blob: b90d786197fa93c27ca7f8c7cd16f6e062876768 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
part of dart._interceptors;
/**
* The implementation of Dart's int & double methods.
* These are made available as extension methods on `Number` in JS.
*/
@JsPeerInterface(name: 'Number')
class JSNumber extends Interceptor implements int, double {
const JSNumber();
@notNull
int compareTo(@nullCheck num b) {
if (this < b) {
return -1;
} else if (this > b) {
return 1;
} else if (this == b) {
if (this == 0) {
bool bIsNegative = b.isNegative;
if (isNegative == bIsNegative) return 0;
if (isNegative) return -1;
return 1;
}
return 0;
} else if (isNaN) {
if (b.isNaN) {
return 0;
}
return 1;
} else {
return -1;
}
}
@notNull
bool get isNegative => (this == 0) ? (1 / this) < 0 : this < 0;
@notNull
bool get isNaN => JS<bool>('!', r'isNaN(#)', this);
@notNull
bool get isInfinite {
return JS<bool>('!', r'# == (1/0)', this) ||
JS<bool>('!', r'# == (-1/0)', this);
}
@notNull
bool get isFinite => JS<bool>('!', r'isFinite(#)', this);
@notNull
JSNumber remainder(@nullCheck num b) {
return JS<JSNumber>('!', r'# % #', this, b);
}
@notNull
JSNumber abs() => JS<JSNumber>('!', r'Math.abs(#)', this);
@notNull
JSNumber get sign => (this > 0 ? 1 : this < 0 ? -1 : this) as JSNumber;
@notNull
static const int _MIN_INT32 = -0x80000000;
@notNull
static const int _MAX_INT32 = 0x7FFFFFFF;
@notNull
int toInt() {
if (this >= _MIN_INT32 && this <= _MAX_INT32) {
return JS<int>('!', '# | 0', this);
}
if (JS<bool>('!', r'isFinite(#)', this)) {
return JS<int>(
'!', r'# + 0', truncateToDouble()); // Converts -0.0 to +0.0.
}
// This is either NaN, Infinity or -Infinity.
throw UnsupportedError(JS("String", '"" + #', this));
}
@notNull
int truncate() => toInt();
@notNull
int ceil() => ceilToDouble().toInt();
@notNull
int floor() => floorToDouble().toInt();
@notNull
int round() {
if (this > 0) {
// This path excludes the special cases -0.0, NaN and -Infinity, leaving
// only +Infinity, for which a direct test is faster than [isFinite].
if (JS<bool>('!', r'# !== (1/0)', this)) {
return JS<int>('!', r'Math.round(#)', this);
}
} else if (JS<bool>('!', '# > (-1/0)', this)) {
// This test excludes NaN and -Infinity, leaving only -0.0.
//
// Subtraction from zero rather than negation forces -0.0 to 0.0 so code
// inside Math.round and code to handle result never sees -0.0, which on
// some JavaScript VMs can be a slow path.
return JS<int>('!', r'0 - Math.round(0 - #)', this);
}
// This is either NaN, Infinity or -Infinity.
throw UnsupportedError(JS("String", '"" + #', this));
}
@notNull
double ceilToDouble() => JS<double>('!', r'Math.ceil(#)', this);
@notNull
double floorToDouble() => JS<double>('!', r'Math.floor(#)', this);
@notNull
double roundToDouble() {
if (this < 0) {
return JS<double>('!', r'-Math.round(-#)', this);
} else {
return JS<double>('!', r'Math.round(#)', this);
}
}
@notNull
double truncateToDouble() => this < 0 ? ceilToDouble() : floorToDouble();
@notNull
num clamp(@nullCheck num lowerLimit, @nullCheck num upperLimit) {
if (lowerLimit.compareTo(upperLimit) > 0) {
throw argumentErrorValue(lowerLimit);
}
if (this.compareTo(lowerLimit) < 0) return lowerLimit;
if (this.compareTo(upperLimit) > 0) return upperLimit;
return this;
}
@notNull
double toDouble() => this;
@notNull
String toStringAsFixed(@nullCheck int fractionDigits) {
if (fractionDigits < 0 || fractionDigits > 20) {
throw RangeError.range(fractionDigits, 0, 20, "fractionDigits");
}
String result = JS<String>('!', r'#.toFixed(#)', this, fractionDigits);
if (this == 0 && isNegative) return "-$result";
return result;
}
@notNull
String toStringAsExponential([int? fractionDigits]) {
String result;
if (fractionDigits != null) {
@notNull
var _fractionDigits = fractionDigits;
if (_fractionDigits < 0 || _fractionDigits > 20) {
throw RangeError.range(_fractionDigits, 0, 20, "fractionDigits");
}
result = JS<String>('!', r'#.toExponential(#)', this, _fractionDigits);
} else {
result = JS<String>('!', r'#.toExponential()', this);
}
if (this == 0 && isNegative) return "-$result";
return result;
}
@notNull
String toStringAsPrecision(@nullCheck int precision) {
if (precision < 1 || precision > 21) {
throw RangeError.range(precision, 1, 21, "precision");
}
String result = JS<String>('!', r'#.toPrecision(#)', this, precision);
if (this == 0 && isNegative) return "-$result";
return result;
}
@notNull
String toRadixString(@nullCheck int radix) {
if (radix < 2 || radix > 36) {
throw RangeError.range(radix, 2, 36, "radix");
}
String result = JS<String>('!', r'#.toString(#)', this, radix);
const int rightParenCode = 0x29;
if (result.codeUnitAt(result.length - 1) != rightParenCode) {
return result;
}
return _handleIEtoString(result);
}
@notNull
static String _handleIEtoString(String result) {
// Result is probably IE's untraditional format for large numbers,
// e.g., "8.0000000000008(e+15)" for 0x8000000000000800.toString(16).
var match = JS<List?>(
'', r'/^([\da-z]+)(?:\.([\da-z]+))?\(e\+(\d+)\)$/.exec(#)', result);
if (match == null) {
// Then we don't know how to handle it at all.
throw UnsupportedError("Unexpected toString result: $result");
}
result = JS('!', '#', match[1]);
int exponent = JS("!", "+#", match[3]);
if (match[2] != null) {
result = JS('!', '# + #', result, match[2]);
exponent -= JS<int>('!', '#.length', match[2]);
}
return result + "0" * exponent;
}
// Note: if you change this, also change the function [S].
@notNull
String toString() {
if (this == 0 && JS<bool>('!', '(1 / #) < 0', this)) {
return '-0.0';
} else {
return JS<String>('!', r'"" + (#)', this);
}
}
@notNull
int get hashCode {
int intValue = JS<int>('!', '# | 0', this);
// Fast exit for integers in signed 32-bit range. Masking converts -0.0 to 0
// and ensures that result fits in JavaScript engine's Smi range.
if (this == intValue) return 0x1FFFFFFF & intValue;
// We would like to access the exponent and mantissa as integers but there
// are no JavaScript operations that do this, so use log2-floor-pow-divide
// to extract the values.
num absolute = JS<num>('!', 'Math.abs(#)', this);
num lnAbsolute = JS<num>('!', 'Math.log(#)', absolute);
num log2 = lnAbsolute / ln2;
// Floor via '# | 0' converts NaN to zero so the final result is not NaN.
int floorLog2 = JS<int>('!', '# | 0', log2);
num factor = JS<num>('!', 'Math.pow(2, #)', floorLog2);
num scaled = absolute < 1 ? absolute / factor : factor / absolute;
// [scaled] is in the range [0.5, 1].
// Multiply and truncate to pick up all the mantissa bits. Multiplying by
// 0x20000000000000 (which has 53 zero bits) converts the mantissa into an
// integer. There are interesting subsets where all the bit variance is in
// the most significant bits of the mantissa (e.g. 0.5, 0.625, 0.75), so we
// need to mix in the most significant bits. We do this by scaling with a
// constant that has many bits set to use the multiplier to mix in bits from
// all over the mantissa into low positions.
num rescaled1 = scaled * 0x20000000000000;
num rescaled2 = scaled * 0x0C95A6C285A6C9;
int d1 = JS<int>('!', '# | 0', rescaled1);
int d2 = JS<int>('!', '# | 0', rescaled2);
// Mix in exponent to distinguish e.g. 1.25 from 2.5.
int d3 = floorLog2;
int h = 0x1FFFFFFF & ((d1 + d2) * (601 * 997) + d3 * (1259));
return h;
}
@notNull
JSNumber operator -() => JS<JSNumber>('!', r'-#', this);
@notNull
JSNumber operator +(@nullCheck num other) {
return JS<JSNumber>('!', '# + #', this, other);
}
@notNull
JSNumber operator -(@nullCheck num other) {
return JS<JSNumber>('!', '# - #', this, other);
}
@notNull
double operator /(@nullCheck num other) {
return JS<double>('!', '# / #', this, other);
}
@notNull
JSNumber operator *(@nullCheck num other) {
return JS<JSNumber>('!', '# * #', this, other);
}
@notNull
JSNumber operator %(@nullCheck num other) {
// Euclidean Modulo.
JSNumber result = JS<JSNumber>('!', r'# % #', this, other);
if (result == 0) return (0 as JSNumber); // Make sure we don't return -0.0.
if (result > 0) return result;
if (JS<JSNumber>('!', '#', other) < 0) {
return JS<JSNumber>('!', '# - #', result, other);
} else {
return JS<JSNumber>('!', '# + #', result, other);
}
}
@notNull
bool _isInt32(@notNull num value) =>
JS<bool>('!', '(# | 0) === #', value, value);
@notNull
int operator ~/(@nullCheck num other) {
if (_isInt32(this) && _isInt32(other) && 0 != other && -1 != other) {
return JS<int>('!', r'(# / #) | 0', this, other);
} else {
return _tdivSlow(other);
}
}
@notNull
int _tdivSlow(num other) {
return JS<num>('!', r'# / #', this, other).toInt();
}
// TODO(ngeoffray): Move the bit operations below to [JSInt] and
// make them take an int. Because this will make operations slower,
// we define these methods on number for now but we need to decide
// the grain at which we do the type checks.
@notNull
int operator <<(@nullCheck num other) {
if (other < 0) throwArgumentErrorValue(other);
return _shlPositive(other);
}
@notNull
int _shlPositive(@notNull num other) {
// JavaScript only looks at the last 5 bits of the shift-amount. Shifting
// by 33 is hence equivalent to a shift by 1.
return JS<bool>('!', r'# > 31', other)
? 0
: JS<int>('!', r'(# << #) >>> 0', this, other);
}
@notNull
int operator >>(@nullCheck num other) {
if (JS<num>('!', '#', other) < 0) throwArgumentErrorValue(other);
return _shrOtherPositive(other);
}
@notNull
int operator >>>(@nullCheck num other) {
if (JS<num>('!', '#', other) < 0) throwArgumentErrorValue(other);
return _shrUnsigned(other);
}
@notNull
int _shrOtherPositive(@notNull num other) {
return JS<num>('!', '#', this) > 0
? _shrUnsigned(other)
// For negative numbers we just clamp the shift-by amount.
// `this` could be negative but not have its 31st bit set.
// The ">>" would then shift in 0s instead of 1s. Therefore
// we cannot simply return 0xFFFFFFFF.
: JS<int>('!', r'(# >> #) >>> 0', this, other > 31 ? 31 : other);
}
@notNull
int _shrUnsigned(@notNull num other) {
return JS<bool>('!', r'# > 31', other)
// JavaScript only looks at the last 5 bits of the shift-amount. In JS
// shifting by 33 is hence equivalent to a shift by 1. Shortcut the
// computation when that happens.
? 0
// Given that `this` is positive we must not use '>>'. Otherwise a
// number that has the 31st bit set would be treated as negative and
// shift in ones.
: JS<int>('!', r'# >>> #', this, other);
}
@notNull
int operator &(@nullCheck num other) {
return JS<int>('!', r'(# & #) >>> 0', this, other);
}
@notNull
int operator |(@nullCheck num other) {
return JS<int>('!', r'(# | #) >>> 0', this, other);
}
@notNull
int operator ^(@nullCheck num other) {
return JS<int>('!', r'(# ^ #) >>> 0', this, other);
}
@notNull
bool operator <(@nullCheck num other) {
return JS<bool>('!', '# < #', this, other);
}
@notNull
bool operator >(@nullCheck num other) {
return JS<bool>('!', '# > #', this, other);
}
@notNull
bool operator <=(@nullCheck num other) {
return JS<bool>('!', '# <= #', this, other);
}
@notNull
bool operator >=(@nullCheck num other) {
return JS<bool>('!', '# >= #', this, other);
}
// int members.
// TODO(jmesserly): all numbers will have these in dynamic dispatch.
// We can fix by checking it at dispatch time but we'd need to structure them
// differently.
@notNull
bool get isEven => (this & 1) == 0;
@notNull
bool get isOdd => (this & 1) == 1;
@notNull
int toUnsigned(@nullCheck int width) {
return this & ((1 << width) - 1);
}
@notNull
int toSigned(@nullCheck int width) {
int signMask = 1 << (width - 1);
return (this & (signMask - 1)) - (this & signMask);
}
@notNull
int get bitLength {
int nonneg = JS<int>('!', '#', this < 0 ? -this - 1 : this);
int wordBits = 32;
while (nonneg >= 0x100000000) {
nonneg = nonneg ~/ 0x100000000;
wordBits += 32;
}
return wordBits - _clz32(nonneg);
}
@notNull
static int _clz32(@notNull int uint32) {
// TODO(sra): Use `Math.clz32(uint32)` (not available on IE11).
return 32 - _bitCount(_spread(uint32));
}
// Returns pow(this, e) % m.
@notNull
int modPow(@nullCheck int e, @nullCheck int m) {
if (e < 0) throw RangeError.range(e, 0, null, "exponent");
if (m <= 0) throw RangeError.range(m, 1, null, "modulus");
if (e == 0) return 1;
const int maxPreciseInteger = 9007199254740991;
// Reject inputs that are outside the range of integer values that can be
// represented precisely as a Number (double).
if (this < -maxPreciseInteger || this > maxPreciseInteger) {
throw RangeError.range(
this, -maxPreciseInteger, maxPreciseInteger, 'receiver');
}
if (e > maxPreciseInteger) {
throw RangeError.range(e, 0, maxPreciseInteger, 'exponent');
}
if (m > maxPreciseInteger) {
throw RangeError.range(e, 1, maxPreciseInteger, 'modulus');
}
// This is floor(sqrt(maxPreciseInteger)).
const int maxValueThatCanBeSquaredWithoutTruncation = 94906265;
if (m > maxValueThatCanBeSquaredWithoutTruncation) {
// Use BigInt version to avoid truncation in multiplications below. The
// 'maxPreciseInteger' check on [m] ensures that toInt() does not round.
return BigInt.from(this).modPow(BigInt.from(e), BigInt.from(m)).toInt();
}
int b = this;
if (b < 0 || b > m) {
b %= m;
}
int r = 1;
while (e > 0) {
if (e.isOdd) {
r = (r * b) % m;
}
e ~/= 2;
b = (b * b) % m;
}
return r;
}
// If inv is false, returns gcd(x, y).
// If inv is true and gcd(x, y) = 1, returns d, so that c*x + d*y = 1.
// If inv is true and gcd(x, y) != 1, throws Exception("Not coprime").
@notNull
static int _binaryGcd(@notNull int x, @notNull int y, @notNull bool inv) {
int s = 1;
if (!inv) {
while (x.isEven && y.isEven) {
x ~/= 2;
y ~/= 2;
s *= 2;
}
if (y.isOdd) {
var t = x;
x = y;
y = t;
}
}
final bool ac = x.isEven;
int u = x;
int v = y;
int a = 1, b = 0, c = 0, d = 1;
do {
while (u.isEven) {
u ~/= 2;
if (ac) {
if (!a.isEven || !b.isEven) {
a += y;
b -= x;
}
a ~/= 2;
} else if (!b.isEven) {
b -= x;
}
b ~/= 2;
}
while (v.isEven) {
v ~/= 2;
if (ac) {
if (!c.isEven || !d.isEven) {
c += y;
d -= x;
}
c ~/= 2;
} else if (!d.isEven) {
d -= x;
}
d ~/= 2;
}
if (u >= v) {
u -= v;
if (ac) a -= c;
b -= d;
} else {
v -= u;
if (ac) c -= a;
d -= b;
}
} while (u != 0);
if (!inv) return s * v;
if (v != 1) throw Exception("Not coprime");
if (d < 0) {
d += x;
if (d < 0) d += x;
} else if (d > x) {
d -= x;
if (d > x) d -= x;
}
return d;
}
// Returns 1/this % m, with m > 0.
@notNull
int modInverse(@nullCheck int m) {
if (m <= 0) throw RangeError.range(m, 1, null, "modulus");
if (m == 1) return 0;
int t = this;
if ((t < 0) || (t >= m)) t %= m;
if (t == 1) return 1;
if ((t == 0) || (t.isEven && m.isEven)) {
throw Exception("Not coprime");
}
return _binaryGcd(m, t, true);
}
// Returns gcd of abs(this) and abs(other).
@notNull
int gcd(@nullCheck int other) {
if (this is! int) throwArgumentErrorValue(this);
int x = this.abs();
int y = other.abs();
if (x == 0) return y;
if (y == 0) return x;
if ((x == 1) || (y == 1)) return 1;
return _binaryGcd(x, y, false);
}
// Assumes i is <= 32-bit and unsigned.
@notNull
static int _bitCount(@notNull int i) {
// See "Hacker's Delight", section 5-1, "Counting 1-Bits".
// The basic strategy is to use "divide and conquer" to
// add pairs (then quads, etc.) of bits together to obtain
// sub-counts.
//
// A straightforward approach would look like:
//
// i = (i & 0x55555555) + ((i >> 1) & 0x55555555);
// i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
// i = (i & 0x0F0F0F0F) + ((i >> 4) & 0x0F0F0F0F);
// i = (i & 0x00FF00FF) + ((i >> 8) & 0x00FF00FF);
// i = (i & 0x0000FFFF) + ((i >> 16) & 0x0000FFFF);
//
// The code below removes unnecessary &'s and uses a
// trick to remove one instruction in the first line.
i = _shru(i, 0) - (_shru(i, 1) & 0x55555555);
i = (i & 0x33333333) + (_shru(i, 2) & 0x33333333);
i = 0x0F0F0F0F & (i + _shru(i, 4));
i += _shru(i, 8);
i += _shru(i, 16);
return (i & 0x0000003F);
}
@notNull
static int _shru(int value, int shift) =>
JS<int>('!', '# >>> #', value, shift);
@notNull
static int _shrs(int value, int shift) =>
JS<int>('!', '# >> #', value, shift);
@notNull
static int _ors(int a, int b) => JS<int>('!', '# | #', a, b);
// Assumes i is <= 32-bit
@notNull
static int _spread(@notNull int i) {
i = _ors(i, _shrs(i, 1));
i = _ors(i, _shrs(i, 2));
i = _ors(i, _shrs(i, 4));
i = _ors(i, _shrs(i, 8));
i = _shru(_ors(i, _shrs(i, 16)), 0);
return i;
}
@notNull
int operator ~() => JS<int>('!', r'(~#) >>> 0', this);
}