blob: 34266be6bd5741d2164f3300eb501d60842f0198 [file] [log] [blame]
part of petitparser;
/// Abstract base class of all parsers.
abstract class Parser {
/// Primitive method doing the actual parsing.
///
/// The method is overridden in concrete subclasses to implement the
/// parser specific logic. The methods takes a parse [context] and
/// returns the resulting context, which is either a [Success] or
/// [Failure] context.
Result parseOn(Context context);
/// Returns the parse result of the [input].
///
/// The implementation creates a default parse context on the input and calls
/// the internal parsing logic of the receiving parser.
///
/// For example, `letter().plus().parse('abc')` results in an instance of
/// [Success], where [Result.position] is `3` and [Success.value] is
/// `[a, b, c]`.
///
/// Similarly, `letter().plus().parse('123')` results in an instance of
/// [Failure], where [Result.position] is `0` and [Failure.message] is
/// ['letter expected'].
Result parse(input) {
return parseOn(new Context(input, 0));
}
/// Tests if the [input] can be successfully parsed.
///
/// For example, `letter().plus().accept('abc')` returns `true`, and
/// `letter().plus().accept('123')` returns `false`.
bool accept(input) {
return parse(input).isSuccess;
}
/// Returns a list of all successful overlapping parses of the [input].
///
/// For example, `letter().plus().matches('abc de')` results in the list
/// `[['a', 'b', 'c'], ['b', 'c'], ['c'], ['d', 'e'], ['e']]`. See
/// [Parser.matchesSkipping] to retrieve non-overlapping parse results.
Iterable matches(input) {
var list = new List();
and()
.map((each) => list.add(each))
.seq(any())
.or(any())
.star()
.parse(input);
return list;
}
/// Returns a list of all successful non-overlapping parses of the input.
///
/// For example, `letter().plus().matchesSkipping('abc de')` results in the
/// list `[['a', 'b', 'c'], ['d', 'e']]`. See [Parser.matches] to retrieve
/// overlapping parse results.
Iterable matchesSkipping(input) {
var list = new List();
map((each) => list.add(each)).or(any()).star().parse(input);
return list;
}
/// Returns new parser that accepts the receiver, if possible. The resulting
/// parser returns the result of the receiver, or `null` if not applicable.
/// The returned value can be provided as an optional argument [otherwise].
///
/// For example, the parser `letter().optional()` accepts a letter as input
/// and returns that letter. When given something else the parser succeeds as
/// well, does not consume anything and returns `null`.
Parser optional([otherwise]) => new OptionalParser(this, otherwise);
/// Returns a parser that accepts the receiver zero or more times. The
/// resulting parser returns a list of the parse results of the receiver.
///
/// This is a greedy and blind implementation that tries to consume as much
/// input as possible and that does not consider what comes afterwards.
///
/// For example, the parser `letter().star()` accepts the empty string or
/// any sequence of letters and returns a possibly empty list of the parsed
/// letters.
Parser star() => repeat(0, unbounded);
/// Returns a parser that parses the receiver zero or more times until it
/// reaches a [limit]. This is a greedy non-blind implementation of the
/// [Parser.star] operator. The [limit] is not consumed.
Parser starGreedy(Parser limit) => repeatGreedy(limit, 0, unbounded);
/// Returns a parser that parses the receiver zero or more times until it
/// reaches a [limit]. This is a lazy non-blind implementation of the
/// [Parser.star] operator. The [limit] is not consumed.
Parser starLazy(Parser limit) => repeatLazy(limit, 0, unbounded);
/// Returns a parser that accepts the receiver one or more times. The
/// resulting parser returns a list of the parse results of the receiver.
///
/// This is a greedy and blind implementation that tries to consume as much
/// input as possible and that does not consider what comes afterwards.
///
/// For example, the parser `letter().plus()` accepts any sequence of
/// letters and returns a list of the parsed letters.
Parser plus() => repeat(1, unbounded);
/// Returns a parser that parses the receiver one or more times until it
/// reaches [limit]. This is a greedy non-blind implementation of the
/// [Parser.plus] operator. The [limit] is not consumed.
Parser plusGreedy(Parser limit) => repeatGreedy(limit, 1, unbounded);
/// Returns a parser that parses the receiver one or more times until it
/// reaches a [limit]. This is a lazy non-blind implementation of the
/// [Parser.plus] operator. The [limit] is not consumed.
Parser plusLazy(Parser limit) => repeatLazy(limit, 1, unbounded);
/// Returns a parser that accepts the receiver between [min] and [max] times.
/// The resulting parser returns a list of the parse results of the receiver.
///
/// This is a greedy and blind implementation that tries to consume as much
/// input as possible and that does not consider what comes afterwards.
///
/// For example, the parser `letter().repeat(2, 4)` accepts a sequence of
/// two, three, or four letters and returns the accepted letters as a list.
Parser repeat(int min, int max) {
return new PossessiveRepeatingParser(this, min, max);
}
/// Returns a parser that parses the receiver at least [min] and at most [max]
/// times until it reaches a [limit]. This is a greedy non-blind implementation of
/// the [Parser.repeat] operator. The [limit] is not consumed.
Parser repeatGreedy(Parser limit, int min, int max) {
return new GreedyRepeatingParser(this, limit, min, max);
}
/// Returns a parser that parses the receiver at least [min] and at most [max]
/// times until it reaches a [limit]. This is a lazy non-blind implementation of
/// the [Parser.repeat] operator. The [limit] is not consumed.
Parser repeatLazy(Parser limit, int min, int max) {
return new LazyRepeatingParser(this, limit, min, max);
}
/// Returns a parser that accepts the receiver exactly [count] times. The
/// resulting parser returns a list of the parse results of the receiver.
///
/// For example, the parser `letter().times(2)` accepts two letters and
/// returns a list of the two parsed letters.
Parser times(int count) => repeat(count, count);
/// Returns a parser that accepts the receiver followed by [other]. The
/// resulting parser returns a list of the parse result of the receiver
/// followed by the parse result of [other]. Calling this method on an
/// existing sequence code not nest this sequence into a new one, but
/// instead augments the existing sequence with [other].
///
/// For example, the parser `letter().seq(digit()).seq(letter())` accepts a
/// letter followed by a digit and another letter. The parse result of the
/// input string `'a1b'` is the list `['a', '1', 'b']`.
Parser seq(Parser other) => new SequenceParser([this, other]);
/// Convenience operator returning a parser that accepts the receiver followed
/// by [other]. See [Parser.seq] for details.
Parser operator &(Parser other) => this.seq(other);
/// Returns a parser that accepts the receiver or [other]. The resulting
/// parser returns the parse result of the receiver, if the receiver fails
/// it returns the parse result of [other] (exclusive ordered choice).
///
/// For example, the parser `letter().or(digit())` accepts a letter or a
/// digit. An example where the order matters is the following choice between
/// overlapping parsers: `letter().or(char('a'))`. In the example the parser
/// `char('a')` will never be activated, because the input is always consumed
/// `letter()`. This can be problematic if the author intended to attach a
/// production action to `char('a')`.
Parser or(Parser other) => new ChoiceParser([this, other]);
/// Convenience operator returning a parser that accepts the receiver or
/// [other]. See [Parser.or] for details.
Parser operator |(Parser other) => this.or(other);
/// Returns a parser (logical and-predicate) that succeeds whenever the
/// receiver does, but never consumes input.
///
/// For example, the parser `char('_').and().seq(identifier)` accepts
/// identifiers that start with an underscore character. Since the predicate
/// does not consume accepted input, the parser `identifier` is given the
/// ability to process the complete identifier.
Parser and() => new AndParser(this);
/// Returns a parser (logical not-predicate) that succeeds whenever the
/// receiver fails, but never consumes input.
///
/// For example, the parser `char('_').not().seq(identifier)` accepts
/// identifiers that do not start with an underscore character. If the parser
/// `char('_')` accepts the input, the negation and subsequently the
/// complete parser fails. Otherwise the parser `identifier` is given the
/// ability to process the complete identifier.
Parser not([String message]) => new NotParser(this, message);
/// Returns a parser that consumes any input token (character), but the
/// receiver.
///
/// For example, the parser `letter().neg()` accepts any input but a letter.
/// The parser fails for inputs like `'a'` or `'Z'`, but succeeds for
/// input like `'1'`, `'_'` or `'$'`.
Parser neg([String message]) => not(message).seq(any()).pick(1);
/// Returns a parser that discards the result of the receiver, and returns
/// a sub-string of the consumed range in the string/list being parsed.
///
/// For example, the parser `letter().plus().flatten()` returns `'abc'`
/// for the input `'abc'`. In contrast, the parser `letter().plus()` would
/// return `['a', 'b', 'c']` for the same input instead.
Parser flatten() => new FlattenParser(this);
/// Returns a parser that returns a [Token]. The token carries the parsed
/// value of the receiver [Token.value], as well as the consumed input
/// [Token.input] from [Token.start] to [Token.stop] of the input being
/// parsed.
///
/// For example, the parser `letter().plus().token()` returns the token
/// `Token[start: 0, stop: 3, value: abc]` for the input `'abc'`.
Parser token() => new TokenParser(this);
/// Returns a parser that consumes input before and after the receiver. The
/// optional argument is a parser that consumes the excess input. By default
/// `whitespace()` is used. Two arguments can be provided to have different
/// parsers on the [left] and [right] side.
///
/// For example, the parser `letter().plus().trim()` returns `['a', 'b']`
/// for the input `' ab\n'` and consumes the complete input string.
Parser trim([Parser left, Parser right]) {
if (left == null) left = whitespace();
if (right == null) right = left;
return new TrimmingParser(this, left, right);
}
/// Returns a parser that succeeds only if the receiver consumes the complete
/// input, otherwise return a failure with the optional [message].
///
/// For example, the parser `letter().end()` succeeds on the input `'a'`
/// and fails on `'ab'`. In contrast the parser `letter()` alone would
/// succeed on both inputs, but not consume everything for the second input.
Parser end([String message = 'end of input expected']) {
return new EndOfInputParser(this, message);
}
/// Returns a parser that points to the receiver, but can be changed to point
/// to something else at a later point in time.
///
/// For example, the parser `letter().settable()` behaves exactly the same
/// as `letter()`, but it can be replaced with another parser using
/// [SettableParser.set].
SettableParser settable() => new SettableParser(this);
/// Returns a parser that evaluates a [function] as the production action
/// on success of the receiver.
///
/// For example, the parser `digit().map((char) => int.parse(char))` returns
/// the number `1` for the input string `'1'`. If the delegate fail, the
/// production action is not executed and the failure is passed on.
Parser map(Function function) => new ActionParser(this, function);
/// Returns a parser that transform a successful parse result by returning
/// the element at [index] of a list. A negative index can be used to access
/// the elements from the back of the list.
///
/// For example, the parser `letter().star().pick(-1)` returns the last
/// letter parsed. For the input `'abc'` it returns `'c'`.
Parser pick(int index) {
return this.map((List list) {
return list[index < 0 ? list.length + index : index];
});
}
/// Returns a parser that transforms a successful parse result by returning
/// the permuted elements at [indexes] of a list. Negative indexes can be
/// used to access the elements from the back of the list.
///
/// For example, the parser `letter().star().permute([0, -1])` returns the
/// first and last letter parsed. For the input `'abc'` it returns
/// `['a', 'c']`.
Parser permute(List<int> indexes) {
return this.map((List list) {
return indexes.map((index) {
return list[index < 0 ? list.length + index : index];
}).toList();
});
}
/// Returns a parser that consumes the receiver one or more times separated
/// by the [separator] parser. The resulting parser returns a flat list of
/// the parse results of the receiver interleaved with the parse result of the
/// separator parser.
///
/// If the optional argument [includeSeparators] is set to `false`, then the
/// separators are not included in the parse result. If the optional argument
/// [optionalSeparatorAtEnd] is set to `true` the parser also accepts an
/// optional separator at the end.
///
/// For example, the parser `digit().separatedBy(char('-'))` returns a parser
/// that consumes input like `'1-2-3'` and returns a list of the elements and
/// separators: `['1', '-', '2', '-', '3']`.
Parser separatedBy(Parser separator,
{bool includeSeparators: true, bool optionalSeparatorAtEnd: false}) {
var repeater = new SequenceParser([separator, this]).star();
var parser = new SequenceParser(optionalSeparatorAtEnd
? [this, repeater, separator.optional(separator)]
: [this, repeater]);
return parser.map((List list) {
var result = new List();
result.add(list[0]);
for (var tuple in list[1]) {
if (includeSeparators) {
result.add(tuple[0]);
}
result.add(tuple[1]);
}
if (includeSeparators &&
optionalSeparatorAtEnd &&
!identical(list[2], separator)) {
result.add(list[2]);
}
return result;
});
}
/// Returns a shallow copy of the receiver.
///
/// Override this method in all subclasses.
Parser copy();
/// Recursively tests for structural equality of two parsers.
///
/// The code can automatically deals with recursive parsers and parsers that
/// refer to other parsers. This code is supposed to be overridden by parsers
/// that add other state.
bool isEqualTo(Parser other, [Set<Parser> seen]) {
if (seen == null) {
seen = new Set();
}
if (this == other || seen.contains(this)) {
return true;
}
seen.add(this);
return runtimeType == other.runtimeType &&
hasEqualProperties(other) &&
hasEqualChildren(other, seen);
}
/// Compare the properties of two parsers. Normally this method should not be
/// called directly, instead use [Parser#equals].
///
/// Override this method in all subclasses that add new state.
bool hasEqualProperties(Parser other) => true;
/// Compare the children of two parsers. Normally this method should not be
/// called directly, instead use [Parser#equals].
///
/// Normally this method does not need to be overridden, as this method works
/// generically on the returned [Parser#children].
bool hasEqualChildren(Parser other, Set<Parser> seen) {
var thisChildren = children,
otherChildren = other.children;
if (thisChildren.length != otherChildren.length) {
return false;
}
for (var i = 0; i < thisChildren.length; i++) {
if (!thisChildren[i].isEqualTo(otherChildren[i], seen)) {
return false;
}
}
return true;
}
/// Returns a list of directly referenced parsers.
///
/// For example, `letter().children` returns the empty collection `[]`,
/// because the letter parser is a primitive or leaf parser that does not
/// depend or call any other parser.
///
/// In contrast, `letter().or(digit()).children` returns a collection
/// containing both the `letter()` and `digit()` parser.
List<Parser> get children => const [];
/// Changes the receiver by replacing [source] with [target]. Does nothing
/// if [source] does not exist in [Parser.children].
///
/// The following example creates a letter parser and then defines a parser
/// called `example` that accepts one or more letters. Eventually the parser
/// `example` is modified by replacing the `letter` parser with a new
/// parser that accepts a digit. The resulting `example` parser accepts one
/// or more digits.
///
/// var letter = letter();
/// var example = letter.plus();
/// example.replace(letter, digit());
void replace(Parser source, Parser target) {
// no children, nothing to do
}
}