (element == backend.jsArrayClass) {
checkArray(input, negative ? '!==': '===');
return;
} else if (element == backend.jsMutableArrayClass) {
if (negative) {
checkImmutableArray(input);
} else {
checkMutableArray(input);
}
return;
} else if (element == backend.jsExtendableArrayClass) {
if (negative) {
checkFixedArray(input);
} else {
checkExtendableArray(input);
}
return;
} else if (element == backend.jsFixedArrayClass) {
if (negative) {
checkExtendableArray(input);
} else {
checkFixedArray(input);
}
return;
}
if (interceptor != null) {
checkTypeViaProperty(interceptor, type, negative);
} else {
checkTypeViaProperty(input, type, negative);
}
}
void checkTypeViaProperty(HInstruction input, DartType type, bool negative) {
registry.registerIsCheck(type);
use(input);
js.PropertyAccess field =
new js.PropertyAccess.field(pop(), backend.namer.operatorIsType(type));
// We always negate at least once so that the result is boolified.
push(new js.Prefix('!', field));
// If the result is not negated, put another '!' in front.
if (!negative) push(new js.Prefix('!', pop()));
}
void checkTypeViaInstanceof(
HInstruction input, DartType type, bool negative) {
registry.registerIsCheck(type);
use(input);
js.Expression jsClassReference =
backend.emitter.constructorAccess(type.element);
push(js.js('# instanceof #', [pop(), jsClassReference]));
if (negative) push(new js.Prefix('!', pop()));
registry.registerInstantiatedType(type);
}
void handleNumberOrStringSupertypeCheck(HInstruction input,
HInstruction interceptor,
DartType type,
{ bool negative: false }) {
assert(!identical(type.element, compiler.listClass)
&& !Elements.isListSupertype(type.element, compiler)
&& !Elements.isStringOnlySupertype(type.element, compiler));
String relation = negative ? '!==' : '===';
checkNum(input, relation);
js.Expression numberTest = pop();
checkString(input, relation);
js.Expression stringTest = pop();
checkObject(input, relation);
js.Expression objectTest = pop();
checkType(input, interceptor, type, negative: negative);
String combiner = negative ? '&&' : '||';
String combiner2 = negative ? '||' : '&&';
push(new js.Binary(combiner,
new js.Binary(combiner, numberTest, stringTest),
new js.Binary(combiner2, objectTest, pop())));
}
void handleStringSupertypeCheck(HInstruction input,
HInstruction interceptor,
DartType type,
{ bool negative: false }) {
assert(!identical(type.element, compiler.listClass)
&& !Elements.isListSupertype(type.element, compiler)
&& !Elements.isNumberOrStringSupertype(type.element, compiler));
String relation = negative ? '!==' : '===';
checkString(input, relation);
js.Expression stringTest = pop();
checkObject(input, relation);
js.Expression objectTest = pop();
checkType(input, interceptor, type, negative: negative);
String combiner = negative ? '||' : '&&';
push(new js.Binary(negative ? '&&' : '||',
stringTest,
new js.Binary(combiner, objectTest, pop())));
}
void handleListOrSupertypeCheck(HInstruction input,
HInstruction interceptor,
DartType type,
{ bool negative: false }) {
assert(!identical(type.element, compiler.stringClass)
&& !Elements.isStringOnlySupertype(type.element, compiler)
&& !Elements.isNumberOrStringSupertype(type.element, compiler));
String relation = negative ? '!==' : '===';
checkObject(input, relation);
js.Expression objectTest = pop();
checkArray(input, relation);
js.Expression arrayTest = pop();
checkType(input, interceptor, type, negative: negative);
String combiner = negative ? '&&' : '||';
push(new js.Binary(negative ? '||' : '&&',
objectTest,
new js.Binary(combiner, arrayTest, pop())));
}
void visitIs(HIs node) {
emitIs(node, "===");
}
void visitIsViaInterceptor(HIsViaInterceptor node) {
emitIsViaInterceptor(node, false);
}
void emitIs(HIs node, String relation) {
DartType type = node.typeExpression;
registry.registerIsCheck(type);
HInstruction input = node.expression;
// If this is changed to single == there are several places below that must
// be changed to match.
assert(relation == '===' || relation == '!==');
bool negative = relation == '!==';
if (node.isVariableCheck || node.isCompoundCheck) {
use(node.checkCall);
if (negative) push(new js.Prefix('!', pop()));
} else {
assert(node.isRawCheck);
HInstruction interceptor = node.interceptor;
LibraryElement coreLibrary = compiler.coreLibrary;
ClassElement objectClass = compiler.objectClass;
Element element = type.element;
if (element == compiler.nullClass) {
if (negative) {
checkNonNull(input);
} else {
checkNull(input);
}
} else if (identical(element, objectClass) || type.treatAsDynamic) {
// The constant folder also does this optimization, but we make
// it safe by assuming it may have not run.
push(newLiteralBool(!negative), node);
} else if (element == compiler.stringClass) {
checkString(input, relation);
attachLocationToLast(node);
} else if (element == compiler.doubleClass) {
checkDouble(input, relation);
attachLocationToLast(node);
} else if (element == compiler.numClass) {
checkNum(input, relation);
attachLocationToLast(node);
} else if (element == compiler.boolClass) {
checkBool(input, relation);
attachLocationToLast(node);
} else if (element == compiler.intClass) {
// The is check in the code tells us that it might not be an
// int. So we do a typeof first to avoid possible
// deoptimizations on the JS engine due to the Math.floor check.
checkNum(input, relation);
js.Expression numTest = pop();
checkBigInt(input, relation);
push(new js.Binary(negative ? '||' : '&&', numTest, pop()), node);
} else if (node.useInstanceOf) {
assert(interceptor == null);
checkTypeViaInstanceof(input, type, negative);
attachLocationToLast(node);
} else if (Elements.isNumberOrStringSupertype(element, compiler)) {
handleNumberOrStringSupertypeCheck(
input, interceptor, type, negative: negative);
attachLocationToLast(node);
} else if (Elements.isStringOnlySupertype(element, compiler)) {
handleStringSupertypeCheck(
input, interceptor, type, negative: negative);
attachLocationToLast(node);
} else if (identical(element, compiler.listClass)
|| Elements.isListSupertype(element, compiler)) {
handleListOrSupertypeCheck(
input, interceptor, type, negative: negative);
attachLocationToLast(node);
} else if (type.isFunctionType) {
checkType(input, interceptor, type, negative: negative);
attachLocationToLast(node);
} else if ((input.canBePrimitive(compiler)
&& !input.canBePrimitiveArray(compiler))
|| input.canBeNull()) {
checkObject(input, relation);
js.Expression objectTest = pop();
checkType(input, interceptor, type, negative: negative);
push(new js.Binary(negative ? '||' : '&&', objectTest, pop()), node);
} else {
checkType(input, interceptor, type, negative: negative);
attachLocationToLast(node);
}
}
}
void emitIsViaInterceptor(HIsViaInterceptor node, bool negative) {
checkTypeViaProperty(node.interceptor, node.typeExpression, negative);
attachLocationToLast(node);
}
js.Expression generateReceiverOrArgumentTypeTest(
HInstruction input, TypeMask checkedType) {
ClassWorld classWorld = compiler.world;
TypeMask inputType = input.instructionType;
// Figure out if it is beneficial to turn this into a null check.
// V8 generally prefers 'typeof' checks, but for integers and
// indexable primitives we cannot compile this test into a single
// typeof check so the null check is cheaper.
bool isIntCheck = checkedType.containsOnlyInt(classWorld);
bool turnIntoNumCheck = isIntCheck && input.isIntegerOrNull(compiler);
bool turnIntoNullCheck = !turnIntoNumCheck
&& (checkedType.nullable() == inputType)
&& (isIntCheck
|| checkedType.satisfies(backend.jsIndexableClass, classWorld));
if (turnIntoNullCheck) {
use(input);
return new js.Binary("==", pop(), new js.LiteralNull());
} else if (isIntCheck && !turnIntoNumCheck) {
// input is !int
checkBigInt(input, '!==');
return pop();
} else if (turnIntoNumCheck || checkedType.containsOnlyNum(classWorld)) {
// input is !num
checkNum(input, '!==');
return pop();
} else if (checkedType.containsOnlyBool(classWorld)) {
// input is !bool
checkBool(input, '!==');
return pop();
} else if (checkedType.containsOnlyString(classWorld)) {
// input is !string
checkString(input, '!==');
return pop();
}
compiler.internalError(input, 'Unexpected check.');
return null;
}
void visitTypeConversion(HTypeConversion node) {
if (node.isArgumentTypeCheck || node.isReceiverTypeCheck) {
ClassWorld classWorld = compiler.world;
// An int check if the input is not int or null, is not
// sufficient for doing an argument or receiver check.
assert(compiler.trustTypeAnnotations ||
!node.checkedType.containsOnlyInt(classWorld) ||
node.checkedInput.isIntegerOrNull(compiler));
js.Expression test = generateReceiverOrArgumentTypeTest(
node.checkedInput, node.checkedType);
js.Block oldContainer = currentContainer;
js.Statement body = new js.Block.empty();
currentContainer = body;
if (node.isArgumentTypeCheck) {
generateThrowWithHelper('iae', node.checkedInput);
} else if (node.isReceiverTypeCheck) {
use(node.checkedInput);
String methodName =
backend.namer.invocationName(node.receiverTypeCheckSelector);
js.Expression call = js.propertyCall(pop(), methodName, []);
pushStatement(new js.Return(call));
}
currentContainer = oldContainer;
body = unwrapStatement(body);
pushStatement(new js.If.noElse(test, body), node);
return;
}
assert(node.isCheckedModeCheck || node.isCastTypeCheck);
DartType type = node.typeExpression;
assert(type.kind != TypeKind.TYPEDEF);
if (type.isFunctionType) {
// TODO(5022): We currently generate $isFunction checks for
// function types.
registry.registerIsCheck(compiler.functionClass.rawType);
}
registry.registerIsCheck(type);
CheckedModeHelper helper;
if (node.isBooleanConversionCheck) {
helper =
const CheckedModeHelper('boolConversionCheck');
} else {
helper =
backend.getCheckedModeHelper(type, typeCast: node.isCastTypeCheck);
}
if (helper == null) {
assert(type.isFunctionType);
use(node.inputs[0]);
} else {
push(helper.generateCall(this, node));
}
}
void visitTypeKnown(HTypeKnown node) {
// [HTypeKnown] instructions are removed before generating code.
assert(false);
}
void visitFunctionType(HFunctionType node) {
FunctionType type = node.dartType;
int inputCount = 0;
use(node.inputs[inputCount++]);
js.Expression returnType = pop();
List<js.Expression> parameterTypes = <js.Expression>[];
for (var _ in type.parameterTypes) {
use(node.inputs[inputCount++]);
parameterTypes.add(pop());
}
List<js.Expression> optionalParameterTypes = <js.Expression>[];
for (var _ in type.optionalParameterTypes) {
use(node.inputs[inputCount++]);
optionalParameterTypes.add(pop());
}
List<js.Property> namedParameters = <js.Property>[];
for (var _ in type.namedParameters) {
use(node.inputs[inputCount++]);
js.Expression name = pop();
use(node.inputs[inputCount++]);
namedParameters.add(new js.Property(name, pop()));
}
if (namedParameters.isEmpty) {
var arguments = [returnType];
if (!parameterTypes.isEmpty || !optionalParameterTypes.isEmpty) {
arguments.add(new js.ArrayInitializer(parameterTypes));
}
if (!optionalParameterTypes.isEmpty) {
arguments.add(new js.ArrayInitializer(optionalParameterTypes));
}
push(js.js('#(#)', [accessHelper('buildFunctionType'), arguments]));
} else {
var arguments = [
returnType,
new js.ArrayInitializer(parameterTypes),
new js.ObjectInitializer(namedParameters)];
push(js.js('#(#)', [accessHelper('buildNamedFunctionType'), arguments]));
}
}
void visitReadTypeVariable(HReadTypeVariable node) {
TypeVariableElement element = node.dartType.element;
Element helperElement = backend.findHelper('convertRtiToRuntimeType');
registry.registerStaticUse(helperElement);
use(node.inputs[0]);
if (node.hasReceiver) {
if (backend.isInterceptorClass(element.enclosingClass)) {
int index = RuntimeTypes.getTypeVariableIndex(element);
js.Expression receiver = pop();
js.Expression helper = backend.emitter
.staticFunctionAccess(helperElement);
push(js.js(r'#(#.$builtinTypeInfo && #.$builtinTypeInfo[#])',
[helper, receiver, receiver, js.js.number(index)]));
} else {
backend.emitter.registerReadTypeVariable(element);
push(js.js('#.#()',
[pop(), backend.namer.readTypeVariableName(element)]));
}
} else {
push(js.js('#(#)', [
backend.emitter.staticFunctionAccess(
backend.findHelper('convertRtiToRuntimeType')),
pop()]));
}
}
void visitInterfaceType(HInterfaceType node) {
List<js.Expression> typeArguments = <js.Expression>[];
for (HInstruction type in node.inputs) {
use(type);
typeArguments.add(pop());
}
ClassElement cls = node.dartType.element;
var arguments = [backend.emitter.typeAccess(cls)];
if (!typeArguments.isEmpty) {
arguments.add(new js.ArrayInitializer(typeArguments));
}
push(js.js('#(#)', [accessHelper('buildInterfaceType'), arguments]));
}
void visitVoidType(HVoidType node) {
push(js.js('#()', accessHelper('getVoidRuntimeType')));
}
void visitDynamicType(HDynamicType node) {
push(js.js('#()', accessHelper('getDynamicRuntimeType')));
}
js.PropertyAccess accessHelper(String name) {
Element helper = backend.findHelper(name);
if (helper == null) {
// For mocked-up tests.
return js.js('(void 0).$name');
}
registry.registerStaticUse(helper);
return backend.emitter.staticFunctionAccess(helper);
}
}