blob: bc50ca277d28af521371878b85a988bc473dc3bc [file] [log] [blame]
// Copyright (c) 2017, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
import 'dart:collection';
import 'dart:math' show max, min;
import 'package:front_end/src/fasta/type_inference/type_schema_environment.dart';
import 'package:kernel/class_hierarchy.dart';
import 'package:kernel/core_types.dart';
import 'package:kernel/kernel.dart' hide ConstantVisitor;
import 'package:kernel/type_algebra.dart';
import 'package:kernel/type_environment.dart';
import 'package:source_span/source_span.dart' show SourceLocation;
import '../compiler/js_names.dart' as JS;
import '../compiler/js_utils.dart' as JS;
import '../compiler/module_builder.dart' show pathToJSIdentifier;
import '../compiler/shared_compiler.dart';
import '../js_ast/js_ast.dart' as JS;
import '../js_ast/js_ast.dart' show js;
import '../js_ast/source_map_printer.dart' show NodeEnd, NodeSpan, HoverComment;
import 'js_interop.dart';
import 'js_typerep.dart';
import 'kernel_helpers.dart';
import 'native_types.dart';
import 'nullable_inference.dart';
import 'property_model.dart';
import 'type_table.dart';
class ProgramCompiler extends Object
with SharedCompiler
implements
StatementVisitor<JS.Statement>,
ExpressionVisitor<JS.Expression>,
DartTypeVisitor<JS.Expression> {
/// The list of output module items, in the order they need to be emitted in.
final _moduleItems = <JS.ModuleItem>[];
/// The set of libraries we are currently compiling, and the temporaries used
/// to refer to them.
///
/// We sometimes special case codegen for a single library, as it simplifies
/// name scoping requirements.
final _libraries = new Map<Library, JS.Identifier>.identity();
/// Maps a library URI import, that is not in [_libraries], to the
/// corresponding Kernel summary module we imported it with.
final _importToSummary = new Map<Library, Component>.identity();
/// Maps a summary to the file URI we used to load it from disk.
final _summaryToUri = new Map<Component, Uri>.identity();
/// Imported libraries, and the temporaries used to refer to them.
final _imports = new Map<Library, JS.TemporaryId>();
/// The variable for the current catch clause
VariableDeclaration _catchParameter;
/// In an async* function, this represents the stream controller parameter.
JS.TemporaryId _asyncStarController;
// TODO(jmesserly): fuse this with notNull check.
final _privateNames = new HashMap<Library, HashMap<String, JS.TemporaryId>>();
JS.Identifier _extensionSymbolsModule;
final _extensionSymbols = new Map<String, JS.TemporaryId>();
Set<Class> _pendingClasses;
/// Temporary variables mapped to their corresponding JavaScript variable.
final _tempVariables = <VariableDeclaration, JS.TemporaryId>{};
/// Let variables collected for the given function.
List<JS.TemporaryId> _letVariables;
/// The class that is emitting its base class or mixin references, otherwise
/// null.
///
/// This is not used when inside the class method bodies, or for other type
/// information such as `implements`.
Class _classEmittingExtends;
/// The class that is emitting its signature information, otherwise null.
Class _classEmittingSignatures;
/// The current element being loaded.
/// We can use this to determine if we're loading top-level code or not:
///
/// _currentClass == _classEmittingTopLevel
///
Class _currentClass;
/// The current source file URI for emitting in the source map.
Uri _currentUri;
Component _component;
Library _currentLibrary;
FunctionNode _currentFunction;
List<TypeParameter> _typeParamInConst;
/// Whether we are currently generating code for the body of a `JS()` call.
bool _isInForeignJS = false;
/// Table of named and possibly hoisted types.
TypeTable _typeTable;
/// The global extension type table.
// TODO(jmesserly): rename to `_nativeTypes`
final NativeTypeSet _extensionTypes;
final CoreTypes coreTypes;
final TypeEnvironment types;
/// Information about virtual and overridden fields/getters/setters in the
/// class we're currently compiling, or `null` if we aren't compiling a class.
ClassPropertyModel _classProperties;
/// Information about virtual fields for all libraries in the current build
/// unit.
final virtualFields = new VirtualFieldModel();
final JSTypeRep _typeRep;
bool _superAllowed = true;
final _superHelpers = new Map<String, JS.Method>();
final bool emitMetadata;
final bool enableAsserts;
final bool replCompile;
final Map<String, String> declaredVariables;
// Compilation of Kernel's [BreakStatement].
//
// Kernel represents Dart's `break` and `continue` uniformly as
// [BreakStatement], by representing a loop continue as a break from the
// loop's body. [BreakStatement] always targets an enclosing
// [LabeledStatement] statement directly without naming it. (Continue to
// a labeled switch case is not represented by a [BreakStatement].)
//
// We prefer to compile to `continue` where possible and to avoid labeling
// statements where it is not necessary. We maintain some state to track
// which statements can be targets of break or continue without a label, which
// statements must be labeled to be targets, and the labels that have been
// assigned.
/// A list of statements that can be the target of break without a label.
///
/// A [BreakStatement] targeting any [LabeledStatement] in this list can be
/// compiled to a break without a label. All the statements in the list have
/// the same effective target which must compile to something that can be
/// targeted by break in JS. This list and [_currentContinueTargets] are
/// disjoint.
List<LabeledStatement> _currentBreakTargets = [];
/// A list of statements that can be the target of a continue without a label.
///
/// A [BreakStatement] targeting any [LabeledStatement] in this list can be
/// compiled to a continue without a label. All the statements in this list
/// have the same effective target which must compile to something that can be
/// targeted by continue in JS. This list and [_currentBreakTargets] are
/// disjoint.
List<LabeledStatement> _currentContinueTargets = [];
/// A map from labeled statements to their 'effective targets'.
///
/// The effective target of a labeled loop body is the enclosing loop. A
/// [BreakStatement] targeting this statement can be compiled to `continue`
/// either with or without a label. The effective target of a labeled
/// statement that is not a loop body is the outermost non-labeled statement
/// that it encloses. A [BreakStatement] targeting this statement can be
/// compiled to `break` either with or without a label.
final _effectiveTargets = new HashMap<LabeledStatement, Statement>.identity();
/// A map from effective targets to their label names.
///
/// If the target needs to be labeled when compiled to JS, because it was
/// targeted by a break or continue with a label, then this map contains the
/// label name that was assigned to it.
final _labelNames = new HashMap<Statement, String>.identity();
final Class _jsArrayClass;
final Class _jsBoolClass;
final Class _jsNumberClass;
final Class _jsStringClass;
final Class privateSymbolClass;
final Class linkedHashMapImplClass;
final Class identityHashMapImplClass;
final Class linkedHashSetImplClass;
final Class identityHashSetImplClass;
final Class syncIterableClass;
/// The dart:async `StreamIterator<T>` type.
final Class _asyncStreamIteratorClass;
final ConstantVisitor _constants;
final NullableInference _nullableInference;
factory ProgramCompiler(Component component,
{bool emitMetadata: false,
bool replCompile: false,
bool enableAsserts: true,
Map<String, String> declaredVariables: const {}}) {
var nativeTypes = new NativeTypeSet(component);
var types = new TypeSchemaEnvironment(
nativeTypes.coreTypes, new ClassHierarchy(component), true);
return new ProgramCompiler._(
nativeTypes, new JSTypeRep(types, nativeTypes.sdk),
emitMetadata: emitMetadata,
enableAsserts: enableAsserts,
replCompile: replCompile,
declaredVariables: declaredVariables);
}
ProgramCompiler._(NativeTypeSet nativeTypes, this._typeRep,
{this.emitMetadata,
this.enableAsserts,
this.replCompile,
this.declaredVariables})
: _extensionTypes = nativeTypes,
types = _typeRep.types,
coreTypes = nativeTypes.coreTypes,
_constants = new ConstantVisitor(nativeTypes.coreTypes),
_jsArrayClass =
nativeTypes.sdk.getClass('dart:_interceptors', 'JSArray'),
_jsBoolClass = nativeTypes.sdk.getClass('dart:_interceptors', 'JSBool'),
_jsNumberClass =
nativeTypes.sdk.getClass('dart:_interceptors', 'JSNumber'),
_jsStringClass =
nativeTypes.sdk.getClass('dart:_interceptors', 'JSString'),
_asyncStreamIteratorClass =
nativeTypes.sdk.getClass('dart:async', 'StreamIterator'),
privateSymbolClass =
nativeTypes.sdk.getClass('dart:_js_helper', 'PrivateSymbol'),
linkedHashMapImplClass =
nativeTypes.sdk.getClass('dart:_js_helper', 'LinkedMap'),
identityHashMapImplClass =
nativeTypes.sdk.getClass('dart:_js_helper', 'IdentityMap'),
linkedHashSetImplClass =
nativeTypes.sdk.getClass('dart:collection', '_HashSet'),
identityHashSetImplClass =
nativeTypes.sdk.getClass('dart:collection', '_IdentityHashSet'),
syncIterableClass =
nativeTypes.sdk.getClass('dart:_js_helper', 'SyncIterable'),
_nullableInference = new NullableInference(_typeRep);
ClassHierarchy get hierarchy => types.hierarchy;
Uri get currentLibraryUri => _currentLibrary.importUri;
JS.Program emitModule(
Component buildUnit, List<Component> summaries, List<Uri> summaryUris) {
if (_moduleItems.isNotEmpty) {
throw new StateError('Can only call emitModule once.');
}
_component = buildUnit;
for (var i = 0; i < summaries.length; i++) {
var summary = summaries[i];
var summaryUri = summaryUris[i];
for (var l in summary.libraries) {
assert(!_importToSummary.containsKey(l));
_importToSummary[l] = summary;
_summaryToUri[summary] = summaryUri;
}
}
var libraries = buildUnit.libraries.where((l) => !l.isExternal);
var ddcRuntime =
libraries.firstWhere(isSdkInternalRuntime, orElse: () => null);
if (ddcRuntime != null) {
// Don't allow these to be renamed when we're building the SDK.
// There is JS code in dart:* that depends on their names.
runtimeModule = new JS.Identifier('dart');
_extensionSymbolsModule = new JS.Identifier('dartx');
_nullableInference.allowNotNullDeclarations = true;
} else {
// Otherwise allow these to be renamed so users can write them.
runtimeModule = new JS.TemporaryId('dart');
_extensionSymbolsModule = new JS.TemporaryId('dartx');
}
_typeTable = new TypeTable(runtimeModule);
// Initialize our library variables.
var items = <JS.ModuleItem>[];
var exports = <JS.NameSpecifier>[];
// TODO(jmesserly): this is a performance optimization for V8 to prevent it
// from treating our Dart library objects as JS Maps.
var root = new JS.Identifier('_root');
items.add(js.statement('const # = Object.create(null)', [root]));
void emitLibrary(JS.Identifier id) {
items.add(js.statement('const # = Object.create(#)', [id, root]));
exports.add(new JS.NameSpecifier(id));
}
for (var library in libraries) {
var libraryTemp = library == ddcRuntime
? runtimeModule
: new JS.TemporaryId(jsLibraryName(library));
_libraries[library] = libraryTemp;
emitLibrary(libraryTemp);
}
// dart:_runtime has a magic module that holds extension method symbols.
// TODO(jmesserly): find a cleaner design for this.
if (ddcRuntime != null) emitLibrary(_extensionSymbolsModule);
items.add(new JS.ExportDeclaration(new JS.ExportClause(exports)));
// Collect all class/type Element -> Node mappings
// in case we need to forward declare any classes.
_pendingClasses = new HashSet.identity();
for (var l in libraries) {
_pendingClasses.addAll(l.classes);
}
// Add implicit dart:core dependency so it is first.
emitLibraryName(coreTypes.coreLibrary);
// Visit each library and emit its code.
//
// NOTE: clases are not necessarily emitted in this order.
// Order will be changed as needed so the resulting code can execute.
// This is done by forward declaring items.
libraries.forEach(_emitLibrary);
// Visit directives (for exports)
libraries.forEach(_emitExports);
// Declare imports
_finishImports(items);
// Initialize extension symbols
_extensionSymbols.forEach((name, id) {
JS.Expression value =
new JS.PropertyAccess(_extensionSymbolsModule, _propertyName(name));
if (ddcRuntime != null) {
value = js.call('# = Symbol(#)', [value, js.string("dartx.$name")]);
}
items.add(js.statement('const # = #;', [id, value]));
});
// Discharge the type table cache variables and
// hoisted definitions.
items.addAll(_typeTable.discharge());
// Add the module's code (produced by visiting compilation units, above)
_copyAndFlattenBlocks(items, _moduleItems);
// Build the module.
return new JS.Program(items, name: buildUnit.root.name);
}
/// Flattens blocks in [items] to a single list.
///
/// This will not flatten blocks that are marked as being scopes.
void _copyAndFlattenBlocks(
List<JS.ModuleItem> result, Iterable<JS.ModuleItem> items) {
for (var item in items) {
if (item is JS.Block && !item.isScope) {
_copyAndFlattenBlocks(result, item.statements);
} else if (item != null) {
result.add(item);
}
}
}
/// Returns the canonical name to refer to the Dart library.
JS.Identifier emitLibraryName(Library library) {
// It's either one of the libraries in this module, or it's an import.
return _libraries[library] ??
_imports.putIfAbsent(
library, () => new JS.TemporaryId(jsLibraryName(library)));
}
String _libraryToModule(Library library) {
assert(!_libraries.containsKey(library));
if (library.importUri.scheme == 'dart') {
// TODO(jmesserly): we need to split out HTML.
return JS.dartSdkModule;
}
var summary = _importToSummary[library];
assert(summary != null);
// TODO(jmesserly): look up the appropriate relative import path if the user
// specified that on the command line.
var uri = _summaryToUri[summary];
var summaryPath = uri.path;
var extensionIndex = summaryPath.lastIndexOf('.');
// Note: These URIs do not contain absolute paths from the physical file
// system, but only the relevant path within a user's project. This path
// will match the path where the .js file is generated, so we use it as
// the module name.
var moduleName = summaryPath.substring(1, extensionIndex);
return moduleName;
}
void _finishImports(List<JS.ModuleItem> items) {
var modules = new Map<String, List<Library>>();
for (var import in _imports.keys) {
modules.putIfAbsent(_libraryToModule(import), () => []).add(import);
}
String coreModuleName;
if (!_libraries.containsKey(coreTypes.coreLibrary)) {
coreModuleName = _libraryToModule(coreTypes.coreLibrary);
}
modules.forEach((module, libraries) {
// Generate import directives.
//
// Our import variables are temps and can get renamed. Since our renaming
// is integrated into js_ast, it is aware of this possibility and will
// generate an "as" if needed. For example:
//
// import {foo} from 'foo'; // if no rename needed
// import {foo as foo$} from 'foo'; // if rename was needed
//
var imports =
libraries.map((l) => new JS.NameSpecifier(_imports[l])).toList();
if (module == coreModuleName) {
imports.add(new JS.NameSpecifier(runtimeModule));
imports.add(new JS.NameSpecifier(_extensionSymbolsModule));
}
items.add(new JS.ImportDeclaration(
namedImports: imports, from: js.string(module, "'")));
});
}
void _emitLibrary(Library library) {
// NOTE: this method isn't the right place to initialize per-library state.
// Classes can be visited out of order, so this is only to catch things that
// haven't been emitted yet.
//
// See _emitClass.
assert(_currentLibrary == null);
_currentLibrary = library;
if (isSdkInternalRuntime(library)) {
// `dart:_runtime` uses a different order for bootstrapping.
//
// Functions are first because we use them to associate type info
// (such as `dart.fn`), then classes/typedefs, then fields
// (which instantiate classes).
//
// For other libraries, we start with classes/types, because functions
// often use classes/types from the library in their signature.
//
// TODO(jmesserly): we can merge these once we change signatures to be
// lazily associated at the tear-off point for top-level functions.
_emitLibraryProcedures(library);
_emitTopLevelFields(library.fields);
library.classes.forEach(_emitClass);
library.typedefs.forEach(_emitTypedef);
} else {
library.classes.forEach(_emitClass);
library.typedefs.forEach(_emitTypedef);
_emitLibraryProcedures(library);
_emitTopLevelFields(library.fields);
}
_currentLibrary = null;
}
void _emitExports(Library library) {
assert(_currentLibrary == null);
_currentLibrary = library;
library.additionalExports.forEach(_emitExport);
_currentLibrary = null;
}
void _emitExport(Reference export) {
var library = _currentLibrary;
// We only need to export main as it is the only method part of the
// publicly exposed JS API for a library.
// TODO(jacobr): add a library level annotation indicating that all
// contents of a library need to be exposed to JS.
// https://github.com/dart-lang/sdk/issues/26368
var node = export.node;
if (node is Procedure && node.name.name == 'main') {
// Don't allow redefining names from this library.
var name = _emitTopLevelName(export.node);
_moduleItems.add(js.statement(
'#.# = #;', [emitLibraryName(library), name.selector, name]));
}
}
/// Called to emit class declarations.
///
/// During the course of emitting one item, we may emit another. For example
///
/// class D extends B { C m() { ... } }
///
/// Because D depends on B, we'll emit B first if needed. However C is not
/// used by top-level JavaScript code, so we can ignore that dependency.
void _emitClass(Class c) {
if (!_pendingClasses.remove(c)) return;
var savedClass = _currentClass;
var savedLibrary = _currentLibrary;
var savedUri = _currentUri;
_currentClass = c;
types.thisType = c.thisType;
_currentLibrary = c.enclosingLibrary;
_currentUri = c.fileUri;
_moduleItems.add(_emitClassDeclaration(c));
_currentClass = savedClass;
types.thisType = savedClass?.thisType;
_currentLibrary = savedLibrary;
_currentUri = savedUri;
}
/// To emit top-level classes, we sometimes need to reorder them.
///
/// This function takes care of that, and also detects cases where reordering
/// failed, and we need to resort to lazy loading, by marking the element as
/// lazy. All elements need to be aware of this possibility and generate code
/// accordingly.
///
/// If we are not emitting top-level code, this does nothing, because all
/// declarations are assumed to be available before we start execution.
/// See [startTopLevel].
void _declareBeforeUse(Class c) {
if (c != null && _emittingClassExtends) _emitClass(c);
}
JS.Statement _emitClassDeclaration(Class c) {
// Mixins are unrolled in _defineClass.
if (c.isSyntheticMixinImplementation) return null;
// If this class is annotated with `@JS`, then there is nothing to emit.
if (findAnnotation(c, isPublicJSAnnotation) != null) return null;
// If this is a JavaScript type, emit it now and then exit.
var jsTypeDef = _emitJSType(c);
if (jsTypeDef != null) return jsTypeDef;
JS.Expression className;
if (c.typeParameters.isNotEmpty) {
// Generic classes will be defined inside a function that closes over the
// type parameter. So we can use their local variable name directly.
className = new JS.Identifier(getLocalClassName(c));
} else {
className = _emitTopLevelName(c);
}
var savedClassProperties = _classProperties;
_classProperties =
new ClassPropertyModel.build(types, _extensionTypes, virtualFields, c);
var jsCtors = _defineConstructors(c, className);
var jsMethods = _emitClassMethods(c);
var body = <JS.Statement>[];
_emitSuperHelperSymbols(body);
var deferredSupertypes = <JS.Statement>[];
// Emit the class, e.g. `core.Object = class Object { ... }`
_defineClass(c, className, jsMethods, body, deferredSupertypes);
body.addAll(jsCtors);
// Emit things that come after the ES6 `class ... { ... }`.
var jsPeerNames = _extensionTypes.getNativePeers(c);
if (jsPeerNames.length == 1 && c.typeParameters.isNotEmpty) {
// Special handling for JSArray<E>
body.add(runtimeStatement('setExtensionBaseClass(#, #.global.#)',
[className, runtimeModule, jsPeerNames[0]]));
}
var finishGenericTypeTest = _emitClassTypeTests(c, className, body);
_emitVirtualFieldSymbols(c, body);
_emitClassSignature(c, className, body);
_initExtensionSymbols(c);
_defineExtensionMembers(className, body);
_emitClassMetadata(c.annotations, className, body);
var classDef = JS.Statement.from(body);
var typeFormals = c.typeParameters;
if (typeFormals.isNotEmpty) {
classDef = _defineClassTypeArguments(
c, typeFormals, classDef, className, deferredSupertypes);
} else {
body.addAll(deferredSupertypes);
}
body = [classDef];
_emitStaticFields(c, body);
if (finishGenericTypeTest != null) body.add(finishGenericTypeTest);
for (var peer in jsPeerNames) {
_registerExtensionType(c, peer, body);
}
_classProperties = savedClassProperties;
return JS.Statement.from(body);
}
/// Wraps a possibly generic class in its type arguments.
JS.Statement _defineClassTypeArguments(
NamedNode c, List<TypeParameter> formals, JS.Statement body,
[JS.Expression className, List<JS.Statement> deferredBaseClass]) {
assert(formals.isNotEmpty);
var name = getTopLevelName(c);
var jsFormals = _emitTypeFormals(formals);
var typeConstructor = js.call('(#) => { #; #; return #; }', [
jsFormals,
_typeTable.discharge(formals),
body,
className ?? new JS.Identifier(name)
]);
var genericArgs = [typeConstructor];
if (deferredBaseClass != null && deferredBaseClass.isNotEmpty) {
genericArgs.add(js.call('(#) => { #; }', [jsFormals, deferredBaseClass]));
}
var genericCall = runtimeCall('generic(#)', [genericArgs]);
var genericName = _emitTopLevelNameNoInterop(c, suffix: '\$');
return js.statement('{ # = #; # = #(); }',
[genericName, genericCall, _emitTopLevelName(c), genericName]);
}
JS.Statement _emitClassStatement(Class c, JS.Expression className,
JS.Expression heritage, List<JS.Method> methods) {
var name = getLocalClassName(c);
var classExpr =
new JS.ClassExpression(new JS.Identifier(name), heritage, methods);
if (c.typeParameters.isNotEmpty) {
return classExpr.toStatement();
} else {
return js.statement('# = #;', [className, classExpr]);
}
}
void _defineClass(Class c, JS.Expression className, List<JS.Method> methods,
List<JS.Statement> body, List<JS.Statement> deferredSupertypes) {
if (c == coreTypes.objectClass) {
body.add(_emitClassStatement(c, className, null, methods));
return;
}
JS.Expression emitDeferredType(DartType t) {
if (t is InterfaceType && t.typeArguments.isNotEmpty) {
_declareBeforeUse(t.classNode);
return _emitGenericClassType(t, t.typeArguments.map(emitDeferredType));
}
return _emitType(t);
}
bool shouldDefer(InterfaceType t) {
var visited = new Set<DartType>();
bool defer(DartType t) {
if (t is InterfaceType) {
var tc = t.classNode;
if (c == tc) return true;
if (tc == coreTypes.objectClass || !visited.add(t)) return false;
if (t.typeArguments.any(defer)) return true;
var mixin = tc.mixedInType;
return mixin != null && defer(mixin.asInterfaceType) ||
defer(tc.supertype.asInterfaceType);
}
if (t is TypedefType) {
return t.typeArguments.any(defer);
}
if (t is FunctionType) {
return defer(t.returnType) ||
t.positionalParameters.any(defer) ||
t.namedParameters.any((np) => defer(np.type)) ||
t.typeParameters.any((tp) => defer(tp.bound));
}
return false;
}
return defer(t);
}
emitClassRef(InterfaceType t) {
// TODO(jmesserly): investigate this. It seems like `lazyJSType` is
// invalid for use in an `extends` clause, hence this workaround.
return _emitJSInterop(t.classNode) ?? visitInterfaceType(t);
}
getBaseClass(int count) {
var base = emitDeferredType(c.thisType);
while (--count >= 0) {
base = js.call('#.__proto__', [base]);
}
return base;
}
// Find the real (user declared) superclass and the list of mixins.
// We'll use this to unroll the intermediate classes.
//
// TODO(jmesserly): consider using Kernel's mixin unrolling.
var mixinClasses = <Class>[];
var superclass = getSuperclassAndMixins(c, mixinClasses);
var supertype = identical(c.superclass, superclass)
? c.supertype.asInterfaceType
: hierarchy.getClassAsInstanceOf(c, superclass).asInterfaceType;
mixinClasses = mixinClasses.reversed.toList();
var mixins = mixinClasses
.map((m) => hierarchy.getClassAsInstanceOf(c, m).asInterfaceType)
.toList();
var hasUnnamedSuper = _hasUnnamedConstructor(superclass);
void emitMixinConstructors(JS.Expression className, InterfaceType mixin) {
JS.Statement mixinCtor;
if (_hasUnnamedConstructor(mixin.classNode)) {
mixinCtor = js.statement('#.#.call(this);', [
emitClassRef(mixin),
_usesMixinNew(mixin.classNode)
? runtimeCall('mixinNew')
: _constructorName('')
]);
}
for (var ctor in superclass.constructors) {
var savedUri = _currentUri;
_currentUri = ctor.enclosingClass.fileUri;
var jsParams = _emitFormalParameters(ctor.function);
_currentUri = savedUri;
var ctorBody = <JS.Statement>[];
if (mixinCtor != null) ctorBody.add(mixinCtor);
var name = ctor.name.name;
if (name != '' || hasUnnamedSuper) {
ctorBody.add(_emitSuperConstructorCall(className, name, jsParams));
}
body.add(_addConstructorToClass(
className, name, new JS.Fun(jsParams, new JS.Block(ctorBody))));
}
}
var savedTopLevelClass = _classEmittingExtends;
_classEmittingExtends = c;
// Unroll mixins.
if (shouldDefer(supertype)) {
deferredSupertypes.add(runtimeStatement('setBaseClass(#, #)', [
getBaseClass(isMixinAliasClass(c) ? 0 : mixins.length),
emitDeferredType(supertype),
]));
supertype = supertype.classNode.rawType;
}
var baseClass = emitClassRef(supertype);
if (isMixinAliasClass(c)) {
// Given `class C = Object with M [implements I1, I2 ...];`
// The resulting class C should work as a mixin.
//
// TODO(jmesserly): is there any way to merge this with the other mixin
// code paths, or will these always need special handling?
body.add(_emitClassStatement(c, className, baseClass, []));
var m = c.mixedInType.asInterfaceType;
bool deferMixin = shouldDefer(m);
var mixinBody = deferMixin ? deferredSupertypes : body;
var mixinClass = deferMixin ? emitDeferredType(m) : emitClassRef(m);
var classExpr = deferMixin ? getBaseClass(0) : className;
mixinBody
.add(runtimeStatement('mixinMembers(#, #)', [classExpr, mixinClass]));
if (methods.isNotEmpty) {
// However we may need to add some methods to this class that call
// `super` such as covariance checks.
//
// We do this with the following pattern:
//
// mixinMembers(C, class C$ extends M { <methods> });
mixinBody.add(runtimeStatement('mixinMembers(#, #)', [
classExpr,
new JS.ClassExpression(
new JS.TemporaryId(getLocalClassName(c)), mixinClass, methods)
]));
}
emitMixinConstructors(className, m);
_classEmittingExtends = savedTopLevelClass;
return;
}
// TODO(jmesserly): we need to unroll kernel mixins because the synthetic
// classes lack required synthetic members, such as constructors.
//
// Also, we need to generate one extra level of nesting for alias classes.
for (int i = 0; i < mixins.length; i++) {
var m = mixins[i];
var mixinName =
getLocalClassName(superclass) + '_' + getLocalClassName(m.classNode);
var mixinId = new JS.TemporaryId(mixinName + '\$');
// Bind the mixin class to a name to workaround a V8 bug with es6 classes
// and anonymous function names.
// TODO(leafp:) Eliminate this once the bug is fixed:
// https://bugs.chromium.org/p/v8/issues/detail?id=7069
body.add(js.statement("const # = #", [
mixinId,
new JS.ClassExpression(new JS.TemporaryId(mixinName), baseClass, [])
]));
emitMixinConstructors(mixinId, m);
hasUnnamedSuper = hasUnnamedSuper || _hasUnnamedConstructor(m.classNode);
if (shouldDefer(m)) {
deferredSupertypes.add(runtimeStatement('mixinMembers(#, #)',
[getBaseClass(mixins.length - i), emitDeferredType(m)]));
} else {
body.add(
runtimeStatement('mixinMembers(#, #)', [mixinId, emitClassRef(m)]));
}
baseClass = mixinId;
}
body.add(_emitClassStatement(c, className, baseClass, methods));
_classEmittingExtends = savedTopLevelClass;
}
/// Defines all constructors for this class as ES5 constructors.
List<JS.Statement> _defineConstructors(Class c, JS.Expression className) {
var body = <JS.Statement>[];
if (c.isSyntheticMixinImplementation || isMixinAliasClass(c)) {
// We already handled this when we defined the class.
return body;
}
addConstructor(String name, JS.Expression jsCtor) {
body.add(_addConstructorToClass(className, name, jsCtor));
}
var fields = c.fields;
for (var ctor in c.constructors) {
if (ctor.isExternal) continue;
addConstructor(ctor.name.name, _emitConstructor(ctor, fields, className));
}
// If classElement has only factory constructors, and it can be mixed in,
// then we need to emit a special hidden default constructor for use by
// mixins.
if (_usesMixinNew(c)) {
body.add(
js.statement('(#[#] = function() { # }).prototype = #.prototype;', [
className,
runtimeCall('mixinNew'),
[_initializeFields(fields)],
className
]));
}
return body;
}
JS.Statement _emitClassTypeTests(
Class c, JS.Expression className, List<JS.Statement> body) {
JS.Expression getInterfaceSymbol(Class interface) {
var library = interface.enclosingLibrary;
if (library == coreTypes.coreLibrary ||
library == coreTypes.asyncLibrary) {
switch (interface.name) {
case 'List':
case 'Map':
case 'Iterable':
case 'Future':
case 'Stream':
case 'StreamSubscription':
return runtimeCall('is' + interface.name);
}
}
return null;
}
void markSubtypeOf(JS.Expression testSymbol) {
body.add(js.statement('#.prototype[#] = true', [className, testSymbol]));
}
for (var iface in c.implementedTypes) {
var prop = getInterfaceSymbol(iface.classNode);
if (prop != null) markSubtypeOf(prop);
}
// TODO(jmesserly): share these hand coded type checks with the old back
// end, perhaps by factoring them into a common file, or move them to be
// static methdos in the SDK. (Or wait until we delete the old back end.)
if (c.enclosingLibrary == coreTypes.coreLibrary) {
if (c == coreTypes.objectClass) {
// Everything is an Object.
body.add(js.statement(
'#.is = function is_Object(o) { return true; }', [className]));
body.add(js.statement(
'#.as = function as_Object(o) { return o; }', [className]));
body.add(js.statement(
'#._check = function check_Object(o) { return o; }', [className]));
return null;
}
if (c == coreTypes.stringClass) {
body.add(js.statement(
'#.is = function is_String(o) { return typeof o == "string"; }',
className));
body.add(js.statement(
'#.as = function as_String(o) {'
' if (typeof o == "string" || o == null) return o;'
' return #.as(o, #, false);'
'}',
[className, runtimeModule, className]));
body.add(js.statement(
'#._check = function check_String(o) {'
' if (typeof o == "string" || o == null) return o;'
' return #.as(o, #, true);'
'}',
[className, runtimeModule, className]));
return null;
}
if (c == coreTypes.functionClass) {
body.add(js.statement(
'#.is = function is_Function(o) { return typeof o == "function"; }',
className));
body.add(js.statement(
'#.as = function as_Function(o) {'
' if (typeof o == "function" || o == null) return o;'
' return #.as(o, #, false);'
'}',
[className, runtimeModule, className]));
body.add(js.statement(
'#._check = function check_String(o) {'
' if (typeof o == "function" || o == null) return o;'
' return #.as(o, #, true);'
'}',
[className, runtimeModule, className]));
return null;
}
if (c == coreTypes.intClass) {
body.add(js.statement(
'#.is = function is_int(o) {'
' return typeof o == "number" && Math.floor(o) == o;'
'}',
className));
body.add(js.statement(
'#.as = function as_int(o) {'
' if ((typeof o == "number" && Math.floor(o) == o) || o == null)'
' return o;'
' return #.as(o, #, false);'
'}',
[className, runtimeModule, className]));
body.add(js.statement(
'#._check = function check_int(o) {'
' if ((typeof o == "number" && Math.floor(o) == o) || o == null)'
' return o;'
' return #.as(o, #, true);'
'}',
[className, runtimeModule, className]));
return null;
}
if (c == coreTypes.nullClass) {
body.add(js.statement(
'#.is = function is_Null(o) { return o == null; }', className));
body.add(js.statement(
'#.as = function as_Null(o) {'
' if (o == null) return o;'
' return #.as(o, #, false);'
'}',
[className, runtimeModule, className]));
body.add(js.statement(
'#._check = function check_Null(o) {'
' if (o == null) return o;'
' return #.as(o, #, true);'
'}',
[className, runtimeModule, className]));
return null;
}
if (c == coreTypes.numClass || c == coreTypes.doubleClass) {
body.add(js.statement(
'#.is = function is_num(o) { return typeof o == "number"; }',
className));
body.add(js.statement(
'#.as = function as_num(o) {'
' if (typeof o == "number" || o == null) return o;'
' return #.as(o, #, false);'
'}',
[className, runtimeModule, className]));
body.add(js.statement(
'#._check = function check_num(o) {'
' if (typeof o == "number" || o == null) return o;'
' return #.as(o, #, true);'
'}',
[className, runtimeModule, className]));
return null;
}
if (c == coreTypes.boolClass) {
body.add(js.statement(
'#.is = function is_bool(o) { return o === true || o === false; }',
className));
body.add(js.statement(
'#.as = function as_bool(o) {'
' if (o === true || o === false || o == null) return o;'
' return #.as(o, #, false);'
'}',
[className, runtimeModule, className]));
body.add(js.statement(
'#._check = function check_bool(o) {'
' if (o === true || o === false || o == null) return o;'
' return #.as(o, #, true);'
'}',
[className, runtimeModule, className]));
return null;
}
}
if (c.enclosingLibrary == coreTypes.asyncLibrary) {
if (c == coreTypes.futureOrClass) {
var typeParam = new TypeParameterType(c.typeParameters[0]);
var typeT = visitTypeParameterType(typeParam);
var futureOfT = visitInterfaceType(
new InterfaceType(coreTypes.futureClass, [typeParam]));
body.add(js.statement('''
#.is = function is_FutureOr(o) {
return #.is(o) || #.is(o);
}
''', [className, typeT, futureOfT]));
// TODO(jmesserly): remove the fallback to `dart.as`. It's only for the
// _ignoreTypeFailure logic.
body.add(js.statement('''
#.as = function as_FutureOr(o) {
if (o == null || #.is(o) || #.is(o)) return o;
return #.as(o, this, false);
}
''', [className, typeT, futureOfT, runtimeModule]));
body.add(js.statement('''
#._check = function check_FutureOr(o) {
if (o == null || #.is(o) || #.is(o)) return o;
return #.as(o, this, true);
}
''', [className, typeT, futureOfT, runtimeModule]));
return null;
}
}
body.add(runtimeStatement('addTypeTests(#)', [className]));
if (c.typeParameters.isEmpty) return null;
// For generics, testing against the default instantiation is common,
// so optimize that.
var isClassSymbol = getInterfaceSymbol(c);
if (isClassSymbol == null) {
// TODO(jmesserly): we could export these symbols, if we want to mark
// implemented interfaces for user-defined classes.
var id = new JS.TemporaryId("_is_${getLocalClassName(c)}_default");
_moduleItems.add(
js.statement('const # = Symbol(#);', [id, js.string(id.name, "'")]));
isClassSymbol = id;
}
// Marking every generic type instantiation as a subtype of its default
// instantiation.
markSubtypeOf(isClassSymbol);
// Define the type tests on the default instantiation to check for that
// marker.
var defaultInst = _emitTopLevelName(c);
// Return this `addTypeTests` call so we can emit it outside of the generic
// type parameter scope.
return runtimeStatement('addTypeTests(#, #)', [defaultInst, isClassSymbol]);
}
void _emitSymbols(Iterable<JS.TemporaryId> vars, List<JS.ModuleItem> body) {
for (var id in vars) {
body.add(js.statement('const # = Symbol(#)', [id, js.string(id.name)]));
}
}
void _emitSuperHelperSymbols(List<JS.Statement> body) {
_emitSymbols(
_superHelpers.values.map((m) => m.name as JS.TemporaryId), body);
_superHelpers.clear();
}
/// Emits static fields for a class, and initialize them eagerly if possible,
/// otherwise define them as lazy properties.
void _emitStaticFields(Class c, List<JS.Statement> body) {
var fields = c.fields
.where((f) => f.isStatic && getRedirectingFactories(f) == null)
.toList();
if (c.isEnum) {
// We know enum fields can be safely emitted as const fields, as long
// as the `values` field is emitted last.
var classRef = _emitTopLevelName(c);
var valueField = fields.firstWhere((f) => f.name.name == 'values');
fields.remove(valueField);
fields.add(valueField);
for (var f in fields) {
assert(f.isConst);
body.add(_defineValueOnClass(
classRef,
_emitStaticMemberName(f.name.name),
_visitInitializer(f.initializer, f.annotations))
.toStatement());
}
} else if (fields.isNotEmpty) {
body.add(_emitLazyFields(_emitTopLevelName(c), fields,
(n) => _emitStaticMemberName(n.name.name)));
}
}
void _emitClassMetadata(List<Expression> metadata, JS.Expression className,
List<JS.Statement> body) {
// Metadata
if (emitMetadata && metadata.isNotEmpty) {
body.add(js.statement('#[#.metadata] = #;', [
className,
runtimeModule,
_arrowFunctionWithLetScope(() => new JS.ArrayInitializer(
metadata.map(_instantiateAnnotation).toList()))
]));
}
}
/// Ensure `dartx.` symbols we will use are present.
void _initExtensionSymbols(Class c) {
if (_extensionTypes.hasNativeSubtype(c) || c == coreTypes.objectClass) {
for (var m in c.procedures) {
if (!m.isAbstract && !m.isStatic && !m.name.isPrivate) {
_declareMemberName(m, useExtension: true);
}
}
}
}
/// If a concrete class implements one of our extensions, we might need to
/// add forwarders.
void _defineExtensionMembers(
JS.Expression className, List<JS.Statement> body) {
void emitExtensions(String helperName, Iterable<String> extensions) {
if (extensions.isEmpty) return;
var names = extensions
.map((e) => _propertyName(JS.memberNameForDartMember(e)))
.toList();
body.add(js.statement('#.#(#, #);', [
runtimeModule,
helperName,
className,
new JS.ArrayInitializer(names, multiline: names.length > 4)
]));
}
var props = _classProperties;
emitExtensions('defineExtensionMethods', props.extensionMethods);
emitExtensions('defineExtensionAccessors', props.extensionAccessors);
}
/// Emit the signature on the class recording the runtime type information
void _emitClassSignature(
Class c, JS.Expression className, List<JS.Statement> body) {
var savedClass = _classEmittingSignatures;
_classEmittingSignatures = c;
if (c.implementedTypes.isNotEmpty) {
body.add(js.statement('#[#.implements] = () => [#];', [
className,
runtimeModule,
c.implementedTypes.map((i) => _emitType(i.asInterfaceType))
]));
}
void emitSignature(String name, List<JS.Property> elements) {
if (elements.isEmpty) return;
if (!name.startsWith('Static')) {
var proto = c == coreTypes.objectClass
? js.call('Object.create(null)')
: runtimeCall('get${name}s(#.__proto__)', [className]);
elements.insert(0, new JS.Property(_propertyName('__proto__'), proto));
}
body.add(runtimeStatement('set${name}Signature(#, () => #)', [
className,
new JS.ObjectInitializer(elements, multiline: elements.length > 1)
]));
}
var extMembers = _classProperties.extensionMethods;
var staticMethods = <JS.Property>[];
var instanceMethods = <JS.Property>[];
var staticGetters = <JS.Property>[];
var instanceGetters = <JS.Property>[];
var staticSetters = <JS.Property>[];
var instanceSetters = <JS.Property>[];
List<JS.Property> getSignatureList(Procedure p) {
if (p.isStatic) {
if (p.isGetter) {
return staticGetters;
} else if (p.isSetter) {
return staticSetters;
} else {
return staticMethods;
}
} else {
if (p.isGetter) {
return instanceGetters;
} else if (p.isSetter) {
return instanceSetters;
} else {
return instanceMethods;
}
}
}
var classProcedures = c.procedures.where((p) => !p.isAbstract).toList();
for (var m in _classProperties.mockMembers.values) {
if (m is Procedure) classProcedures.add(m);
}
for (var member in classProcedures) {
// Static getters/setters/methods cannot be called with dynamic dispatch,
// nor can they be torn off.
if (!emitMetadata && member.isStatic) continue;
var name = member.name.name;
var reifiedType = _getMemberRuntimeType(member, c);
// Don't add redundant signatures for inherited methods whose signature
// did not change. If we are not overriding, or if the thing we are
// overriding has a different reified type from ourselves, we must
// emit a signature on this class. Otherwise we will inherit the
// signature from the superclass.
var memberOverride = c.superclass != null
? hierarchy.getDispatchTarget(c.superclass, member.name,
setter: member.isSetter)
: null;
var needsSignature = memberOverride == null ||
reifiedType != _getMemberRuntimeType(memberOverride, c);
if (needsSignature) {
JS.Expression type;
if (member.isAccessor) {
type = _emitAnnotatedResult(
_emitType(member.isGetter
? reifiedType.returnType
: reifiedType.positionalParameters[0]),
member.annotations,
member);
} else {
type = _emitAnnotatedFunctionType(reifiedType, member);
}
var property = new JS.Property(_declareMemberName(member), type);
var signatures = getSignatureList(member);
signatures.add(property);
if (!member.isStatic && extMembers.contains(name)) {
signatures.add(new JS.Property(
_declareMemberName(member, useExtension: true), type));
}
}
}
emitSignature('Method', instanceMethods);
emitSignature('StaticMethod', staticMethods);
emitSignature('Getter', instanceGetters);
emitSignature('Setter', instanceSetters);
emitSignature('StaticGetter', staticGetters);
emitSignature('StaticSetter', staticSetters);
var instanceFields = <JS.Property>[];
var staticFields = <JS.Property>[];
var classFields = c.fields.toList();
for (var m in _classProperties.mockMembers.values) {
if (m is Field) classFields.add(m);
}
for (var field in classFields) {
// Only instance fields need to be saved for dynamic dispatch.
var isStatic = field.isStatic;
if (!emitMetadata && isStatic) continue;
var memberName = _declareMemberName(field);
var fieldSig = _emitFieldSignature(field, c);
(isStatic ? staticFields : instanceFields)
.add(new JS.Property(memberName, fieldSig));
}
emitSignature('Field', instanceFields);
emitSignature('StaticField', staticFields);
if (emitMetadata) {
var constructors = <JS.Property>[];
var allConstructors = new List<Member>.from(c.constructors)
..addAll(c.procedures.where((p) => p.isFactory));
for (var ctor in allConstructors) {
var memberName = _constructorName(ctor.name.name);
var type = _emitAnnotatedFunctionType(
ctor.function.functionType.withoutTypeParameters, ctor);
constructors.add(new JS.Property(memberName, type));
}
emitSignature('Constructor', constructors);
}
// Add static property dart._runtimeType to Object.
// All other Dart classes will (statically) inherit this property.
if (c == coreTypes.objectClass) {
body.add(runtimeStatement('lazyFn(#, () => #.#)',
[className, emitLibraryName(coreTypes.coreLibrary), 'Type']));
}
_classEmittingSignatures = savedClass;
}
JS.Expression _emitFieldSignature(Field field, Class fromClass) {
var type = _getTypeFromClass(field.type, field.enclosingClass, fromClass);
var args = [_emitType(type)];
var annotations = field.annotations;
if (emitMetadata && annotations != null && annotations.isNotEmpty) {
var savedUri = _currentUri;
_currentUri = field.enclosingClass.fileUri;
args.add(new JS.ArrayInitializer(
annotations.map(_instantiateAnnotation).toList()));
_currentUri = savedUri;
}
return runtimeCall(
field.isFinal ? 'finalFieldType(#)' : 'fieldType(#)', [args]);
}
FunctionType _getMemberRuntimeType(Member member, Class fromClass) {
var f = member.function;
if (f == null) {
return (member as Field).type;
}
FunctionType result;
if (!f.positionalParameters.any(isCovariant) &&
!f.namedParameters.any(isCovariant)) {
result = f.functionType;
} else {
reifyParameter(VariableDeclaration p) =>
isCovariant(p) ? coreTypes.objectClass.thisType : p.type;
reifyNamedParameter(VariableDeclaration p) =>
new NamedType(p.name, reifyParameter(p));
// TODO(jmesserly): do covariant type parameter bounds also need to be
// reified as `Object`?
result = new FunctionType(
f.positionalParameters.map(reifyParameter).toList(), f.returnType,
namedParameters: f.namedParameters.map(reifyNamedParameter).toList()
..sort(),
typeParameters: f.functionType.typeParameters,
requiredParameterCount: f.requiredParameterCount);
}
return _getTypeFromClass(result, member.enclosingClass, fromClass)
as FunctionType;
}
DartType _getTypeFromClass(DartType type, Class superclass, Class subclass) {
if (identical(superclass, subclass)) return type;
return Substitution
.fromSupertype(hierarchy.getClassAsInstanceOf(subclass, superclass))
.substituteType(type);
}
JS.Expression _emitConstructor(
Constructor node, List<Field> fields, JS.Expression className) {
var savedUri = _currentUri;
_currentUri = node.fileUri ?? savedUri;
var params = _emitFormalParameters(node.function);
var body = _withCurrentFunction(
node.function,
() => _superDisallowed(
() => _emitConstructorBody(node, fields, className)));
var end = _nodeEnd(node.fileEndOffset);
_currentUri = savedUri;
end ??= _nodeEnd(node.enclosingClass.fileEndOffset);
return new JS.Fun(params, new JS.Block(body))..sourceInformation = end;
}
List<JS.Statement> _emitConstructorBody(
Constructor node, List<Field> fields, JS.Expression className) {
var cls = node.enclosingClass;
// Generate optional/named argument value assignment. These can not have
// side effects, and may be used by the constructor's initializers, so it's
// nice to do them first.
// Also for const constructors we need to ensure default values are
// available for use by top-level constant initializers.
var fn = node.function;
var body = _emitArgumentInitializers(fn);
// Redirecting constructors: these are not allowed to have initializers,
// and the redirecting ctor invocation runs before field initializers.
var redirectCall = node.initializers
.firstWhere((i) => i is RedirectingInitializer, orElse: () => null)
as RedirectingInitializer;
if (redirectCall != null) {
body.add(_emitRedirectingConstructor(redirectCall, className));
return body;
}
// Generate field initializers.
// These are expanded into each non-redirecting constructor.
// In the future we may want to create an initializer function if we have
// multiple constructors, but it needs to be balanced against readability.
body.add(_initializeFields(fields, node));
// If no superinitializer is provided, an implicit superinitializer of the
// form `super()` is added at the end of the initializer list, unless the
// enclosing class is class Object.
var superCall = node.initializers.firstWhere((i) => i is SuperInitializer,
orElse: () => null) as SuperInitializer;
var jsSuper = _emitSuperConstructorCallIfNeeded(cls, className, superCall);
if (jsSuper != null) {
body.add(jsSuper..sourceInformation = _nodeStart(superCall));
}
body.add(_emitFunctionScopedBody(fn));
return body;
}
JS.Expression _constructorName(String name) {
if (name == '') {
// Default constructors (factory or not) use `new` as their name.
return _propertyName('new');
}
return _emitStaticMemberName(name);
}
JS.Statement _emitRedirectingConstructor(
RedirectingInitializer node, JS.Expression className) {
var ctor = node.target;
// We can't dispatch to the constructor with `this.new` as that might hit a
// derived class constructor with the same name.
return js.statement('#.#.call(this, #);', [
className,
_constructorName(ctor.name.name),
_emitArgumentList(node.arguments)
]);
}
JS.Statement _emitSuperConstructorCallIfNeeded(
Class c, JS.Expression className,
[SuperInitializer superInit]) {
if (c == coreTypes.objectClass) return null;
Constructor ctor;
List<JS.Expression> args;
if (superInit == null) {
ctor = unnamedConstructor(c.superclass);
args = [];
} else {
ctor = superInit.target;
args = _emitArgumentList(superInit.arguments);
}
// We can skip the super call if it's empty. Most commonly this happens for
// things that extend Object, and don't have any field initializers or their
// own default constructor.
if (ctor.name.name == '' && !_hasUnnamedSuperConstructor(c)) {
return null;
}
return _emitSuperConstructorCall(className, ctor.name.name, args);
}
JS.Statement _emitSuperConstructorCall(
JS.Expression className, String name, List<JS.Expression> args) {
return js.statement('#.__proto__.#.call(this, #);',
[className, _constructorName(name), args ?? []]);
}
bool _hasUnnamedSuperConstructor(Class c) {
if (c == null) return false;
return _hasUnnamedConstructor(c.superclass) ||
_hasUnnamedConstructor(c.mixedInClass);
}
bool _hasUnnamedConstructor(Class c) {
if (c == null || c == coreTypes.objectClass) return false;
var ctor = unnamedConstructor(c);
if (ctor != null && !ctor.isSynthetic) return true;
if (c.fields.any((f) => !f.isStatic)) return true;
return _hasUnnamedSuperConstructor(c);
}
/// Initialize fields. They follow the sequence:
///
/// 1. field declaration initializer if non-const,
/// 2. field initializing parameters,
/// 3. constructor field initializers,
/// 4. initialize fields not covered in 1-3
JS.Statement _initializeFields(List<Field> fields, [Constructor ctor]) {
// Run field initializers if they can have side-effects.
Set<Field> ctorFields;
if (ctor != null) {
ctorFields = ctor.initializers
.map((c) => c is FieldInitializer ? c.field : null)
.toSet()
..remove(null);
}
var body = <JS.Statement>[];
emitFieldInit(Field f, Expression initializer, TreeNode hoverInfo) {
var access = _classProperties.virtualFields[f] ?? _declareMemberName(f);
var jsInit = _visitInitializer(initializer, f.annotations);
body.add(jsInit
.toAssignExpression(js.call('this.#', [access])
..sourceInformation = _nodeStart(hoverInfo))
.toStatement());
}
for (var f in fields) {
if (f.isStatic) continue;
var init = f.initializer;
if (ctorFields != null &&
ctorFields.contains(f) &&
(init == null || _constants.isConstant(init))) {
continue;
}
emitFieldInit(f, init, f);
}
// Run constructor field initializers such as `: foo = bar.baz`
if (ctor != null) {
for (var init in ctor.initializers) {
if (init is FieldInitializer) {
emitFieldInit(init.field, init.value, init);
} else if (init is LocalInitializer) {
body.add(visitVariableDeclaration(init.variable));
} else if (init is AssertInitializer) {
body.add(visitAssertStatement(init.statement));
}
}
}
return JS.Statement.from(body);
}
JS.Expression _visitInitializer(
Expression init, List<Expression> annotations) {
// explicitly initialize to null, to avoid getting `undefined`.
// TODO(jmesserly): do this only for vars that aren't definitely assigned.
if (init == null) return new JS.LiteralNull();
return _annotatedNullCheck(annotations)
? notNull(init)
: _visitExpression(init);
}
JS.Expression notNull(Expression expr) {
if (expr == null) return null;
var jsExpr = _visitExpression(expr);
if (!isNullable(expr)) return jsExpr;
return runtimeCall('notNull(#)', jsExpr);
}
/// If the class has only factory constructors, and it can be mixed in,
/// then we need to emit a special hidden default constructor for use by
/// mixins.
bool _usesMixinNew(Class mixin) {
return mixin.superclass?.superclass == null &&
mixin.constructors.every((c) => c.isExternal);
}
JS.Statement _addConstructorToClass(
JS.Expression className, String name, JS.Expression jsCtor) {
jsCtor = _defineValueOnClass(className, _constructorName(name), jsCtor);
return js.statement('#.prototype = #.prototype;', [jsCtor, className]);
}
JS.Expression _defineValueOnClass(
JS.Expression className, JS.Expression name, JS.Expression value) {
var args = [className, name, value];
if (name is JS.LiteralString &&
JS.invalidStaticFieldName(name.valueWithoutQuotes)) {
return runtimeCall('defineValue(#, #, #)', args);
}
return js.call('#.# = #', args);
}
List<JS.Method> _emitClassMethods(Class c) {
var virtualFields = _classProperties.virtualFields;
var jsMethods = <JS.Method>[];
bool hasJsPeer = _extensionTypes.isNativeClass(c);
bool hasIterator = false;
if (c == coreTypes.objectClass) {
// Dart does not use ES6 constructors.
// Add an error to catch any invalid usage.
jsMethods.add(
new JS.Method(_propertyName('constructor'), js.fun(r'''function() {
throw Error("use `new " + #.typeName(#.getReifiedType(this)) +
".new(...)` to create a Dart object");
}''', [runtimeModule, runtimeModule])));
}
Set<Member> redirectingFactories;
for (var m in c.fields) {
if (m.isStatic) {
redirectingFactories ??= getRedirectingFactories(m)?.toSet();
} else if (_extensionTypes.isNativeClass(c)) {
jsMethods.addAll(_emitNativeFieldAccessors(m));
} else if (virtualFields.containsKey(m)) {
jsMethods.addAll(_emitVirtualFieldAccessor(m));
}
}
var getters = new Map<String, Procedure>();
var setters = new Map<String, Procedure>();
for (var m in c.procedures) {
if (m.isAbstract) continue;
if (m.isGetter) {
getters[m.name.name] = m;
} else if (m.isSetter) {
setters[m.name.name] = m;
}
}
var savedUri = _currentUri;
for (var m in c.procedures) {
_currentUri = m.fileUri ?? savedUri;
if (m.isForwardingStub) {
// TODO(jmesserly): is there any other kind of forwarding stub?
jsMethods.addAll(_emitCovarianceCheckStub(m));
} else if (m.isFactory) {
// Skip redirecting factories (they've already been resolved).
if (redirectingFactories?.contains(m) ?? false) continue;
jsMethods.add(_emitFactoryConstructor(m));
} else if (m.isAccessor) {
jsMethods.add(_emitMethodDeclaration(m));
jsMethods.add(_emitSuperAccessorWrapper(m, getters, setters));
if (!hasJsPeer && m.isGetter && m.name.name == 'iterator') {
hasIterator = true;
jsMethods.add(_emitIterable(c));
}
} else {
jsMethods.add(_emitMethodDeclaration(m));
}
}
_currentUri = savedUri;
_classProperties.mockMembers.forEach((String name, Member member) {
jsMethods
.add(_implementMockMember(member, c, isSetter: name.endsWith('=')));
});
// If the type doesn't have an `iterator`, but claims to implement Iterable,
// we inject the adaptor method here, as it's less code size to put the
// helper on a parent class. This pattern is common in the core libraries
// (e.g. IterableMixin<E> and IterableBase<E>).
//
// (We could do this same optimization for any interface with an `iterator`
// method, but that's more expensive to check for, so it doesn't seem worth
// it. The above case for an explicit `iterator` method will catch those.)
if (!hasJsPeer && !hasIterator) {
jsMethods.add(_emitIterable(c));
}
// Add all of the super helper methods
jsMethods.addAll(_superHelpers.values);
return jsMethods.where((m) => m != null).toList();
}
/// Emits a method, getter, or setter.
JS.Method _emitMethodDeclaration(Procedure member) {
if (member.isAbstract) {
return null;
}
JS.Fun fn;
if (member.isExternal) {
if (member.isStatic) {
// TODO(vsm): Do we need to handle this case?
return null;
}
fn = _emitNativeFunctionBody(member);
} else {
fn = _emitFunction(member.function, member.name.name);
}
return new JS.Method(_declareMemberName(member), fn,
isGetter: member.isGetter,
isSetter: member.isSetter,
isStatic: member.isStatic)
..sourceInformation = _nodeEnd(member.fileEndOffset);
}
JS.Fun _emitNativeFunctionBody(Procedure node) {
String name = getAnnotationName(node, isJSAnnotation) ?? node.name.name;
if (node.isGetter) {
return new JS.Fun([], js.block('{ return this.#; }', [name]));
} else if (node.isSetter) {
var params = _emitFormalParameters(node.function);
return new JS.Fun(
params, js.block('{ this.# = #; }', [name, params.last]));
} else {
return js.fun(
'function (...args) { return this.#.apply(this, args); }', name);
}
}
List<JS.Method> _emitCovarianceCheckStub(Procedure member) {
// TODO(jmesserly): kernel stubs have a few problems:
// - they're generated even when there is no concrete super member
// - the stub parameter types don't match the types we need to check to
// ensure soundness of the super member, so we must lookup the super
// member and determine checks ourselves.
// - it generates getter stubs, but these are not used
if (member.isGetter) return [];
var enclosingClass = member.enclosingClass;
var superMember = member.forwardingStubSuperTarget ??
member.forwardingStubInterfaceTarget;
if (superMember == null) return [];
substituteType(DartType t) {
return _getTypeFromClass(t, superMember.enclosingClass, enclosingClass);
}
var name = _declareMemberName(member);
if (member.isSetter) {
if (superMember is Field && superMember.isGenericCovariantImpl ||
superMember is Procedure &&
isCovariant(superMember.function.positionalParameters[0])) {
return [];
}
return [
new JS.Method(
name,
js.fun('function(x) { return super.# = #; }', [
name,
_emitImplicitCast(new JS.Identifier('x'),
substituteType(superMember.setterType))
]),
isSetter: true),
new JS.Method(name, js.fun('function() { return super.#; }', [name]),
isGetter: true)
];
}
assert(!member.isAccessor);
var superMethodType =
substituteType(superMember.function.functionType) as FunctionType;
var function = member.function;
var body = <JS.Statement>[];
var typeParameters = superMethodType.typeParameters;
_emitCovarianceBoundsCheck(typeParameters, body);
var typeFormals = _emitTypeFormals(typeParameters);
var jsParams = new List<JS.Parameter>.from(typeFormals);
var positionalParameters = function.positionalParameters;
for (var i = 0, n = positionalParameters.length; i < n; i++) {
var param = positionalParameters[i];
var jsParam = new JS.Identifier(param.name);
jsParams.add(jsParam);
if (isCovariant(param) &&
!isCovariant(superMember.function.positionalParameters[i])) {
var check =
_emitImplicitCast(jsParam, superMethodType.positionalParameters[i]);
if (i >= function.requiredParameterCount) {
body.add(js.statement('if (# !== void 0) #;', [jsParam, check]));
} else {
body.add(check.toStatement());
}
}
}
var namedParameters = function.namedParameters;
for (var param in namedParameters) {
if (isCovariant(param) &&
!isCovariant(superMember.function.namedParameters
.firstWhere((n) => n.name == param.name))) {
var name = _propertyName(param.name);
var paramType = superMethodType.namedParameters
.firstWhere((n) => n.name == param.name);
body.add(js.statement('if (# in #) #;', [
name,
namedArgumentTemp,
_emitImplicitCast(
new JS.PropertyAccess(namedArgumentTemp, name), paramType.type)
]));
}
}
if (namedParameters.isNotEmpty) jsParams.add(namedArgumentTemp);
if (typeFormals.isEmpty) {
body.add(js.statement('return super.#(#);', [name, jsParams]));
} else {
body.add(
js.statement('return super.#(#)(#);', [name, typeFormals, jsParams]));
}
var fn = new JS.Fun(jsParams, new JS.Block(body));
return [new JS.Method(name, fn)];
}
/// Emits a Dart factory constructor to a JS static method.
JS.Method _emitFactoryConstructor(Procedure node) {
if (isUnsupportedFactoryConstructor(node)) return null;
var function = node.function;
return new JS.Method(
_constructorName(node.name.name),
new JS.Fun(
_emitFormalParameters(function), _emitFunctionBody(function)),
isStatic: true)
..sourceInformation = _nodeEnd(node.fileEndOffset);
}
/// Emits an expression that lets you access statics on a [type] from code.
JS.Expression emitConstructorAccess(InterfaceType type) {
return _emitJSInterop(type.classNode) ?? visitInterfaceType(type);
}
/// Given a class C that implements method M from interface I, but does not
/// declare M, this will generate an implementation that forwards to
/// noSuchMethod.
///
/// For example:
///
/// class Cat {
/// bool eatFood(String food) => true;
/// }
/// class MockCat implements Cat {
/// noSuchMethod(Invocation invocation) => 3;
/// }
///
/// It will generate an `eatFood` that looks like:
///
/// eatFood(...args) {
/// return core.bool.as(this.noSuchMethod(
/// new dart.InvocationImpl.new('eatFood', args)));
/// }
///
/// Same technique is applied if interface I has fields, and C doesn't declare
/// neither the fields nor the corresponding getters and setters.
JS.Method _implementMockMember(Member member, Class c, {bool isSetter}) {
JS.Method implementMockMember(
ProcedureKind procedureKind, DartType returnType,
[List<TypeParameter> typeParameters,
List<JS.Parameter> positionalParameters,
List<VariableDeclaration> namedParameters]) {
assert(procedureKind != ProcedureKind.Factory);
var invocationProps = <JS.Property>[];
addProperty(String name, JS.Expression value) {
invocationProps.add(new JS.Property(js.string(name), value));
}
var typeParams = _emitTypeFormals(typeParameters ?? []);
var fnArgs = new List<JS.Parameter>.from(typeParams);
JS.Expression positionalArgs;
if (procedureKind == ProcedureKind.Getter) {
addProperty('isGetter', js.boolean(true));
positionalArgs = new JS.ArrayInitializer([]);
} else if (procedureKind == ProcedureKind.Setter) {
addProperty('isSetter', js.boolean(true));
var valueArg = new JS.TemporaryId('value');
positionalArgs = new JS.ArrayInitializer([valueArg]);
fnArgs.add(valueArg);
} else {
addProperty('isMethod', js.boolean(true));
if (namedParameters.isNotEmpty) {
// Named parameters need to be emitted in the correct position (after
// positional arguments) so we can detect them reliably.
addProperty('namedArguments', namedArgumentTemp);
positionalArgs = new JS.ArrayInitializer(positionalParameters);
fnArgs.addAll(positionalParameters);
fnArgs.add(namedArgumentTemp);
} else {
// In case we have optional parameters, we need to use rest args,
// because sometimes mocks want to detect whether optional arguments
// were passed, and this does not work reliably with undefined (should
// not normally appear in DDC, but it can result from JS interop).
//
// TODO(jmesserly): perhaps we need to use rest args or destructuring
// to get reliable optional argument passing in other scenarios? It
// doesn't seem to occur outside of tests, perhaps due to the
// combination of mockito and protobufs.
positionalArgs = new JS.TemporaryId('args');
fnArgs.add(new JS.RestParameter(positionalArgs));
}
}
if (typeParams.isNotEmpty) {
addProperty('typeArguments', new JS.ArrayInitializer(typeParams));
}
var fnBody =
js.call('this.noSuchMethod(new #.InvocationImpl.new(#, #, #))', [
runtimeModule,
_declareMemberName(member),
positionalArgs,
new JS.ObjectInitializer(invocationProps)
]);
returnType = _getTypeFromClass(returnType, member.enclosingClass, c);
fnBody = _emitImplicitCast(fnBody, returnType);
var fn = new JS.Fun(fnArgs, fnBody.toReturn().toBlock(),
typeParams: typeParams);
return new JS.Method(
_declareMemberName(member,
useExtension: _extensionTypes.isNativeClass(c)),
fn,
isGetter: procedureKind == ProcedureKind.Getter,
isSetter: procedureKind == ProcedureKind.Setter,
isStatic: false);
}
if (member is Field) {
if (isSetter) {
return implementMockMember(ProcedureKind.Setter, new VoidType());
} else {
return implementMockMember(ProcedureKind.Getter, member.type);
}
} else {
var procedure = member as Procedure;
var f = procedure.function;
assert(procedure.isSetter == isSetter);
return implementMockMember(
procedure.kind,
f.returnType,
f.typeParameters,
f.positionalParameters.map(_emitVariableRef).toList(),
f.namedParameters);
}
}
/// This is called whenever a derived class needs to introduce a new field,
/// shadowing a field or getter/setter pair on its parent.
///
/// This is important because otherwise, trying to read or write the field
/// would end up calling the getter or setter, and one of those might not even
/// exist, resulting in a runtime error. Even if they did exist, that's the
/// wrong behavior if a new field was declared.
List<JS.Method> _emitVirtualFieldAccessor(Field field) {
var virtualField = _classProperties.virtualFields[field];
var result = <JS.Method>[];
var name = _declareMemberName(field);
var mocks = _classProperties.mockMembers;
if (!mocks.containsKey(field.name.name)) {
var getter = js.fun('function() { return this[#]; }', [virtualField]);
result.add(new JS.Method(name, getter, isGetter: true)
..sourceInformation = _nodeStart(field));
}
if (!mocks.containsKey(field.name.name + '=')) {
var args = field.isFinal
? [new JS.Super(), name]
: [new JS.This(), virtualField];
JS.Expression value = new JS.Identifier('value');
if (!field.isFinal && field.isGenericCovariantImpl) {
value = _emitImplicitCast(value, field.type);
}
args.add(value);
result.add(new JS.Method(
name, js.fun('function(value) { #[#] = #; }', args),
isSetter: true)
..sourceInformation = _nodeStart(field));
}
return result;
}
/// Provide Dart getters and setters that forward to the underlying native
/// field. Note that the Dart names are always symbolized to avoid
/// conflicts. They will be installed as extension methods on the underlying
/// native type.
List<JS.Method> _emitNativeFieldAccessors(Field field) {
// TODO(vsm): Can this by meta-programmed?
// E.g., dart.nativeField(symbol, jsName)
// Alternatively, perhaps it could be meta-programmed directly in
// dart.registerExtensions?
var jsMethods = <JS.Method>[];
assert(!field.isStatic);
var name = getAnnotationName(field, isJSName) ?? field.name.name;
// Generate getter
var fn = new JS.Fun([], js.block('{ return this.#; }', [name]));
var method = new JS.Method(_declareMemberName(field), fn, isGetter: true);
jsMethods.add(method);
// Generate setter
if (!field.isFinal) {
var value = new JS.TemporaryId('value');
fn = new JS.Fun([value], js.block('{ this.# = #; }', [name, value]));
method = new JS.Method(_declareMemberName(field), fn, isSetter: true);
jsMethods.add(method);
}
return jsMethods;
}
/// Emit a getter (or setter) that simply forwards to the superclass getter
/// (or setter).
///
/// This is needed because in ES6, if you only override a getter
/// (alternatively, a setter), then there is an implicit override of the
/// setter (alternatively, the getter) that does nothing.
JS.Method _emitSuperAccessorWrapper(Procedure method,
Map<String, Procedure> getters, Map<String, Procedure> setters) {
var name = method.name.name;
var memberName = _declareMemberName(method);
if (method.isGetter) {
if (!setters.containsKey(name) &&
_classProperties.inheritedSetters.contains(name)) {
// Generate a setter that forwards to super.
var fn = js.fun('function(value) { super[#] = value; }', [memberName]);
return new JS.Method(memberName, fn, isSetter: true);
}
} else {
assert(method.isSetter);
if (!getters.containsKey(name) &&
_classProperties.inheritedGetters.contains(name)) {
// Generate a getter that forwards to super.
var fn = js.fun('function() { return super[#]; }', [memberName]);
return new JS.Method(memberName, fn, isGetter: true);
}
}
return null;
}
/// Support for adapting dart:core Iterable to ES6 versions.
///
/// This lets them use for-of loops transparently:
/// <https://github.com/lukehoban/es6features#iterators--forof>
///
/// This will return `null` if the adapter was already added on a super type,
/// otherwise it returns the adapter code.
// TODO(jmesserly): should we adapt `Iterator` too?
JS.Method _emitIterable(Class c) {
var iterable = hierarchy.getClassAsInstanceOf(c, coreTypes.iterableClass);
if (iterable == null) return null;
// If a parent had an `iterator` (concrete or abstract) or implements
// Iterable, we know the adapter is already there, so we can skip it as a
// simple code size optimization.
var parent =
hierarchy.getDispatchTarget(c.superclass, new Name('iterator'));
if (parent != null) return null;
var parentIterable =
hierarchy.getClassAsInstanceOf(c.superclass, coreTypes.iterableClass);
if (parentIterable != null) return null;
if (c.enclosingLibrary.importUri.scheme == 'dart' &&
c.procedures.any((m) => getJSExportName(m) == 'Symbol.iterator')) {
return null;
}
// Otherwise, emit the adapter method, which wraps the Dart iterator in
// an ES6 iterator.
return new JS.Method(
js.call('Symbol.iterator'),
js.call('function() { return new #.JsIterator(this.#); }', [
runtimeModule,
_emitMemberName('iterator', type: iterable.asInterfaceType)
]) as JS.Fun);
}
JS.Expression _instantiateAnnotation(Expression node) =>
_visitExpression(node);
void _registerExtensionType(
Class c, String jsPeerName, List<JS.Statement> body) {
var className = _emitTopLevelName(c);
if (isPrimitiveType(c.rawType)) {
body.add(
runtimeStatement('definePrimitiveHashCode(#.prototype)', className));
}
body.add(runtimeStatement(
'registerExtension(#, #)', [js.string(jsPeerName), className]));
}
JS.Statement _emitJSType(Class c) {
var jsTypeName = getAnnotationName(c, isJSAnnotation);
if (jsTypeName == null || jsTypeName == c.name) return null;
// We export the JS type as if it was a Dart type. For example this allows
// `dom.InputElement` to actually be HTMLInputElement.
// TODO(jmesserly): if we had the JS name on the Element, we could just
// generate it correctly when we refer to it.
return js.statement('# = #;', [_emitTopLevelName(c), jsTypeName]);
}
void _emitTypedef(Typedef t) {
var savedUri = _currentUri;
_currentUri = t.fileUri;
var body = runtimeCall('typedef(#, () => #)',
[js.string(t.name, "'"), visitFunctionType(t.type)]);
JS.Statement result;
if (t.typeParameters.isNotEmpty) {
result = _defineClassTypeArguments(
t, t.typeParameters, js.statement('const # = #;', [t.name, body]));
} else {
result = js.statement('# = #;', [_emitTopLevelName(t), body]);
}
_currentUri = savedUri;
_moduleItems.add(result);
}
void _emitTopLevelFields(List<Field> fields) {
if (isSdkInternalRuntime(_currentLibrary)) {
/// Treat dart:_runtime fields as safe to eagerly evaluate.
// TODO(jmesserly): it'd be nice to avoid this special case.
var lazyFields = <Field>[];
var savedUri = _currentUri;
for (var field in fields) {
// Skip our magic undefined constant.
if (field.name.name == 'undefined') continue;
var init = field.initializer;
if (init == null ||
init is BasicLiteral ||
init is StaticInvocation && isInlineJS(init.target)) {
_currentUri = field.fileUri;
_moduleItems.add(js.statement('# = #;', [
_emitTopLevelName(field),
_visitInitializer(init, field.annotations)
]));
} else {
lazyFields.add(field);
}
}
_currentUri = savedUri;
fields = lazyFields;
}
if (fields.isEmpty) return;
_moduleItems.add(_emitLazyFields(
emitLibraryName(_currentLibrary), fields, _emitTopLevelMemberName));
}
JS.Statement _emitLazyFields(JS.Expression objExpr, Iterable<Field> fields,
JS.Expression Function(Field f) emitFieldName) {
var accessors = <JS.Method>[];
var savedUri = _currentUri;
for (var field in fields) {
_currentUri = field.fileUri;
var access = emitFieldName(field);
accessors.add(new JS.Method(access, _emitStaticFieldInitializer(field),
isGetter: true)
..sourceInformation = _hoverComment(
new JS.PropertyAccess(objExpr, access),
field.fileOffset,
field.name.name.length));
// TODO(jmesserly): currently uses a dummy setter to indicate writable.
if (!field.isFinal && !field.isConst) {
accessors.add(new JS.Method(access, js.call('function(_) {}') as JS.Fun,
isSetter: true));
}
}
_currentUri = _currentLibrary.fileUri;
_currentUri = savedUri;
return runtimeStatement('defineLazy(#, { # })', [objExpr, accessors]);
}
JS.Fun _emitStaticFieldInitializer(Field field) {
return new JS.Fun(
[],
new JS.Block(_withLetScope(() => [
new JS.Return(
_visitInitializer(field.initializer, field.annotations))
])));
}
List<JS.Statement> _withLetScope(List<JS.Statement> visitBody()) {
var savedLetVariables = _letVariables;
_letVariables = [];
var body = visitBody();
var letVars = _initLetVariables();
if (letVars != null) body.insert(0, letVars);
_letVariables = savedLetVariables;
return body;
}
JS.ArrowFun _arrowFunctionWithLetScope(JS.Expression visitBody()) {
var savedLetVariables = _letVariables;
_letVariables = [];
var expr = visitBody();
var letVars = _initLetVariables();
_letVariables = savedLetVariables;
return new JS.ArrowFun(
[], letVars == null ? expr : new JS.Block([letVars, expr.toReturn()]));
}
JS.PropertyAccess _emitTopLevelName(NamedNode n, {String suffix: ''}) {
return _emitJSInterop(n) ?? _emitTopLevelNameNoInterop(n, suffix: suffix);
}
/// Like [_emitMemberName], but for declaration sites.
///
/// Unlike call sites, we always have an element available, so we can use it
/// directly rather than computing the relevant options for [_emitMemberName].
JS.Expression _declareMemberName(Member m, {bool useExtension}) {
return _emitMemberName(m.name.name,
isStatic: m is Field ? m.isStatic : (m as Procedure).isStatic,
useExtension:
useExtension ?? _extensionTypes.isNativeClass(m.enclosingClass),
member: m);
}
/// This handles member renaming for private names and operators.
///
/// Private names are generated using ES6 symbols:
///
/// // At the top of the module:
/// let _x = Symbol('_x');
/// let _y = Symbol('_y');
/// ...
///
/// class Point {
/// Point(x, y) {
/// this[_x] = x;
/// this[_y] = y;
/// }
/// get x() { return this[_x]; }
/// get y() { return this[_y]; }
/// }
///
/// For user-defined operators the following names are allowed:
///
/// <, >, <=, >=, ==, -, +, /, ~/, *, %, |, ^, &, <<, >>, []=, [], ~
///
/// They generate code like:
///
/// x['+'](y)
///
/// There are three exceptions: [], []= and unary -.
/// The indexing operators we use `get` and `set` instead:
///
/// x.get('hi')
/// x.set('hi', 123)
///
/// This follows the same pattern as ECMAScript 6 Map:
/// <https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map>
///
/// Unary minus looks like: `x._negate()`.
///
/// Equality is a bit special, it is generated via the Dart `equals` runtime
/// helper, that checks for null. The user defined method is called '=='.
///
JS.Expression _emitMemberName(String name,
{DartType type,
bool isStatic: false,
bool useExtension,
NamedNode member}) {
// Static members skip the rename steps and may require JS interop renames.
if (isStatic) {
return _emitStaticMemberName(name, member);
}
// We allow some (illegal in Dart) member names to be used in our private
// SDK code. These renames need to be included at every declaration,
// including overrides in subclasses.
if (member != null) {
var runtimeName = getJSExportName(member);
if (runtimeName != null) {
var parts = runtimeName.split('.');
if (parts.length < 2) return _propertyName(runtimeName);
JS.Expression result = new JS.Identifier(parts[0]);
for (int i = 1; i < parts.length; i++) {
result = new JS.PropertyAccess(result, _propertyName(parts[i]));
}
return result;
}
}
if (name.startsWith('_')) {
return _emitPrivateNameSymbol(_currentLibrary, name);
}
useExtension ??= _isSymbolizedMember(type, name);
name = JS.memberNameForDartMember(
name, member is Procedure && member.isExternal);
if (useExtension) {
return _getExtensionSymbolInternal(name);
}
return _propertyName(name);
}
/// This is an internal method used by [_emitMemberName] and the
/// optimized `dart:_runtime extensionSymbol` builtin to get the symbol
/// for `dartx.<name>`.
///
/// Do not call this directly; you want [_emitMemberName], which knows how to
/// handle the many details involved in naming.
JS.TemporaryId _getExtensionSymbolInternal(String name) {
return _extensionSymbols.putIfAbsent(
name,
() => new JS.TemporaryId(
'\$${JS.friendlyNameForDartOperator[name] ?? name}'));
}
/// Don't symbolize native members that just forward to the underlying
/// native member. We limit this to non-renamed members as the receiver
/// may be a mock type.
///
/// Note, this is an underlying assumption here that, if another native type
/// subtypes this one, it also forwards this member to its underlying native
/// one without renaming.
bool _isSymbolizedMember(DartType type, String name) {
while (type is TypeParameterType) {
type = (type as TypeParameterType).bound;
}
if (type == null ||
type == const DynamicType() ||
type == coreTypes.objectClass) {
return isObjectMember(name);
} else if (type is InterfaceType) {
var c = getImplementationClass(type) ?? type.classNode;
if (_extensionTypes.isNativeClass(c)) {
var member = _lookupForwardedMember(c, name);
// Fields on a native class are implicitly native.
// Methods/getters/setters are marked external/native.
if (member is Field || member is Procedure && member.isExternal) {
var jsName = getAnnotationName(member, isJSName);
return jsName != null && jsName != name;
} else {
// Non-external members must be symbolized.
return true;
}
}
// If the receiver *may* be a native type (i.e., an interface allowed to
// be implemented by a native class), conservatively symbolize - we don't
// know whether it'll be implemented via forwarding.
// TODO(vsm): Consider CHA here to be less conservative.
return _extensionTypes.isNativeInterface(c);
} else if (type is FunctionType) {
return true;
}
return false;
}
var _forwardingCache = new HashMap<Class, Map<String, Member>>();
Member _lookupForwardedMember(Class c, String name) {
// We only care about public methods.
if (name.startsWith('_')) return null;
var map = _forwardingCache.putIfAbsent(c, () => {});
return map.putIfAbsent(
name,
() =>
hierarchy.getDispatchTarget(c, new Name(name)) ??
hierarchy.getDispatchTarget(c, new Name(name), setter: true));
}
JS.TemporaryId _emitPrivateNameSymbol(Library library, String name) {
return _privateNames
.putIfAbsent(library, () => new HashMap())
.putIfAbsent(name, () {
var id = new JS.TemporaryId(name);
_moduleItems.add(
js.statement('const # = Symbol(#);', [id, js.string(id.name, "'")]));
return id;
});
}
JS.Expression _emitStaticMemberName(String name, [NamedNode member]) {
if (member != null) {
var jsName = _emitJSInteropStaticMemberName(member);
if (jsName != null) return jsName;
}
switch (name) {
// Reserved for the compiler to do `x as T`.
case 'as':
// Reserved for the compiler to do implicit cast `T x = y`.
case '_check':
// Reserved for the SDK to compute `Type.toString()`.
case 'name':
// Reserved by JS, not a valid static member name.
case 'prototype':
name += '_';
break;
default:
// All trailing underscores static names are reserved for the compiler
// or SDK libraries.
//
// If user code uses them, add an extra `_`.
//
// This also avoids collision with the renames above, e.g. `static as`
// and `static as_` will become `as_` and `as__`.
if (name.endsWith('_')) {
name += '_';
}
}
return _propertyName(name);
}
JS.Expression _emitJSInteropStaticMemberName(NamedNode n) {
if (!usesJSInterop(n)) return null;
var name = getAnnotationName(n, isPublicJSAnnotation);
if (name != null) {
if (name.contains('.')) {
throw new UnsupportedError(
'static members do not support "." in their names. '
'See https://github.com/dart-lang/sdk/issues/27926');
}
} else {
name = getTopLevelName(n);
}
return js.escapedString(name, "'");
}
JS.PropertyAccess _emitTopLevelNameNoInterop(NamedNode n,
{String suffix: ''}) {
return new JS.PropertyAccess(emitLibraryName(getLibrary(n)),
_emitTopLevelMemberName(n, suffix: suffix));
}
/// Emits the member name portion of a top-level member.
///
/// NOTE: usually you should use [_emitTopLevelName] instead of this. This
/// function does not handle JS interop.
JS.Expression _emitTopLevelMemberName(NamedNode n, {String suffix: ''}) {
var name = getJSExportName(n) ?? getTopLevelName(n);
return _propertyName(name + suffix);
}
String _getJSNameWithoutGlobal(NamedNode n) {
if (!usesJSInterop(n)) return null;
var libraryJSName = getAnnotationName(getLibrary(n), isPublicJSAnnotation);
var jsName =
getAnnotationName(n, isPublicJSAnnotation) ?? getTopLevelName(n);
return libraryJSName != null ? '$libraryJSName.$jsName' : jsName;
}
JS.PropertyAccess _emitJSInterop(NamedNode n) {
var jsName = _getJSNameWithoutGlobal(n);
if (jsName == null) return null;
return _emitJSInteropForGlobal(jsName);
}
JS.PropertyAccess _emitJSInteropForGlobal(String name) {
var parts = name.split('.');
if (parts.isEmpty) parts = [''];
JS.PropertyAccess access;
for (var part in parts) {
access = new JS.PropertyAccess(
access ?? runtimeCall('global'), js.escapedString(part, "'"));
}
return access;
}
void _emitLibraryProcedures(Library library) {
var procedures = library.procedures
.where((p) => !p.isExternal && !p.isAbstract)
.toList();
_moduleItems.addAll(procedures
.where((p) => !p.isAccessor)
.map(_emitLibraryFunction)
.toList());
_emitLibraryAccessors(procedures.where((p) => p.isAccessor).toList());
}
void _emitLibraryAccessors(Iterable<Procedure> accessors) {
if (accessors.isEmpty) return;
_moduleItems.add(runtimeStatement('copyProperties(#, { # })', [
emitLibraryName(_currentLibrary),
accessors.map(_emitLibraryAccessor).toList()
]));
}
JS.Method _emitLibraryAccessor(Procedure node) {
var savedUri = _currentUri;
_currentUri = node.fileUri;
var name = node.name.name;
var result = new JS.Method(
_propertyName(name), _emitFunction(node.function, node.name.name),
isGetter: node.isGetter, isSetter: node.isSetter)
..sourceInformation = _nodeEnd(node.fileEndOffset);
_currentUri = savedUri;
return result;
}
JS.Statement _emitLibraryFunction(Procedure p) {
var savedUri = _currentUri;
_currentUri = p.fileUri;
var body = <JS.Statement>[];
var fn = _emitFunction(p.function, p.name.name)
..sourceInformation = _nodeEnd(p.fileEndOffset);
if (_currentLibrary.importUri.scheme == 'dart' &&
_isInlineJSFunction(p.function.body)) {
fn = JS.simplifyPassThroughArrowFunCallBody(fn);
}
var nameExpr = _emitTopLevelName(p);
body.add(js.statement('# = #', [nameExpr, fn]));
// Function types of top-level/static functions are only needed when
// dart:mirrors is enabled.
// TODO(jmesserly): do we even need this for mirrors, since statics are not
// commonly reflected on?
if (emitMetadata && _reifyFunctionType(p.function)) {
body.add(
_emitFunctionTagged(nameExpr, p.function.functionType, topLevel: true)
.toStatement());
}
_currentUri = savedUri;
return JS.Statement.from(body);
}
JS.Expression _emitFunctionTagged(JS.Expression fn, FunctionType type,
{bool topLevel: false}) {
var lazy = topLevel && !_typeIsLoaded(type);
var typeRep = visitFunctionType(type, lazy: lazy);
return runtimeCall(lazy ? 'lazyFn(#, #)' : 'fn(#, #)', [fn, typeRep]);
}
bool _typeIsLoaded(DartType type) {
if (type is InterfaceType) {
return !_pendingClasses.contains(type.classNode) &&
type.typeArguments.every(_typeIsLoaded);
}
if (type is FunctionType) {
return (_typeIsLoaded(type.returnType) &&
type.positionalParameters.every(_typeIsLoaded) &&
type.namedParameters.every((n) => _typeIsLoaded(n.type)));
}
if (type is TypedefType) {
return type.typeArguments.every(_typeIsLoaded);
}
return true;
}
/// Emits a Dart [type] into code.
JS.Expression _emitType(DartType type) => type.accept(this) as JS.Expression;
JS.Expression _emitInvalidNode(Node node, [String message = '']) {
if (message.isNotEmpty) message += ' ';
return runtimeCall('throwUnimplementedError(#)',
[js.escapedString('node <${node.runtimeType}> $message`$node`')]);
}
@override
defaultDartType(type) => _emitInvalidNode(type);
@override
visitInvalidType(type) => defaultDartType(type);
@override
visitDynamicType(type) => runtimeCall('dynamic');
@override
visitVoidType(type) => runtimeCall('void');
@override
visitBottomType(type) => runtimeCall('bottom');
@override
visitInterfaceType(type, {bool lowerGeneric: false}) {
var c = type.classNode;
_declareBeforeUse(c);
// Type parameters don't matter as JS interop types cannot be reified.
// We have to use lazy JS types because until we have proper module
// loading for JS libraries bundled with Dart libraries, we will sometimes
// need to load Dart libraries before the corresponding JS libraries are
// actually loaded.
// Given a JS type such as:
// @JS('google.maps.Location')
// class Location { ... }
// We can't emit a reference to MyType because the JS library that defines
// it may be loaded after our code. So for now, we use a special lazy type
// object to represent MyType.
// Anonymous JS types do not have a corresponding concrete JS type so we
// have to use a helper to define them.
if (isJSAnonymousType(c)) {
return runtimeCall(
'anonymousJSType(#)', js.escapedString(getLocalClassName(c)));
}
var jsName = _getJSNameWithoutGlobal(c);
if (jsName != null) {
return runtimeCall('lazyJSType(() => #, #)',
[_emitJSInteropForGlobal(jsName), js.escapedString(jsName)]);
}
var args = type.typeArguments;
Iterable<JS.Expression> jsArgs = null;
if (args.any((a) => a != const DynamicType())) {
jsArgs = args.map(_emitType);
} else if (lowerGeneric) {
jsArgs = [];
}
if (jsArgs != null) {
var typeRep = _emitGenericClassType(type, jsArgs);
return _cacheTypes ? _typeTable.nameType(type, typeRep) : typeRep;
}
return _emitTopLevelNameNoInterop(type.classNode);
}
bool get _emittingClassSignatures =>
_currentClass != null &&
identical(_currentClass, _classEmittingSignatures);
bool get _emittingClassExtends =>
_currentClass != null && identical(_currentClass, _classEmittingExtends);
bool get _cacheTypes =>
!_emittingClassExtends && !_emittingClassSignatures ||
_currentFunction != null;
JS.Expression _emitGenericClassType(
InterfaceType t, Iterable<JS.Expression> typeArgs) {
var genericName = _emitTopLevelNameNoInterop(t.classNode, suffix: '\$');
return js.call('#(#)', [genericName, typeArgs]);
}
@override
visitVectorType(type) => defaultDartType(type);
@override
visitFunctionType(type, {Member member, bool lazy: false}) {
var requiredTypes =
type.positionalParameters.take(type.requiredParameterCount).toList();
var function = member?.function;
var requiredParams = function?.positionalParameters
?.take(type.requiredParameterCount)
?.toList();
var optionalTypes =
type.positionalParameters.skip(type.requiredParameterCount).toList();
var optionalParams = function?.positionalParameters
?.skip(type.requiredParameterCount)
?.toList();
var namedTypes = type.namedParameters;
var rt = _emitType(type.returnType);
var ra = _emitTypeNames(requiredTypes, requiredParams, member);
List<JS.Expression> typeParts;
if (namedTypes.isNotEmpty) {
assert(optionalTypes.isEmpty);
// TODO(vsm): Pass in annotations here as well.
var na = _emitTypeProperties(namedTypes);
typeParts = [rt, ra, na];
} else if (optionalTypes.isNotEmpty) {
assert(namedTypes.isEmpty);
var oa = _emitTypeNames(optionalTypes, optionalParams, member);
typeParts = [rt, ra, oa];
} else {
typeParts = [rt, ra];
}
var typeFormals = type.typeParameters;
String helperCall;
if (typeFormals.isNotEmpty) {
var tf = _emitTypeFormals(typeFormals);
addTypeFormalsAsParameters(List<JS.Expression> elements) {
var names = _typeTable.discharge(typeFormals);
return names.isEmpty
? js.call('(#) => [#]', [tf, elements])
: js.call('(#) => {#; return [#];}', [tf, names, elements]);
}
typeParts = [addTypeFormalsAsParameters(typeParts)];
helperCall = 'gFnType(#)';
// If any explicit bounds were passed, emit them.
if (typeFormals.any((t) => t.bound != null)) {
var bounds = typeFormals.map((t) => _emitType(t.bound)).toList();
typeParts.add(addTypeFormalsAsParameters(bounds));
}
} else {
helperCall = 'fnType(#)';
}
var typeRep = runtimeCall(helperCall, [typeParts]);
return _cacheTypes
? _typeTable.nameFunctionType(type, typeRep, lazy: lazy)
: typeRep;
}
JS.Expression _emitAnnotatedFunctionType(FunctionType type, Member member) {
var result = visitFunctionType(type, member: member);
var annotations = member.annotations;
if (emitMetadata && annotations.isNotEmpty) {
// TODO(jmesserly): should we disable source info for annotations?
var savedUri = _currentUri;
_currentUri = member.enclosingClass.fileUri;
result = new JS.ArrayInitializer(
[result]..addAll(annotations.map(_instantiateAnnotation)));
_currentUri = savedUri;
}
return result;
}
/// Emits an expression that lets you access statics on a [type] from code.
JS.Expression _emitConstructorAccess(InterfaceType type) {
return _emitJSInterop(type.classNode) ?? _emitType(type);
}
JS.Expression _emitConstructorName(InterfaceType type, Member c) {
return _emitJSInterop(type.classNode) ??
new JS.PropertyAccess(
_emitConstructorAccess(type), _constructorName(c.name.name));
}
/// Emits an expression that lets you access statics on an [c] from code.
JS.Expression _emitStaticClassName(Class c) {
_declareBeforeUse(c);
return _emitTopLevelName(c);
}
// Wrap a result - usually a type - with its metadata. The runtime is
// responsible for unpacking this.
JS.Expression _emitAnnotatedResult(
JS.Expression result, List<Expression> metadata, Member member) {
if (emitMetadata && metadata.isNotEmpty) {
// TODO(jmesserly): should we disable source info for annotations?
var savedUri = _currentUri;
_currentUri = member.enclosingClass.fileUri;
result = new JS.ArrayInitializer(
[result]..addAll(metadata.map(_instantiateAnnotation)));
_currentUri = savedUri;
}
return result;
}
JS.ObjectInitializer _emitTypeProperties(Iterable<NamedType> types) {
return new JS.ObjectInitializer(types
.map((t) => new JS.Property(_propertyName(t.name), _emitType(t.type)))
.toList());
}
JS.ArrayInitializer _emitTypeNames(List<DartType> types,
List<VariableDeclaration> parameters, Member member) {
var result = <JS.Expression>[];
for (int i = 0; i < types.length; ++i) {
var type = _emitType(types[i]);
if (parameters != null) {
type = _emitAnnotatedResult(type, parameters[i].annotations, member);
}
result.add(type);
}
return new JS.ArrayInitializer(result);
}
@override
visitTypeParameterType(type) => _emitTypeParameter(type.parameter);
JS.Identifier _emitTypeParameter(TypeParameter t) {
_typeParamInConst?.add(t);
return new JS.Identifier(getTypeParameterName(t));
}
@override
visitTypedefType(type, {bool lowerGeneric: false}) {
var args = type.typeArguments;
List<JS.Expression> jsArgs = null;
if (args.any((a) => a != const DynamicType())) {
jsArgs = args.map(_emitType).toList();
} else if (lowerGeneric) {
jsArgs = [];
}
if (jsArgs != null) {
var genericName =
_emitTopLevelNameNoInterop(type.typedefNode, suffix: '\$');
var typeRep = new JS.Call(genericName, jsArgs);
return _cacheTypes ? _typeTable.nameType(type, typeRep) : typeRep;
}
return _emitTopLevelNameNoInterop(type.typedefNode);
}
JS.Fun _emitFunction(FunctionNode f, String name) {
// normal function (sync), vs (sync*, async, async*)
var isSync = f.asyncMarker == AsyncMarker.Sync;
var formals = _emitFormalParameters(f);
var typeFormals = _emitTypeFormals(f.typeParameters);
formals.insertAll(0, typeFormals);
// TODO(jmesserly): need a way of determining if parameters are
// potentially mutated in Kernel. For now we assume all parameters are.
super.enterFunction(name, formals, () => true);
JS.Block code = isSync
? _emitFunctionBody(f)
: new JS.Block([
_emitGeneratorFunction(f, name).toReturn()
..sourceInformation = _nodeStart(f)
]);
code = super.exitFunction(name, formals, code);
return new JS.Fun(formals, code);
}
// TODO(jmesserly): rename _emitParameters
List<JS.Parameter> _emitFormalParameters(FunctionNode f) {
var result = f.positionalParameters.map(_emitVariableDef).toList();
if (f.namedParameters.isNotEmpty) result.add(namedArgumentTemp);
return result;
}
void _emitVirtualFieldSymbols(Class c, List<JS.Statement> body) {
_classProperties.virtualFields.forEach((field, virtualField) {
body.add(js.statement('const # = Symbol(#);', [
virtualField,
js.string('${getLocalClassName(c)}.${field.name.name}')
]));
});
}
List<JS.Identifier> _emitTypeFormals(List<TypeParameter> typeFormals) {
return typeFormals
.map((t) => new JS.Identifier(getTypeParameterName(t)))
.toList();
}
JS.Expression _emitGeneratorFunction(FunctionNode function, String name) {
// Transforms `sync*` `async` and `async*` function bodies
// using ES6 generators.
emitGeneratorFn(List<JS.Parameter> getParameters(JS.Block jsBody)) {
var savedController = _asyncStarController;
_asyncStarController = function.asyncMarker == AsyncMarker.AsyncStar
? new JS.TemporaryId('stream')
: null;
JS.Expression gen;
_superDisallowed(() {
// Visit the body with our async* controller set.
//
// TODO(jmesserly): this will emit argument initializers (for default
// values) inside the generator function body. Is that the best place?
var jsBody = _emitFunctionBody(function);
var genFn =
new JS.Fun(getParameters(jsBody), jsBody, isGenerator: true);
// Name the function if possible, to get better stack traces.
gen = genFn;
if (name != null) {
gen = new JS.NamedFunction(
new JS.TemporaryId(JS.friendlyNameForDartOperator[name] ?? name),
genFn);
}
gen.sourceInformation = _nodeEnd(function.fileEndOffset);
if (JS.This.foundIn(gen)) gen = js.call('#.bind(this)', gen);
});
_asyncStarController = savedController;
return gen;
}
if (function.asyncMarker == AsyncMarker.SyncStar) {
// `sync*` wraps a generator in a Dart Iterable<E>:
//
// function name(<args>) {
// return new SyncIterator<E>(() => (function* name(<mutated args>) {
// <body>
// }(<mutated args>));
// }
//
// In the body of a `sync*`, `yield` is generated simply as `yield`.
//
// We need to include all <mutated args> as parameters of the generator,
// so each `.iterator` starts with the same initial values.
//
// We also need to ensure the correct `this` is available.
//
// In the future, we might be able to simplify this, see:
// https://github.com/dart-lang/sdk/issues/28320
var jsParams = _emitFormalParameters(function);
var gen = emitGeneratorFn((fnBody) => jsParams =
jsParams.where(JS.findMutatedVariables(fnBody).contains).toList());
if (jsParams.isNotEmpty) gen = js.call('() => #(#)', [gen, jsParams]);
var returnType =
_getExpectedReturnType(function, coreTypes.iterableClass);
var syncIterable =
_emitType(new InterfaceType(syncIterableClass, [returnType]));
return js.call('new #.new(#)', [syncIterable, gen]);
}
if (function.asyncMarker == AsyncMarker.AsyncStar) {
// `async*` uses the `dart.asyncStar` helper, and also has an extra
// `stream` parameter to the generator, which is used for passing values
// to the `_AsyncStarStreamController` implementation type.
//
// `yield` is specially generated inside `async*` by visitYieldStatement.
// `await` is generated as `yield`.
//
// dart:_runtime/generators.dart has an example of the generated code.
var gen = emitGeneratorFn((_) => [_asyncStarController]);
var returnType = _getExpectedReturnType(function, coreTypes.streamClass);
return runtimeCall('asyncStar(#, #)', [_emitType(returnType), gen]);
}
assert(function.asyncMarker == AsyncMarker.Async);
// `async` works similar to `sync*`:
//
// function name(<args>) {
// return async.async(E, function* name() {
// <body>
// });
// }
//
// In the body of an `async`, `await` is generated simply as `yield`.
var gen = emitGeneratorFn((_) => []);
// Return type of an async body is `Future<flatten(T)>`, where T is the
// declared return type.
var returnType = types.unfutureType(function.functionType.returnType);
return js.call('#.async(#, #)',
[emitLibraryName(coreTypes.asyncLibrary), _emitType(returnType), gen]);
}
/// Gets the expected return type of a `sync*` or `async*` body.
DartType _getExpectedReturnType(FunctionNode f, Class expected) {
var type = f.functionType.returnType;
if (type is InterfaceType) {
var match = hierarchy.getTypeAsInstanceOf(type, expected);
if (match != null) return match.typeArguments[0];
}
return const DynamicType();
}
JS.Block _emitFunctionBody(FunctionNode f) {
var block = _withCurrentFunction(f, () {
var block = _emitArgumentInitializers(f);
block.add(_emitFunctionScopedBody(f));
return block;
});
return new JS.Block(block);
}
List<JS.Statement> _withCurrentFunction(
FunctionNode fn, List<JS.Statement> action()) {
var savedFunction = _currentFunction;
_currentFunction = fn;
_nullableInference.enterFunction(fn);
var result = _withLetScope(action);
_nullableInference.exitFunction(fn);
_currentFunction = savedFunction;
return result;
}
T _superDisallowed<T>(T action()) {
var savedSuperAllowed = _superAllowed;
_superAllowed = false;
var result = action();
_superAllowed = savedSuperAllowed;
return result;
}
/// Emits argument initializers, which handles optional/named args, as well
/// as generic type checks needed due to our covariance.
List<JS.Statement> _emitArgumentInitializers(FunctionNode f) {
var body = <JS.Statement>[];
_emitCovarianceBoundsCheck(f.typeParameters, body);
initParameter(VariableDeclaration p, JS.Identifier jsParam) {
if (isCovariant(p)) {
var castExpr = _emitImplicitCast(jsParam, p.type);
if (!identical(castExpr, jsParam)) body.add(castExpr.toStatement());
}
if (_annotatedNullCheck(p.annotations)) {
body.add(_nullParameterCheck(jsParam));
}
}
for (var p in f.positionalParameters.take(f.requiredParameterCount)) {
var jsParam = new JS.Identifier(p.name);
initParameter(p, jsParam);
}
for (var p in f.positionalParameters.skip(f.requiredParameterCount)) {
var jsParam = new JS.Identifier(p.name);
var defaultValue = _defaultParamValue(p);
if (defaultValue != null) {
body.add(js.statement(
'if (# === void 0) # = #;', [jsParam, jsParam, defaultValue]));
}
initParameter(p, jsParam);
}
for (var p in f.namedParameters) {
// Parameters will be passed using their real names, not the (possibly
// renamed) local variable.
var jsParam = _emitVariableDef(p);
var paramName = js.string(p.name, "'");
var defaultValue = _defaultParamValue(p);
if (defaultValue != null) {
// TODO(ochafik): Fix `'prop' in obj` to please Closure's renaming.
body.add(js.statement('let # = # && # in # ? #.# : #;', [
jsParam,
namedArgumentTemp,
paramName,
namedArgumentTemp,
namedArgumentTemp,
paramName,
defaultValue,
]));
} else {
body.add(js.statement('let # = # && #.#;', [
jsParam,
namedArgumentTemp,
namedArgumentTemp,
paramName,
]));
}
initParameter(p, jsParam);
}
return body;
}
bool _annotatedNullCheck(List<Expression> annotations) =>
annotations.any(_nullableInference.isNullCheckAnnotation);
JS.Statement _nullParameterCheck(JS.Expression param) {
var call = runtimeCall('argumentError((#))', [param]);
return js.statement('if (# == null) #;', [param, call]);
}
JS.Expression _defaultParamValue(VariableDeclaration p) {
if (p.initializer != null) {
var value = p.initializer;
return _isJSUndefined(value) ? null : _visitExpression(value);
} else {
return new JS.LiteralNull();
}
}
bool _isJSUndefined(Expression expr) {
expr = expr is AsExpression ? expr.operand : expr;
if (expr is StaticGet) {
var t = expr.target;
return isSdkInternalRuntime(getLibrary(t)) && t.name.name == 'undefined';
}
return false;
}
void _emitCovarianceBoundsCheck(
List<TypeParameter> typeFormals, List<JS.Statement> body) {
for (var t in typeFormals) {
if (t.isGenericCovariantImpl && !types.isTop(t.bound)) {
body.add(runtimeStatement('checkTypeBound(#, #, #)', [
_emitType(new TypeParameterType(t)),
_emitType(t.bound),
_propertyName(t.name)
]));
}
}
}
JS.Statement _visitStatement(Statement s) {
if (s == null) return null;
var result = s.accept(this) as JS.Statement;
// TODO(jmesserly): is the `is! Block` still necessary?
if (s is! Block) result.sourceInformation = _nodeStart(s);
// The statement might be the target of a break or continue with a label.
var name = _labelNames[s];
if (name != null) result = new JS.LabeledStatement(name, result);
return result;
}
JS.Statement _emitFunctionScopedBody(FunctionNode f) {
var jsBody = _visitStatement(f.body);
if (f.positionalParameters.isNotEmpty || f.namedParameters.isNotEmpty) {
// Handle shadowing of parameters by local varaibles, which is allowed in
// Dart but not in JS.
//
// We need this for all function types, including generator-based ones
// (sync*/async/async*). Our code generator assumes it can emit names for
// named argument initialization, and sync* functions also emit locally
// modified parameters into the function's scope.
var parameterNames = new HashSet<String>()
..addAll(f.positionalParameters.map((p) => p.name))
..addAll(f.namedParameters.map((p) => p.name));
return jsBody.toScopedBlock(parameterNames);
}
return jsBody;
}
/// Visits [nodes] with [_visitExpression].
List<JS.Expression> _visitExpressionList(Iterable<Expression> nodes) {
return nodes?.map(_visitExpression)?.toList();
}
/// Generates an expression for a boolean conversion context (if, while, &&,
/// etc.), where conversions and null checks are implemented via `dart.test`
/// to give a more helpful message.
// TODO(sra): When nullablility is available earlier, it would be cleaner to
// build an input AST where the boolean conversion is a single AST node.
JS.Expression _visitTest(Expression node) {
if (node == null) return null;
if (node is Not) {
return visitNot(node);
}
if (node is LogicalExpression) {
JS.Expression shortCircuit(String code) {
return js.call(code, [_visitTest(node.left), _visitTest(node.right)]);
}
var op = node.operator;
if (op == '&&') return shortCircuit('# && #');
if (op == '||') return shortCircuit('# || #');
}
if (node is AsExpression && node.isTypeError) {
assert(node.getStaticType(types) == types.boolType);
return runtimeCall('dtest(#)', _visitExpression(node.operand));
}
var result = _visitExpression(node);
if (isNullable(node)) result = runtimeCall('test(#)', result);
return result;
}
JS.Expression _visitExpression(Expression e) {
if (e == null) return null;
var result = e.accept(this) as JS.Expression;
result.sourceInformation ??= _nodeStart(e);
return result;
}
/// Gets the start position of [node] for use in source mapping.
///
/// This is the most common kind of marking, and is used for most expressions
/// and statements.
SourceLocation _nodeStart(TreeNode node) => _getLocation(node.fileOffset);
/// Gets the end position of [node] for use in source mapping.
///
/// This is mainly used for things that compile to JS functions. JS wants a
/// marking on the end of all functions for stepping purposes.
///
/// This can be used to complete a hover span, when we know the start position
/// has already been emitted. For example, `foo.bar` we only need to mark the
/// end of `.bar` to ensure `foo.bar` has a hover tooltip.
NodeEnd _nodeEnd(int endOffset) {
var loc = _getLocation(endOffset);
return loc != null ? new NodeEnd(loc) : null;
}
/// Combines [_nodeStart] with the variable name length to produce a hoverable
/// span for the varaible.
//
// TODO(jmesserly): we need a lot more nodes to support hover.
NodeSpan _variableSpan(int offset, int nameLength) {
var start = _getLocation(offset);
var end = _getLocation(offset + nameLength);
return start != null && end != null ? new NodeSpan(start, end) : null;
}
SourceLocation _getLocation(int offset) {
if (offset == -1) return null;
var fileUri = _currentUri;
if (fileUri == null) return null;
var loc = _component.getLocation(fileUri, offset);
if (loc == null) return null;
return new SourceLocation(offset,
sourceUrl: fileUri, line: loc.line - 1, column: loc.column - 1);
}
/// Adds a hover comment for Dart node using JS expression [expr], where
/// that expression would not otherwise not be generated into source code.
///
/// For example, top-level and static fields are defined as lazy properties,
/// on the library/class, so their access expressions do not appear in the
/// source code.
HoverComment _hoverComment(JS.Expression expr, int offset, int nameLength) {
var start = _getLocation(offset);
var end = _getLocation(offset + nameLength);
return start != null && end != null
? new HoverComment(expr, start, end)
: null;
}
@override
defaultStatement(Statement node) => _emitInvalidNode(node).toStatement();
@override
visitExpressionStatement(ExpressionStatement node) {
var expr = node.expression;
if (expr is StaticInvocation) {
if (isInlineJS(expr.target)) {
return _emitInlineJSCode(expr).toStatement();
}
if (_isDebuggerCall(expr.target)) {
return _emitDebuggerCall(expr).toStatement();
}
}
return _visitExpression(expr).toStatement();
}
@override
visitBlock(Block node) {
// If this is the block body of a function, don't mark it as a separate
// scope, because the function is the scope. This avoids generating an
// unncessary nested block.
//
// NOTE: we do sometimes need to handle this because Dart and JS rules are
// slightly different (in Dart, there is a nested scope), but that's handled
// by _emitFunctionBody.
var isScope = !identical(node.parent, _currentFunction);
return new JS.Block(node.statements.map(_visitStatement).toList(),
isScope: isScope);
}
@override
visitEmptyStatement(EmptyStatement node) => new JS.EmptyStatement();
@override
visitAssertBlock(AssertBlock node) {
// AssertBlocks are introduced by the VM-specific async elimination
// transformation. We do not expect them to arise here.
throw new UnsupportedError('compilation of an assert block');
}
@override
visitAssertStatement(AssertStatement node) {
if (!enableAsserts) return new JS.EmptyStatement();
var condition = node.condition;
var conditionType = condition.getStaticType(types);
var jsCondition = _visitExpression(condition);
var boolType = coreTypes.boolClass.rawType;
if (conditionType is FunctionType &&
conditionType.requiredParameterCount == 0 &&
conditionType.returnType == boolType) {
jsCondition = runtimeCall('test(#())', jsCondition);
} else if (conditionType != boolType) {
jsCondition = runtimeCall('dassert(#)', jsCondition);
} else if (isNullable(condition)) {
jsCondition = runtimeCall('test(#)', jsCondition);
}
return js.statement(' if (!#) #.assertFailed(#);', [
jsCondition,
runtimeModule,
node.message != null ? [_visitExpression(node.message)] : []
]);
}
static bool isBreakable(Statement stmt) {
// These are conservatively the things that compile to things that can be
// the target of a break without a label.
return stmt is ForStatement ||
stmt is WhileStatement ||
stmt is DoStatement ||
stmt is ForInStatement ||
stmt is SwitchStatement;
}
@override
visitLabeledStatement(LabeledStatement node) {
List<LabeledStatement> saved;
var target = _effectiveTargets[node];
// If the effective target is known then this statement is either contained
// in a labeled statement or a loop. It has already been processed when
// the enclosing statement was visited.
if (target == null) {
// Find the effective target by bypassing and collecting labeled
// statements.
var statements = [node];
target = node.body;
while (target is LabeledStatement) {
var labeled = target as LabeledStatement;
statements.add(labeled);
target = labeled.body;
}
for (var statement in statements) _effectiveTargets[statement] = target;
// If the effective target will compile to something that can have a
// break from it without a label (e.g., a loop but not a block), then any
// of the labeled statements can have a break from them by breaking from
// the effective target. Otherwise breaks will need a label and a break
// without a label can still target an outer breakable so the list of
// current break targets does not change.
if (isBreakable(target)) {
saved = _currentBreakTargets;
_currentBreakTargets = statements;
}
}
var result = _visitStatement(node.body);
if (saved != null) _currentBreakTargets = saved;
return result;
}
@override
visitBreakStatement(BreakStatement node) {
// Can it be compiled to a break without a label?
if (_currentBreakTargets.contains(node.target)) {
return new JS.Break(null);
}
// Can it be compiled to a continue without a label?
if (_currentContinueTargets.contains(node.target)) {
return new JS.Continue(null);
}
// Ensure the effective target is labeled. Labels are named globally per
// Kernel binary.
//
// TODO(kmillikin): Preserve Dart label names in Kernel and here.
var target = _effectiveTargets[node.target];
var name = _labelNames[target];
if (name == null) _labelNames[target] = name = 'L${_labelNames.length}';
// It is a break if the target labeled statement encloses the effective
// target.
Statement current = node.target;
while (current is LabeledStatement) {
current = (current as LabeledStatement).body;
}
if (identical(current, target)) {
return new JS.Break(name);
}
// Otherwise it is a continue.
return new JS.Continue(name);
}
// Labeled loop bodies can be the target of a continue without a label
// (targeting the loop). Find the outermost non-labeled statement starting
// from body and record all the intermediate labeled statements as continue
// targets.
Statement effectiveBodyOf(Statement loop, Statement body) {
// In a loop whose body is not labeled, this list should be empty because
// it is not possible to continue to an outer loop without a label.
_currentContinueTargets = <LabeledStatement>[];
while (body is LabeledStatement) {
var labeled = body as LabeledStatement;
_currentContinueTargets.add(labeled);
_effectiveTargets[labeled] = loop;
body = labeled.body;
}
return body;
}
T translateLoop<T extends JS.Statement>(Statement node, T action()) {
List<LabeledStatement> savedBreakTargets;
if (_currentBreakTargets.isNotEmpty &&
_effectiveTargets[_currentBreakTargets.first] != node) {
// If breaking without a label targets some other (outer) loop, then
// this loop prevents breaking to that loop without a label. This loop
// was not labeled for a break in Kernel, otherwise it would be the
// effective target of the current break targets, so it is not itself the
// target of a break.
savedBreakTargets = _currentBreakTargets;
_currentBreakTargets = <LabeledStatement>[];
}
var savedContinueTargets = _currentContinueTargets;
var result = action();
if (savedBreakTargets != null) _currentBreakTargets = savedBreakTargets;
_currentContinueTargets = savedContinueTargets;
return result;
}
@override
JS.While visitWhileStatement(WhileStatement node) {
return translateLoop(node, () {
var condition = _visitTest(node.condition);
var body = _visitScope(effectiveBodyOf(node, node.body));
return new JS.While(condition, body);
});
}
@override
JS.Do visitDoStatement(DoStatement node) {
return translateLoop(node, () {
var body = _visitScope(effectiveBodyOf(node, node.body));
var condition = _visitTest(node.condition);
return new JS.Do(body, condition);
});
}
@override
JS.For visitForStatement(ForStatement node) {
return translateLoop(node, () {
emitForInitializer(VariableDeclaration v) =>
new JS.VariableInitialization(_emitVariableDef(v),
_visitInitializer(v.initializer, v.annotations));
var init = node.variables.map(emitForInitializer).toList();
var initList =
init.isEmpty ? null : new JS.VariableDeclarationList('let', init);
var updates = node.updates;
JS.Expression update;
if (updates.isNotEmpty) {
update = new JS.Expression.binary(
updates.map(_visitExpression).toList(), ',')
.toVoidExpression();
}
var condition = _visitTest(node.condition);
var body = _visitScope(effectiveBodyOf(node, node.body));
return new JS.For(initList, condition, update, body);
});
}
@override
JS.Statement visitForInStatement(ForInStatement node) {
return translateLoop(node, () {
if (node.isAsync) {
return _emitAwaitFor(node);
}
var iterable = _visitExpression(node.iterable);
var body = _visitScope(effectiveBodyOf(node, node.body));
var init = js.call('let #', _emitVariableDef(node.variable));
if (_annotatedNullCheck(node.variable.annotations)) {
body = new JS.Block(
[_nullParameterCheck(_emitVariableRef(node.variable)), body]);
}
return new JS.ForOf(init, iterable, body);
});
}
JS.Statement _emitAwaitFor(ForInStatement node) {
// Emits `await for (var value in stream) ...`, which desugars as:
//
// var iter = new StreamIterator(stream);
// try {
// while (await iter.moveNext()) {
// var value = iter.current;
// ...
// }
// } finally {
// await iter.cancel();
// }
//
// Like the Dart VM, we call cancel() always, as it's safe to call if the
// stream has already been cancelled.
//
// TODO(jmesserly): we may want a helper if these become common. For now the
// full desugaring seems okay.
var streamIterator = _asyncStreamIteratorClass.rawType;
var createStreamIter = new JS.Call(
_emitConstructorName(
streamIterator,
_asyncStreamIteratorClass.procedures
.firstWhere((p) => p.isFactory && p.name.name == '')),
[_visitExpression(node.iterable)]);
var iter = new JS.TemporaryId('iter');
return js.statement(
'{'
' let # = #;'
' try {'
' while (#) { let # = #.current; #; }'
' } finally { #; }'
'}',
[
iter,
createStreamIter,
new JS.Yield(js.call('#.moveNext()', iter))
..sourceInformation = _nodeStart(node.variable),
_emitVariableDef(node.variable),
iter,
_visitStatement(node.body),
new JS.Yield(js.call('#.cancel()', iter))
..sourceInformation = _nodeStart(node.variable)
]);
}
@override
visitSwitchStatement(SwitchStatement node) {
var cases = <JS.SwitchCase>[];
var emptyBlock = new JS.Block.empty();
for (var c in node.cases) {
// TODO(jmesserly): make sure we are statically checking fall through
var body = _visitStatement(c.body).toBlock();
var expressions = c.expressions;
var last =
expressions.isNotEmpty && !c.isDefault ? expressions.last : null;
for (var e in expressions) {
var jsExpr = _visitExpression(e);
cases.add(new JS.SwitchCase(jsExpr, e == last ? body : emptyBlock));
}
if (c.isDefault) cases.add(new JS.SwitchCase.defaultCase(body));
}
return new JS.Switch(_visitExpression(node.expression), cases);
}
@override
visitContinueSwitchStatement(ContinueSwitchStatement node) {
SwitchCase switchCase;
for (Statement current = node;;) {
var parent = current.parent;
if (parent is Block && parent.statements.last == current) {
current = parent;
continue;
}
if (parent is SwitchCase) switchCase = parent;
break;
}
if (switchCase != null) {
var switchCases = (switchCase.parent as SwitchStatement).cases;
var fromIndex = switchCases.indexOf(switchCase);
var toIndex = switchCases.indexOf(node.target);
if (toIndex == fromIndex + 1) {
return new JS.Comment('continue to next case');
}
}
return _emitInvalidNode(
node, 'see https://github.com/dart-lang/sdk/issues/29352')
.toStatement();
}
@override
visitIfStatement(IfStatement node) {
return new JS.If(_visitTest(node.condition), _visitScope(node.then),
_visitScope(node.otherwise));
}
/// Visits a statement, and ensures the resulting AST handles block scope
/// correctly. Essentially, we need to promote a variable declaration
/// statement into a block in some cases, e.g.
///
/// do var x = 5; while (false); // Dart
/// do { let x = 5; } while (false); // JS
JS.Statement _visitScope(Statement stmt) {
var result = _visitStatement(stmt);
if (result is JS.ExpressionStatement &&
result.expression is JS.VariableDeclarationList) {
return new JS.Block([result]);
}
return result;
}
@override
JS.Statement visitReturnStatement(ReturnStatement node) {
return super.emitReturnStatement(_visitExpression(node.expression));
}
@override
visitTryCatch(TryCatch node) {
return new JS.Try(
_visitStatement(node.body).toBlock(), _visitCatch(node.catches), null);
}
JS.Catch _visitCatch(List<Catch> clauses) {
if (clauses.isEmpty) return null;
var savedCatch = _catchParameter;
if (clauses.length == 1 && clauses.single.exception != null) {
// Special case for a single catch.
_catchParameter = clauses.single.exception;
} else {
_catchParameter = new VariableDeclaration('#e');
}
JS.Statement catchBody =
js.statement('throw #;', _emitVariableRef(_catchParameter));
for (var clause in clauses.reversed) {
catchBody = _catchClauseGuard(clause, catchBody);
}
var catchVarDecl = _emitVariableRef(_catchParameter);
_catchParameter = savedCatch;
return new JS.Catch(catchVarDecl, catchBody.toBlock());
}
JS.Statement _catchClauseGuard(Catch node, JS.Statement otherwise) {
var body = <JS.Statement>[];
var savedCatch = _catchParameter;
var vars = new HashSet<String>();
if (node.exception != null) {
var name = node.exception;
if (name == _catchParameter) {
vars.add(name.name);
} else if (name != null) {
vars.add(name.name);
body.add(js.statement('let # = #;',
[_emitVariableDef(name), _emitVariableRef(_catchParameter)]));
_catchParameter = name;
}
var stackTrace = node.stackTrace;
if (stackTrace != null) {
vars.add(stackTrace.name);
body.add(js.statement('let # = #.stackTrace(#);', [
_emitVariableDef(stackTrace),
runtimeModule,
_emitVariableRef(name)
]));
}
}
body.add(_visitStatement(node.body).toScopedBlock(vars));
_catchParameter = savedCatch;
var then = new JS.Block(body);
if (types.isTop(node.guard)) return then;
// TODO(jmesserly): this is inconsistent with [visitIsExpression], which
// has special case for typeof.
return new JS.If(
js.call('#.is(#)',
[_emitType(node.guard), _emitVariableRef(_catchParameter)]),
then,
otherwise)
..sourceInformation = _nodeStart(node);
}
@override
visitTryFinally(TryFinally node) {
var body = _visitStatement(node.body);
var finallyBlock =
_superDisallowed(() => _visitStatement(node.finalizer).toBlock());
if (body is JS.Try && body.finallyPart == null) {
// Kernel represents Dart try/catch/finally as try/catch nested inside of
// try/finally. Flatten that pattern in the output into JS try/catch/
// finally.
return new JS.Try(body.body, body.catchPart, finallyBlock);
}
return new JS.Try(body.toBlock(), null, finallyBlock);
}
@override
visitYieldStatement(YieldStatement node) {
var jsExpr = _visitExpression(node.expression);
var star = node.isYieldStar;
if (_asyncStarController != null) {
// async* yields are generated differently from sync* yields. `yield e`
// becomes:
//
// if (stream.add(e)) return;
// yield;
//
// `yield* e` becomes:
//
// if (stream.addStream(e)) return;
// yield;
var helperName = star ? 'addStream' : 'add';
return js.statement('{ if(#.#(#)) return; #; }', [
_asyncStarController,
helperName,
jsExpr,
new JS.Yield(null)..sourceInformation = _nodeStart(node)
]);
}
// A normal yield in a sync*
return jsExpr.toYieldStatement(star: star);
}
@override
visitVariableDeclaration(VariableDeclaration node) {
// TODO(jmesserly): casts are sometimes required here.
// Kernel does not represent these explicitly.
var v = _emitVariableDef(node);
return js.statement('let # = #;',
[v, _visitInitializer(node.initializer, node.annotations)]);
}
@override
visitFunctionDeclaration(FunctionDeclaration node) {
var func = node.function;
var fn = _emitFunction(func, node.variable.name);
var name = _emitVariableDef(node.variable);
JS.Statement declareFn;
if (JS.This.foundIn(fn)) {
declareFn = js.statement('const # = #.bind(this);', [name, fn]);
} else {
declareFn = new JS.FunctionDeclaration(name, fn);
}
if (_reifyFunctionType(func)) {
declareFn = new JS.Block([
declareFn,
_emitFunctionTagged(_emitVariableRef(node.variable), func.functionType)
.toStatement()
]);
}
return declareFn;
}
@override
defaultExpression(Expression node) => _emitInvalidNode(node);
@override
defaultBasicLiteral(BasicLiteral node) => defaultExpression(node);
@override
visitInvalidExpression(InvalidExpression node) => defaultExpression(node);
// [ConstantExpression] is produced by the Kernel constant evaluator, which
// we do not use.
@override
visitConstantExpression(ConstantExpression node) => defaultExpression(node);
@override
visitVariableGet(VariableGet node) {
var v = node.variable;
var id = _emitVariableRef(v);
if (id.name == v.name) {
id.sourceInformation = _variableSpan(node.fileOffset, v.name.length);
}
return id;
}
JS.Identifier _emitVariableRef(VariableDeclaration v) {
var name = v.name;
if (name == null || name.startsWith('#')) {
name = name == null ? 't${_tempVariables.length}' : name.substring(1);
return _tempVariables.putIfAbsent(v, () => new JS.TemporaryId(name));
}
return new JS.Identifier(name);
}
/// Emits the declaration of a variable.
///
/// This is similar to [_emitVariableRef] but it also attaches source
/// location information, so hover will work as expected.
JS.Identifier _emitVariableDef(VariableDeclaration v) {
return _emitVariableRef(v)..sourceInformation = _nodeStart(v);
}
JS.Statement _initLetVariables() {
if (_letVariables.isEmpty) return null;
var result = new JS.VariableDeclarationList(
'let',
_letVariables
.map((v) => new JS.VariableInitialization(v, null))
.toList())
.toStatement();
_letVariables.clear();
return result;
}
// TODO(jmesserly): resugar operators for kernel, such as ++x, x++, x+=.
@override
visitVariableSet(VariableSet node) => _visitExpression(node.value)
.toAssignExpression(_emitVariableRef(node.variable));
@override
visitPropertyGet(PropertyGet node) {
return _emitPropertyGet(
node.receiver, node.interfaceTarget, node.name.name);
}
@override
visitPropertySet(PropertySet node) {
return _emitPropertySet(
node.receiver, node.interfaceTarget, node.value, node.name.name);
}
@override
visitDirectPropertyGet(DirectPropertyGet node) {
return _emitPropertyGet(node.receiver, node.target);
}
@override
visitDirectPropertySet(DirectPropertySet node) {
return _emitPropertySet(node.receiver, node.target, node.value);
}
JS.Expression _emitPropertyGet(Expression receiver, Member member,
[String memberName]) {
memberName ??= member.name.name;
var receiverType = receiver.getStaticType(types);
// TODO(jmesserly): should tearoff of `.call` on a function type be
// encoded as a different node, or possibly eliminated?
// (Regardless, we'll still need to handle the callable JS interop classes.)
if (memberName == 'call' && _isDirectCallable(receiverType)) {
// Tearoff of `call` on a function type is a no-op;
return _visitExpression(receiver);
}
var jsName =
_emitMemberName(memberName, type: receiverType, member: member);
var jsReceiver = _visitExpression(receiver);
// TODO(jmesserly): we need to mark an end span for property accessors so
// they can be hovered. Unfortunately this is not possible as Kernel does
// not store this data.
if (member == null) {
return runtimeCall('dload$_replSuffix(#, #)', [jsReceiver, jsName]);
}
if (_isObjectMemberCall(receiver, memberName)) {
if (_isObjectMethod(memberName)) {
return runtimeCall('bind(#, #)', [jsReceiver, jsName]);
} else {
return runtimeCall('#(#)', [memberName, jsReceiver]);
}
} else if (_reifyTearoff(member)) {
return runtimeCall('bind(#, #)', [jsReceiver, jsName]);
} else {
return new JS.PropertyAccess(jsReceiver, jsName);
}
}
// TODO(jmesserly): can we encapsulate REPL name lookups and remove this?
// _emitMemberName would be a nice place to handle it, but we don't have
// access to the target expression there (needed for `dart.replNameLookup`).
String get _replSuffix => replCompile ? 'Repl' : '';
JS.Expression _emitPropertySet(
Expression receiver, Member member, Expression value,
[String memberName]) {
var jsName = _emitMemberName(memberName ?? member.name.name,
type: receiver.getStaticType(types), member: member);
var jsReceiver = _visitExpression(receiver);
var jsValue = _visitExpression(value);
if (member == null) {
return runtimeCall(
'dput$_replSuffix(#, #, #)', [jsReceiver, jsName, jsValue]);
}
return js.call('#.# = #', [jsReceiver, jsName, jsValue]);
}
@override
visitSuperPropertyGet(SuperPropertyGet node) {
var target = node.interfaceTarget;
var jsTarget = _emitSuperTarget(target);
if (_reifyTearoff(target)) {
return runtimeCall('bind(this, #, #)', [jsTarget.selector, jsTarget]);
}
return jsTarget;
}
@override
visitSuperPropertySet(SuperPropertySet node) {
var target = node.interfaceTarget;
var jsTarget = _emitSuperTarget(target, setter: true);
return _visitExpression(node.value).toAssignExpression(jsTarget);
}
@override
visitStaticGet(StaticGet node) {
var target = node.target;
var result = _emitStaticTarget(target);
if (_reifyTearoff(target)) {
// TODO(jmesserly): we could tag static/top-level function types once
// in the module initialization, rather than at the point where they
// escape.
return _emitFunctionTagged(result, target.function.functionType);
}
return result;
}
@override
visitStaticSet(StaticSet node) {
return _visitExpression(node.value)
.toAssignExpression(_emitStaticTarget(node.target));
}
@override
visitMethodInvocation(MethodInvocation node) {
return _emitMethodCall(
node.receiver, node.interfaceTarget, node.arguments, node);
}
@override
visitDirectMethodInvocation(DirectMethodInvocation node) {
return _emitMethodCall(node.receiver, node.target, node.arguments, node);
}
JS.Expression _emitMethodCall(Expression receiver, Member target,
Arguments arguments, InvocationExpression node) {
var name = node.name.name;
if (isOperatorMethodName(name) && arguments.named.isEmpty) {
int argLength = arguments.positional.length;
if (argLength == 0) {
return _emitUnaryOperator(receiver, target, node);
} else if (argLength == 1) {
return _emitBinaryOperator(
receiver, target, arguments.positional[0], node);
}
}
var jsReceiver = _visitExpression(receiver);
var args = _emitArgumentList(arguments);
var receiverType = receiver.getStaticType(types);
bool isCallingDynamicField = target is Member &&
target.hasGetter &&
_isDynamicOrFunction(target.getterType);
if (name == 'call') {
if (isCallingDynamicField || _isDynamicOrFunction(receiverType)) {
return _emitDynamicInvoke(jsReceiver, null, args, arguments);
} else if (_isDirectCallable(receiverType)) {
// Call methods on function types should be handled as function calls.
return new JS.Call(jsReceiver, args);
}
}
var jsName = _emitMemberName(name, type: receiverType, member: target);
if (target == null || isCallingDynamicField) {
return _emitDynamicInvoke(jsReceiver, jsName, args, arguments);
}
if (_isObjectMemberCall(receiver, name)) {
assert(arguments.types.isEmpty); // Object methods don't take type args.
return runtimeCall('#(#, #)', [name, jsReceiver, args]);
}
// TODO(jmesserly): remove when Kernel desugars this for us.
// Handle `o.m(a)` where `o.m` is a getter returning a class with `call`.
if (target is Field || target is Procedure && target.isAccessor) {
var fromType = target.getterType;
if (fromType is InterfaceType) {
var callName = _getImplicitCallTarget(fromType);
if (callName != null) {
return js.call('#.#.#(#)', [jsReceiver, jsName, callName, args]);
}
}
}
return js.call('#.#(#)', [jsReceiver, jsName, args]);
}
JS.Expression _emitDynamicInvoke(JS.Expression fn, JS.Expression methodName,
Iterable<JS.Expression> args, Arguments arguments) {
var jsArgs = <Object>[fn];
String jsCode;
var typeArgs = arguments.types;
if (typeArgs.isNotEmpty) {
jsArgs.add(args.take(typeArgs.length));
args = args.skip(typeArgs.length);
if (methodName != null) {
jsCode = 'dgsend$_replSuffix(#, [#], #';
jsArgs.add(methodName);
} else {
jsCode = 'dgcall(#, [#]';
}
} else if (methodName != null) {
jsCode = 'dsend$_replSuffix(#, #';
jsArgs.add(methodName);
} else {
jsCode = 'dcall(#';
}
var hasNamed = arguments.named.isNotEmpty;
if (hasNamed) {
jsCode += ', [#], #)';
jsArgs.add(args.take(args.length - 1));
jsArgs.add(args.last);
} else {
jsArgs.add(args);
jsCode += ', [#])';
}
return runtimeCall(jsCode, jsArgs);
}
bool _isDirectCallable(DartType t) =>
t is FunctionType || t is InterfaceType && usesJSInterop(t.classNode);
JS.Expression _getImplicitCallTarget(InterfaceType from) {
var c = from.classNode;
var member = hierarchy.getInterfaceMember(c, new Name("call"));
if (member is Procedure && !member.isAccessor && !usesJSInterop(c)) {
return _emitMemberName('call', type: from, member: member);
}
return null;
}
_isDynamicOrFunction(DartType t) =>
t == coreTypes.functionClass.rawType || t == const DynamicType();
JS.Expression _emitUnaryOperator(
Expression expr, Member target, InvocationExpression node) {
var op = node.name.name;
var dispatchType = expr.getStaticType(types);
if (_typeRep.unaryOperationIsPrimitive(dispatchType)) {
if (op == '~') {
if (_typeRep.isNumber(dispatchType)) {
return _coerceBitOperationResultToUnsigned(
node, js.call('~#', notNull(expr)));
}
return _emitOperatorCall(expr, target, op, []);
}
if (op == 'unary-') op = '-';
return js.call('$op#', notNull(expr));
}
return _emitOperatorCall(expr, target, op, []);
}
/// Bit operations are coerced to values on [0, 2^32). The coercion changes
/// the interpretation of the 32-bit value from signed to unsigned. Most
/// JavaScript operations interpret their operands as signed and generate
/// signed results.
JS.Expression _coerceBitOperationResultToUnsigned(
Expression node, JS.Expression uncoerced) {
// Don't coerce if the parent will coerce.
var parent = node.parent;
if (parent is InvocationExpression && _nodeIsBitwiseOperation(parent)) {
return uncoerced;
}
// Don't do a no-op coerce if the most significant bit is zero.
if (_is31BitUnsigned(node)) return uncoerced;
// If the consumer of the expression is '==' or '!=' with a constant that
// fits in 31 bits, adding a coercion does not change the result of the
// comparison, e.g. `a & ~b == 0`.
if (parent is InvocationExpression &&
parent.arguments.positional.length == 1) {
var op = parent.name.name;
var left = getInvocationReceiver(parent);
var right = parent.arguments.positional[0];
if (left != null && op == '==') {
const int MAX = 0x7fffffff;
if (_asIntInRange(right, 0, MAX) != null) return uncoerced;
if (_asIntInRange(left, 0, MAX) != null) return uncoerced;
} else if (left != null && op == '>>') {
if (_isDefinitelyNonNegative(left) &&
_asIntInRange(right, 0, 31) != null) {
// Parent will generate `# >>> n`.
return uncoerced;
}
}
}
return js.call('# >>> 0', uncoerced);
}
bool _nodeIsBitwiseOperation(InvocationExpression node) {
switch (node.name.name) {
case '&':
case '|':
case '^':
case '~':
return true;
}
return false;
}
int _asIntInRange(Expression expr, int low, int high) {
if (expr is IntLiteral) {
if (expr.value >= low && expr.value <= high) return expr.value;
return null;
}
// TODO(jmesserly): other constant evaluation here once kernel supports it.
return null;
}
bool _isDefinitelyNonNegative(Expression expr) {
if (expr is IntLiteral) return expr.value >= 0;
// TODO(sra): Lengths of known list types etc.
return expr is InvocationExpression && _nodeIsBitwiseOperation(expr);
}
/// Does the parent of [node] mask the result to [width] bits or fewer?
bool _parentMasksToWidth(Expression node, int width) {
var parent = node.parent;
if (parent == null) return false;
if (parent is InvocationExpression && _nodeIsBitwiseOperation(parent)) {
if (parent.name.name == '&' && parent.arguments.positional.length == 1) {
var left = getInvocationReceiver(parent);
var right = parent.arguments.positional[0];
final int MAX = (1 << width) - 1;
if (left != null) {
if (_asIntInRange(right, 0, MAX) != null) return true;
if (_asIntInRange(left, 0, MAX) != null) return true;
}
}
return _parentMasksToWidth(parent, width);
}
return false;
}
/// Determines if the result of evaluating [expr] will be an non-negative
/// value that fits in 31 bits.
bool _is31BitUnsigned(Expression expr) {
const int MAX = 32; // Includes larger and negative values.
/// Determines how many bits are required to hold result of evaluation
/// [expr]. [depth] is used to bound exploration of huge expressions.
int bitWidth(Expression expr, int depth) {
if (expr is IntLiteral) {
return expr.value >= 0 ? expr.value.bitLength : MAX;
}
if (++depth > 5) return MAX;
if (expr is InvocationExpression &&
expr.arguments.positional.length == 1) {
var left = getInvocationReceiver(expr);
var right = expr.arguments.positional[0];
if (left != null) {
switch (expr.name.name) {
case '&':
return min(bitWidth(left, depth), bitWidth(right, depth));
case '|':
case '^':
return max(bitWidth(left, depth), bitWidth(right, depth));
case '>>':
int shiftValue = _asIntInRange(right, 0, 31);
if (shiftValue != null) {
int leftWidth = bitWidth(left, depth);
return leftWidth == MAX ? MAX : max(0, leftWidth - shiftValue);
}
return MAX;
case '<<':
int leftWidth = bitWidth(left, depth);
int shiftValue = _asIntInRange(right, 0, 31);
if (shiftValue != null) {
return min(MAX, leftWidth + shiftValue);
}
int rightWidth = bitWidth(right, depth);
if (rightWidth <= 5) {
// e.g. `1 << (x & 7)` has a rightWidth of 3, so shifts by up to
// (1 << 3) - 1 == 7 bits.
return min(MAX, leftWidth + ((1 << rightWidth) - 1));
}
return MAX;
default:
return MAX;
}
}
}
int value = _asIntInRange(expr, 0, 0x7fffffff);
if (value != null) return value.bitLength;
return MAX;
}
return bitWidth(expr, 0) < 32;
}
JS.Expression _emitBinaryOperator(Expression left, Member target,
Expression right, InvocationExpression node) {
var op = node.name.name;
if (op == '==') return _emitEqualityOperator(left, target, right);
var leftType = left.getStaticType(types);
var rightType = right.getStaticType(types);
if (_typeRep.binaryOperationIsPrimitive(leftType, rightType) ||
leftType == types.stringType && op == '+') {
// special cases where we inline the operation
// these values are assumed to be non-null (determined by the checker)
// TODO(jmesserly): it would be nice to just inline the method from core,
// instead of special cases here.
JS.Expression binary(String code) {
return js.call(code, [notNull(left), notNull(right)]);
}
JS.Expression bitwise(String code) {
return _coerceBitOperationResultToUnsigned(node, binary(code));
}
switch (op) {
case '~/':
// `a ~/ b` is equivalent to `(a / b).truncate()`
return js.call('(# / #).#()', [
notNull(left),
notNull(right),
_emitMemberName('truncate', type: leftType)
]);
case '%':
// TODO(sra): We can generate `a % b + 0` if both are non-negative
// (the `+ 0` is to coerce -0.0 to 0).
return _emitOperatorCall(left, target, op, [right]);
case '&':
return bitwise('# & #');
case '|':
return bitwise('# | #');
case '^':
return bitwise('# ^ #');
case '>>':
int shiftCount = _asIntInRange(right, 0, 31);
if (_is31BitUnsigned(left) && shiftCount != null) {
return binary('# >> #');
}
if (_isDefinitelyNonNegative(left) && shiftCount != null) {
return binary('# >>> #');
}
// If the context selects out only bits that can't be affected by the
// sign position we can use any JavaScript shift, `(x >> 6) & 3`.
if (shiftCount != null &&
_parentMasksToWidth(node, 31 - shiftCount)) {
return binary('# >> #');
}
return _emitOperatorCall(left, target, op, [right]);
case '<<':
if (_is31BitUnsigned(node)) {
// Result is 31 bit unsigned which implies the shift count was small
// enough not to pollute the sign bit.
return binary('# << #');
}
if (_asIntInRange(right, 0, 31) != null) {
return _coerceBitOperationResultToUnsigned(node, binary('# << #'));
}
return _emitOperatorCall(left, target, op, [right]);
default:
// TODO(vsm): When do Dart ops not map to JS?
return binary('# $op #');
}
}
return _emitOperatorCall(left, target, op, [right]);
}
JS.Expression _emitEqualityOperator(
Expression left, Member target, Expression right,
{bool negated = false}) {
var leftType = left.getStaticType(types);
// Conceptually `x == y` in Dart is defined as:
//
// If either x or y is null, then they are equal iff they are both null.
// Otherwise, equality is the result of calling `x.==(y)`.
//
// In practice, `x.==(y)` is equivalent to `identical(x, y)` in many cases:
// - when either side is known to be `null` (literal or Null type)
// - left side is an enum
// - left side is a primitive type
//
// We also compile `operator ==` methods to ensure they check the right side
// for null`. This allows us to skip the check at call sites.
//
// TODO(leafp,jmesserly): we could use class hierarchy analysis to check
// if `operator ==` was overridden, similar to how we devirtualize private
// fields.
var isEnum = leftType is InterfaceType && leftType.classNode.isEnum;
var usesIdentity = _typeRep.isPrimitive(leftType) ||
isEnum ||
_isNull(left) ||
_isNull(right);
// If we know that the left type uses identity for equality, we can
// sometimes emit better code, either `===` or `==`.
if (usesIdentity) {
return _emitCoreIdenticalCall([left, right], negated: negated);
}
// If the left side is nullable, we need to use a runtime helper to check
// for null. We could inline the null check, but it did not seem to have
// a measurable performance effect (possibly the helper is simple enough to
// be inlined).
if (isNullable(left)) {
return js.call(negated ? '!#.equals(#, #)' : '#.equals(#, #)',
[runtimeModule, _visitExpression(left), _visitExpression(right)]);
}
// Otherwise we emit a call to the == method.
return js.call(negated ? '!#[#](#)' : '#[#](#)', [
_visitExpression(left),
_emitMemberName('==', type: leftType),
_visitExpression(right)
]);
}
/// Emits a generic send, like an operator method.
///
/// **Please note** this function does not support method invocation syntax
/// `obj.name(args)` because that could be a getter followed by a call.
/// See [visitMethodInvocation].
JS.Expression _emitOperatorCall(
Expression receiver, Member target, String name, List<Expression> args) {
// TODO(jmesserly): calls that don't pass `element` are probably broken for
// `super` calls from disallowed super locations.
var type = receiver.getStaticType(types);
var memberName = _emitMemberName(name, type: type, member: target);
if (target == null) {
// dynamic dispatch
var dynamicHelper = const {'[]': 'dindex', '[]=': 'dsetindex'}[name];
if (dynamicHelper != null) {
return runtimeCall('$dynamicHelper(#, #)',
[_visitExpression(receiver), _visitExpressionList(args)]);
} else {
return runtimeCall('dsend(#, #, [#])', [
_visitExpression(receiver),
memberName,
_visitExpressionList(args)
]);
}
}
// Generic dispatch to a statically known method.
return js.call('#.#(#)',
[_visitExpression(receiver), memberName, _visitExpressionList(args)]);
}
// TODO(jmesserly): optimize super operators for kernel
@override
visitSuperMethodInvocation(SuperMethodInvocation node) {
return new JS.Call(_emitSuperTarget(node.interfaceTarget),
_emitArgumentList(node.arguments));
}
/// Emits the [JS.PropertyAccess] for accessors or method calls to
/// [jsTarget].[jsName], replacing `super` if it is not allowed in scope.
JS.PropertyAccess _emitSuperTarget(Member member, {bool setter: false}) {
var type = member.enclosingClass.rawType;
var jsName = _emitMemberName(member.name.name, type: type, member: member);
if (member is Field && !virtualFields.isVirtual(member)) {
return new JS.PropertyAccess(new JS.This(), jsName);
}
if (_superAllowed) return new JS.PropertyAccess(new JS.Super(), jsName);
// If we can't emit `super` in this context, generate a helper that does it
// for us, and call the helper.
var name = member.name.name;
var jsMethod = _superHelpers.putIfAbsent(name, () {
var isAccessor = member is Procedure ? member.isAccessor : true;
if (isAccessor) {
assert(member is Procedure
? member.isSetter == setter
: !setter || !(member as Field).isFinal);
var fn = js.fun(
setter
? 'function(x) { super[#] = x; }'
: 'function() { return super[#]; }',
[jsName]);
return new JS.Method(new JS.TemporaryId(name), fn,
isGetter: !setter, isSetter: setter);
} else {
var function = member.function;
var params = _emitTypeFormals(function.typeParameters);
for (var param in function.positionalParameters) {
params.add(new JS.Identifier(param.name));
}
if (function.namedParameters.isNotEmpty) {
params.add(namedArgumentTemp);
}
var fn = js.fun(
'function(#) { return super[#](#); }', [params, jsName, params]);
name = JS.friendlyNameForDartOperator[name] ?? name;
return new JS.Method(new JS.TemporaryId(name), fn);
}
});
return new JS.PropertyAccess(new JS.This(), jsMethod.name);
}
@override
visitStaticInvocation(StaticInvocation node) {
var target = node.target;
if (isInlineJS(target)) return _emitInlineJSCode(node) as JS.Expression;
if (target.isFactory) return _emitFactoryInvocation(node);
if (target.name.name == 'extensionSymbol' &&
isSdkInternalRuntime(target.enclosingLibrary)) {
var args = node.arguments;
var firstArg = args.positional.length == 1 ? args.positional[0] : null;
if (firstArg is StringLiteral) {
return _getExtensionSymbolInternal(firstArg.value);
}
}
if (target == coreTypes.identicalProcedure) {
return _emitCoreIdenticalCall(node.arguments.positional);
}
if (_isDebuggerCall(target)) {
return _emitDebuggerCall(node) as JS.Expression;
}
var fn = _emitStaticTarget(target);
var args = _emitArgumentList(node.arguments);
return new JS.Call(fn, args);
}
bool _isDebuggerCall(Procedure target) {
return target.name.name == 'debugger' &&
target.enclosingLibrary.importUri.toString() == 'dart:developer';
}
JS.Node _emitDebuggerCall(StaticInvocation node) {
var args = node.arguments.named;
var isStatement = node.parent is ExpressionStatement;
if (args.isEmpty) {
// Inline `debugger()` with no arguments, as a statement if possible,
// otherwise as an immediately invoked function.
return isStatement
? js.statement('debugger;')
: js.call('(() => { debugger; return true})()');
}
// The signature of `debugger()` is:
//
// bool debugger({bool when: true, String message})
//
// This code path handles the named arguments `when` and/or `message`.
// Both must be evaluated in the supplied order, and then `when` is used
// to decide whether to break or not.
//
// We also need to return the value of `when`.
var jsArgs = args.map(_emitNamedExpression).toList();
var when = args.length == 1
// For a single `when` argument, use it.
//
// For a single `message` argument, use `{message: ...}`, which
// coerces to true (the default value of `when`).
? (args[0].name == 'when'
? jsArgs[0].value
: new JS.ObjectInitializer(jsArgs))
// If we have both `message` and `when` arguments, evaluate them in
// order, then extract the `when` argument.
: js.call('#.when', new JS.ObjectInitializer(jsArgs));
return isStatement
? js.statement('if (#) debugger;', when)
: js.call('# && (() => { debugger; return true })()', when);
}
/// Emits the target of a [StaticInvocation], [StaticGet], or [StaticSet].
JS.Expression _emitStaticTarget(Member target) {
var c = target.enclosingClass;
if (c != null) {
return new JS.PropertyAccess(_emitStaticClassName(c),
_emitStaticMemberName(target.name.name, target));
}
return _emitTopLevelName(target);
}
List<JS.Expression> _emitArgumentList(Arguments node, {bool types: true}) {
var args = <JS.Expression>[];
if (types) {
for (var typeArg in node.types) {
args.add(_emitType(typeArg));
}
}
for (var arg in node.positional) {
if (arg is StaticInvocation &&
isJSSpreadInvocation(arg.target) &&
arg.arguments.positional.length == 1) {
args.add(new JS.Spread(_visitExpression(arg.arguments.positional[0])));
} else {
args.add(_visitExpression(arg));
}
}
if (node.named.isNotEmpty) {
args.add(new JS.ObjectInitializer(
node.named.map(_emitNamedExpression).toList()));
}
return args;
}
JS.Property _emitNamedExpression(NamedExpression arg) {
return new JS.Property(
_propertyName(arg.name), _visitExpression(arg.value));
}
/// Emits code for the `JS(...)` macro.
JS.Node _emitInlineJSCode(StaticInvocation node) {
var args = node.arguments.positional;
// arg[0] is static return type, used in `RestrictedStaticTypeAnalyzer`
var code = args[1];
List<Expression> templateArgs;
String source;
if (code is StringConcatenation) {
if (code.expressions.every((e) => e is StringLiteral)) {
templateArgs = args.skip(2).toList();
source = code.expressions.map((e) => (e as StringLiteral).value).join();
} else {
if (args.length > 2) {
throw new ArgumentError(
"Can't mix template args and string interpolation in JS calls: "
"`$node`");
}
templateArgs = <Expression>[];
source = code.expressions.map((expression) {
if (expression is StringLiteral) {
return expression.value;
} else {
templateArgs.add(expression);
return '#';
}
}).join();
}
} else {
templateArgs = args.skip(2).toList();
source = (code as StringLiteral).value;
}
// TODO(vsm): Constructors in dart:html and friends are trying to
// allocate a type defined on window/self, but this often conflicts a
// with the generated extension class in scope. We really should
// qualify explicitly in dart:html itself.
var constructorPattern = new RegExp("new [A-Z][A-Za-z]+\\(");
if (constructorPattern.matchAsPrefix(source) != null) {
var enclosingClass = node.parent;
while (enclosingClass != null && enclosingClass is! Class) {
enclosingClass = enclosingClass.parent;
}
if (enclosingClass is Class &&
_extensionTypes.isNativeClass(enclosingClass)) {
var constructorName = source.substring(4, source.indexOf('('));
var className = enclosingClass.name;
if (className == constructorName) {
source =
source.replaceFirst('new $className(', 'new self.$className(');
}
}
}
JS.Expression visitTemplateArg(Expression arg) {
if (arg is StaticInvocation) {
var target = arg.target;
var positional = arg.arguments.positional;
if (target.name.name == 'getGenericClass' &&
isSdkInternalRuntime(target.enclosingLibrary) &&
positional.length == 1) {
var typeArg = positional[0];
if (typeArg is TypeLiteral) {
var type = typeArg.type;
if (type is InterfaceType) {
return _emitTopLevelNameNoInterop(type.classNode, suffix: '\$');
}
}
}
}
return _visitExpression(arg);
}
// TODO(rnystrom): The JS() calls are almost never nested, and probably
// really shouldn't be, but there are at least a couple of calls in the
// HTML library where an argument to JS() is itself a JS() call. If those
// go away, this can just assert(!_isInForeignJS).
// Inside JS(), type names evaluate to the raw runtime type, not the
// wrapped Type object.
var wasInForeignJS = _isInForeignJS;
_isInForeignJS = true;
var jsArgs = templateArgs.map(visitTemplateArg).toList();
_isInForeignJS = wasInForeignJS;
var result = js.parseForeignJS(source).instantiate(jsArgs);
assert(result is JS.Expression ||
result is JS.Statement && node.parent is ExpressionStatement);
return result;
}
bool _isNull(Expression expr) =>
expr is NullLiteral ||
expr.getStaticType(types) == coreTypes.nullClass.rawType;
bool _doubleEqIsIdentity(Expression left, Expression right) {
// If we statically know LHS or RHS is null we can use ==.
if (_isNull(left) || _isNull(right)) return true;
// If the representation of the two types will not induce conversion in
// JS then we can use == .
return !_typeRep.equalityMayConvert(
left.getStaticType(types), right.getStaticType(types));
}
bool _tripleEqIsIdentity(Expression left, Expression right) {
// If either is non-nullable, then we don't need to worry about
// equating null and undefined, and so we can use triple equals.
return !isNullable(left) || !isNullable(right);
}
/// Returns true if [expr] can be null, optionally using [localIsNullable]
/// for locals.
///
/// If [localIsNullable] is not supplied, this will use the known list of
/// [_notNullLocals].
bool isNullable(Expression expr) => _nullableInference.isNullable(expr);
bool isPrimitiveType(DartType t) => _typeRep.isPrimitive(t);
JS.Expression _emitJSDoubleEq(List<JS.Expression> args,
{bool negated = false}) {
var op = negated ? '# != #' : '# == #';
return js.call(op, args);
}
JS.Expression _emitJSTripleEq(List<JS.Expression> args,
{bool negated = false}) {
var op = negated ? '# !== #' : '# === #';
return js.call(op, args);
}
JS.Expression _emitCoreIdenticalCall(List<Expression> args,
{bool negated = false}) {
if (args.length != 2) {
// Shouldn't happen in typechecked code
return runtimeCall(
'throw(Error("compile error: calls to `identical` require 2 args")');
}
var left = args[0];
var right = args[1];
var jsArgs = [_visitExpression(left), _visitExpression(right)];
if (_tripleEqIsIdentity(left, right)) {
return _emitJSTripleEq(jsArgs, negated: negated);
}
if (_doubleEqIsIdentity(left, right)) {
return _emitJSDoubleEq(jsArgs, negated: negated);
}
var code = negated ? '!#' : '#';
return js.call(code,
new JS.Call(_emitTopLevelName(coreTypes.identicalProcedure), jsArgs));
}
@override
visitConstructorInvocation(ConstructorInvocation node) {
var ctor = node.target;
var args = node.arguments;
JS.Expression emitNew() {
return new JS.New(_emitConstructorName(node.constructedType, ctor),
_emitArgumentList(args, types: false));
}
return node.isConst ? _emitConst(emitNew) : emitNew();
}
JS.Expression _emitFactoryInvocation(StaticInvocation node) {
var args = node.arguments;
var ctor = node.target;
var ctorClass = ctor.enclosingClass;
if (ctor.isExternal && hasJSInteropAnnotation(ctorClass)) {
return _emitJSInteropNew(ctor, args);
}
var type = ctorClass.typeParameters.isEmpty
? ctorClass.rawType
: new InterfaceType(ctorClass, args.types);
if (node.isConst &&
ctor.name.name == 'fromEnvironment' &&
ctor.enclosingLibrary == coreTypes.coreLibrary &&
args.positional.length == 1 &&
// TODO(jmesserly): this does not correctly handle when the arguments to
// fromEnvironment are constant non-literal values.
args.positional[0] is BasicLiteral) {
var varName = (args.positional[0] as StringLiteral).value;
var value = declaredVariables[varName];
var defaultArg = args.named.isNotEmpty ? args.named[0].value : null;
if (ctorClass == coreTypes.stringClass) {
if (value != null) return js.escapedString(value);
return _visitExpression(defaultArg) ?? new JS.LiteralNull();
} else if (ctorClass == coreTypes.intClass) {
var intValue = int.parse(value ?? '', onError: (_) => null);
if (intValue != null) return js.number(intValue);
return _visitExpression(defaultArg) ?? new JS.LiteralNull();
} else if (ctorClass == coreTypes.boolClass) {
if (value == "true") return js.boolean(true);
if (value == "false") return js.boolean(false);
return _visitExpression(defaultArg) ?? js.boolean(false);
} else {
return _emitInvalidNode(node, '$ctorClass.fromEnvironment constant');
}
}
if (args.positional.isEmpty &&
args.named.isEmpty &&
ctorClass.enclosingLibrary.importUri.scheme == 'dart') {
// Skip the slow SDK factory constructors when possible.
switch (ctorClass.name) {
case 'Map':
case 'HashMap':
case 'LinkedHashMap':
if (ctor.name.name == '') {
return js.call('new #.new()', _emitMapImplType(type));
} else if (ctor.name.name == 'identity') {
return js.call(
'new #.new()', _emitMapImplType(type, identity: true));
}
break;
case 'Set':
case 'HashSet':
case 'LinkedHashSet':
if (ctor.name.name == '') {
return js.call('new #.new()', _emitSetImplType(type));
} else if (ctor.name.name == 'identity') {
return js.call(
'new #.new()', _emitSetImplType(type, identity: true));
}
break;
case 'List':
if (ctor.name.name == '' && type is InterfaceType) {
return _emitList(type.typeArguments[0], []);
}
break;
}
}
JS.Expression emitNew() {
return new JS.Call(_emitConstructorName(type, ctor),
_emitArgumentList(args, types: false));
}
return node.isConst ? _emitConst(emitNew) : emitNew();
}
JS.Expression _emitJSInteropNew(Member ctor, Arguments args) {
var ctorClass = ctor.enclosingClass;
if (isJSAnonymousType(ctorClass)) return _emitObjectLiteral(args);
return new JS.New(_emitConstructorName(ctorClass.rawType, ctor),
_emitArgumentList(args, types: false));
}
JS.Expression _emitMapImplType(InterfaceType type, {bool identity}) {
var typeArgs = type.typeArguments;
if (typeArgs.isEmpty) return _emitType(type);
identity ??= isPrimitiveType(typeArgs[0]);
var c = identity ? identityHashMapImplClass : linkedHashMapImplClass;
return _emitType(new InterfaceType(c, typeArgs));
}
JS.Expression _emitSetImplType(InterfaceType type, {bool identity}) {
var typeArgs = type.typeArguments;
if (typeArgs.isEmpty) return _emitType(type);
identity ??= isPrimitiveType(typeArgs[0]);
var c = identity ? identityHashSetImplClass : linkedHashSetImplClass;
return _emitType(new InterfaceType(c, typeArgs));
}
JS.Expression _emitObjectLiteral(Arguments node) {
var args = _emitArgumentList(node);
if (args.isEmpty) return js.call('{}');
assert(args.single is JS.ObjectInitializer);
return args.single;
}
@override
visitNot(Not node) {
var operand = node.operand;
if (operand is MethodInvocation && operand.name.name == '==') {
return _emitEqualityOperator(operand.receiver, operand.interfaceTarget,
operand.arguments.positional[0],
negated: true);
} else if (operand is DirectMethodInvocation && operand.name.name == '==') {
return _emitEqualityOperator(
operand.receiver, operand.target, operand.arguments.positional[0],
negated: true);
} else if (operand is StaticInvocation &&
operand.target == coreTypes.identicalProcedure) {
return _emitCoreIdenticalCall(operand.arguments.positional,
negated: true);
}
// Logical negation, `!e`, is a boolean conversion context since it is
// defined as `e ? false : true`.
return js.call('!#', _visitTest(operand));
}
@override
visitLogicalExpression(LogicalExpression node) {
// The operands of logical boolean operators are subject to boolean
// conversion.
return _visitTest(node);
}
@override
visitConditionalExpression(ConditionalExpression node) {
return js.call('# ? # : #', [
_visitTest(node.condition),
_visitExpression(node.then),
_visitExpression(node.otherwise)
])
..sourceInformation = _nodeStart(node.condition);
}
@override
visitStringConcatenation(StringConcatenation node) {
var expressions = node.expressions;
if (expressions.every((e) => e is StringLiteral)) {
return new JS.Expression.binary(_visitExpressionList(expressions), '+');
}
var strings = <String>[];
var interpolations = <JS.Expression>[];
var expectString = true;
for (var e in expressions) {
if (e is StringLiteral) {
// Escape the string as necessary for use in the eventual `` quotes.
// TODO(jmesserly): this call adds quotes, and then we strip them off.
var str = js.escapedString(e.value, '`').value;
str = str.substring(1, str.length - 1);
if (expectString) {
strings.add(str);
} else {
var last = strings.length - 1;
strings[last] = strings[last] + str;
}
expectString = false;
} else {
if (expectString) strings.add('');
interpolations.add(_visitExpression(e));
expectString = true;
}
}
if (expectString) strings.add('');
return new JS.TaggedTemplate(
runtimeCall('str'), new JS.TemplateString(strings, interpolations));
}
@override
visitIsExpression(IsExpression node) {
// Generate `is` as `dart.is` or `typeof` depending on the RHS type.
JS.Expression result;
var type = node.type;
var lhs = _visitExpression(node.operand);
var typeofName = _jsTypeofName(type);
// Inline primitives other than int (which requires a Math.floor check).
if (typeofName != null && type != coreTypes.intClass.rawType) {
result = js.call('typeof # == #', [lhs, js.string(typeofName, "'")]);
} else {
// Always go through a runtime helper, because implicit interfaces.
var castType = _emitType(type);
result = js.call('#.is(#)', [castType, lhs]);
}
return result;
}
String _jsTypeofName(DartType type) {
var t = _typeRep.typeFor(type);
if (t is JSNumber) return 'number';
if (t is JSString) return 'string';
if (t is JSBoolean) return 'boolean';
return null;
}
Class getImplementationClass(DartType type) {
var t = _typeRep.typeFor(type);
if (t is JSNumber) return _jsNumberClass;
if (t is JSString) return _jsStringClass;
if (t is JSBoolean) return _jsBoolClass;
return null;
}
@override
visitAsExpression(AsExpression node) {
Expression fromExpr = node.operand;
var to = node.type;
var jsFrom = _visitExpression(fromExpr);
var from = fromExpr.getStaticType(types);
// If the check was put here by static analysis to ensure soundness, we
// can't skip it. For example, one could implement covariant generic caller
// side checks like this:
//
// typedef F<T>(T t);
// class C<T> {
// F<T> f;
// add(T t) {
// // required check `t as T`
// }
// }
// main() {
// C<Object> c = new C<int>()..f = (int x) => x.isEven;
// c.f('hi'); // required check `c.f as F<Object>`
// c.add('hi);
// }
//
var isTypeError = node.isTypeError;
if (!isTypeError && types.isSubtypeOf(from, to)) return jsFrom;
// All Dart number types map to a JS double.
if (_typeRep.isNumber(from) && _typeRep.isNumber(to)) {
// Make sure to check when converting to int.
if (from != coreTypes.intClass.rawType &&
to == coreTypes.intClass.rawType) {
// TODO(jmesserly): fuse this with notNull check.
// TODO(jmesserly): this does not correctly distinguish user casts from
// required-for-soundness casts.
return runtimeCall('asInt(#)', jsFrom);
}
// A no-op in JavaScript.
return jsFrom;
}
return isTypeError
? _emitImplicitCast(jsFrom, to)
: js.call('#.as(#)', [_emitType(to), jsFrom]);
}
JS.Expression _emitImplicitCast(JS.Expression expr, DartType type) {
return types.isTop(type)
? expr
: js.call('#._check(#)', [_emitType(type), expr]);
}
@override
visitSymbolLiteral(SymbolLiteral node) {
JS.Expression emitSymbol() {
// TODO(vsm): Handle qualified symbols correctly.
var last = node.value.split('.').last;
var name = js.escapedString(node.value, "'");
if (last.startsWith('_')) {
var nativeSymbol = _emitPrivateNameSymbol(_currentLibrary, last);
return js.call('new #.new(#, #)', [
_emitConstructorAccess(privateSymbolClass.rawType),
name,
nativeSymbol
]);
} else {
return js.call('#.new(#)',
[_emitConstructorAccess(coreTypes.symbolClass.rawType), name]);
}
}
return _emitConst(emitSymbol);
}
JS.Expression _cacheConst(JS.Expression expr()) {
var savedTypeParams = _typeParamInConst;
_typeParamInConst = [];
var jsExpr = expr();
bool usesTypeParams = _typeParamInConst.isNotEmpty;
_typeParamInConst = savedTypeParams;
// TODO(jmesserly): if it uses type params we can still hoist it up as far
// as it will go, e.g. at the level the generic class is defined where type
// params are available.
if (_currentFunction == null || usesTypeParams) return jsExpr;
var temp = new JS.TemporaryId('const');
_moduleItems.add(js.statement('let #;', [temp]));
return js.call('# || (# = #)', [temp, temp, jsExpr]);
}
JS.Expression _emitConst(JS.Expression expr()) =>
_cacheConst(() => runtimeCall('const(#)', expr()));
@override
visitTypeLiteral(TypeLiteral node) {
var typeRep = _emitType(node.type);
// If the type is a type literal expression in Dart code, wrap the raw
// runtime type in a "Type" instance.
return _isInForeignJS ? typeRep : runtimeCall('wrapType(#)', typeRep);
}
@override
visitThisExpression(ThisExpression node) => new JS.This();
@override
visitRethrow(Rethrow node) {
return runtimeCall('rethrow(#)', _emitVariableRef(_catchParameter));
}
@override
visitThrow(Throw node) =>
runtimeCall('throw(#)', _visitExpression(node.expression));
@override
visitListLiteral(ListLiteral node) {
var elementType = node.typeArgument;
if (!node.isConst) {
return _emitList(elementType, _visitExpressionList(node.expressions));
}
return _cacheConst(() =>
_emitConstList(elementType, _visitExpressionList(node.expressions)));
}
JS.Expression _emitConstList(
DartType elementType, List<JS.Expression> elements) {
// dart.constList helper internally depends on _interceptors.JSArray.
_declareBeforeUse(_jsArrayClass);
return runtimeCall('constList([#], #)', [elements, _emitType(elementType)]);
}
JS.Expression _emitList(DartType itemType, List<JS.Expression> items) {
var list = new JS.ArrayInitializer(items);
// TODO(jmesserly): analyzer will usually infer `List<Object>` because
// that is the least upper bound of the element types. So we rarely
// generate a plain `List<dynamic>` anymore.
if (itemType == const DynamicType()) return list;
// Call `new JSArray<E>.of(list)`
var arrayType = new InterfaceType(_jsArrayClass, [itemType]);
return js.call('#.of(#)', [_emitType(arrayType), list]);
}
@override
visitMapLiteral(MapLiteral node) {
emitEntries() {
var entries = <JS.Expression>[];
for (var e in node.entries) {
entries.add(_visitExpression(e.key));
entries.add(_visitExpression(e.value));
}
return new JS.ArrayInitializer(entries);
}
if (!node.isConst) {
var mapType =
_emitMapImplType(node.getStaticType(types) as InterfaceType);
if (node.entries.isEmpty) {
return js.call('new #.new()', [mapType]);
}
return js.call('new #.from(#)', [mapType, emitEntries()]);
}
return _cacheConst(() => runtimeCall('constMap(#, #, #)',
[_emitType(node.keyType), _emitType(node.valueType), emitEntries()]));
}
@override
visitAwaitExpression(AwaitExpression node) =>
new JS.Yield(_visitExpression(node.operand));
@override
visitFunctionExpression(FunctionExpression node) {
var fn = _emitArrowFunction(node);
if (!_reifyFunctionType(_currentFunction)) return fn;
return _emitFunctionTagged(fn, node.getStaticType(types) as FunctionType);
}
JS.ArrowFun _emitArrowFunction(FunctionExpression node) {
JS.Fun f = _emitFunction(node.function, null);
JS.Node body = f.body;
// Simplify `=> { return e; }` to `=> e`
if (body is JS.Block) {
JS.Block block = body;
if (block.statements.length == 1) {
JS.Statement s = block.statements[0];
if (s is JS.Block) {
block = s;
s = block.statements.length == 1 ? block.statements[0] : null;
}
if (s is JS.Return && s.value != null) body = s.value;
}
}
// Convert `function(...) { ... }` to `(...) => ...`
// This is for readability, but it also ensures correct `this` binding.
return new JS.ArrowFun(f.params, body,
typeParams: f.typeParams, returnType: f.returnType);
}
@override
visitStringLiteral(StringLiteral node) => js.escapedString(node.value, '"');
@override
visitIntLiteral(IntLiteral node) => js.number(node.value);
@override
visitDoubleLiteral(DoubleLiteral node) => js.number(node.value);
@override
visitBoolLiteral(BoolLiteral node) => new JS.LiteralBool(node.value);
@override
visitNullLiteral(NullLiteral node) => new JS.LiteralNull();
@override
visitLet(Let node) {
var v = node.variable;
var init = _visitExpression(v.initializer);
var body = _visitExpression(node.body);
var temp = _tempVariables.remove(v);
if (temp != null) {
if (_letVariables != null) {
init = new JS.Assignment(temp, init);
_letVariables.add(temp);
} else {
// TODO(jmesserly): make sure this doesn't happen on any performance
// critical call path.
//
// Annotations on a top-level, non-lazy function type should be the only
// remaining use.
return new JS.Call(new JS.ArrowFun([temp], body), [init]);
}
}
return new JS.Binary(',', init, body);
}
@override
visitInstantiation(Instantiation node) {
return runtimeCall('gbind(#, #)', [
_visitExpression(node.expression),
node.typeArguments.map(_emitType).toList()
]);
}
@override
visitLoadLibrary(LoadLibrary node) => runtimeCall('loadLibrary()');
// TODO(jmesserly): DDC loads all libraries eagerly.
// See
// https://github.com/dart-lang/sdk/issues/27776
// https://github.com/dart-lang/sdk/issues/27777
@override
visitCheckLibraryIsLoaded(CheckLibraryIsLoaded node) => js.boolean(true);
@override
visitVectorCreation(VectorCreation node) => defaultExpression(node);
@override
visitVectorGet(VectorGet node) => defaultExpression(node);
@override
visitVectorSet(VectorSet node) => defaultExpression(node);
@override
visitVectorCopy(VectorCopy node) => defaultExpression(node);
@override
visitClosureCreation(ClosureCreation node) => defaultExpression(node);
bool _reifyFunctionType(FunctionNode f) {
if (_currentLibrary.importUri.scheme != 'dart') return true;
var parent = f.parent;
// SDK libraries can skip reification if they request it.
reifyFunctionTypes(Expression a) =>
isBuiltinAnnotation(a, '_js_helper', 'ReifyFunctionTypes');
while (parent != null) {
var a = findAnnotation(parent, reifyFunctionTypes);
if (a != null && a is ConstructorInvocation) {
var args = a.arguments.positional;
if (args.length == 1) {
var arg = args[0];
if (arg is BoolLiteral) return arg.value;
}
}
parent = parent.parent;
}
return true;
}
bool _reifyTearoff(Member member) {
return member is Procedure &&
!member.isAccessor &&
!member.isFactory &&
!_isInForeignJS &&
!usesJSInterop(member) &&
_reifyFunctionType(member.function);
}
/// Everything in Dart is an Object and supports the 4 members on Object,
/// so we have to use a runtime helper to handle values such as `null` and
/// native types.
///
/// For example `null.toString()` is legal in Dart, so we need to generate
/// that as `dart.toString(obj)`.
bool _isObjectMemberCall(Expression target, String memberName) {
return isObjectMember(memberName) && isNullable(target);
}
}
bool isSdkInternalRuntime(Library l) =>
l.importUri.toString() == 'dart:_runtime';
/// Choose a canonical name from the [library] element.
///
/// This never uses the library's name (the identifier in the `library`
/// declaration) as it doesn't have any meaningful rules enforced.
String jsLibraryName(Library library) {
var uri = library.importUri;
if (uri.scheme == 'dart') return uri.path;
// TODO(vsm): This is not necessarily unique if '__' appears in a file name.
Iterable<String> segments;
if (uri.scheme == 'package') {
// Strip the package name.
// TODO(vsm): This is not unique if an escaped '/'appears in a filename.
// E.g., "foo/bar.dart" and "foo__bar.dart" would collide.
segments = uri.pathSegments.skip(1);
} else {
// TODO(jmesserly): this is not unique typically.
segments = [uri.pathSegments.last];
}
var qualifiedPath = segments.map((p) => p == '..' ? '' : p).join('__');
return pathToJSIdentifier(qualifiedPath);
}
/// Shorthand for identifier-like property names.
/// For now, we emit them as strings and the printer restores them to
/// identifiers if it can.
// TODO(jmesserly): avoid the round tripping through quoted form.
JS.LiteralString _propertyName(String name) => js.string(name, "'");
bool _isInlineJSFunction(Statement body) {
var block = body;
if (block is Block) {
var statements = block.statements;
if (statements.length != 1) return false;
body = statements[0];
}
if (body is ReturnStatement) {
var expr = body.expression;
return expr is StaticInvocation && isInlineJS(expr.target);
}
return false;
}
/// Return true if this is one of the methods/properties on all Dart Objects
/// (toString, hashCode, noSuchMethod, runtimeType).
///
/// Operator == is excluded, as it is handled as part of the equality binary
/// operator.
bool isObjectMember(String name) {
// We could look these up on Object, but we have hard coded runtime helpers
// so it's not really providing any benefit.
switch (name) {
case 'hashCode':
case 'toString':
case 'noSuchMethod':
case 'runtimeType':
case '==':
return true;
}
return false;
}
bool _isObjectMethod(String name) =>
name == 'toString' || name == 'noSuchMethod';