blob: f2f0a2350efe47b9fdbb64f485ba0f53b7f103ef [file] [log] [blame]
/// AUTO GENERATED FILE, DO NOT EDIT.
///
/// Generated by `package:ffigen`.
import 'dart:ffi' as ffi;
/// Bindings to SQLite.
class SQLite {
/// Holds the Dynamic library.
final ffi.DynamicLibrary _dylib;
/// The symbols are looked up in [dynamicLibrary].
SQLite(ffi.DynamicLibrary dynamicLibrary) : _dylib = dynamicLibrary;
ffi.Pointer<ffi.Int8> sqlite3_libversion() {
_sqlite3_libversion ??=
_dylib.lookupFunction<_c_sqlite3_libversion, _dart_sqlite3_libversion>(
'sqlite3_libversion');
return _sqlite3_libversion();
}
_dart_sqlite3_libversion _sqlite3_libversion;
ffi.Pointer<ffi.Int8> sqlite3_sourceid() {
_sqlite3_sourceid ??=
_dylib.lookupFunction<_c_sqlite3_sourceid, _dart_sqlite3_sourceid>(
'sqlite3_sourceid');
return _sqlite3_sourceid();
}
_dart_sqlite3_sourceid _sqlite3_sourceid;
int sqlite3_libversion_number() {
_sqlite3_libversion_number ??= _dylib.lookupFunction<
_c_sqlite3_libversion_number,
_dart_sqlite3_libversion_number>('sqlite3_libversion_number');
return _sqlite3_libversion_number();
}
_dart_sqlite3_libversion_number _sqlite3_libversion_number;
int sqlite3_compileoption_used(
ffi.Pointer<ffi.Int8> zOptName,
) {
_sqlite3_compileoption_used ??= _dylib.lookupFunction<
_c_sqlite3_compileoption_used,
_dart_sqlite3_compileoption_used>('sqlite3_compileoption_used');
return _sqlite3_compileoption_used(
zOptName,
);
}
_dart_sqlite3_compileoption_used _sqlite3_compileoption_used;
ffi.Pointer<ffi.Int8> sqlite3_compileoption_get(
int N,
) {
_sqlite3_compileoption_get ??= _dylib.lookupFunction<
_c_sqlite3_compileoption_get,
_dart_sqlite3_compileoption_get>('sqlite3_compileoption_get');
return _sqlite3_compileoption_get(
N,
);
}
_dart_sqlite3_compileoption_get _sqlite3_compileoption_get;
/// CAPI3REF: Test To See If The Library Is Threadsafe
///
/// ^The sqlite3_threadsafe() function returns zero if and only if
/// SQLite was compiled with mutexing code omitted due to the
/// [SQLITE_THREADSAFE] compile-time option being set to 0.
///
/// SQLite can be compiled with or without mutexes. When
/// the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes
/// are enabled and SQLite is threadsafe. When the
/// [SQLITE_THREADSAFE] macro is 0,
/// the mutexes are omitted. Without the mutexes, it is not safe
/// to use SQLite concurrently from more than one thread.
///
/// Enabling mutexes incurs a measurable performance penalty.
/// So if speed is of utmost importance, it makes sense to disable
/// the mutexes. But for maximum safety, mutexes should be enabled.
/// ^The default behavior is for mutexes to be enabled.
///
/// This interface can be used by an application to make sure that the
/// version of SQLite that it is linking against was compiled with
/// the desired setting of the [SQLITE_THREADSAFE] macro.
///
/// This interface only reports on the compile-time mutex setting
/// of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with
/// SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but
/// can be fully or partially disabled using a call to [sqlite3_config()]
/// with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
/// or [SQLITE_CONFIG_SERIALIZED]. ^(The return value of the
/// sqlite3_threadsafe() function shows only the compile-time setting of
/// thread safety, not any run-time changes to that setting made by
/// sqlite3_config(). In other words, the return value from sqlite3_threadsafe()
/// is unchanged by calls to sqlite3_config().)^
///
/// See the [threading mode] documentation for additional information.
int sqlite3_threadsafe() {
_sqlite3_threadsafe ??=
_dylib.lookupFunction<_c_sqlite3_threadsafe, _dart_sqlite3_threadsafe>(
'sqlite3_threadsafe');
return _sqlite3_threadsafe();
}
_dart_sqlite3_threadsafe _sqlite3_threadsafe;
/// CAPI3REF: Closing A Database Connection
/// DESTRUCTOR: sqlite3
///
/// ^The sqlite3_close() and sqlite3_close_v2() routines are destructors
/// for the [sqlite3] object.
/// ^Calls to sqlite3_close() and sqlite3_close_v2() return [SQLITE_OK] if
/// the [sqlite3] object is successfully destroyed and all associated
/// resources are deallocated.
///
/// Ideally, applications should [sqlite3_finalize | finalize] all
/// [prepared statements], [sqlite3_blob_close | close] all [BLOB handles], and
/// [sqlite3_backup_finish | finish] all [sqlite3_backup] objects associated
/// with the [sqlite3] object prior to attempting to close the object.
/// ^If the database connection is associated with unfinalized prepared
/// statements, BLOB handlers, and/or unfinished sqlite3_backup objects then
/// sqlite3_close() will leave the database connection open and return
/// [SQLITE_BUSY]. ^If sqlite3_close_v2() is called with unfinalized prepared
/// statements, unclosed BLOB handlers, and/or unfinished sqlite3_backups,
/// it returns [SQLITE_OK] regardless, but instead of deallocating the database
/// connection immediately, it marks the database connection as an unusable
/// "zombie" and makes arrangements to automatically deallocate the database
/// connection after all prepared statements are finalized, all BLOB handles
/// are closed, and all backups have finished. The sqlite3_close_v2() interface
/// is intended for use with host languages that are garbage collected, and
/// where the order in which destructors are called is arbitrary.
///
/// ^If an [sqlite3] object is destroyed while a transaction is open,
/// the transaction is automatically rolled back.
///
/// The C parameter to [sqlite3_close(C)] and [sqlite3_close_v2(C)]
/// must be either a NULL
/// pointer or an [sqlite3] object pointer obtained
/// from [sqlite3_open()], [sqlite3_open16()], or
/// [sqlite3_open_v2()], and not previously closed.
/// ^Calling sqlite3_close() or sqlite3_close_v2() with a NULL pointer
/// argument is a harmless no-op.
int sqlite3_close(
ffi.Pointer<sqlite3> arg0,
) {
_sqlite3_close ??= _dylib
.lookupFunction<_c_sqlite3_close, _dart_sqlite3_close>('sqlite3_close');
return _sqlite3_close(
arg0,
);
}
_dart_sqlite3_close _sqlite3_close;
int sqlite3_close_v2(
ffi.Pointer<sqlite3> arg0,
) {
_sqlite3_close_v2 ??=
_dylib.lookupFunction<_c_sqlite3_close_v2, _dart_sqlite3_close_v2>(
'sqlite3_close_v2');
return _sqlite3_close_v2(
arg0,
);
}
_dart_sqlite3_close_v2 _sqlite3_close_v2;
/// CAPI3REF: One-Step Query Execution Interface
/// METHOD: sqlite3
///
/// The sqlite3_exec() interface is a convenience wrapper around
/// [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()],
/// that allows an application to run multiple statements of SQL
/// without having to use a lot of C code.
///
/// ^The sqlite3_exec() interface runs zero or more UTF-8 encoded,
/// semicolon-separate SQL statements passed into its 2nd argument,
/// in the context of the [database connection] passed in as its 1st
/// argument. ^If the callback function of the 3rd argument to
/// sqlite3_exec() is not NULL, then it is invoked for each result row
/// coming out of the evaluated SQL statements. ^The 4th argument to
/// sqlite3_exec() is relayed through to the 1st argument of each
/// callback invocation. ^If the callback pointer to sqlite3_exec()
/// is NULL, then no callback is ever invoked and result rows are
/// ignored.
///
/// ^If an error occurs while evaluating the SQL statements passed into
/// sqlite3_exec(), then execution of the current statement stops and
/// subsequent statements are skipped. ^If the 5th parameter to sqlite3_exec()
/// is not NULL then any error message is written into memory obtained
/// from [sqlite3_malloc()] and passed back through the 5th parameter.
/// To avoid memory leaks, the application should invoke [sqlite3_free()]
/// on error message strings returned through the 5th parameter of
/// sqlite3_exec() after the error message string is no longer needed.
/// ^If the 5th parameter to sqlite3_exec() is not NULL and no errors
/// occur, then sqlite3_exec() sets the pointer in its 5th parameter to
/// NULL before returning.
///
/// ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec()
/// routine returns SQLITE_ABORT without invoking the callback again and
/// without running any subsequent SQL statements.
///
/// ^The 2nd argument to the sqlite3_exec() callback function is the
/// number of columns in the result. ^The 3rd argument to the sqlite3_exec()
/// callback is an array of pointers to strings obtained as if from
/// [sqlite3_column_text()], one for each column. ^If an element of a
/// result row is NULL then the corresponding string pointer for the
/// sqlite3_exec() callback is a NULL pointer. ^The 4th argument to the
/// sqlite3_exec() callback is an array of pointers to strings where each
/// entry represents the name of corresponding result column as obtained
/// from [sqlite3_column_name()].
///
/// ^If the 2nd parameter to sqlite3_exec() is a NULL pointer, a pointer
/// to an empty string, or a pointer that contains only whitespace and/or
/// SQL comments, then no SQL statements are evaluated and the database
/// is not changed.
///
/// Restrictions:
///
/// <ul>
/// <li> The application must ensure that the 1st parameter to sqlite3_exec()
/// is a valid and open [database connection].
/// <li> The application must not close the [database connection] specified by
/// the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
/// <li> The application must not modify the SQL statement text passed into
/// the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.
/// </ul>
int sqlite3_exec(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> sql,
ffi.Pointer<ffi.NativeFunction<_typedefC_1>> callback,
ffi.Pointer<ffi.Void> arg3,
ffi.Pointer<ffi.Pointer<ffi.Int8>> errmsg,
) {
_sqlite3_exec ??= _dylib
.lookupFunction<_c_sqlite3_exec, _dart_sqlite3_exec>('sqlite3_exec');
return _sqlite3_exec(
arg0,
sql,
callback,
arg3,
errmsg,
);
}
_dart_sqlite3_exec _sqlite3_exec;
/// CAPI3REF: Initialize The SQLite Library
///
/// ^The sqlite3_initialize() routine initializes the
/// SQLite library. ^The sqlite3_shutdown() routine
/// deallocates any resources that were allocated by sqlite3_initialize().
/// These routines are designed to aid in process initialization and
/// shutdown on embedded systems. Workstation applications using
/// SQLite normally do not need to invoke either of these routines.
///
/// A call to sqlite3_initialize() is an "effective" call if it is
/// the first time sqlite3_initialize() is invoked during the lifetime of
/// the process, or if it is the first time sqlite3_initialize() is invoked
/// following a call to sqlite3_shutdown(). ^(Only an effective call
/// of sqlite3_initialize() does any initialization. All other calls
/// are harmless no-ops.)^
///
/// A call to sqlite3_shutdown() is an "effective" call if it is the first
/// call to sqlite3_shutdown() since the last sqlite3_initialize(). ^(Only
/// an effective call to sqlite3_shutdown() does any deinitialization.
/// All other valid calls to sqlite3_shutdown() are harmless no-ops.)^
///
/// The sqlite3_initialize() interface is threadsafe, but sqlite3_shutdown()
/// is not. The sqlite3_shutdown() interface must only be called from a
/// single thread. All open [database connections] must be closed and all
/// other SQLite resources must be deallocated prior to invoking
/// sqlite3_shutdown().
///
/// Among other things, ^sqlite3_initialize() will invoke
/// sqlite3_os_init(). Similarly, ^sqlite3_shutdown()
/// will invoke sqlite3_os_end().
///
/// ^The sqlite3_initialize() routine returns [SQLITE_OK] on success.
/// ^If for some reason, sqlite3_initialize() is unable to initialize
/// the library (perhaps it is unable to allocate a needed resource such
/// as a mutex) it returns an [error code] other than [SQLITE_OK].
///
/// ^The sqlite3_initialize() routine is called internally by many other
/// SQLite interfaces so that an application usually does not need to
/// invoke sqlite3_initialize() directly. For example, [sqlite3_open()]
/// calls sqlite3_initialize() so the SQLite library will be automatically
/// initialized when [sqlite3_open()] is called if it has not be initialized
/// already. ^However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT]
/// compile-time option, then the automatic calls to sqlite3_initialize()
/// are omitted and the application must call sqlite3_initialize() directly
/// prior to using any other SQLite interface. For maximum portability,
/// it is recommended that applications always invoke sqlite3_initialize()
/// directly prior to using any other SQLite interface. Future releases
/// of SQLite may require this. In other words, the behavior exhibited
/// when SQLite is compiled with [SQLITE_OMIT_AUTOINIT] might become the
/// default behavior in some future release of SQLite.
///
/// The sqlite3_os_init() routine does operating-system specific
/// initialization of the SQLite library. The sqlite3_os_end()
/// routine undoes the effect of sqlite3_os_init(). Typical tasks
/// performed by these routines include allocation or deallocation
/// of static resources, initialization of global variables,
/// setting up a default [sqlite3_vfs] module, or setting up
/// a default configuration using [sqlite3_config()].
///
/// The application should never invoke either sqlite3_os_init()
/// or sqlite3_os_end() directly. The application should only invoke
/// sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init()
/// interface is called automatically by sqlite3_initialize() and
/// sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate
/// implementations for sqlite3_os_init() and sqlite3_os_end()
/// are built into SQLite when it is compiled for Unix, Windows, or OS/2.
/// When [custom builds | built for other platforms]
/// (using the [SQLITE_OS_OTHER=1] compile-time
/// option) the application must supply a suitable implementation for
/// sqlite3_os_init() and sqlite3_os_end(). An application-supplied
/// implementation of sqlite3_os_init() or sqlite3_os_end()
/// must return [SQLITE_OK] on success and some other [error code] upon
/// failure.
int sqlite3_initialize() {
_sqlite3_initialize ??=
_dylib.lookupFunction<_c_sqlite3_initialize, _dart_sqlite3_initialize>(
'sqlite3_initialize');
return _sqlite3_initialize();
}
_dart_sqlite3_initialize _sqlite3_initialize;
int sqlite3_shutdown() {
_sqlite3_shutdown ??=
_dylib.lookupFunction<_c_sqlite3_shutdown, _dart_sqlite3_shutdown>(
'sqlite3_shutdown');
return _sqlite3_shutdown();
}
_dart_sqlite3_shutdown _sqlite3_shutdown;
int sqlite3_os_init() {
_sqlite3_os_init ??=
_dylib.lookupFunction<_c_sqlite3_os_init, _dart_sqlite3_os_init>(
'sqlite3_os_init');
return _sqlite3_os_init();
}
_dart_sqlite3_os_init _sqlite3_os_init;
int sqlite3_os_end() {
_sqlite3_os_end ??=
_dylib.lookupFunction<_c_sqlite3_os_end, _dart_sqlite3_os_end>(
'sqlite3_os_end');
return _sqlite3_os_end();
}
_dart_sqlite3_os_end _sqlite3_os_end;
/// CAPI3REF: Configuring The SQLite Library
///
/// The sqlite3_config() interface is used to make global configuration
/// changes to SQLite in order to tune SQLite to the specific needs of
/// the application. The default configuration is recommended for most
/// applications and so this routine is usually not necessary. It is
/// provided to support rare applications with unusual needs.
///
/// <b>The sqlite3_config() interface is not threadsafe. The application
/// must ensure that no other SQLite interfaces are invoked by other
/// threads while sqlite3_config() is running.</b>
///
/// The sqlite3_config() interface
/// may only be invoked prior to library initialization using
/// [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()].
/// ^If sqlite3_config() is called after [sqlite3_initialize()] and before
/// [sqlite3_shutdown()] then it will return SQLITE_MISUSE.
/// Note, however, that ^sqlite3_config() can be called as part of the
/// implementation of an application-defined [sqlite3_os_init()].
///
/// The first argument to sqlite3_config() is an integer
/// [configuration option] that determines
/// what property of SQLite is to be configured. Subsequent arguments
/// vary depending on the [configuration option]
/// in the first argument.
///
/// ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK].
/// ^If the option is unknown or SQLite is unable to set the option
/// then this routine returns a non-zero [error code].
int sqlite3_config(
int arg0,
) {
_sqlite3_config ??=
_dylib.lookupFunction<_c_sqlite3_config, _dart_sqlite3_config>(
'sqlite3_config');
return _sqlite3_config(
arg0,
);
}
_dart_sqlite3_config _sqlite3_config;
/// CAPI3REF: Configure database connections
/// METHOD: sqlite3
///
/// The sqlite3_db_config() interface is used to make configuration
/// changes to a [database connection]. The interface is similar to
/// [sqlite3_config()] except that the changes apply to a single
/// [database connection] (specified in the first argument).
///
/// The second argument to sqlite3_db_config(D,V,...) is the
/// [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code
/// that indicates what aspect of the [database connection] is being configured.
/// Subsequent arguments vary depending on the configuration verb.
///
/// ^Calls to sqlite3_db_config() return SQLITE_OK if and only if
/// the call is considered successful.
int sqlite3_db_config(
ffi.Pointer<sqlite3> arg0,
int op,
) {
_sqlite3_db_config ??=
_dylib.lookupFunction<_c_sqlite3_db_config, _dart_sqlite3_db_config>(
'sqlite3_db_config');
return _sqlite3_db_config(
arg0,
op,
);
}
_dart_sqlite3_db_config _sqlite3_db_config;
/// CAPI3REF: Enable Or Disable Extended Result Codes
/// METHOD: sqlite3
///
/// ^The sqlite3_extended_result_codes() routine enables or disables the
/// [extended result codes] feature of SQLite. ^The extended result
/// codes are disabled by default for historical compatibility.
int sqlite3_extended_result_codes(
ffi.Pointer<sqlite3> arg0,
int onoff,
) {
_sqlite3_extended_result_codes ??= _dylib.lookupFunction<
_c_sqlite3_extended_result_codes,
_dart_sqlite3_extended_result_codes>('sqlite3_extended_result_codes');
return _sqlite3_extended_result_codes(
arg0,
onoff,
);
}
_dart_sqlite3_extended_result_codes _sqlite3_extended_result_codes;
/// CAPI3REF: Last Insert Rowid
/// METHOD: sqlite3
///
/// ^Each entry in most SQLite tables (except for [WITHOUT ROWID] tables)
/// has a unique 64-bit signed
/// integer key called the [ROWID | "rowid"]. ^The rowid is always available
/// as an undeclared column named ROWID, OID, or _ROWID_ as long as those
/// names are not also used by explicitly declared columns. ^If
/// the table has a column of type [INTEGER PRIMARY KEY] then that column
/// is another alias for the rowid.
///
/// ^The sqlite3_last_insert_rowid(D) interface usually returns the [rowid] of
/// the most recent successful [INSERT] into a rowid table or [virtual table]
/// on database connection D. ^Inserts into [WITHOUT ROWID] tables are not
/// recorded. ^If no successful [INSERT]s into rowid tables have ever occurred
/// on the database connection D, then sqlite3_last_insert_rowid(D) returns
/// zero.
///
/// As well as being set automatically as rows are inserted into database
/// tables, the value returned by this function may be set explicitly by
/// [sqlite3_set_last_insert_rowid()]
///
/// Some virtual table implementations may INSERT rows into rowid tables as
/// part of committing a transaction (e.g. to flush data accumulated in memory
/// to disk). In this case subsequent calls to this function return the rowid
/// associated with these internal INSERT operations, which leads to
/// unintuitive results. Virtual table implementations that do write to rowid
/// tables in this way can avoid this problem by restoring the original
/// rowid value using [sqlite3_set_last_insert_rowid()] before returning
/// control to the user.
///
/// ^(If an [INSERT] occurs within a trigger then this routine will
/// return the [rowid] of the inserted row as long as the trigger is
/// running. Once the trigger program ends, the value returned
/// by this routine reverts to what it was before the trigger was fired.)^
///
/// ^An [INSERT] that fails due to a constraint violation is not a
/// successful [INSERT] and does not change the value returned by this
/// routine. ^Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
/// and INSERT OR ABORT make no changes to the return value of this
/// routine when their insertion fails. ^(When INSERT OR REPLACE
/// encounters a constraint violation, it does not fail. The
/// INSERT continues to completion after deleting rows that caused
/// the constraint problem so INSERT OR REPLACE will always change
/// the return value of this interface.)^
///
/// ^For the purposes of this routine, an [INSERT] is considered to
/// be successful even if it is subsequently rolled back.
///
/// This function is accessible to SQL statements via the
/// [last_insert_rowid() SQL function].
///
/// If a separate thread performs a new [INSERT] on the same
/// database connection while the [sqlite3_last_insert_rowid()]
/// function is running and thus changes the last insert [rowid],
/// then the value returned by [sqlite3_last_insert_rowid()] is
/// unpredictable and might not equal either the old or the new
/// last insert [rowid].
int sqlite3_last_insert_rowid(
ffi.Pointer<sqlite3> arg0,
) {
_sqlite3_last_insert_rowid ??= _dylib.lookupFunction<
_c_sqlite3_last_insert_rowid,
_dart_sqlite3_last_insert_rowid>('sqlite3_last_insert_rowid');
return _sqlite3_last_insert_rowid(
arg0,
);
}
_dart_sqlite3_last_insert_rowid _sqlite3_last_insert_rowid;
/// CAPI3REF: Set the Last Insert Rowid value.
/// METHOD: sqlite3
///
/// The sqlite3_set_last_insert_rowid(D, R) method allows the application to
/// set the value returned by calling sqlite3_last_insert_rowid(D) to R
/// without inserting a row into the database.
void sqlite3_set_last_insert_rowid(
ffi.Pointer<sqlite3> arg0,
int arg1,
) {
_sqlite3_set_last_insert_rowid ??= _dylib.lookupFunction<
_c_sqlite3_set_last_insert_rowid,
_dart_sqlite3_set_last_insert_rowid>('sqlite3_set_last_insert_rowid');
return _sqlite3_set_last_insert_rowid(
arg0,
arg1,
);
}
_dart_sqlite3_set_last_insert_rowid _sqlite3_set_last_insert_rowid;
/// CAPI3REF: Count The Number Of Rows Modified
/// METHOD: sqlite3
///
/// ^This function returns the number of rows modified, inserted or
/// deleted by the most recently completed INSERT, UPDATE or DELETE
/// statement on the database connection specified by the only parameter.
/// ^Executing any other type of SQL statement does not modify the value
/// returned by this function.
///
/// ^Only changes made directly by the INSERT, UPDATE or DELETE statement are
/// considered - auxiliary changes caused by [CREATE TRIGGER | triggers],
/// [foreign key actions] or [REPLACE] constraint resolution are not counted.
///
/// Changes to a view that are intercepted by
/// [INSTEAD OF trigger | INSTEAD OF triggers] are not counted. ^The value
/// returned by sqlite3_changes() immediately after an INSERT, UPDATE or
/// DELETE statement run on a view is always zero. Only changes made to real
/// tables are counted.
///
/// Things are more complicated if the sqlite3_changes() function is
/// executed while a trigger program is running. This may happen if the
/// program uses the [changes() SQL function], or if some other callback
/// function invokes sqlite3_changes() directly. Essentially:
///
/// <ul>
/// <li> ^(Before entering a trigger program the value returned by
/// sqlite3_changes() function is saved. After the trigger program
/// has finished, the original value is restored.)^
///
/// <li> ^(Within a trigger program each INSERT, UPDATE and DELETE
/// statement sets the value returned by sqlite3_changes()
/// upon completion as normal. Of course, this value will not include
/// any changes performed by sub-triggers, as the sqlite3_changes()
/// value will be saved and restored after each sub-trigger has run.)^
/// </ul>
///
/// ^This means that if the changes() SQL function (or similar) is used
/// by the first INSERT, UPDATE or DELETE statement within a trigger, it
/// returns the value as set when the calling statement began executing.
/// ^If it is used by the second or subsequent such statement within a trigger
/// program, the value returned reflects the number of rows modified by the
/// previous INSERT, UPDATE or DELETE statement within the same trigger.
///
/// If a separate thread makes changes on the same database connection
/// while [sqlite3_changes()] is running then the value returned
/// is unpredictable and not meaningful.
///
/// See also:
/// <ul>
/// <li> the [sqlite3_total_changes()] interface
/// <li> the [count_changes pragma]
/// <li> the [changes() SQL function]
/// <li> the [data_version pragma]
/// </ul>
int sqlite3_changes(
ffi.Pointer<sqlite3> arg0,
) {
_sqlite3_changes ??=
_dylib.lookupFunction<_c_sqlite3_changes, _dart_sqlite3_changes>(
'sqlite3_changes');
return _sqlite3_changes(
arg0,
);
}
_dart_sqlite3_changes _sqlite3_changes;
/// CAPI3REF: Total Number Of Rows Modified
/// METHOD: sqlite3
///
/// ^This function returns the total number of rows inserted, modified or
/// deleted by all [INSERT], [UPDATE] or [DELETE] statements completed
/// since the database connection was opened, including those executed as
/// part of trigger programs. ^Executing any other type of SQL statement
/// does not affect the value returned by sqlite3_total_changes().
///
/// ^Changes made as part of [foreign key actions] are included in the
/// count, but those made as part of REPLACE constraint resolution are
/// not. ^Changes to a view that are intercepted by INSTEAD OF triggers
/// are not counted.
///
/// The [sqlite3_total_changes(D)] interface only reports the number
/// of rows that changed due to SQL statement run against database
/// connection D. Any changes by other database connections are ignored.
/// To detect changes against a database file from other database
/// connections use the [PRAGMA data_version] command or the
/// [SQLITE_FCNTL_DATA_VERSION] [file control].
///
/// If a separate thread makes changes on the same database connection
/// while [sqlite3_total_changes()] is running then the value
/// returned is unpredictable and not meaningful.
///
/// See also:
/// <ul>
/// <li> the [sqlite3_changes()] interface
/// <li> the [count_changes pragma]
/// <li> the [changes() SQL function]
/// <li> the [data_version pragma]
/// <li> the [SQLITE_FCNTL_DATA_VERSION] [file control]
/// </ul>
int sqlite3_total_changes(
ffi.Pointer<sqlite3> arg0,
) {
_sqlite3_total_changes ??= _dylib.lookupFunction<_c_sqlite3_total_changes,
_dart_sqlite3_total_changes>('sqlite3_total_changes');
return _sqlite3_total_changes(
arg0,
);
}
_dart_sqlite3_total_changes _sqlite3_total_changes;
/// CAPI3REF: Interrupt A Long-Running Query
/// METHOD: sqlite3
///
/// ^This function causes any pending database operation to abort and
/// return at its earliest opportunity. This routine is typically
/// called in response to a user action such as pressing "Cancel"
/// or Ctrl-C where the user wants a long query operation to halt
/// immediately.
///
/// ^It is safe to call this routine from a thread different from the
/// thread that is currently running the database operation. But it
/// is not safe to call this routine with a [database connection] that
/// is closed or might close before sqlite3_interrupt() returns.
///
/// ^If an SQL operation is very nearly finished at the time when
/// sqlite3_interrupt() is called, then it might not have an opportunity
/// to be interrupted and might continue to completion.
///
/// ^An SQL operation that is interrupted will return [SQLITE_INTERRUPT].
/// ^If the interrupted SQL operation is an INSERT, UPDATE, or DELETE
/// that is inside an explicit transaction, then the entire transaction
/// will be rolled back automatically.
///
/// ^The sqlite3_interrupt(D) call is in effect until all currently running
/// SQL statements on [database connection] D complete. ^Any new SQL statements
/// that are started after the sqlite3_interrupt() call and before the
/// running statement count reaches zero are interrupted as if they had been
/// running prior to the sqlite3_interrupt() call. ^New SQL statements
/// that are started after the running statement count reaches zero are
/// not effected by the sqlite3_interrupt().
/// ^A call to sqlite3_interrupt(D) that occurs when there are no running
/// SQL statements is a no-op and has no effect on SQL statements
/// that are started after the sqlite3_interrupt() call returns.
void sqlite3_interrupt(
ffi.Pointer<sqlite3> arg0,
) {
_sqlite3_interrupt ??=
_dylib.lookupFunction<_c_sqlite3_interrupt, _dart_sqlite3_interrupt>(
'sqlite3_interrupt');
return _sqlite3_interrupt(
arg0,
);
}
_dart_sqlite3_interrupt _sqlite3_interrupt;
/// CAPI3REF: Determine If An SQL Statement Is Complete
///
/// These routines are useful during command-line input to determine if the
/// currently entered text seems to form a complete SQL statement or
/// if additional input is needed before sending the text into
/// SQLite for parsing. ^These routines return 1 if the input string
/// appears to be a complete SQL statement. ^A statement is judged to be
/// complete if it ends with a semicolon token and is not a prefix of a
/// well-formed CREATE TRIGGER statement. ^Semicolons that are embedded within
/// string literals or quoted identifier names or comments are not
/// independent tokens (they are part of the token in which they are
/// embedded) and thus do not count as a statement terminator. ^Whitespace
/// and comments that follow the final semicolon are ignored.
///
/// ^These routines return 0 if the statement is incomplete. ^If a
/// memory allocation fails, then SQLITE_NOMEM is returned.
///
/// ^These routines do not parse the SQL statements thus
/// will not detect syntactically incorrect SQL.
///
/// ^(If SQLite has not been initialized using [sqlite3_initialize()] prior
/// to invoking sqlite3_complete16() then sqlite3_initialize() is invoked
/// automatically by sqlite3_complete16(). If that initialization fails,
/// then the return value from sqlite3_complete16() will be non-zero
/// regardless of whether or not the input SQL is complete.)^
///
/// The input to [sqlite3_complete()] must be a zero-terminated
/// UTF-8 string.
///
/// The input to [sqlite3_complete16()] must be a zero-terminated
/// UTF-16 string in native byte order.
int sqlite3_complete(
ffi.Pointer<ffi.Int8> sql,
) {
_sqlite3_complete ??=
_dylib.lookupFunction<_c_sqlite3_complete, _dart_sqlite3_complete>(
'sqlite3_complete');
return _sqlite3_complete(
sql,
);
}
_dart_sqlite3_complete _sqlite3_complete;
int sqlite3_complete16(
ffi.Pointer<ffi.Void> sql,
) {
_sqlite3_complete16 ??=
_dylib.lookupFunction<_c_sqlite3_complete16, _dart_sqlite3_complete16>(
'sqlite3_complete16');
return _sqlite3_complete16(
sql,
);
}
_dart_sqlite3_complete16 _sqlite3_complete16;
/// CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors
/// KEYWORDS: {busy-handler callback} {busy handler}
/// METHOD: sqlite3
///
/// ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X
/// that might be invoked with argument P whenever
/// an attempt is made to access a database table associated with
/// [database connection] D when another thread
/// or process has the table locked.
/// The sqlite3_busy_handler() interface is used to implement
/// [sqlite3_busy_timeout()] and [PRAGMA busy_timeout].
///
/// ^If the busy callback is NULL, then [SQLITE_BUSY]
/// is returned immediately upon encountering the lock. ^If the busy callback
/// is not NULL, then the callback might be invoked with two arguments.
///
/// ^The first argument to the busy handler is a copy of the void* pointer which
/// is the third argument to sqlite3_busy_handler(). ^The second argument to
/// the busy handler callback is the number of times that the busy handler has
/// been invoked previously for the same locking event. ^If the
/// busy callback returns 0, then no additional attempts are made to
/// access the database and [SQLITE_BUSY] is returned
/// to the application.
/// ^If the callback returns non-zero, then another attempt
/// is made to access the database and the cycle repeats.
///
/// The presence of a busy handler does not guarantee that it will be invoked
/// when there is lock contention. ^If SQLite determines that invoking the busy
/// handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY]
/// to the application instead of invoking the
/// busy handler.
/// Consider a scenario where one process is holding a read lock that
/// it is trying to promote to a reserved lock and
/// a second process is holding a reserved lock that it is trying
/// to promote to an exclusive lock. The first process cannot proceed
/// because it is blocked by the second and the second process cannot
/// proceed because it is blocked by the first. If both processes
/// invoke the busy handlers, neither will make any progress. Therefore,
/// SQLite returns [SQLITE_BUSY] for the first process, hoping that this
/// will induce the first process to release its read lock and allow
/// the second process to proceed.
///
/// ^The default busy callback is NULL.
///
/// ^(There can only be a single busy handler defined for each
/// [database connection]. Setting a new busy handler clears any
/// previously set handler.)^ ^Note that calling [sqlite3_busy_timeout()]
/// or evaluating [PRAGMA busy_timeout=N] will change the
/// busy handler and thus clear any previously set busy handler.
///
/// The busy callback should not take any actions which modify the
/// database connection that invoked the busy handler. In other words,
/// the busy handler is not reentrant. Any such actions
/// result in undefined behavior.
///
/// A busy handler must not close the database connection
/// or [prepared statement] that invoked the busy handler.
int sqlite3_busy_handler(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_20>> arg1,
ffi.Pointer<ffi.Void> arg2,
) {
_sqlite3_busy_handler ??= _dylib.lookupFunction<_c_sqlite3_busy_handler,
_dart_sqlite3_busy_handler>('sqlite3_busy_handler');
return _sqlite3_busy_handler(
arg0,
arg1,
arg2,
);
}
_dart_sqlite3_busy_handler _sqlite3_busy_handler;
/// CAPI3REF: Set A Busy Timeout
/// METHOD: sqlite3
///
/// ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
/// for a specified amount of time when a table is locked. ^The handler
/// will sleep multiple times until at least "ms" milliseconds of sleeping
/// have accumulated. ^After at least "ms" milliseconds of sleeping,
/// the handler returns 0 which causes [sqlite3_step()] to return
/// [SQLITE_BUSY].
///
/// ^Calling this routine with an argument less than or equal to zero
/// turns off all busy handlers.
///
/// ^(There can only be a single busy handler for a particular
/// [database connection] at any given moment. If another busy handler
/// was defined (using [sqlite3_busy_handler()]) prior to calling
/// this routine, that other busy handler is cleared.)^
///
/// See also: [PRAGMA busy_timeout]
int sqlite3_busy_timeout(
ffi.Pointer<sqlite3> arg0,
int ms,
) {
_sqlite3_busy_timeout ??= _dylib.lookupFunction<_c_sqlite3_busy_timeout,
_dart_sqlite3_busy_timeout>('sqlite3_busy_timeout');
return _sqlite3_busy_timeout(
arg0,
ms,
);
}
_dart_sqlite3_busy_timeout _sqlite3_busy_timeout;
/// CAPI3REF: Convenience Routines For Running Queries
/// METHOD: sqlite3
///
/// This is a legacy interface that is preserved for backwards compatibility.
/// Use of this interface is not recommended.
///
/// Definition: A <b>result table</b> is memory data structure created by the
/// [sqlite3_get_table()] interface. A result table records the
/// complete query results from one or more queries.
///
/// The table conceptually has a number of rows and columns. But
/// these numbers are not part of the result table itself. These
/// numbers are obtained separately. Let N be the number of rows
/// and M be the number of columns.
///
/// A result table is an array of pointers to zero-terminated UTF-8 strings.
/// There are (N+1)*M elements in the array. The first M pointers point
/// to zero-terminated strings that contain the names of the columns.
/// The remaining entries all point to query results. NULL values result
/// in NULL pointers. All other values are in their UTF-8 zero-terminated
/// string representation as returned by [sqlite3_column_text()].
///
/// A result table might consist of one or more memory allocations.
/// It is not safe to pass a result table directly to [sqlite3_free()].
/// A result table should be deallocated using [sqlite3_free_table()].
///
/// ^(As an example of the result table format, suppose a query result
/// is as follows:
///
/// <blockquote><pre>
/// Name | Age
/// -----------------------
/// Alice | 43
/// Bob | 28
/// Cindy | 21
/// </pre></blockquote>
///
/// There are two columns (M==2) and three rows (N==3). Thus the
/// result table has 8 entries. Suppose the result table is stored
/// in an array named azResult. Then azResult holds this content:
///
/// <blockquote><pre>
/// azResult&#91;0] = "Name";
/// azResult&#91;1] = "Age";
/// azResult&#91;2] = "Alice";
/// azResult&#91;3] = "43";
/// azResult&#91;4] = "Bob";
/// azResult&#91;5] = "28";
/// azResult&#91;6] = "Cindy";
/// azResult&#91;7] = "21";
/// </pre></blockquote>)^
///
/// ^The sqlite3_get_table() function evaluates one or more
/// semicolon-separated SQL statements in the zero-terminated UTF-8
/// string of its 2nd parameter and returns a result table to the
/// pointer given in its 3rd parameter.
///
/// After the application has finished with the result from sqlite3_get_table(),
/// it must pass the result table pointer to sqlite3_free_table() in order to
/// release the memory that was malloced. Because of the way the
/// [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
/// function must not try to call [sqlite3_free()] directly. Only
/// [sqlite3_free_table()] is able to release the memory properly and safely.
///
/// The sqlite3_get_table() interface is implemented as a wrapper around
/// [sqlite3_exec()]. The sqlite3_get_table() routine does not have access
/// to any internal data structures of SQLite. It uses only the public
/// interface defined here. As a consequence, errors that occur in the
/// wrapper layer outside of the internal [sqlite3_exec()] call are not
/// reflected in subsequent calls to [sqlite3_errcode()] or
/// [sqlite3_errmsg()].
int sqlite3_get_table(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSql,
ffi.Pointer<ffi.Pointer<ffi.Pointer<ffi.Int8>>> pazResult,
ffi.Pointer<ffi.Int32> pnRow,
ffi.Pointer<ffi.Int32> pnColumn,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzErrmsg,
) {
_sqlite3_get_table ??=
_dylib.lookupFunction<_c_sqlite3_get_table, _dart_sqlite3_get_table>(
'sqlite3_get_table');
return _sqlite3_get_table(
db,
zSql,
pazResult,
pnRow,
pnColumn,
pzErrmsg,
);
}
_dart_sqlite3_get_table _sqlite3_get_table;
void sqlite3_free_table(
ffi.Pointer<ffi.Pointer<ffi.Int8>> result,
) {
_sqlite3_free_table ??=
_dylib.lookupFunction<_c_sqlite3_free_table, _dart_sqlite3_free_table>(
'sqlite3_free_table');
return _sqlite3_free_table(
result,
);
}
_dart_sqlite3_free_table _sqlite3_free_table;
/// CAPI3REF: Formatted String Printing Functions
///
/// These routines are work-alikes of the "printf()" family of functions
/// from the standard C library.
/// These routines understand most of the common formatting options from
/// the standard library printf()
/// plus some additional non-standard formats ([%q], [%Q], [%w], and [%z]).
/// See the [built-in printf()] documentation for details.
///
/// ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
/// results into memory obtained from [sqlite3_malloc64()].
/// The strings returned by these two routines should be
/// released by [sqlite3_free()]. ^Both routines return a
/// NULL pointer if [sqlite3_malloc64()] is unable to allocate enough
/// memory to hold the resulting string.
///
/// ^(The sqlite3_snprintf() routine is similar to "snprintf()" from
/// the standard C library. The result is written into the
/// buffer supplied as the second parameter whose size is given by
/// the first parameter. Note that the order of the
/// first two parameters is reversed from snprintf().)^ This is an
/// historical accident that cannot be fixed without breaking
/// backwards compatibility. ^(Note also that sqlite3_snprintf()
/// returns a pointer to its buffer instead of the number of
/// characters actually written into the buffer.)^ We admit that
/// the number of characters written would be a more useful return
/// value but we cannot change the implementation of sqlite3_snprintf()
/// now without breaking compatibility.
///
/// ^As long as the buffer size is greater than zero, sqlite3_snprintf()
/// guarantees that the buffer is always zero-terminated. ^The first
/// parameter "n" is the total size of the buffer, including space for
/// the zero terminator. So the longest string that can be completely
/// written will be n-1 characters.
///
/// ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf().
///
/// See also: [built-in printf()], [printf() SQL function]
ffi.Pointer<ffi.Int8> sqlite3_mprintf(
ffi.Pointer<ffi.Int8> arg0,
) {
_sqlite3_mprintf ??=
_dylib.lookupFunction<_c_sqlite3_mprintf, _dart_sqlite3_mprintf>(
'sqlite3_mprintf');
return _sqlite3_mprintf(
arg0,
);
}
_dart_sqlite3_mprintf _sqlite3_mprintf;
ffi.Pointer<ffi.Int8> sqlite3_snprintf(
int arg0,
ffi.Pointer<ffi.Int8> arg1,
ffi.Pointer<ffi.Int8> arg2,
) {
_sqlite3_snprintf ??=
_dylib.lookupFunction<_c_sqlite3_snprintf, _dart_sqlite3_snprintf>(
'sqlite3_snprintf');
return _sqlite3_snprintf(
arg0,
arg1,
arg2,
);
}
_dart_sqlite3_snprintf _sqlite3_snprintf;
/// CAPI3REF: Memory Allocation Subsystem
///
/// The SQLite core uses these three routines for all of its own
/// internal memory allocation needs. "Core" in the previous sentence
/// does not include operating-system specific [VFS] implementation. The
/// Windows VFS uses native malloc() and free() for some operations.
///
/// ^The sqlite3_malloc() routine returns a pointer to a block
/// of memory at least N bytes in length, where N is the parameter.
/// ^If sqlite3_malloc() is unable to obtain sufficient free
/// memory, it returns a NULL pointer. ^If the parameter N to
/// sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
/// a NULL pointer.
///
/// ^The sqlite3_malloc64(N) routine works just like
/// sqlite3_malloc(N) except that N is an unsigned 64-bit integer instead
/// of a signed 32-bit integer.
///
/// ^Calling sqlite3_free() with a pointer previously returned
/// by sqlite3_malloc() or sqlite3_realloc() releases that memory so
/// that it might be reused. ^The sqlite3_free() routine is
/// a no-op if is called with a NULL pointer. Passing a NULL pointer
/// to sqlite3_free() is harmless. After being freed, memory
/// should neither be read nor written. Even reading previously freed
/// memory might result in a segmentation fault or other severe error.
/// Memory corruption, a segmentation fault, or other severe error
/// might result if sqlite3_free() is called with a non-NULL pointer that
/// was not obtained from sqlite3_malloc() or sqlite3_realloc().
///
/// ^The sqlite3_realloc(X,N) interface attempts to resize a
/// prior memory allocation X to be at least N bytes.
/// ^If the X parameter to sqlite3_realloc(X,N)
/// is a NULL pointer then its behavior is identical to calling
/// sqlite3_malloc(N).
/// ^If the N parameter to sqlite3_realloc(X,N) is zero or
/// negative then the behavior is exactly the same as calling
/// sqlite3_free(X).
/// ^sqlite3_realloc(X,N) returns a pointer to a memory allocation
/// of at least N bytes in size or NULL if insufficient memory is available.
/// ^If M is the size of the prior allocation, then min(N,M) bytes
/// of the prior allocation are copied into the beginning of buffer returned
/// by sqlite3_realloc(X,N) and the prior allocation is freed.
/// ^If sqlite3_realloc(X,N) returns NULL and N is positive, then the
/// prior allocation is not freed.
///
/// ^The sqlite3_realloc64(X,N) interfaces works the same as
/// sqlite3_realloc(X,N) except that N is a 64-bit unsigned integer instead
/// of a 32-bit signed integer.
///
/// ^If X is a memory allocation previously obtained from sqlite3_malloc(),
/// sqlite3_malloc64(), sqlite3_realloc(), or sqlite3_realloc64(), then
/// sqlite3_msize(X) returns the size of that memory allocation in bytes.
/// ^The value returned by sqlite3_msize(X) might be larger than the number
/// of bytes requested when X was allocated. ^If X is a NULL pointer then
/// sqlite3_msize(X) returns zero. If X points to something that is not
/// the beginning of memory allocation, or if it points to a formerly
/// valid memory allocation that has now been freed, then the behavior
/// of sqlite3_msize(X) is undefined and possibly harmful.
///
/// ^The memory returned by sqlite3_malloc(), sqlite3_realloc(),
/// sqlite3_malloc64(), and sqlite3_realloc64()
/// is always aligned to at least an 8 byte boundary, or to a
/// 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time
/// option is used.
///
/// The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
/// must be either NULL or else pointers obtained from a prior
/// invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
/// not yet been released.
///
/// The application must not read or write any part of
/// a block of memory after it has been released using
/// [sqlite3_free()] or [sqlite3_realloc()].
ffi.Pointer<ffi.Void> sqlite3_malloc(
int arg0,
) {
_sqlite3_malloc ??=
_dylib.lookupFunction<_c_sqlite3_malloc, _dart_sqlite3_malloc>(
'sqlite3_malloc');
return _sqlite3_malloc(
arg0,
);
}
_dart_sqlite3_malloc _sqlite3_malloc;
ffi.Pointer<ffi.Void> sqlite3_malloc64(
int arg0,
) {
_sqlite3_malloc64 ??=
_dylib.lookupFunction<_c_sqlite3_malloc64, _dart_sqlite3_malloc64>(
'sqlite3_malloc64');
return _sqlite3_malloc64(
arg0,
);
}
_dart_sqlite3_malloc64 _sqlite3_malloc64;
ffi.Pointer<ffi.Void> sqlite3_realloc(
ffi.Pointer<ffi.Void> arg0,
int arg1,
) {
_sqlite3_realloc ??=
_dylib.lookupFunction<_c_sqlite3_realloc, _dart_sqlite3_realloc>(
'sqlite3_realloc');
return _sqlite3_realloc(
arg0,
arg1,
);
}
_dart_sqlite3_realloc _sqlite3_realloc;
ffi.Pointer<ffi.Void> sqlite3_realloc64(
ffi.Pointer<ffi.Void> arg0,
int arg1,
) {
_sqlite3_realloc64 ??=
_dylib.lookupFunction<_c_sqlite3_realloc64, _dart_sqlite3_realloc64>(
'sqlite3_realloc64');
return _sqlite3_realloc64(
arg0,
arg1,
);
}
_dart_sqlite3_realloc64 _sqlite3_realloc64;
void sqlite3_free(
ffi.Pointer<ffi.Void> arg0,
) {
_sqlite3_free ??= _dylib
.lookupFunction<_c_sqlite3_free, _dart_sqlite3_free>('sqlite3_free');
return _sqlite3_free(
arg0,
);
}
_dart_sqlite3_free _sqlite3_free;
int sqlite3_msize(
ffi.Pointer<ffi.Void> arg0,
) {
_sqlite3_msize ??= _dylib
.lookupFunction<_c_sqlite3_msize, _dart_sqlite3_msize>('sqlite3_msize');
return _sqlite3_msize(
arg0,
);
}
_dart_sqlite3_msize _sqlite3_msize;
/// CAPI3REF: Memory Allocator Statistics
///
/// SQLite provides these two interfaces for reporting on the status
/// of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
/// routines, which form the built-in memory allocation subsystem.
///
/// ^The [sqlite3_memory_used()] routine returns the number of bytes
/// of memory currently outstanding (malloced but not freed).
/// ^The [sqlite3_memory_highwater()] routine returns the maximum
/// value of [sqlite3_memory_used()] since the high-water mark
/// was last reset. ^The values returned by [sqlite3_memory_used()] and
/// [sqlite3_memory_highwater()] include any overhead
/// added by SQLite in its implementation of [sqlite3_malloc()],
/// but not overhead added by the any underlying system library
/// routines that [sqlite3_malloc()] may call.
///
/// ^The memory high-water mark is reset to the current value of
/// [sqlite3_memory_used()] if and only if the parameter to
/// [sqlite3_memory_highwater()] is true. ^The value returned
/// by [sqlite3_memory_highwater(1)] is the high-water mark
/// prior to the reset.
int sqlite3_memory_used() {
_sqlite3_memory_used ??= _dylib.lookupFunction<_c_sqlite3_memory_used,
_dart_sqlite3_memory_used>('sqlite3_memory_used');
return _sqlite3_memory_used();
}
_dart_sqlite3_memory_used _sqlite3_memory_used;
int sqlite3_memory_highwater(
int resetFlag,
) {
_sqlite3_memory_highwater ??= _dylib.lookupFunction<
_c_sqlite3_memory_highwater,
_dart_sqlite3_memory_highwater>('sqlite3_memory_highwater');
return _sqlite3_memory_highwater(
resetFlag,
);
}
_dart_sqlite3_memory_highwater _sqlite3_memory_highwater;
/// CAPI3REF: Pseudo-Random Number Generator
///
/// SQLite contains a high-quality pseudo-random number generator (PRNG) used to
/// select random [ROWID | ROWIDs] when inserting new records into a table that
/// already uses the largest possible [ROWID]. The PRNG is also used for
/// the built-in random() and randomblob() SQL functions. This interface allows
/// applications to access the same PRNG for other purposes.
///
/// ^A call to this routine stores N bytes of randomness into buffer P.
/// ^The P parameter can be a NULL pointer.
///
/// ^If this routine has not been previously called or if the previous
/// call had N less than one or a NULL pointer for P, then the PRNG is
/// seeded using randomness obtained from the xRandomness method of
/// the default [sqlite3_vfs] object.
/// ^If the previous call to this routine had an N of 1 or more and a
/// non-NULL P then the pseudo-randomness is generated
/// internally and without recourse to the [sqlite3_vfs] xRandomness
/// method.
void sqlite3_randomness(
int N,
ffi.Pointer<ffi.Void> P,
) {
_sqlite3_randomness ??=
_dylib.lookupFunction<_c_sqlite3_randomness, _dart_sqlite3_randomness>(
'sqlite3_randomness');
return _sqlite3_randomness(
N,
P,
);
}
_dart_sqlite3_randomness _sqlite3_randomness;
/// CAPI3REF: Compile-Time Authorization Callbacks
/// METHOD: sqlite3
/// KEYWORDS: {authorizer callback}
///
/// ^This routine registers an authorizer callback with a particular
/// [database connection], supplied in the first argument.
/// ^The authorizer callback is invoked as SQL statements are being compiled
/// by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
/// [sqlite3_prepare_v3()], [sqlite3_prepare16()], [sqlite3_prepare16_v2()],
/// and [sqlite3_prepare16_v3()]. ^At various
/// points during the compilation process, as logic is being created
/// to perform various actions, the authorizer callback is invoked to
/// see if those actions are allowed. ^The authorizer callback should
/// return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
/// specific action but allow the SQL statement to continue to be
/// compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
/// rejected with an error. ^If the authorizer callback returns
/// any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
/// then the [sqlite3_prepare_v2()] or equivalent call that triggered
/// the authorizer will fail with an error message.
///
/// When the callback returns [SQLITE_OK], that means the operation
/// requested is ok. ^When the callback returns [SQLITE_DENY], the
/// [sqlite3_prepare_v2()] or equivalent call that triggered the
/// authorizer will fail with an error message explaining that
/// access is denied.
///
/// ^The first parameter to the authorizer callback is a copy of the third
/// parameter to the sqlite3_set_authorizer() interface. ^The second parameter
/// to the callback is an integer [SQLITE_COPY | action code] that specifies
/// the particular action to be authorized. ^The third through sixth parameters
/// to the callback are either NULL pointers or zero-terminated strings
/// that contain additional details about the action to be authorized.
/// Applications must always be prepared to encounter a NULL pointer in any
/// of the third through the sixth parameters of the authorization callback.
///
/// ^If the action code is [SQLITE_READ]
/// and the callback returns [SQLITE_IGNORE] then the
/// [prepared statement] statement is constructed to substitute
/// a NULL value in place of the table column that would have
/// been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE]
/// return can be used to deny an untrusted user access to individual
/// columns of a table.
/// ^When a table is referenced by a [SELECT] but no column values are
/// extracted from that table (for example in a query like
/// "SELECT count(*) FROM tab") then the [SQLITE_READ] authorizer callback
/// is invoked once for that table with a column name that is an empty string.
/// ^If the action code is [SQLITE_DELETE] and the callback returns
/// [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
/// [truncate optimization] is disabled and all rows are deleted individually.
///
/// An authorizer is used when [sqlite3_prepare | preparing]
/// SQL statements from an untrusted source, to ensure that the SQL statements
/// do not try to access data they are not allowed to see, or that they do not
/// try to execute malicious statements that damage the database. For
/// example, an application may allow a user to enter arbitrary
/// SQL queries for evaluation by a database. But the application does
/// not want the user to be able to make arbitrary changes to the
/// database. An authorizer could then be put in place while the
/// user-entered SQL is being [sqlite3_prepare | prepared] that
/// disallows everything except [SELECT] statements.
///
/// Applications that need to process SQL from untrusted sources
/// might also consider lowering resource limits using [sqlite3_limit()]
/// and limiting database size using the [max_page_count] [PRAGMA]
/// in addition to using an authorizer.
///
/// ^(Only a single authorizer can be in place on a database connection
/// at a time. Each call to sqlite3_set_authorizer overrides the
/// previous call.)^ ^Disable the authorizer by installing a NULL callback.
/// The authorizer is disabled by default.
///
/// The authorizer callback must not do anything that will modify
/// the database connection that invoked the authorizer callback.
/// Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
/// database connections for the meaning of "modify" in this paragraph.
///
/// ^When [sqlite3_prepare_v2()] is used to prepare a statement, the
/// statement might be re-prepared during [sqlite3_step()] due to a
/// schema change. Hence, the application should ensure that the
/// correct authorizer callback remains in place during the [sqlite3_step()].
///
/// ^Note that the authorizer callback is invoked only during
/// [sqlite3_prepare()] or its variants. Authorization is not
/// performed during statement evaluation in [sqlite3_step()], unless
/// as stated in the previous paragraph, sqlite3_step() invokes
/// sqlite3_prepare_v2() to reprepare a statement after a schema change.
int sqlite3_set_authorizer(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_21>> xAuth,
ffi.Pointer<ffi.Void> pUserData,
) {
_sqlite3_set_authorizer ??= _dylib.lookupFunction<_c_sqlite3_set_authorizer,
_dart_sqlite3_set_authorizer>('sqlite3_set_authorizer');
return _sqlite3_set_authorizer(
arg0,
xAuth,
pUserData,
);
}
_dart_sqlite3_set_authorizer _sqlite3_set_authorizer;
/// CAPI3REF: Tracing And Profiling Functions
/// METHOD: sqlite3
///
/// These routines are deprecated. Use the [sqlite3_trace_v2()] interface
/// instead of the routines described here.
///
/// These routines register callback functions that can be used for
/// tracing and profiling the execution of SQL statements.
///
/// ^The callback function registered by sqlite3_trace() is invoked at
/// various times when an SQL statement is being run by [sqlite3_step()].
/// ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the
/// SQL statement text as the statement first begins executing.
/// ^(Additional sqlite3_trace() callbacks might occur
/// as each triggered subprogram is entered. The callbacks for triggers
/// contain a UTF-8 SQL comment that identifies the trigger.)^
///
/// The [SQLITE_TRACE_SIZE_LIMIT] compile-time option can be used to limit
/// the length of [bound parameter] expansion in the output of sqlite3_trace().
///
/// ^The callback function registered by sqlite3_profile() is invoked
/// as each SQL statement finishes. ^The profile callback contains
/// the original statement text and an estimate of wall-clock time
/// of how long that statement took to run. ^The profile callback
/// time is in units of nanoseconds, however the current implementation
/// is only capable of millisecond resolution so the six least significant
/// digits in the time are meaningless. Future versions of SQLite
/// might provide greater resolution on the profiler callback. Invoking
/// either [sqlite3_trace()] or [sqlite3_trace_v2()] will cancel the
/// profile callback.
ffi.Pointer<ffi.Void> sqlite3_trace(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_22>> xTrace,
ffi.Pointer<ffi.Void> arg2,
) {
_sqlite3_trace ??= _dylib
.lookupFunction<_c_sqlite3_trace, _dart_sqlite3_trace>('sqlite3_trace');
return _sqlite3_trace(
arg0,
xTrace,
arg2,
);
}
_dart_sqlite3_trace _sqlite3_trace;
ffi.Pointer<ffi.Void> sqlite3_profile(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_23>> xProfile,
ffi.Pointer<ffi.Void> arg2,
) {
_sqlite3_profile ??=
_dylib.lookupFunction<_c_sqlite3_profile, _dart_sqlite3_profile>(
'sqlite3_profile');
return _sqlite3_profile(
arg0,
xProfile,
arg2,
);
}
_dart_sqlite3_profile _sqlite3_profile;
/// CAPI3REF: SQL Trace Hook
/// METHOD: sqlite3
///
/// ^The sqlite3_trace_v2(D,M,X,P) interface registers a trace callback
/// function X against [database connection] D, using property mask M
/// and context pointer P. ^If the X callback is
/// NULL or if the M mask is zero, then tracing is disabled. The
/// M argument should be the bitwise OR-ed combination of
/// zero or more [SQLITE_TRACE] constants.
///
/// ^Each call to either sqlite3_trace() or sqlite3_trace_v2() overrides
/// (cancels) any prior calls to sqlite3_trace() or sqlite3_trace_v2().
///
/// ^The X callback is invoked whenever any of the events identified by
/// mask M occur. ^The integer return value from the callback is currently
/// ignored, though this may change in future releases. Callback
/// implementations should return zero to ensure future compatibility.
///
/// ^A trace callback is invoked with four arguments: callback(T,C,P,X).
/// ^The T argument is one of the [SQLITE_TRACE]
/// constants to indicate why the callback was invoked.
/// ^The C argument is a copy of the context pointer.
/// The P and X arguments are pointers whose meanings depend on T.
///
/// The sqlite3_trace_v2() interface is intended to replace the legacy
/// interfaces [sqlite3_trace()] and [sqlite3_profile()], both of which
/// are deprecated.
int sqlite3_trace_v2(
ffi.Pointer<sqlite3> arg0,
int uMask,
ffi.Pointer<ffi.NativeFunction<_typedefC_24>> xCallback,
ffi.Pointer<ffi.Void> pCtx,
) {
_sqlite3_trace_v2 ??=
_dylib.lookupFunction<_c_sqlite3_trace_v2, _dart_sqlite3_trace_v2>(
'sqlite3_trace_v2');
return _sqlite3_trace_v2(
arg0,
uMask,
xCallback,
pCtx,
);
}
_dart_sqlite3_trace_v2 _sqlite3_trace_v2;
/// CAPI3REF: Query Progress Callbacks
/// METHOD: sqlite3
///
/// ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback
/// function X to be invoked periodically during long running calls to
/// [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for
/// database connection D. An example use for this
/// interface is to keep a GUI updated during a large query.
///
/// ^The parameter P is passed through as the only parameter to the
/// callback function X. ^The parameter N is the approximate number of
/// [virtual machine instructions] that are evaluated between successive
/// invocations of the callback X. ^If N is less than one then the progress
/// handler is disabled.
///
/// ^Only a single progress handler may be defined at one time per
/// [database connection]; setting a new progress handler cancels the
/// old one. ^Setting parameter X to NULL disables the progress handler.
/// ^The progress handler is also disabled by setting N to a value less
/// than 1.
///
/// ^If the progress callback returns non-zero, the operation is
/// interrupted. This feature can be used to implement a
/// "Cancel" button on a GUI progress dialog box.
///
/// The progress handler callback must not do anything that will modify
/// the database connection that invoked the progress handler.
/// Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
/// database connections for the meaning of "modify" in this paragraph.
void sqlite3_progress_handler(
ffi.Pointer<sqlite3> arg0,
int arg1,
ffi.Pointer<ffi.NativeFunction<_typedefC_25>> arg2,
ffi.Pointer<ffi.Void> arg3,
) {
_sqlite3_progress_handler ??= _dylib.lookupFunction<
_c_sqlite3_progress_handler,
_dart_sqlite3_progress_handler>('sqlite3_progress_handler');
return _sqlite3_progress_handler(
arg0,
arg1,
arg2,
arg3,
);
}
_dart_sqlite3_progress_handler _sqlite3_progress_handler;
/// CAPI3REF: Opening A New Database Connection
/// CONSTRUCTOR: sqlite3
///
/// ^These routines open an SQLite database file as specified by the
/// filename argument. ^The filename argument is interpreted as UTF-8 for
/// sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
/// order for sqlite3_open16(). ^(A [database connection] handle is usually
/// returned in *ppDb, even if an error occurs. The only exception is that
/// if SQLite is unable to allocate memory to hold the [sqlite3] object,
/// a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
/// object.)^ ^(If the database is opened (and/or created) successfully, then
/// [SQLITE_OK] is returned. Otherwise an [error code] is returned.)^ ^The
/// [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
/// an English language description of the error following a failure of any
/// of the sqlite3_open() routines.
///
/// ^The default encoding will be UTF-8 for databases created using
/// sqlite3_open() or sqlite3_open_v2(). ^The default encoding for databases
/// created using sqlite3_open16() will be UTF-16 in the native byte order.
///
/// Whether or not an error occurs when it is opened, resources
/// associated with the [database connection] handle should be released by
/// passing it to [sqlite3_close()] when it is no longer required.
///
/// The sqlite3_open_v2() interface works like sqlite3_open()
/// except that it accepts two additional parameters for additional control
/// over the new database connection. ^(The flags parameter to
/// sqlite3_open_v2() must include, at a minimum, one of the following
/// three flag combinations:)^
///
/// <dl>
/// ^(<dt>[SQLITE_OPEN_READONLY]</dt>
/// <dd>The database is opened in read-only mode. If the database does not
/// already exist, an error is returned.</dd>)^
///
/// ^(<dt>[SQLITE_OPEN_READWRITE]</dt>
/// <dd>The database is opened for reading and writing if possible, or reading
/// only if the file is write protected by the operating system. In either
/// case the database must already exist, otherwise an error is returned.</dd>)^
///
/// ^(<dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
/// <dd>The database is opened for reading and writing, and is created if
/// it does not already exist. This is the behavior that is always used for
/// sqlite3_open() and sqlite3_open16().</dd>)^
/// </dl>
///
/// In addition to the required flags, the following optional flags are
/// also supported:
///
/// <dl>
/// ^(<dt>[SQLITE_OPEN_URI]</dt>
/// <dd>The filename can be interpreted as a URI if this flag is set.</dd>)^
///
/// ^(<dt>[SQLITE_OPEN_MEMORY]</dt>
/// <dd>The database will be opened as an in-memory database. The database
/// is named by the "filename" argument for the purposes of cache-sharing,
/// if shared cache mode is enabled, but the "filename" is otherwise ignored.
/// </dd>)^
///
/// ^(<dt>[SQLITE_OPEN_NOMUTEX]</dt>
/// <dd>The new database connection will use the "multi-thread"
/// [threading mode].)^ This means that separate threads are allowed
/// to use SQLite at the same time, as long as each thread is using
/// a different [database connection].
///
/// ^(<dt>[SQLITE_OPEN_FULLMUTEX]</dt>
/// <dd>The new database connection will use the "serialized"
/// [threading mode].)^ This means the multiple threads can safely
/// attempt to use the same database connection at the same time.
/// (Mutexes will block any actual concurrency, but in this mode
/// there is no harm in trying.)
///
/// ^(<dt>[SQLITE_OPEN_SHAREDCACHE]</dt>
/// <dd>The database is opened [shared cache] enabled, overriding
/// the default shared cache setting provided by
/// [sqlite3_enable_shared_cache()].)^
///
/// ^(<dt>[SQLITE_OPEN_PRIVATECACHE]</dt>
/// <dd>The database is opened [shared cache] disabled, overriding
/// the default shared cache setting provided by
/// [sqlite3_enable_shared_cache()].)^
///
/// [[OPEN_NOFOLLOW]] ^(<dt>[SQLITE_OPEN_NOFOLLOW]</dt>
/// <dd>The database filename is not allowed to be a symbolic link</dd>
/// </dl>)^
///
/// If the 3rd parameter to sqlite3_open_v2() is not one of the
/// required combinations shown above optionally combined with other
/// [SQLITE_OPEN_READONLY | SQLITE_OPEN_* bits]
/// then the behavior is undefined.
///
/// ^The fourth parameter to sqlite3_open_v2() is the name of the
/// [sqlite3_vfs] object that defines the operating system interface that
/// the new database connection should use. ^If the fourth parameter is
/// a NULL pointer then the default [sqlite3_vfs] object is used.
///
/// ^If the filename is ":memory:", then a private, temporary in-memory database
/// is created for the connection. ^This in-memory database will vanish when
/// the database connection is closed. Future versions of SQLite might
/// make use of additional special filenames that begin with the ":" character.
/// It is recommended that when a database filename actually does begin with
/// a ":" character you should prefix the filename with a pathname such as
/// "./" to avoid ambiguity.
///
/// ^If the filename is an empty string, then a private, temporary
/// on-disk database will be created. ^This private database will be
/// automatically deleted as soon as the database connection is closed.
///
/// [[URI filenames in sqlite3_open()]] <h3>URI Filenames</h3>
///
/// ^If [URI filename] interpretation is enabled, and the filename argument
/// begins with "file:", then the filename is interpreted as a URI. ^URI
/// filename interpretation is enabled if the [SQLITE_OPEN_URI] flag is
/// set in the third argument to sqlite3_open_v2(), or if it has
/// been enabled globally using the [SQLITE_CONFIG_URI] option with the
/// [sqlite3_config()] method or by the [SQLITE_USE_URI] compile-time option.
/// URI filename interpretation is turned off
/// by default, but future releases of SQLite might enable URI filename
/// interpretation by default. See "[URI filenames]" for additional
/// information.
///
/// URI filenames are parsed according to RFC 3986. ^If the URI contains an
/// authority, then it must be either an empty string or the string
/// "localhost". ^If the authority is not an empty string or "localhost", an
/// error is returned to the caller. ^The fragment component of a URI, if
/// present, is ignored.
///
/// ^SQLite uses the path component of the URI as the name of the disk file
/// which contains the database. ^If the path begins with a '/' character,
/// then it is interpreted as an absolute path. ^If the path does not begin
/// with a '/' (meaning that the authority section is omitted from the URI)
/// then the path is interpreted as a relative path.
/// ^(On windows, the first component of an absolute path
/// is a drive specification (e.g. "C:").)^
///
/// [[core URI query parameters]]
/// The query component of a URI may contain parameters that are interpreted
/// either by SQLite itself, or by a [VFS | custom VFS implementation].
/// SQLite and its built-in [VFSes] interpret the
/// following query parameters:
///
/// <ul>
/// <li> <b>vfs</b>: ^The "vfs" parameter may be used to specify the name of
/// a VFS object that provides the operating system interface that should
/// be used to access the database file on disk. ^If this option is set to
/// an empty string the default VFS object is used. ^Specifying an unknown
/// VFS is an error. ^If sqlite3_open_v2() is used and the vfs option is
/// present, then the VFS specified by the option takes precedence over
/// the value passed as the fourth parameter to sqlite3_open_v2().
///
/// <li> <b>mode</b>: ^(The mode parameter may be set to either "ro", "rw",
/// "rwc", or "memory". Attempting to set it to any other value is
/// an error)^.
/// ^If "ro" is specified, then the database is opened for read-only
/// access, just as if the [SQLITE_OPEN_READONLY] flag had been set in the
/// third argument to sqlite3_open_v2(). ^If the mode option is set to
/// "rw", then the database is opened for read-write (but not create)
/// access, as if SQLITE_OPEN_READWRITE (but not SQLITE_OPEN_CREATE) had
/// been set. ^Value "rwc" is equivalent to setting both
/// SQLITE_OPEN_READWRITE and SQLITE_OPEN_CREATE. ^If the mode option is
/// set to "memory" then a pure [in-memory database] that never reads
/// or writes from disk is used. ^It is an error to specify a value for
/// the mode parameter that is less restrictive than that specified by
/// the flags passed in the third parameter to sqlite3_open_v2().
///
/// <li> <b>cache</b>: ^The cache parameter may be set to either "shared" or
/// "private". ^Setting it to "shared" is equivalent to setting the
/// SQLITE_OPEN_SHAREDCACHE bit in the flags argument passed to
/// sqlite3_open_v2(). ^Setting the cache parameter to "private" is
/// equivalent to setting the SQLITE_OPEN_PRIVATECACHE bit.
/// ^If sqlite3_open_v2() is used and the "cache" parameter is present in
/// a URI filename, its value overrides any behavior requested by setting
/// SQLITE_OPEN_PRIVATECACHE or SQLITE_OPEN_SHAREDCACHE flag.
///
/// <li> <b>psow</b>: ^The psow parameter indicates whether or not the
/// [powersafe overwrite] property does or does not apply to the
/// storage media on which the database file resides.
///
/// <li> <b>nolock</b>: ^The nolock parameter is a boolean query parameter
/// which if set disables file locking in rollback journal modes. This
/// is useful for accessing a database on a filesystem that does not
/// support locking. Caution: Database corruption might result if two
/// or more processes write to the same database and any one of those
/// processes uses nolock=1.
///
/// <li> <b>immutable</b>: ^The immutable parameter is a boolean query
/// parameter that indicates that the database file is stored on
/// read-only media. ^When immutable is set, SQLite assumes that the
/// database file cannot be changed, even by a process with higher
/// privilege, and so the database is opened read-only and all locking
/// and change detection is disabled. Caution: Setting the immutable
/// property on a database file that does in fact change can result
/// in incorrect query results and/or [SQLITE_CORRUPT] errors.
/// See also: [SQLITE_IOCAP_IMMUTABLE].
///
/// </ul>
///
/// ^Specifying an unknown parameter in the query component of a URI is not an
/// error. Future versions of SQLite might understand additional query
/// parameters. See "[query parameters with special meaning to SQLite]" for
/// additional information.
///
/// [[URI filename examples]] <h3>URI filename examples</h3>
///
/// <table border="1" align=center cellpadding=5>
/// <tr><th> URI filenames <th> Results
/// <tr><td> file:data.db <td>
/// Open the file "data.db" in the current directory.
/// <tr><td> file:/home/fred/data.db<br>
/// file:///home/fred/data.db <br>
/// file://localhost/home/fred/data.db <br> <td>
/// Open the database file "/home/fred/data.db".
/// <tr><td> file://darkstar/home/fred/data.db <td>
/// An error. "darkstar" is not a recognized authority.
/// <tr><td style="white-space:nowrap">
/// file:///C:/Documents%20and%20Settings/fred/Desktop/data.db
/// <td> Windows only: Open the file "data.db" on fred's desktop on drive
/// C:. Note that the %20 escaping in this example is not strictly
/// necessary - space characters can be used literally
/// in URI filenames.
/// <tr><td> file:data.db?mode=ro&cache=private <td>
/// Open file "data.db" in the current directory for read-only access.
/// Regardless of whether or not shared-cache mode is enabled by
/// default, use a private cache.
/// <tr><td> file:/home/fred/data.db?vfs=unix-dotfile <td>
/// Open file "/home/fred/data.db". Use the special VFS "unix-dotfile"
/// that uses dot-files in place of posix advisory locking.
/// <tr><td> file:data.db?mode=readonly <td>
/// An error. "readonly" is not a valid option for the "mode" parameter.
/// </table>
///
/// ^URI hexadecimal escape sequences (%HH) are supported within the path and
/// query components of a URI. A hexadecimal escape sequence consists of a
/// percent sign - "%" - followed by exactly two hexadecimal digits
/// specifying an octet value. ^Before the path or query components of a
/// URI filename are interpreted, they are encoded using UTF-8 and all
/// hexadecimal escape sequences replaced by a single byte containing the
/// corresponding octet. If this process generates an invalid UTF-8 encoding,
/// the results are undefined.
///
/// <b>Note to Windows users:</b> The encoding used for the filename argument
/// of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
/// codepage is currently defined. Filenames containing international
/// characters must be converted to UTF-8 prior to passing them into
/// sqlite3_open() or sqlite3_open_v2().
///
/// <b>Note to Windows Runtime users:</b> The temporary directory must be set
/// prior to calling sqlite3_open() or sqlite3_open_v2(). Otherwise, various
/// features that require the use of temporary files may fail.
///
/// See also: [sqlite3_temp_directory]
int sqlite3_open(
ffi.Pointer<ffi.Int8> filename,
ffi.Pointer<ffi.Pointer<sqlite3>> ppDb,
) {
_sqlite3_open ??= _dylib
.lookupFunction<_c_sqlite3_open, _dart_sqlite3_open>('sqlite3_open');
return _sqlite3_open(
filename,
ppDb,
);
}
_dart_sqlite3_open _sqlite3_open;
int sqlite3_open16(
ffi.Pointer<ffi.Void> filename,
ffi.Pointer<ffi.Pointer<sqlite3>> ppDb,
) {
_sqlite3_open16 ??=
_dylib.lookupFunction<_c_sqlite3_open16, _dart_sqlite3_open16>(
'sqlite3_open16');
return _sqlite3_open16(
filename,
ppDb,
);
}
_dart_sqlite3_open16 _sqlite3_open16;
int sqlite3_open_v2(
ffi.Pointer<ffi.Int8> filename,
ffi.Pointer<ffi.Pointer<sqlite3>> ppDb,
int flags,
ffi.Pointer<ffi.Int8> zVfs,
) {
_sqlite3_open_v2 ??=
_dylib.lookupFunction<_c_sqlite3_open_v2, _dart_sqlite3_open_v2>(
'sqlite3_open_v2');
return _sqlite3_open_v2(
filename,
ppDb,
flags,
zVfs,
);
}
_dart_sqlite3_open_v2 _sqlite3_open_v2;
/// CAPI3REF: Obtain Values For URI Parameters
///
/// These are utility routines, useful to [VFS|custom VFS implementations],
/// that check if a database file was a URI that contained a specific query
/// parameter, and if so obtains the value of that query parameter.
///
/// The first parameter to these interfaces (hereafter referred to
/// as F) must be one of:
/// <ul>
/// <li> A database filename pointer created by the SQLite core and
/// passed into the xOpen() method of a VFS implemention, or
/// <li> A filename obtained from [sqlite3_db_filename()], or
/// <li> A new filename constructed using [sqlite3_create_filename()].
/// </ul>
/// If the F parameter is not one of the above, then the behavior is
/// undefined and probably undesirable. Older versions of SQLite were
/// more tolerant of invalid F parameters than newer versions.
///
/// If F is a suitable filename (as described in the previous paragraph)
/// and if P is the name of the query parameter, then
/// sqlite3_uri_parameter(F,P) returns the value of the P
/// parameter if it exists or a NULL pointer if P does not appear as a
/// query parameter on F. If P is a query parameter of F and it
/// has no explicit value, then sqlite3_uri_parameter(F,P) returns
/// a pointer to an empty string.
///
/// The sqlite3_uri_boolean(F,P,B) routine assumes that P is a boolean
/// parameter and returns true (1) or false (0) according to the value
/// of P. The sqlite3_uri_boolean(F,P,B) routine returns true (1) if the
/// value of query parameter P is one of "yes", "true", or "on" in any
/// case or if the value begins with a non-zero number. The
/// sqlite3_uri_boolean(F,P,B) routines returns false (0) if the value of
/// query parameter P is one of "no", "false", or "off" in any case or
/// if the value begins with a numeric zero. If P is not a query
/// parameter on F or if the value of P does not match any of the
/// above, then sqlite3_uri_boolean(F,P,B) returns (B!=0).
///
/// The sqlite3_uri_int64(F,P,D) routine converts the value of P into a
/// 64-bit signed integer and returns that integer, or D if P does not
/// exist. If the value of P is something other than an integer, then
/// zero is returned.
///
/// The sqlite3_uri_key(F,N) returns a pointer to the name (not
/// the value) of the N-th query parameter for filename F, or a NULL
/// pointer if N is less than zero or greater than the number of query
/// parameters minus 1. The N value is zero-based so N should be 0 to obtain
/// the name of the first query parameter, 1 for the second parameter, and
/// so forth.
///
/// If F is a NULL pointer, then sqlite3_uri_parameter(F,P) returns NULL and
/// sqlite3_uri_boolean(F,P,B) returns B. If F is not a NULL pointer and
/// is not a database file pathname pointer that the SQLite core passed
/// into the xOpen VFS method, then the behavior of this routine is undefined
/// and probably undesirable.
///
/// Beginning with SQLite [version 3.31.0] ([dateof:3.31.0]) the input F
/// parameter can also be the name of a rollback journal file or WAL file
/// in addition to the main database file. Prior to version 3.31.0, these
/// routines would only work if F was the name of the main database file.
/// When the F parameter is the name of the rollback journal or WAL file,
/// it has access to all the same query parameters as were found on the
/// main database file.
///
/// See the [URI filename] documentation for additional information.
ffi.Pointer<ffi.Int8> sqlite3_uri_parameter(
ffi.Pointer<ffi.Int8> zFilename,
ffi.Pointer<ffi.Int8> zParam,
) {
_sqlite3_uri_parameter ??= _dylib.lookupFunction<_c_sqlite3_uri_parameter,
_dart_sqlite3_uri_parameter>('sqlite3_uri_parameter');
return _sqlite3_uri_parameter(
zFilename,
zParam,
);
}
_dart_sqlite3_uri_parameter _sqlite3_uri_parameter;
int sqlite3_uri_boolean(
ffi.Pointer<ffi.Int8> zFile,
ffi.Pointer<ffi.Int8> zParam,
int bDefault,
) {
_sqlite3_uri_boolean ??= _dylib.lookupFunction<_c_sqlite3_uri_boolean,
_dart_sqlite3_uri_boolean>('sqlite3_uri_boolean');
return _sqlite3_uri_boolean(
zFile,
zParam,
bDefault,
);
}
_dart_sqlite3_uri_boolean _sqlite3_uri_boolean;
int sqlite3_uri_int64(
ffi.Pointer<ffi.Int8> arg0,
ffi.Pointer<ffi.Int8> arg1,
int arg2,
) {
_sqlite3_uri_int64 ??=
_dylib.lookupFunction<_c_sqlite3_uri_int64, _dart_sqlite3_uri_int64>(
'sqlite3_uri_int64');
return _sqlite3_uri_int64(
arg0,
arg1,
arg2,
);
}
_dart_sqlite3_uri_int64 _sqlite3_uri_int64;
ffi.Pointer<ffi.Int8> sqlite3_uri_key(
ffi.Pointer<ffi.Int8> zFilename,
int N,
) {
_sqlite3_uri_key ??=
_dylib.lookupFunction<_c_sqlite3_uri_key, _dart_sqlite3_uri_key>(
'sqlite3_uri_key');
return _sqlite3_uri_key(
zFilename,
N,
);
}
_dart_sqlite3_uri_key _sqlite3_uri_key;
/// CAPI3REF: Translate filenames
///
/// These routines are available to [VFS|custom VFS implementations] for
/// translating filenames between the main database file, the journal file,
/// and the WAL file.
///
/// If F is the name of an sqlite database file, journal file, or WAL file
/// passed by the SQLite core into the VFS, then sqlite3_filename_database(F)
/// returns the name of the corresponding database file.
///
/// If F is the name of an sqlite database file, journal file, or WAL file
/// passed by the SQLite core into the VFS, or if F is a database filename
/// obtained from [sqlite3_db_filename()], then sqlite3_filename_journal(F)
/// returns the name of the corresponding rollback journal file.
///
/// If F is the name of an sqlite database file, journal file, or WAL file
/// that was passed by the SQLite core into the VFS, or if F is a database
/// filename obtained from [sqlite3_db_filename()], then
/// sqlite3_filename_wal(F) returns the name of the corresponding
/// WAL file.
///
/// In all of the above, if F is not the name of a database, journal or WAL
/// filename passed into the VFS from the SQLite core and F is not the
/// return value from [sqlite3_db_filename()], then the result is
/// undefined and is likely a memory access violation.
ffi.Pointer<ffi.Int8> sqlite3_filename_database(
ffi.Pointer<ffi.Int8> arg0,
) {
_sqlite3_filename_database ??= _dylib.lookupFunction<
_c_sqlite3_filename_database,
_dart_sqlite3_filename_database>('sqlite3_filename_database');
return _sqlite3_filename_database(
arg0,
);
}
_dart_sqlite3_filename_database _sqlite3_filename_database;
ffi.Pointer<ffi.Int8> sqlite3_filename_journal(
ffi.Pointer<ffi.Int8> arg0,
) {
_sqlite3_filename_journal ??= _dylib.lookupFunction<
_c_sqlite3_filename_journal,
_dart_sqlite3_filename_journal>('sqlite3_filename_journal');
return _sqlite3_filename_journal(
arg0,
);
}
_dart_sqlite3_filename_journal _sqlite3_filename_journal;
ffi.Pointer<ffi.Int8> sqlite3_filename_wal(
ffi.Pointer<ffi.Int8> arg0,
) {
_sqlite3_filename_wal ??= _dylib.lookupFunction<_c_sqlite3_filename_wal,
_dart_sqlite3_filename_wal>('sqlite3_filename_wal');
return _sqlite3_filename_wal(
arg0,
);
}
_dart_sqlite3_filename_wal _sqlite3_filename_wal;
/// CAPI3REF: Database File Corresponding To A Journal
///
/// ^If X is the name of a rollback or WAL-mode journal file that is
/// passed into the xOpen method of [sqlite3_vfs], then
/// sqlite3_database_file_object(X) returns a pointer to the [sqlite3_file]
/// object that represents the main database file.
///
/// This routine is intended for use in custom [VFS] implementations
/// only. It is not a general-purpose interface.
/// The argument sqlite3_file_object(X) must be a filename pointer that
/// has been passed into [sqlite3_vfs].xOpen method where the
/// flags parameter to xOpen contains one of the bits
/// [SQLITE_OPEN_MAIN_JOURNAL] or [SQLITE_OPEN_WAL]. Any other use
/// of this routine results in undefined and probably undesirable
/// behavior.
ffi.Pointer<sqlite3_file> sqlite3_database_file_object(
ffi.Pointer<ffi.Int8> arg0,
) {
_sqlite3_database_file_object ??= _dylib.lookupFunction<
_c_sqlite3_database_file_object,
_dart_sqlite3_database_file_object>('sqlite3_database_file_object');
return _sqlite3_database_file_object(
arg0,
);
}
_dart_sqlite3_database_file_object _sqlite3_database_file_object;
/// CAPI3REF: Create and Destroy VFS Filenames
///
/// These interfces are provided for use by [VFS shim] implementations and
/// are not useful outside of that context.
///
/// The sqlite3_create_filename(D,J,W,N,P) allocates memory to hold a version of
/// database filename D with corresponding journal file J and WAL file W and
/// with N URI parameters key/values pairs in the array P. The result from
/// sqlite3_create_filename(D,J,W,N,P) is a pointer to a database filename that
/// is safe to pass to routines like:
/// <ul>
/// <li> [sqlite3_uri_parameter()],
/// <li> [sqlite3_uri_boolean()],
/// <li> [sqlite3_uri_int64()],
/// <li> [sqlite3_uri_key()],
/// <li> [sqlite3_filename_database()],
/// <li> [sqlite3_filename_journal()], or
/// <li> [sqlite3_filename_wal()].
/// </ul>
/// If a memory allocation error occurs, sqlite3_create_filename() might
/// return a NULL pointer. The memory obtained from sqlite3_create_filename(X)
/// must be released by a corresponding call to sqlite3_free_filename(Y).
///
/// The P parameter in sqlite3_create_filename(D,J,W,N,P) should be an array
/// of 2*N pointers to strings. Each pair of pointers in this array corresponds
/// to a key and value for a query parameter. The P parameter may be a NULL
/// pointer if N is zero. None of the 2*N pointers in the P array may be
/// NULL pointers and key pointers should not be empty strings.
/// None of the D, J, or W parameters to sqlite3_create_filename(D,J,W,N,P) may
/// be NULL pointers, though they can be empty strings.
///
/// The sqlite3_free_filename(Y) routine releases a memory allocation
/// previously obtained from sqlite3_create_filename(). Invoking
/// sqlite3_free_filename(Y) where Y is a NULL pointer is a harmless no-op.
///
/// If the Y parameter to sqlite3_free_filename(Y) is anything other
/// than a NULL pointer or a pointer previously acquired from
/// sqlite3_create_filename(), then bad things such as heap
/// corruption or segfaults may occur. The value Y should be
/// used again after sqlite3_free_filename(Y) has been called. This means
/// that if the [sqlite3_vfs.xOpen()] method of a VFS has been called using Y,
/// then the corresponding [sqlite3_module.xClose() method should also be
/// invoked prior to calling sqlite3_free_filename(Y).
ffi.Pointer<ffi.Int8> sqlite3_create_filename(
ffi.Pointer<ffi.Int8> zDatabase,
ffi.Pointer<ffi.Int8> zJournal,
ffi.Pointer<ffi.Int8> zWal,
int nParam,
ffi.Pointer<ffi.Pointer<ffi.Int8>> azParam,
) {
_sqlite3_create_filename ??= _dylib.lookupFunction<
_c_sqlite3_create_filename,
_dart_sqlite3_create_filename>('sqlite3_create_filename');
return _sqlite3_create_filename(
zDatabase,
zJournal,
zWal,
nParam,
azParam,
);
}
_dart_sqlite3_create_filename _sqlite3_create_filename;
void sqlite3_free_filename(
ffi.Pointer<ffi.Int8> arg0,
) {
_sqlite3_free_filename ??= _dylib.lookupFunction<_c_sqlite3_free_filename,
_dart_sqlite3_free_filename>('sqlite3_free_filename');
return _sqlite3_free_filename(
arg0,
);
}
_dart_sqlite3_free_filename _sqlite3_free_filename;
/// CAPI3REF: Error Codes And Messages
/// METHOD: sqlite3
///
/// ^If the most recent sqlite3_* API call associated with
/// [database connection] D failed, then the sqlite3_errcode(D) interface
/// returns the numeric [result code] or [extended result code] for that
/// API call.
/// ^The sqlite3_extended_errcode()
/// interface is the same except that it always returns the
/// [extended result code] even when extended result codes are
/// disabled.
///
/// The values returned by sqlite3_errcode() and/or
/// sqlite3_extended_errcode() might change with each API call.
/// Except, there are some interfaces that are guaranteed to never
/// change the value of the error code. The error-code preserving
/// interfaces are:
///
/// <ul>
/// <li> sqlite3_errcode()
/// <li> sqlite3_extended_errcode()
/// <li> sqlite3_errmsg()
/// <li> sqlite3_errmsg16()
/// </ul>
///
/// ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
/// text that describes the error, as either UTF-8 or UTF-16 respectively.
/// ^(Memory to hold the error message string is managed internally.
/// The application does not need to worry about freeing the result.
/// However, the error string might be overwritten or deallocated by
/// subsequent calls to other SQLite interface functions.)^
///
/// ^The sqlite3_errstr() interface returns the English-language text
/// that describes the [result code], as UTF-8.
/// ^(Memory to hold the error message string is managed internally
/// and must not be freed by the application)^.
///
/// When the serialized [threading mode] is in use, it might be the
/// case that a second error occurs on a separate thread in between
/// the time of the first error and the call to these interfaces.
/// When that happens, the second error will be reported since these
/// interfaces always report the most recent result. To avoid
/// this, each thread can obtain exclusive use of the [database connection] D
/// by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning
/// to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after
/// all calls to the interfaces listed here are completed.
///
/// If an interface fails with SQLITE_MISUSE, that means the interface
/// was invoked incorrectly by the application. In that case, the
/// error code and message may or may not be set.
int sqlite3_errcode(
ffi.Pointer<sqlite3> db,
) {
_sqlite3_errcode ??=
_dylib.lookupFunction<_c_sqlite3_errcode, _dart_sqlite3_errcode>(
'sqlite3_errcode');
return _sqlite3_errcode(
db,
);
}
_dart_sqlite3_errcode _sqlite3_errcode;
int sqlite3_extended_errcode(
ffi.Pointer<sqlite3> db,
) {
_sqlite3_extended_errcode ??= _dylib.lookupFunction<
_c_sqlite3_extended_errcode,
_dart_sqlite3_extended_errcode>('sqlite3_extended_errcode');
return _sqlite3_extended_errcode(
db,
);
}
_dart_sqlite3_extended_errcode _sqlite3_extended_errcode;
ffi.Pointer<ffi.Int8> sqlite3_errmsg(
ffi.Pointer<sqlite3> arg0,
) {
_sqlite3_errmsg ??=
_dylib.lookupFunction<_c_sqlite3_errmsg, _dart_sqlite3_errmsg>(
'sqlite3_errmsg');
return _sqlite3_errmsg(
arg0,
);
}
_dart_sqlite3_errmsg _sqlite3_errmsg;
ffi.Pointer<ffi.Void> sqlite3_errmsg16(
ffi.Pointer<sqlite3> arg0,
) {
_sqlite3_errmsg16 ??=
_dylib.lookupFunction<_c_sqlite3_errmsg16, _dart_sqlite3_errmsg16>(
'sqlite3_errmsg16');
return _sqlite3_errmsg16(
arg0,
);
}
_dart_sqlite3_errmsg16 _sqlite3_errmsg16;
ffi.Pointer<ffi.Int8> sqlite3_errstr(
int arg0,
) {
_sqlite3_errstr ??=
_dylib.lookupFunction<_c_sqlite3_errstr, _dart_sqlite3_errstr>(
'sqlite3_errstr');
return _sqlite3_errstr(
arg0,
);
}
_dart_sqlite3_errstr _sqlite3_errstr;
/// CAPI3REF: Run-time Limits
/// METHOD: sqlite3
///
/// ^(This interface allows the size of various constructs to be limited
/// on a connection by connection basis. The first parameter is the
/// [database connection] whose limit is to be set or queried. The
/// second parameter is one of the [limit categories] that define a
/// class of constructs to be size limited. The third parameter is the
/// new limit for that construct.)^
///
/// ^If the new limit is a negative number, the limit is unchanged.
/// ^(For each limit category SQLITE_LIMIT_<i>NAME</i> there is a
/// [limits | hard upper bound]
/// set at compile-time by a C preprocessor macro called
/// [limits | SQLITE_MAX_<i>NAME</i>].
/// (The "_LIMIT_" in the name is changed to "_MAX_".))^
/// ^Attempts to increase a limit above its hard upper bound are
/// silently truncated to the hard upper bound.
///
/// ^Regardless of whether or not the limit was changed, the
/// [sqlite3_limit()] interface returns the prior value of the limit.
/// ^Hence, to find the current value of a limit without changing it,
/// simply invoke this interface with the third parameter set to -1.
///
/// Run-time limits are intended for use in applications that manage
/// both their own internal database and also databases that are controlled
/// by untrusted external sources. An example application might be a
/// web browser that has its own databases for storing history and
/// separate databases controlled by JavaScript applications downloaded
/// off the Internet. The internal databases can be given the
/// large, default limits. Databases managed by external sources can
/// be given much smaller limits designed to prevent a denial of service
/// attack. Developers might also want to use the [sqlite3_set_authorizer()]
/// interface to further control untrusted SQL. The size of the database
/// created by an untrusted script can be contained using the
/// [max_page_count] [PRAGMA].
///
/// New run-time limit categories may be added in future releases.
int sqlite3_limit(
ffi.Pointer<sqlite3> arg0,
int id,
int newVal,
) {
_sqlite3_limit ??= _dylib
.lookupFunction<_c_sqlite3_limit, _dart_sqlite3_limit>('sqlite3_limit');
return _sqlite3_limit(
arg0,
id,
newVal,
);
}
_dart_sqlite3_limit _sqlite3_limit;
/// CAPI3REF: Compiling An SQL Statement
/// KEYWORDS: {SQL statement compiler}
/// METHOD: sqlite3
/// CONSTRUCTOR: sqlite3_stmt
///
/// To execute an SQL statement, it must first be compiled into a byte-code
/// program using one of these routines. Or, in other words, these routines
/// are constructors for the [prepared statement] object.
///
/// The preferred routine to use is [sqlite3_prepare_v2()]. The
/// [sqlite3_prepare()] interface is legacy and should be avoided.
/// [sqlite3_prepare_v3()] has an extra "prepFlags" option that is used
/// for special purposes.
///
/// The use of the UTF-8 interfaces is preferred, as SQLite currently
/// does all parsing using UTF-8. The UTF-16 interfaces are provided
/// as a convenience. The UTF-16 interfaces work by converting the
/// input text into UTF-8, then invoking the corresponding UTF-8 interface.
///
/// The first argument, "db", is a [database connection] obtained from a
/// prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or
/// [sqlite3_open16()]. The database connection must not have been closed.
///
/// The second argument, "zSql", is the statement to be compiled, encoded
/// as either UTF-8 or UTF-16. The sqlite3_prepare(), sqlite3_prepare_v2(),
/// and sqlite3_prepare_v3()
/// interfaces use UTF-8, and sqlite3_prepare16(), sqlite3_prepare16_v2(),
/// and sqlite3_prepare16_v3() use UTF-16.
///
/// ^If the nByte argument is negative, then zSql is read up to the
/// first zero terminator. ^If nByte is positive, then it is the
/// number of bytes read from zSql. ^If nByte is zero, then no prepared
/// statement is generated.
/// If the caller knows that the supplied string is nul-terminated, then
/// there is a small performance advantage to passing an nByte parameter that
/// is the number of bytes in the input string <i>including</i>
/// the nul-terminator.
///
/// ^If pzTail is not NULL then *pzTail is made to point to the first byte
/// past the end of the first SQL statement in zSql. These routines only
/// compile the first statement in zSql, so *pzTail is left pointing to
/// what remains uncompiled.
///
/// ^*ppStmt is left pointing to a compiled [prepared statement] that can be
/// executed using [sqlite3_step()]. ^If there is an error, *ppStmt is set
/// to NULL. ^If the input text contains no SQL (if the input is an empty
/// string or a comment) then *ppStmt is set to NULL.
/// The calling procedure is responsible for deleting the compiled
/// SQL statement using [sqlite3_finalize()] after it has finished with it.
/// ppStmt may not be NULL.
///
/// ^On success, the sqlite3_prepare() family of routines return [SQLITE_OK];
/// otherwise an [error code] is returned.
///
/// The sqlite3_prepare_v2(), sqlite3_prepare_v3(), sqlite3_prepare16_v2(),
/// and sqlite3_prepare16_v3() interfaces are recommended for all new programs.
/// The older interfaces (sqlite3_prepare() and sqlite3_prepare16())
/// are retained for backwards compatibility, but their use is discouraged.
/// ^In the "vX" interfaces, the prepared statement
/// that is returned (the [sqlite3_stmt] object) contains a copy of the
/// original SQL text. This causes the [sqlite3_step()] interface to
/// behave differently in three ways:
///
/// <ol>
/// <li>
/// ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
/// always used to do, [sqlite3_step()] will automatically recompile the SQL
/// statement and try to run it again. As many as [SQLITE_MAX_SCHEMA_RETRY]
/// retries will occur before sqlite3_step() gives up and returns an error.
/// </li>
///
/// <li>
/// ^When an error occurs, [sqlite3_step()] will return one of the detailed
/// [error codes] or [extended error codes]. ^The legacy behavior was that
/// [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code
/// and the application would have to make a second call to [sqlite3_reset()]
/// in order to find the underlying cause of the problem. With the "v2" prepare
/// interfaces, the underlying reason for the error is returned immediately.
/// </li>
///
/// <li>
/// ^If the specific value bound to a [parameter | host parameter] in the
/// WHERE clause might influence the choice of query plan for a statement,
/// then the statement will be automatically recompiled, as if there had been
/// a schema change, on the first [sqlite3_step()] call following any change
/// to the [sqlite3_bind_text | bindings] of that [parameter].
/// ^The specific value of a WHERE-clause [parameter] might influence the
/// choice of query plan if the parameter is the left-hand side of a [LIKE]
/// or [GLOB] operator or if the parameter is compared to an indexed column
/// and the [SQLITE_ENABLE_STAT4] compile-time option is enabled.
/// </li>
/// </ol>
///
/// <p>^sqlite3_prepare_v3() differs from sqlite3_prepare_v2() only in having
/// the extra prepFlags parameter, which is a bit array consisting of zero or
/// more of the [SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_*] flags. ^The
/// sqlite3_prepare_v2() interface works exactly the same as
/// sqlite3_prepare_v3() with a zero prepFlags parameter.
int sqlite3_prepare(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSql,
int nByte,
ffi.Pointer<ffi.Pointer<sqlite3_stmt>> ppStmt,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzTail,
) {
_sqlite3_prepare ??=
_dylib.lookupFunction<_c_sqlite3_prepare, _dart_sqlite3_prepare>(
'sqlite3_prepare');
return _sqlite3_prepare(
db,
zSql,
nByte,
ppStmt,
pzTail,
);
}
_dart_sqlite3_prepare _sqlite3_prepare;
int sqlite3_prepare_v2(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSql,
int nByte,
ffi.Pointer<ffi.Pointer<sqlite3_stmt>> ppStmt,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzTail,
) {
_sqlite3_prepare_v2 ??=
_dylib.lookupFunction<_c_sqlite3_prepare_v2, _dart_sqlite3_prepare_v2>(
'sqlite3_prepare_v2');
return _sqlite3_prepare_v2(
db,
zSql,
nByte,
ppStmt,
pzTail,
);
}
_dart_sqlite3_prepare_v2 _sqlite3_prepare_v2;
int sqlite3_prepare_v3(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSql,
int nByte,
int prepFlags,
ffi.Pointer<ffi.Pointer<sqlite3_stmt>> ppStmt,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzTail,
) {
_sqlite3_prepare_v3 ??=
_dylib.lookupFunction<_c_sqlite3_prepare_v3, _dart_sqlite3_prepare_v3>(
'sqlite3_prepare_v3');
return _sqlite3_prepare_v3(
db,
zSql,
nByte,
prepFlags,
ppStmt,
pzTail,
);
}
_dart_sqlite3_prepare_v3 _sqlite3_prepare_v3;
int sqlite3_prepare16(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Void> zSql,
int nByte,
ffi.Pointer<ffi.Pointer<sqlite3_stmt>> ppStmt,
ffi.Pointer<ffi.Pointer<ffi.Void>> pzTail,
) {
_sqlite3_prepare16 ??=
_dylib.lookupFunction<_c_sqlite3_prepare16, _dart_sqlite3_prepare16>(
'sqlite3_prepare16');
return _sqlite3_prepare16(
db,
zSql,
nByte,
ppStmt,
pzTail,
);
}
_dart_sqlite3_prepare16 _sqlite3_prepare16;
int sqlite3_prepare16_v2(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Void> zSql,
int nByte,
ffi.Pointer<ffi.Pointer<sqlite3_stmt>> ppStmt,
ffi.Pointer<ffi.Pointer<ffi.Void>> pzTail,
) {
_sqlite3_prepare16_v2 ??= _dylib.lookupFunction<_c_sqlite3_prepare16_v2,
_dart_sqlite3_prepare16_v2>('sqlite3_prepare16_v2');
return _sqlite3_prepare16_v2(
db,
zSql,
nByte,
ppStmt,
pzTail,
);
}
_dart_sqlite3_prepare16_v2 _sqlite3_prepare16_v2;
int sqlite3_prepare16_v3(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Void> zSql,
int nByte,
int prepFlags,
ffi.Pointer<ffi.Pointer<sqlite3_stmt>> ppStmt,
ffi.Pointer<ffi.Pointer<ffi.Void>> pzTail,
) {
_sqlite3_prepare16_v3 ??= _dylib.lookupFunction<_c_sqlite3_prepare16_v3,
_dart_sqlite3_prepare16_v3>('sqlite3_prepare16_v3');
return _sqlite3_prepare16_v3(
db,
zSql,
nByte,
prepFlags,
ppStmt,
pzTail,
);
}
_dart_sqlite3_prepare16_v3 _sqlite3_prepare16_v3;
/// CAPI3REF: Retrieving Statement SQL
/// METHOD: sqlite3_stmt
///
/// ^The sqlite3_sql(P) interface returns a pointer to a copy of the UTF-8
/// SQL text used to create [prepared statement] P if P was
/// created by [sqlite3_prepare_v2()], [sqlite3_prepare_v3()],
/// [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()].
/// ^The sqlite3_expanded_sql(P) interface returns a pointer to a UTF-8
/// string containing the SQL text of prepared statement P with
/// [bound parameters] expanded.
/// ^The sqlite3_normalized_sql(P) interface returns a pointer to a UTF-8
/// string containing the normalized SQL text of prepared statement P. The
/// semantics used to normalize a SQL statement are unspecified and subject
/// to change. At a minimum, literal values will be replaced with suitable
/// placeholders.
///
/// ^(For example, if a prepared statement is created using the SQL
/// text "SELECT $abc,:xyz" and if parameter $abc is bound to integer 2345
/// and parameter :xyz is unbound, then sqlite3_sql() will return
/// the original string, "SELECT $abc,:xyz" but sqlite3_expanded_sql()
/// will return "SELECT 2345,NULL".)^
///
/// ^The sqlite3_expanded_sql() interface returns NULL if insufficient memory
/// is available to hold the result, or if the result would exceed the
/// the maximum string length determined by the [SQLITE_LIMIT_LENGTH].
///
/// ^The [SQLITE_TRACE_SIZE_LIMIT] compile-time option limits the size of
/// bound parameter expansions. ^The [SQLITE_OMIT_TRACE] compile-time
/// option causes sqlite3_expanded_sql() to always return NULL.
///
/// ^The strings returned by sqlite3_sql(P) and sqlite3_normalized_sql(P)
/// are managed by SQLite and are automatically freed when the prepared
/// statement is finalized.
/// ^The string returned by sqlite3_expanded_sql(P), on the other hand,
/// is obtained from [sqlite3_malloc()] and must be free by the application
/// by passing it to [sqlite3_free()].
ffi.Pointer<ffi.Int8> sqlite3_sql(
ffi.Pointer<sqlite3_stmt> pStmt,
) {
_sqlite3_sql ??=
_dylib.lookupFunction<_c_sqlite3_sql, _dart_sqlite3_sql>('sqlite3_sql');
return _sqlite3_sql(
pStmt,
);
}
_dart_sqlite3_sql _sqlite3_sql;
ffi.Pointer<ffi.Int8> sqlite3_expanded_sql(
ffi.Pointer<sqlite3_stmt> pStmt,
) {
_sqlite3_expanded_sql ??= _dylib.lookupFunction<_c_sqlite3_expanded_sql,
_dart_sqlite3_expanded_sql>('sqlite3_expanded_sql');
return _sqlite3_expanded_sql(
pStmt,
);
}
_dart_sqlite3_expanded_sql _sqlite3_expanded_sql;
ffi.Pointer<ffi.Int8> sqlite3_normalized_sql(
ffi.Pointer<sqlite3_stmt> pStmt,
) {
_sqlite3_normalized_sql ??= _dylib.lookupFunction<_c_sqlite3_normalized_sql,
_dart_sqlite3_normalized_sql>('sqlite3_normalized_sql');
return _sqlite3_normalized_sql(
pStmt,
);
}
_dart_sqlite3_normalized_sql _sqlite3_normalized_sql;
/// CAPI3REF: Determine If An SQL Statement Writes The Database
/// METHOD: sqlite3_stmt
///
/// ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if
/// and only if the [prepared statement] X makes no direct changes to
/// the content of the database file.
///
/// Note that [application-defined SQL functions] or
/// [virtual tables] might change the database indirectly as a side effect.
/// ^(For example, if an application defines a function "eval()" that
/// calls [sqlite3_exec()], then the following SQL statement would
/// change the database file through side-effects:
///
/// <blockquote><pre>
/// SELECT eval('DELETE FROM t1') FROM t2;
/// </pre></blockquote>
///
/// But because the [SELECT] statement does not change the database file
/// directly, sqlite3_stmt_readonly() would still return true.)^
///
/// ^Transaction control statements such as [BEGIN], [COMMIT], [ROLLBACK],
/// [SAVEPOINT], and [RELEASE] cause sqlite3_stmt_readonly() to return true,
/// since the statements themselves do not actually modify the database but
/// rather they control the timing of when other statements modify the
/// database. ^The [ATTACH] and [DETACH] statements also cause
/// sqlite3_stmt_readonly() to return true since, while those statements
/// change the configuration of a database connection, they do not make
/// changes to the content of the database files on disk.
/// ^The sqlite3_stmt_readonly() interface returns true for [BEGIN] since
/// [BEGIN] merely sets internal flags, but the [BEGIN|BEGIN IMMEDIATE] and
/// [BEGIN|BEGIN EXCLUSIVE] commands do touch the database and so
/// sqlite3_stmt_readonly() returns false for those commands.
int sqlite3_stmt_readonly(
ffi.Pointer<sqlite3_stmt> pStmt,
) {
_sqlite3_stmt_readonly ??= _dylib.lookupFunction<_c_sqlite3_stmt_readonly,
_dart_sqlite3_stmt_readonly>('sqlite3_stmt_readonly');
return _sqlite3_stmt_readonly(
pStmt,
);
}
_dart_sqlite3_stmt_readonly _sqlite3_stmt_readonly;
/// CAPI3REF: Query The EXPLAIN Setting For A Prepared Statement
/// METHOD: sqlite3_stmt
///
/// ^The sqlite3_stmt_isexplain(S) interface returns 1 if the
/// prepared statement S is an EXPLAIN statement, or 2 if the
/// statement S is an EXPLAIN QUERY PLAN.
/// ^The sqlite3_stmt_isexplain(S) interface returns 0 if S is
/// an ordinary statement or a NULL pointer.
int sqlite3_stmt_isexplain(
ffi.Pointer<sqlite3_stmt> pStmt,
) {
_sqlite3_stmt_isexplain ??= _dylib.lookupFunction<_c_sqlite3_stmt_isexplain,
_dart_sqlite3_stmt_isexplain>('sqlite3_stmt_isexplain');
return _sqlite3_stmt_isexplain(
pStmt,
);
}
_dart_sqlite3_stmt_isexplain _sqlite3_stmt_isexplain;
/// CAPI3REF: Determine If A Prepared Statement Has Been Reset
/// METHOD: sqlite3_stmt
///
/// ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the
/// [prepared statement] S has been stepped at least once using
/// [sqlite3_step(S)] but has neither run to completion (returned
/// [SQLITE_DONE] from [sqlite3_step(S)]) nor
/// been reset using [sqlite3_reset(S)]. ^The sqlite3_stmt_busy(S)
/// interface returns false if S is a NULL pointer. If S is not a
/// NULL pointer and is not a pointer to a valid [prepared statement]
/// object, then the behavior is undefined and probably undesirable.
///
/// This interface can be used in combination [sqlite3_next_stmt()]
/// to locate all prepared statements associated with a database
/// connection that are in need of being reset. This can be used,
/// for example, in diagnostic routines to search for prepared
/// statements that are holding a transaction open.
int sqlite3_stmt_busy(
ffi.Pointer<sqlite3_stmt> arg0,
) {
_sqlite3_stmt_busy ??=
_dylib.lookupFunction<_c_sqlite3_stmt_busy, _dart_sqlite3_stmt_busy>(
'sqlite3_stmt_busy');
return _sqlite3_stmt_busy(
arg0,
);
}
_dart_sqlite3_stmt_busy _sqlite3_stmt_busy;
/// CAPI3REF: Binding Values To Prepared Statements
/// KEYWORDS: {host parameter} {host parameters} {host parameter name}
/// KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
/// METHOD: sqlite3_stmt
///
/// ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants,
/// literals may be replaced by a [parameter] that matches one of following
/// templates:
///
/// <ul>
/// <li> ?
/// <li> ?NNN
/// <li> :VVV
/// <li> @VVV
/// <li> $VVV
/// </ul>
///
/// In the templates above, NNN represents an integer literal,
/// and VVV represents an alphanumeric identifier.)^ ^The values of these
/// parameters (also called "host parameter names" or "SQL parameters")
/// can be set using the sqlite3_bind_*() routines defined here.
///
/// ^The first argument to the sqlite3_bind_*() routines is always
/// a pointer to the [sqlite3_stmt] object returned from
/// [sqlite3_prepare_v2()] or its variants.
///
/// ^The second argument is the index of the SQL parameter to be set.
/// ^The leftmost SQL parameter has an index of 1. ^When the same named
/// SQL parameter is used more than once, second and subsequent
/// occurrences have the same index as the first occurrence.
/// ^The index for named parameters can be looked up using the
/// [sqlite3_bind_parameter_index()] API if desired. ^The index
/// for "?NNN" parameters is the value of NNN.
/// ^The NNN value must be between 1 and the [sqlite3_limit()]
/// parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 32766).
///
/// ^The third argument is the value to bind to the parameter.
/// ^If the third parameter to sqlite3_bind_text() or sqlite3_bind_text16()
/// or sqlite3_bind_blob() is a NULL pointer then the fourth parameter
/// is ignored and the end result is the same as sqlite3_bind_null().
/// ^If the third parameter to sqlite3_bind_text() is not NULL, then
/// it should be a pointer to well-formed UTF8 text.
/// ^If the third parameter to sqlite3_bind_text16() is not NULL, then
/// it should be a pointer to well-formed UTF16 text.
/// ^If the third parameter to sqlite3_bind_text64() is not NULL, then
/// it should be a pointer to a well-formed unicode string that is
/// either UTF8 if the sixth parameter is SQLITE_UTF8, or UTF16
/// otherwise.
///
/// [[byte-order determination rules]] ^The byte-order of
/// UTF16 input text is determined by the byte-order mark (BOM, U+FEFF)
/// found in first character, which is removed, or in the absence of a BOM
/// the byte order is the native byte order of the host
/// machine for sqlite3_bind_text16() or the byte order specified in
/// the 6th parameter for sqlite3_bind_text64().)^
/// ^If UTF16 input text contains invalid unicode
/// characters, then SQLite might change those invalid characters
/// into the unicode replacement character: U+FFFD.
///
/// ^(In those routines that have a fourth argument, its value is the
/// number of bytes in the parameter. To be clear: the value is the
/// number of <u>bytes</u> in the value, not the number of characters.)^
/// ^If the fourth parameter to sqlite3_bind_text() or sqlite3_bind_text16()
/// is negative, then the length of the string is
/// the number of bytes up to the first zero terminator.
/// If the fourth parameter to sqlite3_bind_blob() is negative, then
/// the behavior is undefined.
/// If a non-negative fourth parameter is provided to sqlite3_bind_text()
/// or sqlite3_bind_text16() or sqlite3_bind_text64() then
/// that parameter must be the byte offset
/// where the NUL terminator would occur assuming the string were NUL
/// terminated. If any NUL characters occurs at byte offsets less than
/// the value of the fourth parameter then the resulting string value will
/// contain embedded NULs. The result of expressions involving strings
/// with embedded NULs is undefined.
///
/// ^The fifth argument to the BLOB and string binding interfaces
/// is a destructor used to dispose of the BLOB or
/// string after SQLite has finished with it. ^The destructor is called
/// to dispose of the BLOB or string even if the call to the bind API fails,
/// except the destructor is not called if the third parameter is a NULL
/// pointer or the fourth parameter is negative.
/// ^If the fifth argument is
/// the special value [SQLITE_STATIC], then SQLite assumes that the
/// information is in static, unmanaged space and does not need to be freed.
/// ^If the fifth argument has the value [SQLITE_TRANSIENT], then
/// SQLite makes its own private copy of the data immediately, before
/// the sqlite3_bind_*() routine returns.
///
/// ^The sixth argument to sqlite3_bind_text64() must be one of
/// [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE]
/// to specify the encoding of the text in the third parameter. If
/// the sixth argument to sqlite3_bind_text64() is not one of the
/// allowed values shown above, or if the text encoding is different
/// from the encoding specified by the sixth parameter, then the behavior
/// is undefined.
///
/// ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
/// is filled with zeroes. ^A zeroblob uses a fixed amount of memory
/// (just an integer to hold its size) while it is being processed.
/// Zeroblobs are intended to serve as placeholders for BLOBs whose
/// content is later written using
/// [sqlite3_blob_open | incremental BLOB I/O] routines.
/// ^A negative value for the zeroblob results in a zero-length BLOB.
///
/// ^The sqlite3_bind_pointer(S,I,P,T,D) routine causes the I-th parameter in
/// [prepared statement] S to have an SQL value of NULL, but to also be
/// associated with the pointer P of type T. ^D is either a NULL pointer or
/// a pointer to a destructor function for P. ^SQLite will invoke the
/// destructor D with a single argument of P when it is finished using
/// P. The T parameter should be a static string, preferably a string
/// literal. The sqlite3_bind_pointer() routine is part of the
/// [pointer passing interface] added for SQLite 3.20.0.
///
/// ^If any of the sqlite3_bind_*() routines are called with a NULL pointer
/// for the [prepared statement] or with a prepared statement for which
/// [sqlite3_step()] has been called more recently than [sqlite3_reset()],
/// then the call will return [SQLITE_MISUSE]. If any sqlite3_bind_()
/// routine is passed a [prepared statement] that has been finalized, the
/// result is undefined and probably harmful.
///
/// ^Bindings are not cleared by the [sqlite3_reset()] routine.
/// ^Unbound parameters are interpreted as NULL.
///
/// ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an
/// [error code] if anything goes wrong.
/// ^[SQLITE_TOOBIG] might be returned if the size of a string or BLOB
/// exceeds limits imposed by [sqlite3_limit]([SQLITE_LIMIT_LENGTH]) or
/// [SQLITE_MAX_LENGTH].
/// ^[SQLITE_RANGE] is returned if the parameter
/// index is out of range. ^[SQLITE_NOMEM] is returned if malloc() fails.
///
/// See also: [sqlite3_bind_parameter_count()],
/// [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
int sqlite3_bind_blob(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
ffi.Pointer<ffi.Void> arg2,
int n,
ffi.Pointer<ffi.NativeFunction<_typedefC_26>> arg4,
) {
_sqlite3_bind_blob ??=
_dylib.lookupFunction<_c_sqlite3_bind_blob, _dart_sqlite3_bind_blob>(
'sqlite3_bind_blob');
return _sqlite3_bind_blob(
arg0,
arg1,
arg2,
n,
arg4,
);
}
_dart_sqlite3_bind_blob _sqlite3_bind_blob;
int sqlite3_bind_blob64(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
ffi.Pointer<ffi.Void> arg2,
int arg3,
ffi.Pointer<ffi.NativeFunction<_typedefC_27>> arg4,
) {
_sqlite3_bind_blob64 ??= _dylib.lookupFunction<_c_sqlite3_bind_blob64,
_dart_sqlite3_bind_blob64>('sqlite3_bind_blob64');
return _sqlite3_bind_blob64(
arg0,
arg1,
arg2,
arg3,
arg4,
);
}
_dart_sqlite3_bind_blob64 _sqlite3_bind_blob64;
int sqlite3_bind_double(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
double arg2,
) {
_sqlite3_bind_double ??= _dylib.lookupFunction<_c_sqlite3_bind_double,
_dart_sqlite3_bind_double>('sqlite3_bind_double');
return _sqlite3_bind_double(
arg0,
arg1,
arg2,
);
}
_dart_sqlite3_bind_double _sqlite3_bind_double;
int sqlite3_bind_int(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
int arg2,
) {
_sqlite3_bind_int ??=
_dylib.lookupFunction<_c_sqlite3_bind_int, _dart_sqlite3_bind_int>(
'sqlite3_bind_int');
return _sqlite3_bind_int(
arg0,
arg1,
arg2,
);
}
_dart_sqlite3_bind_int _sqlite3_bind_int;
int sqlite3_bind_int64(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
int arg2,
) {
_sqlite3_bind_int64 ??=
_dylib.lookupFunction<_c_sqlite3_bind_int64, _dart_sqlite3_bind_int64>(
'sqlite3_bind_int64');
return _sqlite3_bind_int64(
arg0,
arg1,
arg2,
);
}
_dart_sqlite3_bind_int64 _sqlite3_bind_int64;
int sqlite3_bind_null(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
) {
_sqlite3_bind_null ??=
_dylib.lookupFunction<_c_sqlite3_bind_null, _dart_sqlite3_bind_null>(
'sqlite3_bind_null');
return _sqlite3_bind_null(
arg0,
arg1,
);
}
_dart_sqlite3_bind_null _sqlite3_bind_null;
int sqlite3_bind_text(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
ffi.Pointer<ffi.Int8> arg2,
int arg3,
ffi.Pointer<ffi.NativeFunction<_typedefC_28>> arg4,
) {
_sqlite3_bind_text ??=
_dylib.lookupFunction<_c_sqlite3_bind_text, _dart_sqlite3_bind_text>(
'sqlite3_bind_text');
return _sqlite3_bind_text(
arg0,
arg1,
arg2,
arg3,
arg4,
);
}
_dart_sqlite3_bind_text _sqlite3_bind_text;
int sqlite3_bind_text16(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
ffi.Pointer<ffi.Void> arg2,
int arg3,
ffi.Pointer<ffi.NativeFunction<_typedefC_29>> arg4,
) {
_sqlite3_bind_text16 ??= _dylib.lookupFunction<_c_sqlite3_bind_text16,
_dart_sqlite3_bind_text16>('sqlite3_bind_text16');
return _sqlite3_bind_text16(
arg0,
arg1,
arg2,
arg3,
arg4,
);
}
_dart_sqlite3_bind_text16 _sqlite3_bind_text16;
int sqlite3_bind_text64(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
ffi.Pointer<ffi.Int8> arg2,
int arg3,
ffi.Pointer<ffi.NativeFunction<_typedefC_30>> arg4,
int encoding,
) {
_sqlite3_bind_text64 ??= _dylib.lookupFunction<_c_sqlite3_bind_text64,
_dart_sqlite3_bind_text64>('sqlite3_bind_text64');
return _sqlite3_bind_text64(
arg0,
arg1,
arg2,
arg3,
arg4,
encoding,
);
}
_dart_sqlite3_bind_text64 _sqlite3_bind_text64;
int sqlite3_bind_value(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
ffi.Pointer<sqlite3_value> arg2,
) {
_sqlite3_bind_value ??=
_dylib.lookupFunction<_c_sqlite3_bind_value, _dart_sqlite3_bind_value>(
'sqlite3_bind_value');
return _sqlite3_bind_value(
arg0,
arg1,
arg2,
);
}
_dart_sqlite3_bind_value _sqlite3_bind_value;
int sqlite3_bind_pointer(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
ffi.Pointer<ffi.Void> arg2,
ffi.Pointer<ffi.Int8> arg3,
ffi.Pointer<ffi.NativeFunction<_typedefC_31>> arg4,
) {
_sqlite3_bind_pointer ??= _dylib.lookupFunction<_c_sqlite3_bind_pointer,
_dart_sqlite3_bind_pointer>('sqlite3_bind_pointer');
return _sqlite3_bind_pointer(
arg0,
arg1,
arg2,
arg3,
arg4,
);
}
_dart_sqlite3_bind_pointer _sqlite3_bind_pointer;
int sqlite3_bind_zeroblob(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
int n,
) {
_sqlite3_bind_zeroblob ??= _dylib.lookupFunction<_c_sqlite3_bind_zeroblob,
_dart_sqlite3_bind_zeroblob>('sqlite3_bind_zeroblob');
return _sqlite3_bind_zeroblob(
arg0,
arg1,
n,
);
}
_dart_sqlite3_bind_zeroblob _sqlite3_bind_zeroblob;
int sqlite3_bind_zeroblob64(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
int arg2,
) {
_sqlite3_bind_zeroblob64 ??= _dylib.lookupFunction<
_c_sqlite3_bind_zeroblob64,
_dart_sqlite3_bind_zeroblob64>('sqlite3_bind_zeroblob64');
return _sqlite3_bind_zeroblob64(
arg0,
arg1,
arg2,
);
}
_dart_sqlite3_bind_zeroblob64 _sqlite3_bind_zeroblob64;
/// CAPI3REF: Number Of SQL Parameters
/// METHOD: sqlite3_stmt
///
/// ^This routine can be used to find the number of [SQL parameters]
/// in a [prepared statement]. SQL parameters are tokens of the
/// form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
/// placeholders for values that are [sqlite3_bind_blob | bound]
/// to the parameters at a later time.
///
/// ^(This routine actually returns the index of the largest (rightmost)
/// parameter. For all forms except ?NNN, this will correspond to the
/// number of unique parameters. If parameters of the ?NNN form are used,
/// there may be gaps in the list.)^
///
/// See also: [sqlite3_bind_blob|sqlite3_bind()],
/// [sqlite3_bind_parameter_name()], and
/// [sqlite3_bind_parameter_index()].
int sqlite3_bind_parameter_count(
ffi.Pointer<sqlite3_stmt> arg0,
) {
_sqlite3_bind_parameter_count ??= _dylib.lookupFunction<
_c_sqlite3_bind_parameter_count,
_dart_sqlite3_bind_parameter_count>('sqlite3_bind_parameter_count');
return _sqlite3_bind_parameter_count(
arg0,
);
}
_dart_sqlite3_bind_parameter_count _sqlite3_bind_parameter_count;
/// CAPI3REF: Name Of A Host Parameter
/// METHOD: sqlite3_stmt
///
/// ^The sqlite3_bind_parameter_name(P,N) interface returns
/// the name of the N-th [SQL parameter] in the [prepared statement] P.
/// ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
/// have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
/// respectively.
/// In other words, the initial ":" or "$" or "@" or "?"
/// is included as part of the name.)^
/// ^Parameters of the form "?" without a following integer have no name
/// and are referred to as "nameless" or "anonymous parameters".
///
/// ^The first host parameter has an index of 1, not 0.
///
/// ^If the value N is out of range or if the N-th parameter is
/// nameless, then NULL is returned. ^The returned string is
/// always in UTF-8 encoding even if the named parameter was
/// originally specified as UTF-16 in [sqlite3_prepare16()],
/// [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()].
///
/// See also: [sqlite3_bind_blob|sqlite3_bind()],
/// [sqlite3_bind_parameter_count()], and
/// [sqlite3_bind_parameter_index()].
ffi.Pointer<ffi.Int8> sqlite3_bind_parameter_name(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
) {
_sqlite3_bind_parameter_name ??= _dylib.lookupFunction<
_c_sqlite3_bind_parameter_name,
_dart_sqlite3_bind_parameter_name>('sqlite3_bind_parameter_name');
return _sqlite3_bind_parameter_name(
arg0,
arg1,
);
}
_dart_sqlite3_bind_parameter_name _sqlite3_bind_parameter_name;
/// CAPI3REF: Index Of A Parameter With A Given Name
/// METHOD: sqlite3_stmt
///
/// ^Return the index of an SQL parameter given its name. ^The
/// index value returned is suitable for use as the second
/// parameter to [sqlite3_bind_blob|sqlite3_bind()]. ^A zero
/// is returned if no matching parameter is found. ^The parameter
/// name must be given in UTF-8 even if the original statement
/// was prepared from UTF-16 text using [sqlite3_prepare16_v2()] or
/// [sqlite3_prepare16_v3()].
///
/// See also: [sqlite3_bind_blob|sqlite3_bind()],
/// [sqlite3_bind_parameter_count()], and
/// [sqlite3_bind_parameter_name()].
int sqlite3_bind_parameter_index(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Pointer<ffi.Int8> zName,
) {
_sqlite3_bind_parameter_index ??= _dylib.lookupFunction<
_c_sqlite3_bind_parameter_index,
_dart_sqlite3_bind_parameter_index>('sqlite3_bind_parameter_index');
return _sqlite3_bind_parameter_index(
arg0,
zName,
);
}
_dart_sqlite3_bind_parameter_index _sqlite3_bind_parameter_index;
/// CAPI3REF: Reset All Bindings On A Prepared Statement
/// METHOD: sqlite3_stmt
///
/// ^Contrary to the intuition of many, [sqlite3_reset()] does not reset
/// the [sqlite3_bind_blob | bindings] on a [prepared statement].
/// ^Use this routine to reset all host parameters to NULL.
int sqlite3_clear_bindings(
ffi.Pointer<sqlite3_stmt> arg0,
) {
_sqlite3_clear_bindings ??= _dylib.lookupFunction<_c_sqlite3_clear_bindings,
_dart_sqlite3_clear_bindings>('sqlite3_clear_bindings');
return _sqlite3_clear_bindings(
arg0,
);
}
_dart_sqlite3_clear_bindings _sqlite3_clear_bindings;
/// CAPI3REF: Number Of Columns In A Result Set
/// METHOD: sqlite3_stmt
///
/// ^Return the number of columns in the result set returned by the
/// [prepared statement]. ^If this routine returns 0, that means the
/// [prepared statement] returns no data (for example an [UPDATE]).
/// ^However, just because this routine returns a positive number does not
/// mean that one or more rows of data will be returned. ^A SELECT statement
/// will always have a positive sqlite3_column_count() but depending on the
/// WHERE clause constraints and the table content, it might return no rows.
///
/// See also: [sqlite3_data_count()]
int sqlite3_column_count(
ffi.Pointer<sqlite3_stmt> pStmt,
) {
_sqlite3_column_count ??= _dylib.lookupFunction<_c_sqlite3_column_count,
_dart_sqlite3_column_count>('sqlite3_column_count');
return _sqlite3_column_count(
pStmt,
);
}
_dart_sqlite3_column_count _sqlite3_column_count;
/// CAPI3REF: Column Names In A Result Set
/// METHOD: sqlite3_stmt
///
/// ^These routines return the name assigned to a particular column
/// in the result set of a [SELECT] statement. ^The sqlite3_column_name()
/// interface returns a pointer to a zero-terminated UTF-8 string
/// and sqlite3_column_name16() returns a pointer to a zero-terminated
/// UTF-16 string. ^The first parameter is the [prepared statement]
/// that implements the [SELECT] statement. ^The second parameter is the
/// column number. ^The leftmost column is number 0.
///
/// ^The returned string pointer is valid until either the [prepared statement]
/// is destroyed by [sqlite3_finalize()] or until the statement is automatically
/// reprepared by the first call to [sqlite3_step()] for a particular run
/// or until the next call to
/// sqlite3_column_name() or sqlite3_column_name16() on the same column.
///
/// ^If sqlite3_malloc() fails during the processing of either routine
/// (for example during a conversion from UTF-8 to UTF-16) then a
/// NULL pointer is returned.
///
/// ^The name of a result column is the value of the "AS" clause for
/// that column, if there is an AS clause. If there is no AS clause
/// then the name of the column is unspecified and may change from
/// one release of SQLite to the next.
ffi.Pointer<ffi.Int8> sqlite3_column_name(
ffi.Pointer<sqlite3_stmt> arg0,
int N,
) {
_sqlite3_column_name ??= _dylib.lookupFunction<_c_sqlite3_column_name,
_dart_sqlite3_column_name>('sqlite3_column_name');
return _sqlite3_column_name(
arg0,
N,
);
}
_dart_sqlite3_column_name _sqlite3_column_name;
ffi.Pointer<ffi.Void> sqlite3_column_name16(
ffi.Pointer<sqlite3_stmt> arg0,
int N,
) {
_sqlite3_column_name16 ??= _dylib.lookupFunction<_c_sqlite3_column_name16,
_dart_sqlite3_column_name16>('sqlite3_column_name16');
return _sqlite3_column_name16(
arg0,
N,
);
}
_dart_sqlite3_column_name16 _sqlite3_column_name16;
/// CAPI3REF: Source Of Data In A Query Result
/// METHOD: sqlite3_stmt
///
/// ^These routines provide a means to determine the database, table, and
/// table column that is the origin of a particular result column in
/// [SELECT] statement.
/// ^The name of the database or table or column can be returned as
/// either a UTF-8 or UTF-16 string. ^The _database_ routines return
/// the database name, the _table_ routines return the table name, and
/// the origin_ routines return the column name.
/// ^The returned string is valid until the [prepared statement] is destroyed
/// using [sqlite3_finalize()] or until the statement is automatically
/// reprepared by the first call to [sqlite3_step()] for a particular run
/// or until the same information is requested
/// again in a different encoding.
///
/// ^The names returned are the original un-aliased names of the
/// database, table, and column.
///
/// ^The first argument to these interfaces is a [prepared statement].
/// ^These functions return information about the Nth result column returned by
/// the statement, where N is the second function argument.
/// ^The left-most column is column 0 for these routines.
///
/// ^If the Nth column returned by the statement is an expression or
/// subquery and is not a column value, then all of these functions return
/// NULL. ^These routines might also return NULL if a memory allocation error
/// occurs. ^Otherwise, they return the name of the attached database, table,
/// or column that query result column was extracted from.
///
/// ^As with all other SQLite APIs, those whose names end with "16" return
/// UTF-16 encoded strings and the other functions return UTF-8.
///
/// ^These APIs are only available if the library was compiled with the
/// [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol.
///
/// If two or more threads call one or more
/// [sqlite3_column_database_name | column metadata interfaces]
/// for the same [prepared statement] and result column
/// at the same time then the results are undefined.
ffi.Pointer<ffi.Int8> sqlite3_column_database_name(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
) {
_sqlite3_column_database_name ??= _dylib.lookupFunction<
_c_sqlite3_column_database_name,
_dart_sqlite3_column_database_name>('sqlite3_column_database_name');
return _sqlite3_column_database_name(
arg0,
arg1,
);
}
_dart_sqlite3_column_database_name _sqlite3_column_database_name;
ffi.Pointer<ffi.Void> sqlite3_column_database_name16(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
) {
_sqlite3_column_database_name16 ??= _dylib.lookupFunction<
_c_sqlite3_column_database_name16,
_dart_sqlite3_column_database_name16>('sqlite3_column_database_name16');
return _sqlite3_column_database_name16(
arg0,
arg1,
);
}
_dart_sqlite3_column_database_name16 _sqlite3_column_database_name16;
ffi.Pointer<ffi.Int8> sqlite3_column_table_name(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
) {
_sqlite3_column_table_name ??= _dylib.lookupFunction<
_c_sqlite3_column_table_name,
_dart_sqlite3_column_table_name>('sqlite3_column_table_name');
return _sqlite3_column_table_name(
arg0,
arg1,
);
}
_dart_sqlite3_column_table_name _sqlite3_column_table_name;
ffi.Pointer<ffi.Void> sqlite3_column_table_name16(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
) {
_sqlite3_column_table_name16 ??= _dylib.lookupFunction<
_c_sqlite3_column_table_name16,
_dart_sqlite3_column_table_name16>('sqlite3_column_table_name16');
return _sqlite3_column_table_name16(
arg0,
arg1,
);
}
_dart_sqlite3_column_table_name16 _sqlite3_column_table_name16;
ffi.Pointer<ffi.Int8> sqlite3_column_origin_name(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
) {
_sqlite3_column_origin_name ??= _dylib.lookupFunction<
_c_sqlite3_column_origin_name,
_dart_sqlite3_column_origin_name>('sqlite3_column_origin_name');
return _sqlite3_column_origin_name(
arg0,
arg1,
);
}
_dart_sqlite3_column_origin_name _sqlite3_column_origin_name;
ffi.Pointer<ffi.Void> sqlite3_column_origin_name16(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
) {
_sqlite3_column_origin_name16 ??= _dylib.lookupFunction<
_c_sqlite3_column_origin_name16,
_dart_sqlite3_column_origin_name16>('sqlite3_column_origin_name16');
return _sqlite3_column_origin_name16(
arg0,
arg1,
);
}
_dart_sqlite3_column_origin_name16 _sqlite3_column_origin_name16;
/// CAPI3REF: Declared Datatype Of A Query Result
/// METHOD: sqlite3_stmt
///
/// ^(The first parameter is a [prepared statement].
/// If this statement is a [SELECT] statement and the Nth column of the
/// returned result set of that [SELECT] is a table column (not an
/// expression or subquery) then the declared type of the table
/// column is returned.)^ ^If the Nth column of the result set is an
/// expression or subquery, then a NULL pointer is returned.
/// ^The returned string is always UTF-8 encoded.
///
/// ^(For example, given the database schema:
///
/// CREATE TABLE t1(c1 VARIANT);
///
/// and the following statement to be compiled:
///
/// SELECT c1 + 1, c1 FROM t1;
///
/// this routine would return the string "VARIANT" for the second result
/// column (i==1), and a NULL pointer for the first result column (i==0).)^
///
/// ^SQLite uses dynamic run-time typing. ^So just because a column
/// is declared to contain a particular type does not mean that the
/// data stored in that column is of the declared type. SQLite is
/// strongly typed, but the typing is dynamic not static. ^Type
/// is associated with individual values, not with the containers
/// used to hold those values.
ffi.Pointer<ffi.Int8> sqlite3_column_decltype(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
) {
_sqlite3_column_decltype ??= _dylib.lookupFunction<
_c_sqlite3_column_decltype,
_dart_sqlite3_column_decltype>('sqlite3_column_decltype');
return _sqlite3_column_decltype(
arg0,
arg1,
);
}
_dart_sqlite3_column_decltype _sqlite3_column_decltype;
ffi.Pointer<ffi.Void> sqlite3_column_decltype16(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
) {
_sqlite3_column_decltype16 ??= _dylib.lookupFunction<
_c_sqlite3_column_decltype16,
_dart_sqlite3_column_decltype16>('sqlite3_column_decltype16');
return _sqlite3_column_decltype16(
arg0,
arg1,
);
}
_dart_sqlite3_column_decltype16 _sqlite3_column_decltype16;
/// CAPI3REF: Evaluate An SQL Statement
/// METHOD: sqlite3_stmt
///
/// After a [prepared statement] has been prepared using any of
/// [sqlite3_prepare_v2()], [sqlite3_prepare_v3()], [sqlite3_prepare16_v2()],
/// or [sqlite3_prepare16_v3()] or one of the legacy
/// interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function
/// must be called one or more times to evaluate the statement.
///
/// The details of the behavior of the sqlite3_step() interface depend
/// on whether the statement was prepared using the newer "vX" interfaces
/// [sqlite3_prepare_v3()], [sqlite3_prepare_v2()], [sqlite3_prepare16_v3()],
/// [sqlite3_prepare16_v2()] or the older legacy
/// interfaces [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the
/// new "vX" interface is recommended for new applications but the legacy
/// interface will continue to be supported.
///
/// ^In the legacy interface, the return value will be either [SQLITE_BUSY],
/// [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
/// ^With the "v2" interface, any of the other [result codes] or
/// [extended result codes] might be returned as well.
///
/// ^[SQLITE_BUSY] means that the database engine was unable to acquire the
/// database locks it needs to do its job. ^If the statement is a [COMMIT]
/// or occurs outside of an explicit transaction, then you can retry the
/// statement. If the statement is not a [COMMIT] and occurs within an
/// explicit transaction then you should rollback the transaction before
/// continuing.
///
/// ^[SQLITE_DONE] means that the statement has finished executing
/// successfully. sqlite3_step() should not be called again on this virtual
/// machine without first calling [sqlite3_reset()] to reset the virtual
/// machine back to its initial state.
///
/// ^If the SQL statement being executed returns any data, then [SQLITE_ROW]
/// is returned each time a new row of data is ready for processing by the
/// caller. The values may be accessed using the [column access functions].
/// sqlite3_step() is called again to retrieve the next row of data.
///
/// ^[SQLITE_ERROR] means that a run-time error (such as a constraint
/// violation) has occurred. sqlite3_step() should not be called again on
/// the VM. More information may be found by calling [sqlite3_errmsg()].
/// ^With the legacy interface, a more specific error code (for example,
/// [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
/// can be obtained by calling [sqlite3_reset()] on the
/// [prepared statement]. ^In the "v2" interface,
/// the more specific error code is returned directly by sqlite3_step().
///
/// [SQLITE_MISUSE] means that the this routine was called inappropriately.
/// Perhaps it was called on a [prepared statement] that has
/// already been [sqlite3_finalize | finalized] or on one that had
/// previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could
/// be the case that the same database connection is being used by two or
/// more threads at the same moment in time.
///
/// For all versions of SQLite up to and including 3.6.23.1, a call to
/// [sqlite3_reset()] was required after sqlite3_step() returned anything
/// other than [SQLITE_ROW] before any subsequent invocation of
/// sqlite3_step(). Failure to reset the prepared statement using
/// [sqlite3_reset()] would result in an [SQLITE_MISUSE] return from
/// sqlite3_step(). But after [version 3.6.23.1] ([dateof:3.6.23.1],
/// sqlite3_step() began
/// calling [sqlite3_reset()] automatically in this circumstance rather
/// than returning [SQLITE_MISUSE]. This is not considered a compatibility
/// break because any application that ever receives an SQLITE_MISUSE error
/// is broken by definition. The [SQLITE_OMIT_AUTORESET] compile-time option
/// can be used to restore the legacy behavior.
///
/// <b>Goofy Interface Alert:</b> In the legacy interface, the sqlite3_step()
/// API always returns a generic error code, [SQLITE_ERROR], following any
/// error other than [SQLITE_BUSY] and [SQLITE_MISUSE]. You must call
/// [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the
/// specific [error codes] that better describes the error.
/// We admit that this is a goofy design. The problem has been fixed
/// with the "v2" interface. If you prepare all of your SQL statements
/// using [sqlite3_prepare_v3()] or [sqlite3_prepare_v2()]
/// or [sqlite3_prepare16_v2()] or [sqlite3_prepare16_v3()] instead
/// of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
/// then the more specific [error codes] are returned directly
/// by sqlite3_step(). The use of the "vX" interfaces is recommended.
int sqlite3_step(
ffi.Pointer<sqlite3_stmt> arg0,
) {
_sqlite3_step ??= _dylib
.lookupFunction<_c_sqlite3_step, _dart_sqlite3_step>('sqlite3_step');
return _sqlite3_step(
arg0,
);
}
_dart_sqlite3_step _sqlite3_step;
/// CAPI3REF: Number of columns in a result set
/// METHOD: sqlite3_stmt
///
/// ^The sqlite3_data_count(P) interface returns the number of columns in the
/// current row of the result set of [prepared statement] P.
/// ^If prepared statement P does not have results ready to return
/// (via calls to the [sqlite3_column_int | sqlite3_column()] family of
/// interfaces) then sqlite3_data_count(P) returns 0.
/// ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer.
/// ^The sqlite3_data_count(P) routine returns 0 if the previous call to
/// [sqlite3_step](P) returned [SQLITE_DONE]. ^The sqlite3_data_count(P)
/// will return non-zero if previous call to [sqlite3_step](P) returned
/// [SQLITE_ROW], except in the case of the [PRAGMA incremental_vacuum]
/// where it always returns zero since each step of that multi-step
/// pragma returns 0 columns of data.
///
/// See also: [sqlite3_column_count()]
int sqlite3_data_count(
ffi.Pointer<sqlite3_stmt> pStmt,
) {
_sqlite3_data_count ??=
_dylib.lookupFunction<_c_sqlite3_data_count, _dart_sqlite3_data_count>(
'sqlite3_data_count');
return _sqlite3_data_count(
pStmt,
);
}
_dart_sqlite3_data_count _sqlite3_data_count;
/// CAPI3REF: Result Values From A Query
/// KEYWORDS: {column access functions}
/// METHOD: sqlite3_stmt
///
/// <b>Summary:</b>
/// <blockquote><table border=0 cellpadding=0 cellspacing=0>
/// <tr><td><b>sqlite3_column_blob</b><td>&rarr;<td>BLOB result
/// <tr><td><b>sqlite3_column_double</b><td>&rarr;<td>REAL result
/// <tr><td><b>sqlite3_column_int</b><td>&rarr;<td>32-bit INTEGER result
/// <tr><td><b>sqlite3_column_int64</b><td>&rarr;<td>64-bit INTEGER result
/// <tr><td><b>sqlite3_column_text</b><td>&rarr;<td>UTF-8 TEXT result
/// <tr><td><b>sqlite3_column_text16</b><td>&rarr;<td>UTF-16 TEXT result
/// <tr><td><b>sqlite3_column_value</b><td>&rarr;<td>The result as an
/// [sqlite3_value|unprotected sqlite3_value] object.
/// <tr><td>&nbsp;<td>&nbsp;<td>&nbsp;
/// <tr><td><b>sqlite3_column_bytes</b><td>&rarr;<td>Size of a BLOB
/// or a UTF-8 TEXT result in bytes
/// <tr><td><b>sqlite3_column_bytes16&nbsp;&nbsp;</b>
/// <td>&rarr;&nbsp;&nbsp;<td>Size of UTF-16
/// TEXT in bytes
/// <tr><td><b>sqlite3_column_type</b><td>&rarr;<td>Default
/// datatype of the result
/// </table></blockquote>
///
/// <b>Details:</b>
///
/// ^These routines return information about a single column of the current
/// result row of a query. ^In every case the first argument is a pointer
/// to the [prepared statement] that is being evaluated (the [sqlite3_stmt*]
/// that was returned from [sqlite3_prepare_v2()] or one of its variants)
/// and the second argument is the index of the column for which information
/// should be returned. ^The leftmost column of the result set has the index 0.
/// ^The number of columns in the result can be determined using
/// [sqlite3_column_count()].
///
/// If the SQL statement does not currently point to a valid row, or if the
/// column index is out of range, the result is undefined.
/// These routines may only be called when the most recent call to
/// [sqlite3_step()] has returned [SQLITE_ROW] and neither
/// [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently.
/// If any of these routines are called after [sqlite3_reset()] or
/// [sqlite3_finalize()] or after [sqlite3_step()] has returned
/// something other than [SQLITE_ROW], the results are undefined.
/// If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
/// are called from a different thread while any of these routines
/// are pending, then the results are undefined.
///
/// The first six interfaces (_blob, _double, _int, _int64, _text, and _text16)
/// each return the value of a result column in a specific data format. If
/// the result column is not initially in the requested format (for example,
/// if the query returns an integer but the sqlite3_column_text() interface
/// is used to extract the value) then an automatic type conversion is performed.
///
/// ^The sqlite3_column_type() routine returns the
/// [SQLITE_INTEGER | datatype code] for the initial data type
/// of the result column. ^The returned value is one of [SQLITE_INTEGER],
/// [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].
/// The return value of sqlite3_column_type() can be used to decide which
/// of the first six interface should be used to extract the column value.
/// The value returned by sqlite3_column_type() is only meaningful if no
/// automatic type conversions have occurred for the value in question.
/// After a type conversion, the result of calling sqlite3_column_type()
/// is undefined, though harmless. Future
/// versions of SQLite may change the behavior of sqlite3_column_type()
/// following a type conversion.
///
/// If the result is a BLOB or a TEXT string, then the sqlite3_column_bytes()
/// or sqlite3_column_bytes16() interfaces can be used to determine the size
/// of that BLOB or string.
///
/// ^If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
/// routine returns the number of bytes in that BLOB or string.
/// ^If the result is a UTF-16 string, then sqlite3_column_bytes() converts
/// the string to UTF-8 and then returns the number of bytes.
/// ^If the result is a numeric value then sqlite3_column_bytes() uses
/// [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
/// the number of bytes in that string.
/// ^If the result is NULL, then sqlite3_column_bytes() returns zero.
///
/// ^If the result is a BLOB or UTF-16 string then the sqlite3_column_bytes16()
/// routine returns the number of bytes in that BLOB or string.
/// ^If the result is a UTF-8 string, then sqlite3_column_bytes16() converts
/// the string to UTF-16 and then returns the number of bytes.
/// ^If the result is a numeric value then sqlite3_column_bytes16() uses
/// [sqlite3_snprintf()] to convert that value to a UTF-16 string and returns
/// the number of bytes in that string.
/// ^If the result is NULL, then sqlite3_column_bytes16() returns zero.
///
/// ^The values returned by [sqlite3_column_bytes()] and
/// [sqlite3_column_bytes16()] do not include the zero terminators at the end
/// of the string. ^For clarity: the values returned by
/// [sqlite3_column_bytes()] and [sqlite3_column_bytes16()] are the number of
/// bytes in the string, not the number of characters.
///
/// ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
/// even empty strings, are always zero-terminated. ^The return
/// value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer.
///
/// <b>Warning:</b> ^The object returned by [sqlite3_column_value()] is an
/// [unprotected sqlite3_value] object. In a multithreaded environment,
/// an unprotected sqlite3_value object may only be used safely with
/// [sqlite3_bind_value()] and [sqlite3_result_value()].
/// If the [unprotected sqlite3_value] object returned by
/// [sqlite3_column_value()] is used in any other way, including calls
/// to routines like [sqlite3_value_int()], [sqlite3_value_text()],
/// or [sqlite3_value_bytes()], the behavior is not threadsafe.
/// Hence, the sqlite3_column_value() interface
/// is normally only useful within the implementation of
/// [application-defined SQL functions] or [virtual tables], not within
/// top-level application code.
///
/// The these routines may attempt to convert the datatype of the result.
/// ^For example, if the internal representation is FLOAT and a text result
/// is requested, [sqlite3_snprintf()] is used internally to perform the
/// conversion automatically. ^(The following table details the conversions
/// that are applied:
///
/// <blockquote>
/// <table border="1">
/// <tr><th> Internal<br>Type <th> Requested<br>Type <th> Conversion
///
/// <tr><td> NULL <td> INTEGER <td> Result is 0
/// <tr><td> NULL <td> FLOAT <td> Result is 0.0
/// <tr><td> NULL <td> TEXT <td> Result is a NULL pointer
/// <tr><td> NULL <td> BLOB <td> Result is a NULL pointer
/// <tr><td> INTEGER <td> FLOAT <td> Convert from integer to float
/// <tr><td> INTEGER <td> TEXT <td> ASCII rendering of the integer
/// <tr><td> INTEGER <td> BLOB <td> Same as INTEGER->TEXT
/// <tr><td> FLOAT <td> INTEGER <td> [CAST] to INTEGER
/// <tr><td> FLOAT <td> TEXT <td> ASCII rendering of the float
/// <tr><td> FLOAT <td> BLOB <td> [CAST] to BLOB
/// <tr><td> TEXT <td> INTEGER <td> [CAST] to INTEGER
/// <tr><td> TEXT <td> FLOAT <td> [CAST] to REAL
/// <tr><td> TEXT <td> BLOB <td> No change
/// <tr><td> BLOB <td> INTEGER <td> [CAST] to INTEGER
/// <tr><td> BLOB <td> FLOAT <td> [CAST] to REAL
/// <tr><td> BLOB <td> TEXT <td> Add a zero terminator if needed
/// </table>
/// </blockquote>)^
///
/// Note that when type conversions occur, pointers returned by prior
/// calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
/// sqlite3_column_text16() may be invalidated.
/// Type conversions and pointer invalidations might occur
/// in the following cases:
///
/// <ul>
/// <li> The initial content is a BLOB and sqlite3_column_text() or
/// sqlite3_column_text16() is called. A zero-terminator might
/// need to be added to the string.</li>
/// <li> The initial content is UTF-8 text and sqlite3_column_bytes16() or
/// sqlite3_column_text16() is called. The content must be converted
/// to UTF-16.</li>
/// <li> The initial content is UTF-16 text and sqlite3_column_bytes() or
/// sqlite3_column_text() is called. The content must be converted
/// to UTF-8.</li>
/// </ul>
///
/// ^Conversions between UTF-16be and UTF-16le are always done in place and do
/// not invalidate a prior pointer, though of course the content of the buffer
/// that the prior pointer references will have been modified. Other kinds
/// of conversion are done in place when it is possible, but sometimes they
/// are not possible and in those cases prior pointers are invalidated.
///
/// The safest policy is to invoke these routines
/// in one of the following ways:
///
/// <ul>
/// <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
/// <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
/// <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
/// </ul>
///
/// In other words, you should call sqlite3_column_text(),
/// sqlite3_column_blob(), or sqlite3_column_text16() first to force the result
/// into the desired format, then invoke sqlite3_column_bytes() or
/// sqlite3_column_bytes16() to find the size of the result. Do not mix calls
/// to sqlite3_column_text() or sqlite3_column_blob() with calls to
/// sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16()
/// with calls to sqlite3_column_bytes().
///
/// ^The pointers returned are valid until a type conversion occurs as
/// described above, or until [sqlite3_step()] or [sqlite3_reset()] or
/// [sqlite3_finalize()] is called. ^The memory space used to hold strings
/// and BLOBs is freed automatically. Do not pass the pointers returned
/// from [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
/// [sqlite3_free()].
///
/// As long as the input parameters are correct, these routines will only
/// fail if an out-of-memory error occurs during a format conversion.
/// Only the following subset of interfaces are subject to out-of-memory
/// errors:
///
/// <ul>
/// <li> sqlite3_column_blob()
/// <li> sqlite3_column_text()
/// <li> sqlite3_column_text16()
/// <li> sqlite3_column_bytes()
/// <li> sqlite3_column_bytes16()
/// </ul>
///
/// If an out-of-memory error occurs, then the return value from these
/// routines is the same as if the column had contained an SQL NULL value.
/// Valid SQL NULL returns can be distinguished from out-of-memory errors
/// by invoking the [sqlite3_errcode()] immediately after the suspect
/// return value is obtained and before any
/// other SQLite interface is called on the same [database connection].
ffi.Pointer<ffi.Void> sqlite3_column_blob(
ffi.Pointer<sqlite3_stmt> arg0,
int iCol,
) {
_sqlite3_column_blob ??= _dylib.lookupFunction<_c_sqlite3_column_blob,
_dart_sqlite3_column_blob>('sqlite3_column_blob');
return _sqlite3_column_blob(
arg0,
iCol,
);
}
_dart_sqlite3_column_blob _sqlite3_column_blob;
double sqlite3_column_double(
ffi.Pointer<sqlite3_stmt> arg0,
int iCol,
) {
_sqlite3_column_double ??= _dylib.lookupFunction<_c_sqlite3_column_double,
_dart_sqlite3_column_double>('sqlite3_column_double');
return _sqlite3_column_double(
arg0,
iCol,
);
}
_dart_sqlite3_column_double _sqlite3_column_double;
int sqlite3_column_int(
ffi.Pointer<sqlite3_stmt> arg0,
int iCol,
) {
_sqlite3_column_int ??=
_dylib.lookupFunction<_c_sqlite3_column_int, _dart_sqlite3_column_int>(
'sqlite3_column_int');
return _sqlite3_column_int(
arg0,
iCol,
);
}
_dart_sqlite3_column_int _sqlite3_column_int;
int sqlite3_column_int64(
ffi.Pointer<sqlite3_stmt> arg0,
int iCol,
) {
_sqlite3_column_int64 ??= _dylib.lookupFunction<_c_sqlite3_column_int64,
_dart_sqlite3_column_int64>('sqlite3_column_int64');
return _sqlite3_column_int64(
arg0,
iCol,
);
}
_dart_sqlite3_column_int64 _sqlite3_column_int64;
ffi.Pointer<ffi.Uint8> sqlite3_column_text(
ffi.Pointer<sqlite3_stmt> arg0,
int iCol,
) {
_sqlite3_column_text ??= _dylib.lookupFunction<_c_sqlite3_column_text,
_dart_sqlite3_column_text>('sqlite3_column_text');
return _sqlite3_column_text(
arg0,
iCol,
);
}
_dart_sqlite3_column_text _sqlite3_column_text;
ffi.Pointer<ffi.Void> sqlite3_column_text16(
ffi.Pointer<sqlite3_stmt> arg0,
int iCol,
) {
_sqlite3_column_text16 ??= _dylib.lookupFunction<_c_sqlite3_column_text16,
_dart_sqlite3_column_text16>('sqlite3_column_text16');
return _sqlite3_column_text16(
arg0,
iCol,
);
}
_dart_sqlite3_column_text16 _sqlite3_column_text16;
ffi.Pointer<sqlite3_value> sqlite3_column_value(
ffi.Pointer<sqlite3_stmt> arg0,
int iCol,
) {
_sqlite3_column_value ??= _dylib.lookupFunction<_c_sqlite3_column_value,
_dart_sqlite3_column_value>('sqlite3_column_value');
return _sqlite3_column_value(
arg0,
iCol,
);
}
_dart_sqlite3_column_value _sqlite3_column_value;
int sqlite3_column_bytes(
ffi.Pointer<sqlite3_stmt> arg0,
int iCol,
) {
_sqlite3_column_bytes ??= _dylib.lookupFunction<_c_sqlite3_column_bytes,
_dart_sqlite3_column_bytes>('sqlite3_column_bytes');
return _sqlite3_column_bytes(
arg0,
iCol,
);
}
_dart_sqlite3_column_bytes _sqlite3_column_bytes;
int sqlite3_column_bytes16(
ffi.Pointer<sqlite3_stmt> arg0,
int iCol,
) {
_sqlite3_column_bytes16 ??= _dylib.lookupFunction<_c_sqlite3_column_bytes16,
_dart_sqlite3_column_bytes16>('sqlite3_column_bytes16');
return _sqlite3_column_bytes16(
arg0,
iCol,
);
}
_dart_sqlite3_column_bytes16 _sqlite3_column_bytes16;
int sqlite3_column_type(
ffi.Pointer<sqlite3_stmt> arg0,
int iCol,
) {
_sqlite3_column_type ??= _dylib.lookupFunction<_c_sqlite3_column_type,
_dart_sqlite3_column_type>('sqlite3_column_type');
return _sqlite3_column_type(
arg0,
iCol,
);
}
_dart_sqlite3_column_type _sqlite3_column_type;
/// CAPI3REF: Destroy A Prepared Statement Object
/// DESTRUCTOR: sqlite3_stmt
///
/// ^The sqlite3_finalize() function is called to delete a [prepared statement].
/// ^If the most recent evaluation of the statement encountered no errors
/// or if the statement is never been evaluated, then sqlite3_finalize() returns
/// SQLITE_OK. ^If the most recent evaluation of statement S failed, then
/// sqlite3_finalize(S) returns the appropriate [error code] or
/// [extended error code].
///
/// ^The sqlite3_finalize(S) routine can be called at any point during
/// the life cycle of [prepared statement] S:
/// before statement S is ever evaluated, after
/// one or more calls to [sqlite3_reset()], or after any call
/// to [sqlite3_step()] regardless of whether or not the statement has
/// completed execution.
///
/// ^Invoking sqlite3_finalize() on a NULL pointer is a harmless no-op.
///
/// The application must finalize every [prepared statement] in order to avoid
/// resource leaks. It is a grievous error for the application to try to use
/// a prepared statement after it has been finalized. Any use of a prepared
/// statement after it has been finalized can result in undefined and
/// undesirable behavior such as segfaults and heap corruption.
int sqlite3_finalize(
ffi.Pointer<sqlite3_stmt> pStmt,
) {
_sqlite3_finalize ??=
_dylib.lookupFunction<_c_sqlite3_finalize, _dart_sqlite3_finalize>(
'sqlite3_finalize');
return _sqlite3_finalize(
pStmt,
);
}
_dart_sqlite3_finalize _sqlite3_finalize;
/// CAPI3REF: Reset A Prepared Statement Object
/// METHOD: sqlite3_stmt
///
/// The sqlite3_reset() function is called to reset a [prepared statement]
/// object back to its initial state, ready to be re-executed.
/// ^Any SQL statement variables that had values bound to them using
/// the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
/// Use [sqlite3_clear_bindings()] to reset the bindings.
///
/// ^The [sqlite3_reset(S)] interface resets the [prepared statement] S
/// back to the beginning of its program.
///
/// ^If the most recent call to [sqlite3_step(S)] for the
/// [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
/// or if [sqlite3_step(S)] has never before been called on S,
/// then [sqlite3_reset(S)] returns [SQLITE_OK].
///
/// ^If the most recent call to [sqlite3_step(S)] for the
/// [prepared statement] S indicated an error, then
/// [sqlite3_reset(S)] returns an appropriate [error code].
///
/// ^The [sqlite3_reset(S)] interface does not change the values
/// of any [sqlite3_bind_blob|bindings] on the [prepared statement] S.
int sqlite3_reset(
ffi.Pointer<sqlite3_stmt> pStmt,
) {
_sqlite3_reset ??= _dylib
.lookupFunction<_c_sqlite3_reset, _dart_sqlite3_reset>('sqlite3_reset');
return _sqlite3_reset(
pStmt,
);
}
_dart_sqlite3_reset _sqlite3_reset;
/// CAPI3REF: Create Or Redefine SQL Functions
/// KEYWORDS: {function creation routines}
/// METHOD: sqlite3
///
/// ^These functions (collectively known as "function creation routines")
/// are used to add SQL functions or aggregates or to redefine the behavior
/// of existing SQL functions or aggregates. The only differences between
/// the three "sqlite3_create_function*" routines are the text encoding
/// expected for the second parameter (the name of the function being
/// created) and the presence or absence of a destructor callback for
/// the application data pointer. Function sqlite3_create_window_function()
/// is similar, but allows the user to supply the extra callback functions
/// needed by [aggregate window functions].
///
/// ^The first parameter is the [database connection] to which the SQL
/// function is to be added. ^If an application uses more than one database
/// connection then application-defined SQL functions must be added
/// to each database connection separately.
///
/// ^The second parameter is the name of the SQL function to be created or
/// redefined. ^The length of the name is limited to 255 bytes in a UTF-8
/// representation, exclusive of the zero-terminator. ^Note that the name
/// length limit is in UTF-8 bytes, not characters nor UTF-16 bytes.
/// ^Any attempt to create a function with a longer name
/// will result in [SQLITE_MISUSE] being returned.
///
/// ^The third parameter (nArg)
/// is the number of arguments that the SQL function or
/// aggregate takes. ^If this parameter is -1, then the SQL function or
/// aggregate may take any number of arguments between 0 and the limit
/// set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]). If the third
/// parameter is less than -1 or greater than 127 then the behavior is
/// undefined.
///
/// ^The fourth parameter, eTextRep, specifies what
/// [SQLITE_UTF8 | text encoding] this SQL function prefers for
/// its parameters. The application should set this parameter to
/// [SQLITE_UTF16LE] if the function implementation invokes
/// [sqlite3_value_text16le()] on an input, or [SQLITE_UTF16BE] if the
/// implementation invokes [sqlite3_value_text16be()] on an input, or
/// [SQLITE_UTF16] if [sqlite3_value_text16()] is used, or [SQLITE_UTF8]
/// otherwise. ^The same SQL function may be registered multiple times using
/// different preferred text encodings, with different implementations for
/// each encoding.
/// ^When multiple implementations of the same function are available, SQLite
/// will pick the one that involves the least amount of data conversion.
///
/// ^The fourth parameter may optionally be ORed with [SQLITE_DETERMINISTIC]
/// to signal that the function will always return the same result given
/// the same inputs within a single SQL statement. Most SQL functions are
/// deterministic. The built-in [random()] SQL function is an example of a
/// function that is not deterministic. The SQLite query planner is able to
/// perform additional optimizations on deterministic functions, so use
/// of the [SQLITE_DETERMINISTIC] flag is recommended where possible.
///
/// ^The fourth parameter may also optionally include the [SQLITE_DIRECTONLY]
/// flag, which if present prevents the function from being invoked from
/// within VIEWs, TRIGGERs, CHECK constraints, generated column expressions,
/// index expressions, or the WHERE clause of partial indexes.
///
/// <span style="background-color:#ffff90;">
/// For best security, the [SQLITE_DIRECTONLY] flag is recommended for
/// all application-defined SQL functions that do not need to be
/// used inside of triggers, view, CHECK constraints, or other elements of
/// the database schema. This flags is especially recommended for SQL
/// functions that have side effects or reveal internal application state.
/// Without this flag, an attacker might be able to modify the schema of
/// a database file to include invocations of the function with parameters
/// chosen by the attacker, which the application will then execute when
/// the database file is opened and read.
/// </span>
///
/// ^(The fifth parameter is an arbitrary pointer. The implementation of the
/// function can gain access to this pointer using [sqlite3_user_data()].)^
///
/// ^The sixth, seventh and eighth parameters passed to the three
/// "sqlite3_create_function*" functions, xFunc, xStep and xFinal, are
/// pointers to C-language functions that implement the SQL function or
/// aggregate. ^A scalar SQL function requires an implementation of the xFunc
/// callback only; NULL pointers must be passed as the xStep and xFinal
/// parameters. ^An aggregate SQL function requires an implementation of xStep
/// and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing
/// SQL function or aggregate, pass NULL pointers for all three function
/// callbacks.
///
/// ^The sixth, seventh, eighth and ninth parameters (xStep, xFinal, xValue
/// and xInverse) passed to sqlite3_create_window_function are pointers to
/// C-language callbacks that implement the new function. xStep and xFinal
/// must both be non-NULL. xValue and xInverse may either both be NULL, in
/// which case a regular aggregate function is created, or must both be
/// non-NULL, in which case the new function may be used as either an aggregate
/// or aggregate window function. More details regarding the implementation
/// of aggregate window functions are
/// [user-defined window functions|available here].
///
/// ^(If the final parameter to sqlite3_create_function_v2() or
/// sqlite3_create_window_function() is not NULL, then it is destructor for
/// the application data pointer. The destructor is invoked when the function
/// is deleted, either by being overloaded or when the database connection
/// closes.)^ ^The destructor is also invoked if the call to
/// sqlite3_create_function_v2() fails. ^When the destructor callback is
/// invoked, it is passed a single argument which is a copy of the application
/// data pointer which was the fifth parameter to sqlite3_create_function_v2().
///
/// ^It is permitted to register multiple implementations of the same
/// functions with the same name but with either differing numbers of
/// arguments or differing preferred text encodings. ^SQLite will use
/// the implementation that most closely matches the way in which the
/// SQL function is used. ^A function implementation with a non-negative
/// nArg parameter is a better match than a function implementation with
/// a negative nArg. ^A function where the preferred text encoding
/// matches the database encoding is a better
/// match than a function where the encoding is different.
/// ^A function where the encoding difference is between UTF16le and UTF16be
/// is a closer match than a function where the encoding difference is
/// between UTF8 and UTF16.
///
/// ^Built-in functions may be overloaded by new application-defined functions.
///
/// ^An application-defined function is permitted to call other
/// SQLite interfaces. However, such calls must not
/// close the database connection nor finalize or reset the prepared
/// statement in which the function is running.
int sqlite3_create_function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zFunctionName,
int nArg,
int eTextRep,
ffi.Pointer<ffi.Void> pApp,
ffi.Pointer<ffi.NativeFunction<_typedefC_32>> xFunc,
ffi.Pointer<ffi.NativeFunction<_typedefC_33>> xStep,
ffi.Pointer<ffi.NativeFunction<_typedefC_34>> xFinal,
) {
_sqlite3_create_function ??= _dylib.lookupFunction<
_c_sqlite3_create_function,
_dart_sqlite3_create_function>('sqlite3_create_function');
return _sqlite3_create_function(
db,
zFunctionName,
nArg,
eTextRep,
pApp,
xFunc,
xStep,
xFinal,
);
}
_dart_sqlite3_create_function _sqlite3_create_function;
int sqlite3_create_function16(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Void> zFunctionName,
int nArg,
int eTextRep,
ffi.Pointer<ffi.Void> pApp,
ffi.Pointer<ffi.NativeFunction<_typedefC_35>> xFunc,
ffi.Pointer<ffi.NativeFunction<_typedefC_36>> xStep,
ffi.Pointer<ffi.NativeFunction<_typedefC_37>> xFinal,
) {
_sqlite3_create_function16 ??= _dylib.lookupFunction<
_c_sqlite3_create_function16,
_dart_sqlite3_create_function16>('sqlite3_create_function16');
return _sqlite3_create_function16(
db,
zFunctionName,
nArg,
eTextRep,
pApp,
xFunc,
xStep,
xFinal,
);
}
_dart_sqlite3_create_function16 _sqlite3_create_function16;
int sqlite3_create_function_v2(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zFunctionName,
int nArg,
int eTextRep,
ffi.Pointer<ffi.Void> pApp,
ffi.Pointer<ffi.NativeFunction<_typedefC_38>> xFunc,
ffi.Pointer<ffi.NativeFunction<_typedefC_39>> xStep,
ffi.Pointer<ffi.NativeFunction<_typedefC_40>> xFinal,
ffi.Pointer<ffi.NativeFunction<_typedefC_41>> xDestroy,
) {
_sqlite3_create_function_v2 ??= _dylib.lookupFunction<
_c_sqlite3_create_function_v2,
_dart_sqlite3_create_function_v2>('sqlite3_create_function_v2');
return _sqlite3_create_function_v2(
db,
zFunctionName,
nArg,
eTextRep,
pApp,
xFunc,
xStep,
xFinal,
xDestroy,
);
}
_dart_sqlite3_create_function_v2 _sqlite3_create_function_v2;
int sqlite3_create_window_function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zFunctionName,
int nArg,
int eTextRep,
ffi.Pointer<ffi.Void> pApp,
ffi.Pointer<ffi.NativeFunction<_typedefC_42>> xStep,
ffi.Pointer<ffi.NativeFunction<_typedefC_43>> xFinal,
ffi.Pointer<ffi.NativeFunction<_typedefC_44>> xValue,
ffi.Pointer<ffi.NativeFunction<_typedefC_45>> xInverse,
ffi.Pointer<ffi.NativeFunction<_typedefC_46>> xDestroy,
) {
_sqlite3_create_window_function ??= _dylib.lookupFunction<
_c_sqlite3_create_window_function,
_dart_sqlite3_create_window_function>('sqlite3_create_window_function');
return _sqlite3_create_window_function(
db,
zFunctionName,
nArg,
eTextRep,
pApp,
xStep,
xFinal,
xValue,
xInverse,
xDestroy,
);
}
_dart_sqlite3_create_window_function _sqlite3_create_window_function;
int sqlite3_aggregate_count(
ffi.Pointer<sqlite3_context> arg0,
) {
_sqlite3_aggregate_count ??= _dylib.lookupFunction<
_c_sqlite3_aggregate_count,
_dart_sqlite3_aggregate_count>('sqlite3_aggregate_count');
return _sqlite3_aggregate_count(
arg0,
);
}
_dart_sqlite3_aggregate_count _sqlite3_aggregate_count;
int sqlite3_expired(
ffi.Pointer<sqlite3_stmt> arg0,
) {
_sqlite3_expired ??=
_dylib.lookupFunction<_c_sqlite3_expired, _dart_sqlite3_expired>(
'sqlite3_expired');
return _sqlite3_expired(
arg0,
);
}
_dart_sqlite3_expired _sqlite3_expired;
int sqlite3_transfer_bindings(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Pointer<sqlite3_stmt> arg1,
) {
_sqlite3_transfer_bindings ??= _dylib.lookupFunction<
_c_sqlite3_transfer_bindings,
_dart_sqlite3_transfer_bindings>('sqlite3_transfer_bindings');
return _sqlite3_transfer_bindings(
arg0,
arg1,
);
}
_dart_sqlite3_transfer_bindings _sqlite3_transfer_bindings;
int sqlite3_global_recover() {
_sqlite3_global_recover ??= _dylib.lookupFunction<_c_sqlite3_global_recover,
_dart_sqlite3_global_recover>('sqlite3_global_recover');
return _sqlite3_global_recover();
}
_dart_sqlite3_global_recover _sqlite3_global_recover;
void sqlite3_thread_cleanup() {
_sqlite3_thread_cleanup ??= _dylib.lookupFunction<_c_sqlite3_thread_cleanup,
_dart_sqlite3_thread_cleanup>('sqlite3_thread_cleanup');
return _sqlite3_thread_cleanup();
}
_dart_sqlite3_thread_cleanup _sqlite3_thread_cleanup;
int sqlite3_memory_alarm(
ffi.Pointer<ffi.NativeFunction<_typedefC_47>> arg0,
ffi.Pointer<ffi.Void> arg1,
int arg2,
) {
_sqlite3_memory_alarm ??= _dylib.lookupFunction<_c_sqlite3_memory_alarm,
_dart_sqlite3_memory_alarm>('sqlite3_memory_alarm');
return _sqlite3_memory_alarm(
arg0,
arg1,
arg2,
);
}
_dart_sqlite3_memory_alarm _sqlite3_memory_alarm;
/// CAPI3REF: Obtaining SQL Values
/// METHOD: sqlite3_value
///
/// <b>Summary:</b>
/// <blockquote><table border=0 cellpadding=0 cellspacing=0>
/// <tr><td><b>sqlite3_value_blob</b><td>&rarr;<td>BLOB value
/// <tr><td><b>sqlite3_value_double</b><td>&rarr;<td>REAL value
/// <tr><td><b>sqlite3_value_int</b><td>&rarr;<td>32-bit INTEGER value
/// <tr><td><b>sqlite3_value_int64</b><td>&rarr;<td>64-bit INTEGER value
/// <tr><td><b>sqlite3_value_pointer</b><td>&rarr;<td>Pointer value
/// <tr><td><b>sqlite3_value_text</b><td>&rarr;<td>UTF-8 TEXT value
/// <tr><td><b>sqlite3_value_text16</b><td>&rarr;<td>UTF-16 TEXT value in
/// the native byteorder
/// <tr><td><b>sqlite3_value_text16be</b><td>&rarr;<td>UTF-16be TEXT value
/// <tr><td><b>sqlite3_value_text16le</b><td>&rarr;<td>UTF-16le TEXT value
/// <tr><td>&nbsp;<td>&nbsp;<td>&nbsp;
/// <tr><td><b>sqlite3_value_bytes</b><td>&rarr;<td>Size of a BLOB
/// or a UTF-8 TEXT in bytes
/// <tr><td><b>sqlite3_value_bytes16&nbsp;&nbsp;</b>
/// <td>&rarr;&nbsp;&nbsp;<td>Size of UTF-16
/// TEXT in bytes
/// <tr><td><b>sqlite3_value_type</b><td>&rarr;<td>Default
/// datatype of the value
/// <tr><td><b>sqlite3_value_numeric_type&nbsp;&nbsp;</b>
/// <td>&rarr;&nbsp;&nbsp;<td>Best numeric datatype of the value
/// <tr><td><b>sqlite3_value_nochange&nbsp;&nbsp;</b>
/// <td>&rarr;&nbsp;&nbsp;<td>True if the column is unchanged in an UPDATE
/// against a virtual table.
/// <tr><td><b>sqlite3_value_frombind&nbsp;&nbsp;</b>
/// <td>&rarr;&nbsp;&nbsp;<td>True if value originated from a [bound parameter]
/// </table></blockquote>
///
/// <b>Details:</b>
///
/// These routines extract type, size, and content information from
/// [protected sqlite3_value] objects. Protected sqlite3_value objects
/// are used to pass parameter information into the functions that
/// implement [application-defined SQL functions] and [virtual tables].
///
/// These routines work only with [protected sqlite3_value] objects.
/// Any attempt to use these routines on an [unprotected sqlite3_value]
/// is not threadsafe.
///
/// ^These routines work just like the corresponding [column access functions]
/// except that these routines take a single [protected sqlite3_value] object
/// pointer instead of a [sqlite3_stmt*] pointer and an integer column number.
///
/// ^The sqlite3_value_text16() interface extracts a UTF-16 string
/// in the native byte-order of the host machine. ^The
/// sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
/// extract UTF-16 strings as big-endian and little-endian respectively.
///
/// ^If [sqlite3_value] object V was initialized
/// using [sqlite3_bind_pointer(S,I,P,X,D)] or [sqlite3_result_pointer(C,P,X,D)]
/// and if X and Y are strings that compare equal according to strcmp(X,Y),
/// then sqlite3_value_pointer(V,Y) will return the pointer P. ^Otherwise,
/// sqlite3_value_pointer(V,Y) returns a NULL. The sqlite3_bind_pointer()
/// routine is part of the [pointer passing interface] added for SQLite 3.20.0.
///
/// ^(The sqlite3_value_type(V) interface returns the
/// [SQLITE_INTEGER | datatype code] for the initial datatype of the
/// [sqlite3_value] object V. The returned value is one of [SQLITE_INTEGER],
/// [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].)^
/// Other interfaces might change the datatype for an sqlite3_value object.
/// For example, if the datatype is initially SQLITE_INTEGER and
/// sqlite3_value_text(V) is called to extract a text value for that
/// integer, then subsequent calls to sqlite3_value_type(V) might return
/// SQLITE_TEXT. Whether or not a persistent internal datatype conversion
/// occurs is undefined and may change from one release of SQLite to the next.
///
/// ^(The sqlite3_value_numeric_type() interface attempts to apply
/// numeric affinity to the value. This means that an attempt is
/// made to convert the value to an integer or floating point. If
/// such a conversion is possible without loss of information (in other
/// words, if the value is a string that looks like a number)
/// then the conversion is performed. Otherwise no conversion occurs.
/// The [SQLITE_INTEGER | datatype] after conversion is returned.)^
///
/// ^Within the [xUpdate] method of a [virtual table], the
/// sqlite3_value_nochange(X) interface returns true if and only if
/// the column corresponding to X is unchanged by the UPDATE operation
/// that the xUpdate method call was invoked to implement and if
/// and the prior [xColumn] method call that was invoked to extracted
/// the value for that column returned without setting a result (probably
/// because it queried [sqlite3_vtab_nochange()] and found that the column
/// was unchanging). ^Within an [xUpdate] method, any value for which
/// sqlite3_value_nochange(X) is true will in all other respects appear
/// to be a NULL value. If sqlite3_value_nochange(X) is invoked anywhere other
/// than within an [xUpdate] method call for an UPDATE statement, then
/// the return value is arbitrary and meaningless.
///
/// ^The sqlite3_value_frombind(X) interface returns non-zero if the
/// value X originated from one of the [sqlite3_bind_int|sqlite3_bind()]
/// interfaces. ^If X comes from an SQL literal value, or a table column,
/// or an expression, then sqlite3_value_frombind(X) returns zero.
///
/// Please pay particular attention to the fact that the pointer returned
/// from [sqlite3_value_blob()], [sqlite3_value_text()], or
/// [sqlite3_value_text16()] can be invalidated by a subsequent call to
/// [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
/// or [sqlite3_value_text16()].
///
/// These routines must be called from the same thread as
/// the SQL function that supplied the [sqlite3_value*] parameters.
///
/// As long as the input parameter is correct, these routines can only
/// fail if an out-of-memory error occurs during a format conversion.
/// Only the following subset of interfaces are subject to out-of-memory
/// errors:
///
/// <ul>
/// <li> sqlite3_value_blob()
/// <li> sqlite3_value_text()
/// <li> sqlite3_value_text16()
/// <li> sqlite3_value_text16le()
/// <li> sqlite3_value_text16be()
/// <li> sqlite3_value_bytes()
/// <li> sqlite3_value_bytes16()
/// </ul>
///
/// If an out-of-memory error occurs, then the return value from these
/// routines is the same as if the column had contained an SQL NULL value.
/// Valid SQL NULL returns can be distinguished from out-of-memory errors
/// by invoking the [sqlite3_errcode()] immediately after the suspect
/// return value is obtained and before any
/// other SQLite interface is called on the same [database connection].
ffi.Pointer<ffi.Void> sqlite3_value_blob(
ffi.Pointer<sqlite3_value> arg0,
) {
_sqlite3_value_blob ??=
_dylib.lookupFunction<_c_sqlite3_value_blob, _dart_sqlite3_value_blob>(
'sqlite3_value_blob');
return _sqlite3_value_blob(
arg0,
);
}
_dart_sqlite3_value_blob _sqlite3_value_blob;
double sqlite3_value_double(
ffi.Pointer<sqlite3_value> arg0,
) {
_sqlite3_value_double ??= _dylib.lookupFunction<_c_sqlite3_value_double,
_dart_sqlite3_value_double>('sqlite3_value_double');
return _sqlite3_value_double(
arg0,
);
}
_dart_sqlite3_value_double _sqlite3_value_double;
int sqlite3_value_int(
ffi.Pointer<sqlite3_value> arg0,
) {
_sqlite3_value_int ??=
_dylib.lookupFunction<_c_sqlite3_value_int, _dart_sqlite3_value_int>(
'sqlite3_value_int');
return _sqlite3_value_int(
arg0,
);
}
_dart_sqlite3_value_int _sqlite3_value_int;
int sqlite3_value_int64(
ffi.Pointer<sqlite3_value> arg0,
) {
_sqlite3_value_int64 ??= _dylib.lookupFunction<_c_sqlite3_value_int64,
_dart_sqlite3_value_int64>('sqlite3_value_int64');
return _sqlite3_value_int64(
arg0,
);
}
_dart_sqlite3_value_int64 _sqlite3_value_int64;
ffi.Pointer<ffi.Void> sqlite3_value_pointer(
ffi.Pointer<sqlite3_value> arg0,
ffi.Pointer<ffi.Int8> arg1,
) {
_sqlite3_value_pointer ??= _dylib.lookupFunction<_c_sqlite3_value_pointer,
_dart_sqlite3_value_pointer>('sqlite3_value_pointer');
return _sqlite3_value_pointer(
arg0,
arg1,
);
}
_dart_sqlite3_value_pointer _sqlite3_value_pointer;
ffi.Pointer<ffi.Uint8> sqlite3_value_text(
ffi.Pointer<sqlite3_value> arg0,
) {
_sqlite3_value_text ??=
_dylib.lookupFunction<_c_sqlite3_value_text, _dart_sqlite3_value_text>(
'sqlite3_value_text');
return _sqlite3_value_text(
arg0,
);
}
_dart_sqlite3_value_text _sqlite3_value_text;
ffi.Pointer<ffi.Void> sqlite3_value_text16(
ffi.Pointer<sqlite3_value> arg0,
) {
_sqlite3_value_text16 ??= _dylib.lookupFunction<_c_sqlite3_value_text16,
_dart_sqlite3_value_text16>('sqlite3_value_text16');
return _sqlite3_value_text16(
arg0,
);
}
_dart_sqlite3_value_text16 _sqlite3_value_text16;
ffi.Pointer<ffi.Void> sqlite3_value_text16le(
ffi.Pointer<sqlite3_value> arg0,
) {
_sqlite3_value_text16le ??= _dylib.lookupFunction<_c_sqlite3_value_text16le,
_dart_sqlite3_value_text16le>('sqlite3_value_text16le');
return _sqlite3_value_text16le(
arg0,
);
}
_dart_sqlite3_value_text16le _sqlite3_value_text16le;
ffi.Pointer<ffi.Void> sqlite3_value_text16be(
ffi.Pointer<sqlite3_value> arg0,
) {
_sqlite3_value_text16be ??= _dylib.lookupFunction<_c_sqlite3_value_text16be,
_dart_sqlite3_value_text16be>('sqlite3_value_text16be');
return _sqlite3_value_text16be(
arg0,
);
}
_dart_sqlite3_value_text16be _sqlite3_value_text16be;
int sqlite3_value_bytes(
ffi.Pointer<sqlite3_value> arg0,
) {
_sqlite3_value_bytes ??= _dylib.lookupFunction<_c_sqlite3_value_bytes,
_dart_sqlite3_value_bytes>('sqlite3_value_bytes');
return _sqlite3_value_bytes(
arg0,
);
}
_dart_sqlite3_value_bytes _sqlite3_value_bytes;
int sqlite3_value_bytes16(
ffi.Pointer<sqlite3_value> arg0,
) {
_sqlite3_value_bytes16 ??= _dylib.lookupFunction<_c_sqlite3_value_bytes16,
_dart_sqlite3_value_bytes16>('sqlite3_value_bytes16');
return _sqlite3_value_bytes16(
arg0,
);
}
_dart_sqlite3_value_bytes16 _sqlite3_value_bytes16;
int sqlite3_value_type(
ffi.Pointer<sqlite3_value> arg0,
) {
_sqlite3_value_type ??=
_dylib.lookupFunction<_c_sqlite3_value_type, _dart_sqlite3_value_type>(
'sqlite3_value_type');
return _sqlite3_value_type(
arg0,
);
}
_dart_sqlite3_value_type _sqlite3_value_type;
int sqlite3_value_numeric_type(
ffi.Pointer<sqlite3_value> arg0,
) {
_sqlite3_value_numeric_type ??= _dylib.lookupFunction<
_c_sqlite3_value_numeric_type,
_dart_sqlite3_value_numeric_type>('sqlite3_value_numeric_type');
return _sqlite3_value_numeric_type(
arg0,
);
}
_dart_sqlite3_value_numeric_type _sqlite3_value_numeric_type;
int sqlite3_value_nochange(
ffi.Pointer<sqlite3_value> arg0,
) {
_sqlite3_value_nochange ??= _dylib.lookupFunction<_c_sqlite3_value_nochange,
_dart_sqlite3_value_nochange>('sqlite3_value_nochange');
return _sqlite3_value_nochange(
arg0,
);
}
_dart_sqlite3_value_nochange _sqlite3_value_nochange;
int sqlite3_value_frombind(
ffi.Pointer<sqlite3_value> arg0,
) {
_sqlite3_value_frombind ??= _dylib.lookupFunction<_c_sqlite3_value_frombind,
_dart_sqlite3_value_frombind>('sqlite3_value_frombind');
return _sqlite3_value_frombind(
arg0,
);
}
_dart_sqlite3_value_frombind _sqlite3_value_frombind;
/// CAPI3REF: Finding The Subtype Of SQL Values
/// METHOD: sqlite3_value
///
/// The sqlite3_value_subtype(V) function returns the subtype for
/// an [application-defined SQL function] argument V. The subtype
/// information can be used to pass a limited amount of context from
/// one SQL function to another. Use the [sqlite3_result_subtype()]
/// routine to set the subtype for the return value of an SQL function.
int sqlite3_value_subtype(
ffi.Pointer<sqlite3_value> arg0,
) {
_sqlite3_value_subtype ??= _dylib.lookupFunction<_c_sqlite3_value_subtype,
_dart_sqlite3_value_subtype>('sqlite3_value_subtype');
return _sqlite3_value_subtype(
arg0,
);
}
_dart_sqlite3_value_subtype _sqlite3_value_subtype;
/// CAPI3REF: Copy And Free SQL Values
/// METHOD: sqlite3_value
///
/// ^The sqlite3_value_dup(V) interface makes a copy of the [sqlite3_value]
/// object D and returns a pointer to that copy. ^The [sqlite3_value] returned
/// is a [protected sqlite3_value] object even if the input is not.
/// ^The sqlite3_value_dup(V) interface returns NULL if V is NULL or if a
/// memory allocation fails.
///
/// ^The sqlite3_value_free(V) interface frees an [sqlite3_value] object
/// previously obtained from [sqlite3_value_dup()]. ^If V is a NULL pointer
/// then sqlite3_value_free(V) is a harmless no-op.
ffi.Pointer<sqlite3_value> sqlite3_value_dup(
ffi.Pointer<sqlite3_value> arg0,
) {
_sqlite3_value_dup ??=
_dylib.lookupFunction<_c_sqlite3_value_dup, _dart_sqlite3_value_dup>(
'sqlite3_value_dup');
return _sqlite3_value_dup(
arg0,
);
}
_dart_sqlite3_value_dup _sqlite3_value_dup;
void sqlite3_value_free(
ffi.Pointer<sqlite3_value> arg0,
) {
_sqlite3_value_free ??=
_dylib.lookupFunction<_c_sqlite3_value_free, _dart_sqlite3_value_free>(
'sqlite3_value_free');
return _sqlite3_value_free(
arg0,
);
}
_dart_sqlite3_value_free _sqlite3_value_free;
/// CAPI3REF: Obtain Aggregate Function Context
/// METHOD: sqlite3_context
///
/// Implementations of aggregate SQL functions use this
/// routine to allocate memory for storing their state.
///
/// ^The first time the sqlite3_aggregate_context(C,N) routine is called
/// for a particular aggregate function, SQLite allocates
/// N bytes of memory, zeroes out that memory, and returns a pointer
/// to the new memory. ^On second and subsequent calls to
/// sqlite3_aggregate_context() for the same aggregate function instance,
/// the same buffer is returned. Sqlite3_aggregate_context() is normally
/// called once for each invocation of the xStep callback and then one
/// last time when the xFinal callback is invoked. ^(When no rows match
/// an aggregate query, the xStep() callback of the aggregate function
/// implementation is never called and xFinal() is called exactly once.
/// In those cases, sqlite3_aggregate_context() might be called for the
/// first time from within xFinal().)^
///
/// ^The sqlite3_aggregate_context(C,N) routine returns a NULL pointer
/// when first called if N is less than or equal to zero or if a memory
/// allocate error occurs.
///
/// ^(The amount of space allocated by sqlite3_aggregate_context(C,N) is
/// determined by the N parameter on first successful call. Changing the
/// value of N in any subsequent call to sqlite3_aggregate_context() within
/// the same aggregate function instance will not resize the memory
/// allocation.)^ Within the xFinal callback, it is customary to set
/// N=0 in calls to sqlite3_aggregate_context(C,N) so that no
/// pointless memory allocations occur.
///
/// ^SQLite automatically frees the memory allocated by
/// sqlite3_aggregate_context() when the aggregate query concludes.
///
/// The first parameter must be a copy of the
/// [sqlite3_context | SQL function context] that is the first parameter
/// to the xStep or xFinal callback routine that implements the aggregate
/// function.
///
/// This routine must be called from the same thread in which
/// the aggregate SQL function is running.
ffi.Pointer<ffi.Void> sqlite3_aggregate_context(
ffi.Pointer<sqlite3_context> arg0,
int nBytes,
) {
_sqlite3_aggregate_context ??= _dylib.lookupFunction<
_c_sqlite3_aggregate_context,
_dart_sqlite3_aggregate_context>('sqlite3_aggregate_context');
return _sqlite3_aggregate_context(
arg0,
nBytes,
);
}
_dart_sqlite3_aggregate_context _sqlite3_aggregate_context;
/// CAPI3REF: User Data For Functions
/// METHOD: sqlite3_context
///
/// ^The sqlite3_user_data() interface returns a copy of
/// the pointer that was the pUserData parameter (the 5th parameter)
/// of the [sqlite3_create_function()]
/// and [sqlite3_create_function16()] routines that originally
/// registered the application defined function.
///
/// This routine must be called from the same thread in which
/// the application-defined function is running.
ffi.Pointer<ffi.Void> sqlite3_user_data(
ffi.Pointer<sqlite3_context> arg0,
) {
_sqlite3_user_data ??=
_dylib.lookupFunction<_c_sqlite3_user_data, _dart_sqlite3_user_data>(
'sqlite3_user_data');
return _sqlite3_user_data(
arg0,
);
}
_dart_sqlite3_user_data _sqlite3_user_data;
/// CAPI3REF: Database Connection For Functions
/// METHOD: sqlite3_context
///
/// ^The sqlite3_context_db_handle() interface returns a copy of
/// the pointer to the [database connection] (the 1st parameter)
/// of the [sqlite3_create_function()]
/// and [sqlite3_create_function16()] routines that originally
/// registered the application defined function.
ffi.Pointer<sqlite3> sqlite3_context_db_handle(
ffi.Pointer<sqlite3_context> arg0,
) {
_sqlite3_context_db_handle ??= _dylib.lookupFunction<
_c_sqlite3_context_db_handle,
_dart_sqlite3_context_db_handle>('sqlite3_context_db_handle');
return _sqlite3_context_db_handle(
arg0,
);
}
_dart_sqlite3_context_db_handle _sqlite3_context_db_handle;
/// CAPI3REF: Function Auxiliary Data
/// METHOD: sqlite3_context
///
/// These functions may be used by (non-aggregate) SQL functions to
/// associate metadata with argument values. If the same value is passed to
/// multiple invocations of the same SQL function during query execution, under
/// some circumstances the associated metadata may be preserved. An example
/// of where this might be useful is in a regular-expression matching
/// function. The compiled version of the regular expression can be stored as
/// metadata associated with the pattern string.
/// Then as long as the pattern string remains the same,
/// the compiled regular expression can be reused on multiple
/// invocations of the same function.
///
/// ^The sqlite3_get_auxdata(C,N) interface returns a pointer to the metadata
/// associated by the sqlite3_set_auxdata(C,N,P,X) function with the Nth argument
/// value to the application-defined function. ^N is zero for the left-most
/// function argument. ^If there is no metadata
/// associated with the function argument, the sqlite3_get_auxdata(C,N) interface
/// returns a NULL pointer.
///
/// ^The sqlite3_set_auxdata(C,N,P,X) interface saves P as metadata for the N-th
/// argument of the application-defined function. ^Subsequent
/// calls to sqlite3_get_auxdata(C,N) return P from the most recent
/// sqlite3_set_auxdata(C,N,P,X) call if the metadata is still valid or
/// NULL if the metadata has been discarded.
/// ^After each call to sqlite3_set_auxdata(C,N,P,X) where X is not NULL,
/// SQLite will invoke the destructor function X with parameter P exactly
/// once, when the metadata is discarded.
/// SQLite is free to discard the metadata at any time, including: <ul>
/// <li> ^(when the corresponding function parameter changes)^, or
/// <li> ^(when [sqlite3_reset()] or [sqlite3_finalize()] is called for the
/// SQL statement)^, or
/// <li> ^(when sqlite3_set_auxdata() is invoked again on the same
/// parameter)^, or
/// <li> ^(during the original sqlite3_set_auxdata() call when a memory
/// allocation error occurs.)^ </ul>
///
/// Note the last bullet in particular. The destructor X in
/// sqlite3_set_auxdata(C,N,P,X) might be called immediately, before the
/// sqlite3_set_auxdata() interface even returns. Hence sqlite3_set_auxdata()
/// should be called near the end of the function implementation and the
/// function implementation should not make any use of P after
/// sqlite3_set_auxdata() has been called.
///
/// ^(In practice, metadata is preserved between function calls for
/// function parameters that are compile-time constants, including literal
/// values and [parameters] and expressions composed from the same.)^
///
/// The value of the N parameter to these interfaces should be non-negative.
/// Future enhancements may make use of negative N values to define new
/// kinds of function caching behavior.
///
/// These routines must be called from the same thread in which
/// the SQL function is running.
ffi.Pointer<ffi.Void> sqlite3_get_auxdata(
ffi.Pointer<sqlite3_context> arg0,
int N,
) {
_sqlite3_get_auxdata ??= _dylib.lookupFunction<_c_sqlite3_get_auxdata,
_dart_sqlite3_get_auxdata>('sqlite3_get_auxdata');
return _sqlite3_get_auxdata(
arg0,
N,
);
}
_dart_sqlite3_get_auxdata _sqlite3_get_auxdata;
void sqlite3_set_auxdata(
ffi.Pointer<sqlite3_context> arg0,
int N,
ffi.Pointer<ffi.Void> arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_48>> arg3,
) {
_sqlite3_set_auxdata ??= _dylib.lookupFunction<_c_sqlite3_set_auxdata,
_dart_sqlite3_set_auxdata>('sqlite3_set_auxdata');
return _sqlite3_set_auxdata(
arg0,
N,
arg2,
arg3,
);
}
_dart_sqlite3_set_auxdata _sqlite3_set_auxdata;
/// CAPI3REF: Setting The Result Of An SQL Function
/// METHOD: sqlite3_context
///
/// These routines are used by the xFunc or xFinal callbacks that
/// implement SQL functions and aggregates. See
/// [sqlite3_create_function()] and [sqlite3_create_function16()]
/// for additional information.
///
/// These functions work very much like the [parameter binding] family of
/// functions used to bind values to host parameters in prepared statements.
/// Refer to the [SQL parameter] documentation for additional information.
///
/// ^The sqlite3_result_blob() interface sets the result from
/// an application-defined function to be the BLOB whose content is pointed
/// to by the second parameter and which is N bytes long where N is the
/// third parameter.
///
/// ^The sqlite3_result_zeroblob(C,N) and sqlite3_result_zeroblob64(C,N)
/// interfaces set the result of the application-defined function to be
/// a BLOB containing all zero bytes and N bytes in size.
///
/// ^The sqlite3_result_double() interface sets the result from
/// an application-defined function to be a floating point value specified
/// by its 2nd argument.
///
/// ^The sqlite3_result_error() and sqlite3_result_error16() functions
/// cause the implemented SQL function to throw an exception.
/// ^SQLite uses the string pointed to by the
/// 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
/// as the text of an error message. ^SQLite interprets the error
/// message string from sqlite3_result_error() as UTF-8. ^SQLite
/// interprets the string from sqlite3_result_error16() as UTF-16 using
/// the same [byte-order determination rules] as [sqlite3_bind_text16()].
/// ^If the third parameter to sqlite3_result_error()
/// or sqlite3_result_error16() is negative then SQLite takes as the error
/// message all text up through the first zero character.
/// ^If the third parameter to sqlite3_result_error() or
/// sqlite3_result_error16() is non-negative then SQLite takes that many
/// bytes (not characters) from the 2nd parameter as the error message.
/// ^The sqlite3_result_error() and sqlite3_result_error16()
/// routines make a private copy of the error message text before
/// they return. Hence, the calling function can deallocate or
/// modify the text after they return without harm.
/// ^The sqlite3_result_error_code() function changes the error code
/// returned by SQLite as a result of an error in a function. ^By default,
/// the error code is SQLITE_ERROR. ^A subsequent call to sqlite3_result_error()
/// or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
///
/// ^The sqlite3_result_error_toobig() interface causes SQLite to throw an
/// error indicating that a string or BLOB is too long to represent.
///
/// ^The sqlite3_result_error_nomem() interface causes SQLite to throw an
/// error indicating that a memory allocation failed.
///
/// ^The sqlite3_result_int() interface sets the return value
/// of the application-defined function to be the 32-bit signed integer
/// value given in the 2nd argument.
/// ^The sqlite3_result_int64() interface sets the return value
/// of the application-defined function to be the 64-bit signed integer
/// value given in the 2nd argument.
///
/// ^The sqlite3_result_null() interface sets the return value
/// of the application-defined function to be NULL.
///
/// ^The sqlite3_result_text(), sqlite3_result_text16(),
/// sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
/// set the return value of the application-defined function to be
/// a text string which is represented as UTF-8, UTF-16 native byte order,
/// UTF-16 little endian, or UTF-16 big endian, respectively.
/// ^The sqlite3_result_text64() interface sets the return value of an
/// application-defined function to be a text string in an encoding
/// specified by the fifth (and last) parameter, which must be one
/// of [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE].
/// ^SQLite takes the text result from the application from
/// the 2nd parameter of the sqlite3_result_text* interfaces.
/// ^If the 3rd parameter to the sqlite3_result_text* interfaces
/// is negative, then SQLite takes result text from the 2nd parameter
/// through the first zero character.
/// ^If the 3rd parameter to the sqlite3_result_text* interfaces
/// is non-negative, then as many bytes (not characters) of the text
/// pointed to by the 2nd parameter are taken as the application-defined
/// function result. If the 3rd parameter is non-negative, then it
/// must be the byte offset into the string where the NUL terminator would
/// appear if the string where NUL terminated. If any NUL characters occur
/// in the string at a byte offset that is less than the value of the 3rd
/// parameter, then the resulting string will contain embedded NULs and the
/// result of expressions operating on strings with embedded NULs is undefined.
/// ^If the 4th parameter to the sqlite3_result_text* interfaces
/// or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
/// function as the destructor on the text or BLOB result when it has
/// finished using that result.
/// ^If the 4th parameter to the sqlite3_result_text* interfaces or to
/// sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite
/// assumes that the text or BLOB result is in constant space and does not
/// copy the content of the parameter nor call a destructor on the content
/// when it has finished using that result.
/// ^If the 4th parameter to the sqlite3_result_text* interfaces
/// or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
/// then SQLite makes a copy of the result into space obtained
/// from [sqlite3_malloc()] before it returns.
///
/// ^For the sqlite3_result_text16(), sqlite3_result_text16le(), and
/// sqlite3_result_text16be() routines, and for sqlite3_result_text64()
/// when the encoding is not UTF8, if the input UTF16 begins with a
/// byte-order mark (BOM, U+FEFF) then the BOM is removed from the
/// string and the rest of the string is interpreted according to the
/// byte-order specified by the BOM. ^The byte-order specified by
/// the BOM at the beginning of the text overrides the byte-order
/// specified by the interface procedure. ^So, for example, if
/// sqlite3_result_text16le() is invoked with text that begins
/// with bytes 0xfe, 0xff (a big-endian byte-order mark) then the
/// first two bytes of input are skipped and the remaining input
/// is interpreted as UTF16BE text.
///
/// ^For UTF16 input text to the sqlite3_result_text16(),
/// sqlite3_result_text16be(), sqlite3_result_text16le(), and
/// sqlite3_result_text64() routines, if the text contains invalid
/// UTF16 characters, the invalid characters might be converted
/// into the unicode replacement character, U+FFFD.
///
/// ^The sqlite3_result_value() interface sets the result of
/// the application-defined function to be a copy of the
/// [unprotected sqlite3_value] object specified by the 2nd parameter. ^The
/// sqlite3_result_value() interface makes a copy of the [sqlite3_value]
/// so that the [sqlite3_value] specified in the parameter may change or
/// be deallocated after sqlite3_result_value() returns without harm.
/// ^A [protected sqlite3_value] object may always be used where an
/// [unprotected sqlite3_value] object is required, so either
/// kind of [sqlite3_value] object can be used with this interface.
///
/// ^The sqlite3_result_pointer(C,P,T,D) interface sets the result to an
/// SQL NULL value, just like [sqlite3_result_null(C)], except that it
/// also associates the host-language pointer P or type T with that
/// NULL value such that the pointer can be retrieved within an
/// [application-defined SQL function] using [sqlite3_value_pointer()].
/// ^If the D parameter is not NULL, then it is a pointer to a destructor
/// for the P parameter. ^SQLite invokes D with P as its only argument
/// when SQLite is finished with P. The T parameter should be a static
/// string and preferably a string literal. The sqlite3_result_pointer()
/// routine is part of the [pointer passing interface] added for SQLite 3.20.0.
///
/// If these routines are called from within the different thread
/// than the one containing the application-defined function that received
/// the [sqlite3_context] pointer, the results are undefined.
void sqlite3_result_blob(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
int arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_49>> arg3,
) {
_sqlite3_result_blob ??= _dylib.lookupFunction<_c_sqlite3_result_blob,
_dart_sqlite3_result_blob>('sqlite3_result_blob');
return _sqlite3_result_blob(
arg0,
arg1,
arg2,
arg3,
);
}
_dart_sqlite3_result_blob _sqlite3_result_blob;
void sqlite3_result_blob64(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
int arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_50>> arg3,
) {
_sqlite3_result_blob64 ??= _dylib.lookupFunction<_c_sqlite3_result_blob64,
_dart_sqlite3_result_blob64>('sqlite3_result_blob64');
return _sqlite3_result_blob64(
arg0,
arg1,
arg2,
arg3,
);
}
_dart_sqlite3_result_blob64 _sqlite3_result_blob64;
void sqlite3_result_double(
ffi.Pointer<sqlite3_context> arg0,
double arg1,
) {
_sqlite3_result_double ??= _dylib.lookupFunction<_c_sqlite3_result_double,
_dart_sqlite3_result_double>('sqlite3_result_double');
return _sqlite3_result_double(
arg0,
arg1,
);
}
_dart_sqlite3_result_double _sqlite3_result_double;
void sqlite3_result_error(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Int8> arg1,
int arg2,
) {
_sqlite3_result_error ??= _dylib.lookupFunction<_c_sqlite3_result_error,
_dart_sqlite3_result_error>('sqlite3_result_error');
return _sqlite3_result_error(
arg0,
arg1,
arg2,
);
}
_dart_sqlite3_result_error _sqlite3_result_error;
void sqlite3_result_error16(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
int arg2,
) {
_sqlite3_result_error16 ??= _dylib.lookupFunction<_c_sqlite3_result_error16,
_dart_sqlite3_result_error16>('sqlite3_result_error16');
return _sqlite3_result_error16(
arg0,
arg1,
arg2,
);
}
_dart_sqlite3_result_error16 _sqlite3_result_error16;
void sqlite3_result_error_toobig(
ffi.Pointer<sqlite3_context> arg0,
) {
_sqlite3_result_error_toobig ??= _dylib.lookupFunction<
_c_sqlite3_result_error_toobig,
_dart_sqlite3_result_error_toobig>('sqlite3_result_error_toobig');
return _sqlite3_result_error_toobig(
arg0,
);
}
_dart_sqlite3_result_error_toobig _sqlite3_result_error_toobig;
void sqlite3_result_error_nomem(
ffi.Pointer<sqlite3_context> arg0,
) {
_sqlite3_result_error_nomem ??= _dylib.lookupFunction<
_c_sqlite3_result_error_nomem,
_dart_sqlite3_result_error_nomem>('sqlite3_result_error_nomem');
return _sqlite3_result_error_nomem(
arg0,
);
}
_dart_sqlite3_result_error_nomem _sqlite3_result_error_nomem;
void sqlite3_result_error_code(
ffi.Pointer<sqlite3_context> arg0,
int arg1,
) {
_sqlite3_result_error_code ??= _dylib.lookupFunction<
_c_sqlite3_result_error_code,
_dart_sqlite3_result_error_code>('sqlite3_result_error_code');
return _sqlite3_result_error_code(
arg0,
arg1,
);
}
_dart_sqlite3_result_error_code _sqlite3_result_error_code;
void sqlite3_result_int(
ffi.Pointer<sqlite3_context> arg0,
int arg1,
) {
_sqlite3_result_int ??=
_dylib.lookupFunction<_c_sqlite3_result_int, _dart_sqlite3_result_int>(
'sqlite3_result_int');
return _sqlite3_result_int(
arg0,
arg1,
);
}
_dart_sqlite3_result_int _sqlite3_result_int;
void sqlite3_result_int64(
ffi.Pointer<sqlite3_context> arg0,
int arg1,
) {
_sqlite3_result_int64 ??= _dylib.lookupFunction<_c_sqlite3_result_int64,
_dart_sqlite3_result_int64>('sqlite3_result_int64');
return _sqlite3_result_int64(
arg0,
arg1,
);
}
_dart_sqlite3_result_int64 _sqlite3_result_int64;
void sqlite3_result_null(
ffi.Pointer<sqlite3_context> arg0,
) {
_sqlite3_result_null ??= _dylib.lookupFunction<_c_sqlite3_result_null,
_dart_sqlite3_result_null>('sqlite3_result_null');
return _sqlite3_result_null(
arg0,
);
}
_dart_sqlite3_result_null _sqlite3_result_null;
void sqlite3_result_text(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Int8> arg1,
int arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_51>> arg3,
) {
_sqlite3_result_text ??= _dylib.lookupFunction<_c_sqlite3_result_text,
_dart_sqlite3_result_text>('sqlite3_result_text');
return _sqlite3_result_text(
arg0,
arg1,
arg2,
arg3,
);
}
_dart_sqlite3_result_text _sqlite3_result_text;
void sqlite3_result_text64(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Int8> arg1,
int arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_52>> arg3,
int encoding,
) {
_sqlite3_result_text64 ??= _dylib.lookupFunction<_c_sqlite3_result_text64,
_dart_sqlite3_result_text64>('sqlite3_result_text64');
return _sqlite3_result_text64(
arg0,
arg1,
arg2,
arg3,
encoding,
);
}
_dart_sqlite3_result_text64 _sqlite3_result_text64;
void sqlite3_result_text16(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
int arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_53>> arg3,
) {
_sqlite3_result_text16 ??= _dylib.lookupFunction<_c_sqlite3_result_text16,
_dart_sqlite3_result_text16>('sqlite3_result_text16');
return _sqlite3_result_text16(
arg0,
arg1,
arg2,
arg3,
);
}
_dart_sqlite3_result_text16 _sqlite3_result_text16;
void sqlite3_result_text16le(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
int arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_54>> arg3,
) {
_sqlite3_result_text16le ??= _dylib.lookupFunction<
_c_sqlite3_result_text16le,
_dart_sqlite3_result_text16le>('sqlite3_result_text16le');
return _sqlite3_result_text16le(
arg0,
arg1,
arg2,
arg3,
);
}
_dart_sqlite3_result_text16le _sqlite3_result_text16le;
void sqlite3_result_text16be(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
int arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_55>> arg3,
) {
_sqlite3_result_text16be ??= _dylib.lookupFunction<
_c_sqlite3_result_text16be,
_dart_sqlite3_result_text16be>('sqlite3_result_text16be');
return _sqlite3_result_text16be(
arg0,
arg1,
arg2,
arg3,
);
}
_dart_sqlite3_result_text16be _sqlite3_result_text16be;
void sqlite3_result_value(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<sqlite3_value> arg1,
) {
_sqlite3_result_value ??= _dylib.lookupFunction<_c_sqlite3_result_value,
_dart_sqlite3_result_value>('sqlite3_result_value');
return _sqlite3_result_value(
arg0,
arg1,
);
}
_dart_sqlite3_result_value _sqlite3_result_value;
void sqlite3_result_pointer(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
ffi.Pointer<ffi.Int8> arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_56>> arg3,
) {
_sqlite3_result_pointer ??= _dylib.lookupFunction<_c_sqlite3_result_pointer,
_dart_sqlite3_result_pointer>('sqlite3_result_pointer');
return _sqlite3_result_pointer(
arg0,
arg1,
arg2,
arg3,
);
}
_dart_sqlite3_result_pointer _sqlite3_result_pointer;
void sqlite3_result_zeroblob(
ffi.Pointer<sqlite3_context> arg0,
int n,
) {
_sqlite3_result_zeroblob ??= _dylib.lookupFunction<
_c_sqlite3_result_zeroblob,
_dart_sqlite3_result_zeroblob>('sqlite3_result_zeroblob');
return _sqlite3_result_zeroblob(
arg0,
n,
);
}
_dart_sqlite3_result_zeroblob _sqlite3_result_zeroblob;
int sqlite3_result_zeroblob64(
ffi.Pointer<sqlite3_context> arg0,
int n,
) {
_sqlite3_result_zeroblob64 ??= _dylib.lookupFunction<
_c_sqlite3_result_zeroblob64,
_dart_sqlite3_result_zeroblob64>('sqlite3_result_zeroblob64');
return _sqlite3_result_zeroblob64(
arg0,
n,
);
}
_dart_sqlite3_result_zeroblob64 _sqlite3_result_zeroblob64;
/// CAPI3REF: Setting The Subtype Of An SQL Function
/// METHOD: sqlite3_context
///
/// The sqlite3_result_subtype(C,T) function causes the subtype of
/// the result from the [application-defined SQL function] with
/// [sqlite3_context] C to be the value T. Only the lower 8 bits
/// of the subtype T are preserved in current versions of SQLite;
/// higher order bits are discarded.
/// The number of subtype bytes preserved by SQLite might increase
/// in future releases of SQLite.
void sqlite3_result_subtype(
ffi.Pointer<sqlite3_context> arg0,
int arg1,
) {
_sqlite3_result_subtype ??= _dylib.lookupFunction<_c_sqlite3_result_subtype,
_dart_sqlite3_result_subtype>('sqlite3_result_subtype');
return _sqlite3_result_subtype(
arg0,
arg1,
);
}
_dart_sqlite3_result_subtype _sqlite3_result_subtype;
/// CAPI3REF: Define New Collating Sequences
/// METHOD: sqlite3
///
/// ^These functions add, remove, or modify a [collation] associated
/// with the [database connection] specified as the first argument.
///
/// ^The name of the collation is a UTF-8 string
/// for sqlite3_create_collation() and sqlite3_create_collation_v2()
/// and a UTF-16 string in native byte order for sqlite3_create_collation16().
/// ^Collation names that compare equal according to [sqlite3_strnicmp()] are
/// considered to be the same name.
///
/// ^(The third argument (eTextRep) must be one of the constants:
/// <ul>
/// <li> [SQLITE_UTF8],
/// <li> [SQLITE_UTF16LE],
/// <li> [SQLITE_UTF16BE],
/// <li> [SQLITE_UTF16], or
/// <li> [SQLITE_UTF16_ALIGNED].
/// </ul>)^
/// ^The eTextRep argument determines the encoding of strings passed
/// to the collating function callback, xCompare.
/// ^The [SQLITE_UTF16] and [SQLITE_UTF16_ALIGNED] values for eTextRep
/// force strings to be UTF16 with native byte order.
/// ^The [SQLITE_UTF16_ALIGNED] value for eTextRep forces strings to begin
/// on an even byte address.
///
/// ^The fourth argument, pArg, is an application data pointer that is passed
/// through as the first argument to the collating function callback.
///
/// ^The fifth argument, xCompare, is a pointer to the collating function.
/// ^Multiple collating functions can be registered using the same name but
/// with different eTextRep parameters and SQLite will use whichever
/// function requires the least amount of data transformation.
/// ^If the xCompare argument is NULL then the collating function is
/// deleted. ^When all collating functions having the same name are deleted,
/// that collation is no longer usable.
///
/// ^The collating function callback is invoked with a copy of the pArg
/// application data pointer and with two strings in the encoding specified
/// by the eTextRep argument. The two integer parameters to the collating
/// function callback are the length of the two strings, in bytes. The collating
/// function must return an integer that is negative, zero, or positive
/// if the first string is less than, equal to, or greater than the second,
/// respectively. A collating function must always return the same answer
/// given the same inputs. If two or more collating functions are registered
/// to the same collation name (using different eTextRep values) then all
/// must give an equivalent answer when invoked with equivalent strings.
/// The collating function must obey the following properties for all
/// strings A, B, and C:
///
/// <ol>
/// <li> If A==B then B==A.
/// <li> If A==B and B==C then A==C.
/// <li> If A&lt;B THEN B&gt;A.
/// <li> If A&lt;B and B&lt;C then A&lt;C.
/// </ol>
///
/// If a collating function fails any of the above constraints and that
/// collating function is registered and used, then the behavior of SQLite
/// is undefined.
///
/// ^The sqlite3_create_collation_v2() works like sqlite3_create_collation()
/// with the addition that the xDestroy callback is invoked on pArg when
/// the collating function is deleted.
/// ^Collating functions are deleted when they are overridden by later
/// calls to the collation creation functions or when the
/// [database connection] is closed using [sqlite3_close()].
///
/// ^The xDestroy callback is <u>not</u> called if the
/// sqlite3_create_collation_v2() function fails. Applications that invoke
/// sqlite3_create_collation_v2() with a non-NULL xDestroy argument should
/// check the return code and dispose of the application data pointer
/// themselves rather than expecting SQLite to deal with it for them.
/// This is different from every other SQLite interface. The inconsistency
/// is unfortunate but cannot be changed without breaking backwards
/// compatibility.
///
/// See also: [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].
int sqlite3_create_collation(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> zName,
int eTextRep,
ffi.Pointer<ffi.Void> pArg,
ffi.Pointer<ffi.NativeFunction<_typedefC_57>> xCompare,
) {
_sqlite3_create_collation ??= _dylib.lookupFunction<
_c_sqlite3_create_collation,
_dart_sqlite3_create_collation>('sqlite3_create_collation');
return _sqlite3_create_collation(
arg0,
zName,
eTextRep,
pArg,
xCompare,
);
}
_dart_sqlite3_create_collation _sqlite3_create_collation;
int sqlite3_create_collation_v2(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> zName,
int eTextRep,
ffi.Pointer<ffi.Void> pArg,
ffi.Pointer<ffi.NativeFunction<_typedefC_58>> xCompare,
ffi.Pointer<ffi.NativeFunction<_typedefC_59>> xDestroy,
) {
_sqlite3_create_collation_v2 ??= _dylib.lookupFunction<
_c_sqlite3_create_collation_v2,
_dart_sqlite3_create_collation_v2>('sqlite3_create_collation_v2');
return _sqlite3_create_collation_v2(
arg0,
zName,
eTextRep,
pArg,
xCompare,
xDestroy,
);
}
_dart_sqlite3_create_collation_v2 _sqlite3_create_collation_v2;
int sqlite3_create_collation16(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Void> zName,
int eTextRep,
ffi.Pointer<ffi.Void> pArg,
ffi.Pointer<ffi.NativeFunction<_typedefC_60>> xCompare,
) {
_sqlite3_create_collation16 ??= _dylib.lookupFunction<
_c_sqlite3_create_collation16,
_dart_sqlite3_create_collation16>('sqlite3_create_collation16');
return _sqlite3_create_collation16(
arg0,
zName,
eTextRep,
pArg,
xCompare,
);
}
_dart_sqlite3_create_collation16 _sqlite3_create_collation16;
/// CAPI3REF: Collation Needed Callbacks
/// METHOD: sqlite3
///
/// ^To avoid having to register all collation sequences before a database
/// can be used, a single callback function may be registered with the
/// [database connection] to be invoked whenever an undefined collation
/// sequence is required.
///
/// ^If the function is registered using the sqlite3_collation_needed() API,
/// then it is passed the names of undefined collation sequences as strings
/// encoded in UTF-8. ^If sqlite3_collation_needed16() is used,
/// the names are passed as UTF-16 in machine native byte order.
/// ^A call to either function replaces the existing collation-needed callback.
///
/// ^(When the callback is invoked, the first argument passed is a copy
/// of the second argument to sqlite3_collation_needed() or
/// sqlite3_collation_needed16(). The second argument is the database
/// connection. The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE],
/// or [SQLITE_UTF16LE], indicating the most desirable form of the collation
/// sequence function required. The fourth parameter is the name of the
/// required collation sequence.)^
///
/// The callback function should register the desired collation using
/// [sqlite3_create_collation()], [sqlite3_create_collation16()], or
/// [sqlite3_create_collation_v2()].
int sqlite3_collation_needed(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Void> arg1,
ffi.Pointer<ffi.NativeFunction<_typedefC_61>> arg2,
) {
_sqlite3_collation_needed ??= _dylib.lookupFunction<
_c_sqlite3_collation_needed,
_dart_sqlite3_collation_needed>('sqlite3_collation_needed');
return _sqlite3_collation_needed(
arg0,
arg1,
arg2,
);
}
_dart_sqlite3_collation_needed _sqlite3_collation_needed;
int sqlite3_collation_needed16(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Void> arg1,
ffi.Pointer<ffi.NativeFunction<_typedefC_62>> arg2,
) {
_sqlite3_collation_needed16 ??= _dylib.lookupFunction<
_c_sqlite3_collation_needed16,
_dart_sqlite3_collation_needed16>('sqlite3_collation_needed16');
return _sqlite3_collation_needed16(
arg0,
arg1,
arg2,
);
}
_dart_sqlite3_collation_needed16 _sqlite3_collation_needed16;
/// CAPI3REF: Suspend Execution For A Short Time
///
/// The sqlite3_sleep() function causes the current thread to suspend execution
/// for at least a number of milliseconds specified in its parameter.
///
/// If the operating system does not support sleep requests with
/// millisecond time resolution, then the time will be rounded up to
/// the nearest second. The number of milliseconds of sleep actually
/// requested from the operating system is returned.
///
/// ^SQLite implements this interface by calling the xSleep()
/// method of the default [sqlite3_vfs] object. If the xSleep() method
/// of the default VFS is not implemented correctly, or not implemented at
/// all, then the behavior of sqlite3_sleep() may deviate from the description
/// in the previous paragraphs.
int sqlite3_sleep(
int arg0,
) {
_sqlite3_sleep ??= _dylib
.lookupFunction<_c_sqlite3_sleep, _dart_sqlite3_sleep>('sqlite3_sleep');
return _sqlite3_sleep(
arg0,
);
}
_dart_sqlite3_sleep _sqlite3_sleep;
/// CAPI3REF: Win32 Specific Interface
///
/// These interfaces are available only on Windows. The
/// [sqlite3_win32_set_directory] interface is used to set the value associated
/// with the [sqlite3_temp_directory] or [sqlite3_data_directory] variable, to
/// zValue, depending on the value of the type parameter. The zValue parameter
/// should be NULL to cause the previous value to be freed via [sqlite3_free];
/// a non-NULL value will be copied into memory obtained from [sqlite3_malloc]
/// prior to being used. The [sqlite3_win32_set_directory] interface returns
/// [SQLITE_OK] to indicate success, [SQLITE_ERROR] if the type is unsupported,
/// or [SQLITE_NOMEM] if memory could not be allocated. The value of the
/// [sqlite3_data_directory] variable is intended to act as a replacement for
/// the current directory on the sub-platforms of Win32 where that concept is
/// not present, e.g. WinRT and UWP. The [sqlite3_win32_set_directory8] and
/// [sqlite3_win32_set_directory16] interfaces behave exactly the same as the
/// sqlite3_win32_set_directory interface except the string parameter must be
/// UTF-8 or UTF-16, respectively.
int sqlite3_win32_set_directory(
int type,
ffi.Pointer<ffi.Void> zValue,
) {
_sqlite3_win32_set_directory ??= _dylib.lookupFunction<
_c_sqlite3_win32_set_directory,
_dart_sqlite3_win32_set_directory>('sqlite3_win32_set_directory');
return _sqlite3_win32_set_directory(
type,
zValue,
);
}
_dart_sqlite3_win32_set_directory _sqlite3_win32_set_directory;
int sqlite3_win32_set_directory8(
int type,
ffi.Pointer<ffi.Int8> zValue,
) {
_sqlite3_win32_set_directory8 ??= _dylib.lookupFunction<
_c_sqlite3_win32_set_directory8,
_dart_sqlite3_win32_set_directory8>('sqlite3_win32_set_directory8');
return _sqlite3_win32_set_directory8(
type,
zValue,
);
}
_dart_sqlite3_win32_set_directory8 _sqlite3_win32_set_directory8;
int sqlite3_win32_set_directory16(
int type,
ffi.Pointer<ffi.Void> zValue,
) {
_sqlite3_win32_set_directory16 ??= _dylib.lookupFunction<
_c_sqlite3_win32_set_directory16,
_dart_sqlite3_win32_set_directory16>('sqlite3_win32_set_directory16');
return _sqlite3_win32_set_directory16(
type,
zValue,
);
}
_dart_sqlite3_win32_set_directory16 _sqlite3_win32_set_directory16;
/// CAPI3REF: Test For Auto-Commit Mode
/// KEYWORDS: {autocommit mode}
/// METHOD: sqlite3
///
/// ^The sqlite3_get_autocommit() interface returns non-zero or
/// zero if the given database connection is or is not in autocommit mode,
/// respectively. ^Autocommit mode is on by default.
/// ^Autocommit mode is disabled by a [BEGIN] statement.
/// ^Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK].
///
/// If certain kinds of errors occur on a statement within a multi-statement
/// transaction (errors including [SQLITE_FULL], [SQLITE_IOERR],
/// [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
/// transaction might be rolled back automatically. The only way to
/// find out whether SQLite automatically rolled back the transaction after
/// an error is to use this function.
///
/// If another thread changes the autocommit status of the database
/// connection while this routine is running, then the return value
/// is undefined.
int sqlite3_get_autocommit(
ffi.Pointer<sqlite3> arg0,
) {
_sqlite3_get_autocommit ??= _dylib.lookupFunction<_c_sqlite3_get_autocommit,
_dart_sqlite3_get_autocommit>('sqlite3_get_autocommit');
return _sqlite3_get_autocommit(
arg0,
);
}
_dart_sqlite3_get_autocommit _sqlite3_get_autocommit;
/// CAPI3REF: Find The Database Handle Of A Prepared Statement
/// METHOD: sqlite3_stmt
///
/// ^The sqlite3_db_handle interface returns the [database connection] handle
/// to which a [prepared statement] belongs. ^The [database connection]
/// returned by sqlite3_db_handle is the same [database connection]
/// that was the first argument
/// to the [sqlite3_prepare_v2()] call (or its variants) that was used to
/// create the statement in the first place.
ffi.Pointer<sqlite3> sqlite3_db_handle(
ffi.Pointer<sqlite3_stmt> arg0,
) {
_sqlite3_db_handle ??=
_dylib.lookupFunction<_c_sqlite3_db_handle, _dart_sqlite3_db_handle>(
'sqlite3_db_handle');
return _sqlite3_db_handle(
arg0,
);
}
_dart_sqlite3_db_handle _sqlite3_db_handle;
/// CAPI3REF: Return The Filename For A Database Connection
/// METHOD: sqlite3
///
/// ^The sqlite3_db_filename(D,N) interface returns a pointer to the filename
/// associated with database N of connection D.
/// ^If there is no attached database N on the database
/// connection D, or if database N is a temporary or in-memory database, then
/// this function will return either a NULL pointer or an empty string.
///
/// ^The string value returned by this routine is owned and managed by
/// the database connection. ^The value will be valid until the database N
/// is [DETACH]-ed or until the database connection closes.
///
/// ^The filename returned by this function is the output of the
/// xFullPathname method of the [VFS]. ^In other words, the filename
/// will be an absolute pathname, even if the filename used
/// to open the database originally was a URI or relative pathname.
///
/// If the filename pointer returned by this routine is not NULL, then it
/// can be used as the filename input parameter to these routines:
/// <ul>
/// <li> [sqlite3_uri_parameter()]
/// <li> [sqlite3_uri_boolean()]
/// <li> [sqlite3_uri_int64()]
/// <li> [sqlite3_filename_database()]
/// <li> [sqlite3_filename_journal()]
/// <li> [sqlite3_filename_wal()]
/// </ul>
ffi.Pointer<ffi.Int8> sqlite3_db_filename(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zDbName,
) {
_sqlite3_db_filename ??= _dylib.lookupFunction<_c_sqlite3_db_filename,
_dart_sqlite3_db_filename>('sqlite3_db_filename');
return _sqlite3_db_filename(
db,
zDbName,
);
}
_dart_sqlite3_db_filename _sqlite3_db_filename;
/// CAPI3REF: Determine if a database is read-only
/// METHOD: sqlite3
///
/// ^The sqlite3_db_readonly(D,N) interface returns 1 if the database N
/// of connection D is read-only, 0 if it is read/write, or -1 if N is not
/// the name of a database on connection D.
int sqlite3_db_readonly(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zDbName,
) {
_sqlite3_db_readonly ??= _dylib.lookupFunction<_c_sqlite3_db_readonly,
_dart_sqlite3_db_readonly>('sqlite3_db_readonly');
return _sqlite3_db_readonly(
db,
zDbName,
);
}
_dart_sqlite3_db_readonly _sqlite3_db_readonly;
/// CAPI3REF: Find the next prepared statement
/// METHOD: sqlite3
///
/// ^This interface returns a pointer to the next [prepared statement] after
/// pStmt associated with the [database connection] pDb. ^If pStmt is NULL
/// then this interface returns a pointer to the first prepared statement
/// associated with the database connection pDb. ^If no prepared statement
/// satisfies the conditions of this routine, it returns NULL.
///
/// The [database connection] pointer D in a call to
/// [sqlite3_next_stmt(D,S)] must refer to an open database
/// connection and in particular must not be a NULL pointer.
ffi.Pointer<sqlite3_stmt> sqlite3_next_stmt(
ffi.Pointer<sqlite3> pDb,
ffi.Pointer<sqlite3_stmt> pStmt,
) {
_sqlite3_next_stmt ??=
_dylib.lookupFunction<_c_sqlite3_next_stmt, _dart_sqlite3_next_stmt>(
'sqlite3_next_stmt');
return _sqlite3_next_stmt(
pDb,
pStmt,
);
}
_dart_sqlite3_next_stmt _sqlite3_next_stmt;
/// CAPI3REF: Commit And Rollback Notification Callbacks
/// METHOD: sqlite3
///
/// ^The sqlite3_commit_hook() interface registers a callback
/// function to be invoked whenever a transaction is [COMMIT | committed].
/// ^Any callback set by a previous call to sqlite3_commit_hook()
/// for the same database connection is overridden.
/// ^The sqlite3_rollback_hook() interface registers a callback
/// function to be invoked whenever a transaction is [ROLLBACK | rolled back].
/// ^Any callback set by a previous call to sqlite3_rollback_hook()
/// for the same database connection is overridden.
/// ^The pArg argument is passed through to the callback.
/// ^If the callback on a commit hook function returns non-zero,
/// then the commit is converted into a rollback.
///
/// ^The sqlite3_commit_hook(D,C,P) and sqlite3_rollback_hook(D,C,P) functions
/// return the P argument from the previous call of the same function
/// on the same [database connection] D, or NULL for
/// the first call for each function on D.
///
/// The commit and rollback hook callbacks are not reentrant.
/// The callback implementation must not do anything that will modify
/// the database connection that invoked the callback. Any actions
/// to modify the database connection must be deferred until after the
/// completion of the [sqlite3_step()] call that triggered the commit
/// or rollback hook in the first place.
/// Note that running any other SQL statements, including SELECT statements,
/// or merely calling [sqlite3_prepare_v2()] and [sqlite3_step()] will modify
/// the database connections for the meaning of "modify" in this paragraph.
///
/// ^Registering a NULL function disables the callback.
///
/// ^When the commit hook callback routine returns zero, the [COMMIT]
/// operation is allowed to continue normally. ^If the commit hook
/// returns non-zero, then the [COMMIT] is converted into a [ROLLBACK].
/// ^The rollback hook is invoked on a rollback that results from a commit
/// hook returning non-zero, just as it would be with any other rollback.
///
/// ^For the purposes of this API, a transaction is said to have been
/// rolled back if an explicit "ROLLBACK" statement is executed, or
/// an error or constraint causes an implicit rollback to occur.
/// ^The rollback callback is not invoked if a transaction is
/// automatically rolled back because the database connection is closed.
///
/// See also the [sqlite3_update_hook()] interface.
ffi.Pointer<ffi.Void> sqlite3_commit_hook(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_63>> arg1,
ffi.Pointer<ffi.Void> arg2,
) {
_sqlite3_commit_hook ??= _dylib.lookupFunction<_c_sqlite3_commit_hook,
_dart_sqlite3_commit_hook>('sqlite3_commit_hook');
return _sqlite3_commit_hook(
arg0,
arg1,
arg2,
);
}
_dart_sqlite3_commit_hook _sqlite3_commit_hook;
ffi.Pointer<ffi.Void> sqlite3_rollback_hook(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_64>> arg1,
ffi.Pointer<ffi.Void> arg2,
) {
_sqlite3_rollback_hook ??= _dylib.lookupFunction<_c_sqlite3_rollback_hook,
_dart_sqlite3_rollback_hook>('sqlite3_rollback_hook');
return _sqlite3_rollback_hook(
arg0,
arg1,
arg2,
);
}
_dart_sqlite3_rollback_hook _sqlite3_rollback_hook;
/// CAPI3REF: Data Change Notification Callbacks
/// METHOD: sqlite3
///
/// ^The sqlite3_update_hook() interface registers a callback function
/// with the [database connection] identified by the first argument
/// to be invoked whenever a row is updated, inserted or deleted in
/// a [rowid table].
/// ^Any callback set by a previous call to this function
/// for the same database connection is overridden.
///
/// ^The second argument is a pointer to the function to invoke when a
/// row is updated, inserted or deleted in a rowid table.
/// ^The first argument to the callback is a copy of the third argument
/// to sqlite3_update_hook().
/// ^The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE],
/// or [SQLITE_UPDATE], depending on the operation that caused the callback
/// to be invoked.
/// ^The third and fourth arguments to the callback contain pointers to the
/// database and table name containing the affected row.
/// ^The final callback parameter is the [rowid] of the row.
/// ^In the case of an update, this is the [rowid] after the update takes place.
///
/// ^(The update hook is not invoked when internal system tables are
/// modified (i.e. sqlite_master and sqlite_sequence).)^
/// ^The update hook is not invoked when [WITHOUT ROWID] tables are modified.
///
/// ^In the current implementation, the update hook
/// is not invoked when conflicting rows are deleted because of an
/// [ON CONFLICT | ON CONFLICT REPLACE] clause. ^Nor is the update hook
/// invoked when rows are deleted using the [truncate optimization].
/// The exceptions defined in this paragraph might change in a future
/// release of SQLite.
///
/// The update hook implementation must not do anything that will modify
/// the database connection that invoked the update hook. Any actions
/// to modify the database connection must be deferred until after the
/// completion of the [sqlite3_step()] call that triggered the update hook.
/// Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
/// database connections for the meaning of "modify" in this paragraph.
///
/// ^The sqlite3_update_hook(D,C,P) function
/// returns the P argument from the previous call
/// on the same [database connection] D, or NULL for
/// the first call on D.
///
/// See also the [sqlite3_commit_hook()], [sqlite3_rollback_hook()],
/// and [sqlite3_preupdate_hook()] interfaces.
ffi.Pointer<ffi.Void> sqlite3_update_hook(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_65>> arg1,
ffi.Pointer<ffi.Void> arg2,
) {
_sqlite3_update_hook ??= _dylib.lookupFunction<_c_sqlite3_update_hook,
_dart_sqlite3_update_hook>('sqlite3_update_hook');
return _sqlite3_update_hook(
arg0,
arg1,
arg2,
);
}
_dart_sqlite3_update_hook _sqlite3_update_hook;
/// CAPI3REF: Enable Or Disable Shared Pager Cache
///
/// ^(This routine enables or disables the sharing of the database cache
/// and schema data structures between [database connection | connections]
/// to the same database. Sharing is enabled if the argument is true
/// and disabled if the argument is false.)^
///
/// ^Cache sharing is enabled and disabled for an entire process.
/// This is a change as of SQLite [version 3.5.0] ([dateof:3.5.0]).
/// In prior versions of SQLite,
/// sharing was enabled or disabled for each thread separately.
///
/// ^(The cache sharing mode set by this interface effects all subsequent
/// calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
/// Existing database connections continue to use the sharing mode
/// that was in effect at the time they were opened.)^
///
/// ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled
/// successfully. An [error code] is returned otherwise.)^
///
/// ^Shared cache is disabled by default. It is recommended that it stay
/// that way. In other words, do not use this routine. This interface
/// continues to be provided for historical compatibility, but its use is
/// discouraged. Any use of shared cache is discouraged. If shared cache
/// must be used, it is recommended that shared cache only be enabled for
/// individual database connections using the [sqlite3_open_v2()] interface
/// with the [SQLITE_OPEN_SHAREDCACHE] flag.
///
/// Note: This method is disabled on MacOS X 10.7 and iOS version 5.0
/// and will always return SQLITE_MISUSE. On those systems,
/// shared cache mode should be enabled per-database connection via
/// [sqlite3_open_v2()] with [SQLITE_OPEN_SHAREDCACHE].
///
/// This interface is threadsafe on processors where writing a
/// 32-bit integer is atomic.
///
/// See Also: [SQLite Shared-Cache Mode]
int sqlite3_enable_shared_cache(
int arg0,
) {
_sqlite3_enable_shared_cache ??= _dylib.lookupFunction<
_c_sqlite3_enable_shared_cache,
_dart_sqlite3_enable_shared_cache>('sqlite3_enable_shared_cache');
return _sqlite3_enable_shared_cache(
arg0,
);
}
_dart_sqlite3_enable_shared_cache _sqlite3_enable_shared_cache;
/// CAPI3REF: Attempt To Free Heap Memory
///
/// ^The sqlite3_release_memory() interface attempts to free N bytes
/// of heap memory by deallocating non-essential memory allocations
/// held by the database library. Memory used to cache database
/// pages to improve performance is an example of non-essential memory.
/// ^sqlite3_release_memory() returns the number of bytes actually freed,
/// which might be more or less than the amount requested.
/// ^The sqlite3_release_memory() routine is a no-op returning zero
/// if SQLite is not compiled with [SQLITE_ENABLE_MEMORY_MANAGEMENT].
///
/// See also: [sqlite3_db_release_memory()]
int sqlite3_release_memory(
int arg0,
) {
_sqlite3_release_memory ??= _dylib.lookupFunction<_c_sqlite3_release_memory,
_dart_sqlite3_release_memory>('sqlite3_release_memory');
return _sqlite3_release_memory(
arg0,
);
}
_dart_sqlite3_release_memory _sqlite3_release_memory;
/// CAPI3REF: Free Memory Used By A Database Connection
/// METHOD: sqlite3
///
/// ^The sqlite3_db_release_memory(D) interface attempts to free as much heap
/// memory as possible from database connection D. Unlike the
/// [sqlite3_release_memory()] interface, this interface is in effect even
/// when the [SQLITE_ENABLE_MEMORY_MANAGEMENT] compile-time option is
/// omitted.
///
/// See also: [sqlite3_release_memory()]
int sqlite3_db_release_memory(
ffi.Pointer<sqlite3> arg0,
) {
_sqlite3_db_release_memory ??= _dylib.lookupFunction<
_c_sqlite3_db_release_memory,
_dart_sqlite3_db_release_memory>('sqlite3_db_release_memory');
return _sqlite3_db_release_memory(
arg0,
);
}
_dart_sqlite3_db_release_memory _sqlite3_db_release_memory;
/// CAPI3REF: Impose A Limit On Heap Size
///
/// These interfaces impose limits on the amount of heap memory that will be
/// by all database connections within a single process.
///
/// ^The sqlite3_soft_heap_limit64() interface sets and/or queries the
/// soft limit on the amount of heap memory that may be allocated by SQLite.
/// ^SQLite strives to keep heap memory utilization below the soft heap
/// limit by reducing the number of pages held in the page cache
/// as heap memory usages approaches the limit.
/// ^The soft heap limit is "soft" because even though SQLite strives to stay
/// below the limit, it will exceed the limit rather than generate
/// an [SQLITE_NOMEM] error. In other words, the soft heap limit
/// is advisory only.
///
/// ^The sqlite3_hard_heap_limit64(N) interface sets a hard upper bound of
/// N bytes on the amount of memory that will be allocated. ^The
/// sqlite3_hard_heap_limit64(N) interface is similar to
/// sqlite3_soft_heap_limit64(N) except that memory allocations will fail
/// when the hard heap limit is reached.
///
/// ^The return value from both sqlite3_soft_heap_limit64() and
/// sqlite3_hard_heap_limit64() is the size of
/// the heap limit prior to the call, or negative in the case of an
/// error. ^If the argument N is negative
/// then no change is made to the heap limit. Hence, the current
/// size of heap limits can be determined by invoking
/// sqlite3_soft_heap_limit64(-1) or sqlite3_hard_heap_limit(-1).
///
/// ^Setting the heap limits to zero disables the heap limiter mechanism.
///
/// ^The soft heap limit may not be greater than the hard heap limit.
/// ^If the hard heap limit is enabled and if sqlite3_soft_heap_limit(N)
/// is invoked with a value of N that is greater than the hard heap limit,
/// the the soft heap limit is set to the value of the hard heap limit.
/// ^The soft heap limit is automatically enabled whenever the hard heap
/// limit is enabled. ^When sqlite3_hard_heap_limit64(N) is invoked and
/// the soft heap limit is outside the range of 1..N, then the soft heap
/// limit is set to N. ^Invoking sqlite3_soft_heap_limit64(0) when the
/// hard heap limit is enabled makes the soft heap limit equal to the
/// hard heap limit.
///
/// The memory allocation limits can also be adjusted using
/// [PRAGMA soft_heap_limit] and [PRAGMA hard_heap_limit].
///
/// ^(The heap limits are not enforced in the current implementation
/// if one or more of following conditions are true:
///
/// <ul>
/// <li> The limit value is set to zero.
/// <li> Memory accounting is disabled using a combination of the
/// [sqlite3_config]([SQLITE_CONFIG_MEMSTATUS],...) start-time option and
/// the [SQLITE_DEFAULT_MEMSTATUS] compile-time option.
/// <li> An alternative page cache implementation is specified using
/// [sqlite3_config]([SQLITE_CONFIG_PCACHE2],...).
/// <li> The page cache allocates from its own memory pool supplied
/// by [sqlite3_config]([SQLITE_CONFIG_PAGECACHE],...) rather than
/// from the heap.
/// </ul>)^
///
/// The circumstances under which SQLite will enforce the heap limits may
/// changes in future releases of SQLite.
int sqlite3_soft_heap_limit64(
int N,
) {
_sqlite3_soft_heap_limit64 ??= _dylib.lookupFunction<
_c_sqlite3_soft_heap_limit64,
_dart_sqlite3_soft_heap_limit64>('sqlite3_soft_heap_limit64');
return _sqlite3_soft_heap_limit64(
N,
);
}
_dart_sqlite3_soft_heap_limit64 _sqlite3_soft_heap_limit64;
int sqlite3_hard_heap_limit64(
int N,
) {
_sqlite3_hard_heap_limit64 ??= _dylib.lookupFunction<
_c_sqlite3_hard_heap_limit64,
_dart_sqlite3_hard_heap_limit64>('sqlite3_hard_heap_limit64');
return _sqlite3_hard_heap_limit64(
N,
);
}
_dart_sqlite3_hard_heap_limit64 _sqlite3_hard_heap_limit64;
/// CAPI3REF: Deprecated Soft Heap Limit Interface
/// DEPRECATED
///
/// This is a deprecated version of the [sqlite3_soft_heap_limit64()]
/// interface. This routine is provided for historical compatibility
/// only. All new applications should use the
/// [sqlite3_soft_heap_limit64()] interface rather than this one.
void sqlite3_soft_heap_limit(
int N,
) {
_sqlite3_soft_heap_limit ??= _dylib.lookupFunction<
_c_sqlite3_soft_heap_limit,
_dart_sqlite3_soft_heap_limit>('sqlite3_soft_heap_limit');
return _sqlite3_soft_heap_limit(
N,
);
}
_dart_sqlite3_soft_heap_limit _sqlite3_soft_heap_limit;
/// CAPI3REF: Extract Metadata About A Column Of A Table
/// METHOD: sqlite3
///
/// ^(The sqlite3_table_column_metadata(X,D,T,C,....) routine returns
/// information about column C of table T in database D
/// on [database connection] X.)^ ^The sqlite3_table_column_metadata()
/// interface returns SQLITE_OK and fills in the non-NULL pointers in
/// the final five arguments with appropriate values if the specified
/// column exists. ^The sqlite3_table_column_metadata() interface returns
/// SQLITE_ERROR if the specified column does not exist.
/// ^If the column-name parameter to sqlite3_table_column_metadata() is a
/// NULL pointer, then this routine simply checks for the existence of the
/// table and returns SQLITE_OK if the table exists and SQLITE_ERROR if it
/// does not. If the table name parameter T in a call to
/// sqlite3_table_column_metadata(X,D,T,C,...) is NULL then the result is
/// undefined behavior.
///
/// ^The column is identified by the second, third and fourth parameters to
/// this function. ^(The second parameter is either the name of the database
/// (i.e. "main", "temp", or an attached database) containing the specified
/// table or NULL.)^ ^If it is NULL, then all attached databases are searched
/// for the table using the same algorithm used by the database engine to
/// resolve unqualified table references.
///
/// ^The third and fourth parameters to this function are the table and column
/// name of the desired column, respectively.
///
/// ^Metadata is returned by writing to the memory locations passed as the 5th
/// and subsequent parameters to this function. ^Any of these arguments may be
/// NULL, in which case the corresponding element of metadata is omitted.
///
/// ^(<blockquote>
/// <table border="1">
/// <tr><th> Parameter <th> Output<br>Type <th> Description
///
/// <tr><td> 5th <td> const char* <td> Data type
/// <tr><td> 6th <td> const char* <td> Name of default collation sequence
/// <tr><td> 7th <td> int <td> True if column has a NOT NULL constraint
/// <tr><td> 8th <td> int <td> True if column is part of the PRIMARY KEY
/// <tr><td> 9th <td> int <td> True if column is [AUTOINCREMENT]
/// </table>
/// </blockquote>)^
///
/// ^The memory pointed to by the character pointers returned for the
/// declaration type and collation sequence is valid until the next
/// call to any SQLite API function.
///
/// ^If the specified table is actually a view, an [error code] is returned.
///
/// ^If the specified column is "rowid", "oid" or "_rowid_" and the table
/// is not a [WITHOUT ROWID] table and an
/// [INTEGER PRIMARY KEY] column has been explicitly declared, then the output
/// parameters are set for the explicitly declared column. ^(If there is no
/// [INTEGER PRIMARY KEY] column, then the outputs
/// for the [rowid] are set as follows:
///
/// <pre>
/// data type: "INTEGER"
/// collation sequence: "BINARY"
/// not null: 0
/// primary key: 1
/// auto increment: 0
/// </pre>)^
///
/// ^This function causes all database schemas to be read from disk and
/// parsed, if that has not already been done, and returns an error if
/// any errors are encountered while loading the schema.
int sqlite3_table_column_metadata(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zDbName,
ffi.Pointer<ffi.Int8> zTableName,
ffi.Pointer<ffi.Int8> zColumnName,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzDataType,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzCollSeq,
ffi.Pointer<ffi.Int32> pNotNull,
ffi.Pointer<ffi.Int32> pPrimaryKey,
ffi.Pointer<ffi.Int32> pAutoinc,
) {
_sqlite3_table_column_metadata ??= _dylib.lookupFunction<
_c_sqlite3_table_column_metadata,
_dart_sqlite3_table_column_metadata>('sqlite3_table_column_metadata');
return _sqlite3_table_column_metadata(
db,
zDbName,
zTableName,
zColumnName,
pzDataType,
pzCollSeq,
pNotNull,
pPrimaryKey,
pAutoinc,
);
}
_dart_sqlite3_table_column_metadata _sqlite3_table_column_metadata;
/// CAPI3REF: Load An Extension
/// METHOD: sqlite3
///
/// ^This interface loads an SQLite extension library from the named file.
///
/// ^The sqlite3_load_extension() interface attempts to load an
/// [SQLite extension] library contained in the file zFile. If
/// the file cannot be loaded directly, attempts are made to load
/// with various operating-system specific extensions added.
/// So for example, if "samplelib" cannot be loaded, then names like
/// "samplelib.so" or "samplelib.dylib" or "samplelib.dll" might
/// be tried also.
///
/// ^The entry point is zProc.
/// ^(zProc may be 0, in which case SQLite will try to come up with an
/// entry point name on its own. It first tries "sqlite3_extension_init".
/// If that does not work, it constructs a name "sqlite3_X_init" where the
/// X is consists of the lower-case equivalent of all ASCII alphabetic
/// characters in the filename from the last "/" to the first following
/// "." and omitting any initial "lib".)^
/// ^The sqlite3_load_extension() interface returns
/// [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
/// ^If an error occurs and pzErrMsg is not 0, then the
/// [sqlite3_load_extension()] interface shall attempt to
/// fill *pzErrMsg with error message text stored in memory
/// obtained from [sqlite3_malloc()]. The calling function
/// should free this memory by calling [sqlite3_free()].
///
/// ^Extension loading must be enabled using
/// [sqlite3_enable_load_extension()] or
/// [sqlite3_db_config](db,[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION],1,NULL)
/// prior to calling this API,
/// otherwise an error will be returned.
///
/// <b>Security warning:</b> It is recommended that the
/// [SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION] method be used to enable only this
/// interface. The use of the [sqlite3_enable_load_extension()] interface
/// should be avoided. This will keep the SQL function [load_extension()]
/// disabled and prevent SQL injections from giving attackers
/// access to extension loading capabilities.
///
/// See also the [load_extension() SQL function].
int sqlite3_load_extension(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zFile,
ffi.Pointer<ffi.Int8> zProc,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzErrMsg,
) {
_sqlite3_load_extension ??= _dylib.lookupFunction<_c_sqlite3_load_extension,
_dart_sqlite3_load_extension>('sqlite3_load_extension');
return _sqlite3_load_extension(
db,
zFile,
zProc,
pzErrMsg,
);
}
_dart_sqlite3_load_extension _sqlite3_load_extension;
/// CAPI3REF: Enable Or Disable Extension Loading
/// METHOD: sqlite3
///
/// ^So as not to open security holes in older applications that are
/// unprepared to deal with [extension loading], and as a means of disabling
/// [extension loading] while evaluating user-entered SQL, the following API
/// is provided to turn the [sqlite3_load_extension()] mechanism on and off.
///
/// ^Extension loading is off by default.
/// ^Call the sqlite3_enable_load_extension() routine with onoff==1
/// to turn extension loading on and call it with onoff==0 to turn
/// it back off again.
///
/// ^This interface enables or disables both the C-API
/// [sqlite3_load_extension()] and the SQL function [load_extension()].
/// ^(Use [sqlite3_db_config](db,[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION],..)
/// to enable or disable only the C-API.)^
///
/// <b>Security warning:</b> It is recommended that extension loading
/// be enabled using the [SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION] method
/// rather than this interface, so the [load_extension()] SQL function
/// remains disabled. This will prevent SQL injections from giving attackers
/// access to extension loading capabilities.
int sqlite3_enable_load_extension(
ffi.Pointer<sqlite3> db,
int onoff,
) {
_sqlite3_enable_load_extension ??= _dylib.lookupFunction<
_c_sqlite3_enable_load_extension,
_dart_sqlite3_enable_load_extension>('sqlite3_enable_load_extension');
return _sqlite3_enable_load_extension(
db,
onoff,
);
}
_dart_sqlite3_enable_load_extension _sqlite3_enable_load_extension;
/// CAPI3REF: Automatically Load Statically Linked Extensions
///
/// ^This interface causes the xEntryPoint() function to be invoked for
/// each new [database connection] that is created. The idea here is that
/// xEntryPoint() is the entry point for a statically linked [SQLite extension]
/// that is to be automatically loaded into all new database connections.
///
/// ^(Even though the function prototype shows that xEntryPoint() takes
/// no arguments and returns void, SQLite invokes xEntryPoint() with three
/// arguments and expects an integer result as if the signature of the
/// entry point where as follows:
///
/// <blockquote><pre>
/// &nbsp; int xEntryPoint(
/// &nbsp; sqlite3 *db,
/// &nbsp; const char **pzErrMsg,
/// &nbsp; const struct sqlite3_api_routines *pThunk
/// &nbsp; );
/// </pre></blockquote>)^
///
/// If the xEntryPoint routine encounters an error, it should make *pzErrMsg
/// point to an appropriate error message (obtained from [sqlite3_mprintf()])
/// and return an appropriate [error code]. ^SQLite ensures that *pzErrMsg
/// is NULL before calling the xEntryPoint(). ^SQLite will invoke
/// [sqlite3_free()] on *pzErrMsg after xEntryPoint() returns. ^If any
/// xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()],
/// or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail.
///
/// ^Calling sqlite3_auto_extension(X) with an entry point X that is already
/// on the list of automatic extensions is a harmless no-op. ^No entry point
/// will be called more than once for each database connection that is opened.
///
/// See also: [sqlite3_reset_auto_extension()]
/// and [sqlite3_cancel_auto_extension()]
int sqlite3_auto_extension(
ffi.Pointer<ffi.NativeFunction<_typedefC_66>> xEntryPoint,
) {
_sqlite3_auto_extension ??= _dylib.lookupFunction<_c_sqlite3_auto_extension,
_dart_sqlite3_auto_extension>('sqlite3_auto_extension');
return _sqlite3_auto_extension(
xEntryPoint,
);
}
_dart_sqlite3_auto_extension _sqlite3_auto_extension;
/// CAPI3REF: Cancel Automatic Extension Loading
///
/// ^The [sqlite3_cancel_auto_extension(X)] interface unregisters the
/// initialization routine X that was registered using a prior call to
/// [sqlite3_auto_extension(X)]. ^The [sqlite3_cancel_auto_extension(X)]
/// routine returns 1 if initialization routine X was successfully
/// unregistered and it returns 0 if X was not on the list of initialization
/// routines.
int sqlite3_cancel_auto_extension(
ffi.Pointer<ffi.NativeFunction<_typedefC_67>> xEntryPoint,
) {
_sqlite3_cancel_auto_extension ??= _dylib.lookupFunction<
_c_sqlite3_cancel_auto_extension,
_dart_sqlite3_cancel_auto_extension>('sqlite3_cancel_auto_extension');
return _sqlite3_cancel_auto_extension(
xEntryPoint,
);
}
_dart_sqlite3_cancel_auto_extension _sqlite3_cancel_auto_extension;
/// CAPI3REF: Reset Automatic Extension Loading
///
/// ^This interface disables all automatic extensions previously
/// registered using [sqlite3_auto_extension()].
void sqlite3_reset_auto_extension() {
_sqlite3_reset_auto_extension ??= _dylib.lookupFunction<
_c_sqlite3_reset_auto_extension,
_dart_sqlite3_reset_auto_extension>('sqlite3_reset_auto_extension');
return _sqlite3_reset_auto_extension();
}
_dart_sqlite3_reset_auto_extension _sqlite3_reset_auto_extension;
/// CAPI3REF: Register A Virtual Table Implementation
/// METHOD: sqlite3
///
/// ^These routines are used to register a new [virtual table module] name.
/// ^Module names must be registered before
/// creating a new [virtual table] using the module and before using a
/// preexisting [virtual table] for the module.
///
/// ^The module name is registered on the [database connection] specified
/// by the first parameter. ^The name of the module is given by the
/// second parameter. ^The third parameter is a pointer to
/// the implementation of the [virtual table module]. ^The fourth
/// parameter is an arbitrary client data pointer that is passed through
/// into the [xCreate] and [xConnect] methods of the virtual table module
/// when a new virtual table is be being created or reinitialized.
///
/// ^The sqlite3_create_module_v2() interface has a fifth parameter which
/// is a pointer to a destructor for the pClientData. ^SQLite will
/// invoke the destructor function (if it is not NULL) when SQLite
/// no longer needs the pClientData pointer. ^The destructor will also
/// be invoked if the call to sqlite3_create_module_v2() fails.
/// ^The sqlite3_create_module()
/// interface is equivalent to sqlite3_create_module_v2() with a NULL
/// destructor.
///
/// ^If the third parameter (the pointer to the sqlite3_module object) is
/// NULL then no new module is create and any existing modules with the
/// same name are dropped.
///
/// See also: [sqlite3_drop_modules()]
int sqlite3_create_module(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zName,
ffi.Pointer<sqlite3_module> p,
ffi.Pointer<ffi.Void> pClientData,
) {
_sqlite3_create_module ??= _dylib.lookupFunction<_c_sqlite3_create_module,
_dart_sqlite3_create_module>('sqlite3_create_module');
return _sqlite3_create_module(
db,
zName,
p,
pClientData,
);
}
_dart_sqlite3_create_module _sqlite3_create_module;
int sqlite3_create_module_v2(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zName,
ffi.Pointer<sqlite3_module> p,
ffi.Pointer<ffi.Void> pClientData,
ffi.Pointer<ffi.NativeFunction<_typedefC_68>> xDestroy,
) {
_sqlite3_create_module_v2 ??= _dylib.lookupFunction<
_c_sqlite3_create_module_v2,
_dart_sqlite3_create_module_v2>('sqlite3_create_module_v2');
return _sqlite3_create_module_v2(
db,
zName,
p,
pClientData,
xDestroy,
);
}
_dart_sqlite3_create_module_v2 _sqlite3_create_module_v2;
/// CAPI3REF: Remove Unnecessary Virtual Table Implementations
/// METHOD: sqlite3
///
/// ^The sqlite3_drop_modules(D,L) interface removes all virtual
/// table modules from database connection D except those named on list L.
/// The L parameter must be either NULL or a pointer to an array of pointers
/// to strings where the array is terminated by a single NULL pointer.
/// ^If the L parameter is NULL, then all virtual table modules are removed.
///
/// See also: [sqlite3_create_module()]
int sqlite3_drop_modules(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Pointer<ffi.Int8>> azKeep,
) {
_sqlite3_drop_modules ??= _dylib.lookupFunction<_c_sqlite3_drop_modules,
_dart_sqlite3_drop_modules>('sqlite3_drop_modules');
return _sqlite3_drop_modules(
db,
azKeep,
);
}
_dart_sqlite3_drop_modules _sqlite3_drop_modules;
/// CAPI3REF: Declare The Schema Of A Virtual Table
///
/// ^The [xCreate] and [xConnect] methods of a
/// [virtual table module] call this interface
/// to declare the format (the names and datatypes of the columns) of
/// the virtual tables they implement.
int sqlite3_declare_vtab(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> zSQL,
) {
_sqlite3_declare_vtab ??= _dylib.lookupFunction<_c_sqlite3_declare_vtab,
_dart_sqlite3_declare_vtab>('sqlite3_declare_vtab');
return _sqlite3_declare_vtab(
arg0,
zSQL,
);
}
_dart_sqlite3_declare_vtab _sqlite3_declare_vtab;
/// CAPI3REF: Overload A Function For A Virtual Table
/// METHOD: sqlite3
///
/// ^(Virtual tables can provide alternative implementations of functions
/// using the [xFindFunction] method of the [virtual table module].
/// But global versions of those functions
/// must exist in order to be overloaded.)^
///
/// ^(This API makes sure a global version of a function with a particular
/// name and number of parameters exists. If no such function exists
/// before this API is called, a new function is created.)^ ^The implementation
/// of the new function always causes an exception to be thrown. So
/// the new function is not good for anything by itself. Its only
/// purpose is to be a placeholder function that can be overloaded
/// by a [virtual table].
int sqlite3_overload_function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> zFuncName,
int nArg,
) {
_sqlite3_overload_function ??= _dylib.lookupFunction<
_c_sqlite3_overload_function,
_dart_sqlite3_overload_function>('sqlite3_overload_function');
return _sqlite3_overload_function(
arg0,
zFuncName,
nArg,
);
}
_dart_sqlite3_overload_function _sqlite3_overload_function;
/// CAPI3REF: Open A BLOB For Incremental I/O
/// METHOD: sqlite3
/// CONSTRUCTOR: sqlite3_blob
///
/// ^(This interfaces opens a [BLOB handle | handle] to the BLOB located
/// in row iRow, column zColumn, table zTable in database zDb;
/// in other words, the same BLOB that would be selected by:
///
/// <pre>
/// SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
/// </pre>)^
///
/// ^(Parameter zDb is not the filename that contains the database, but
/// rather the symbolic name of the database. For attached databases, this is
/// the name that appears after the AS keyword in the [ATTACH] statement.
/// For the main database file, the database name is "main". For TEMP
/// tables, the database name is "temp".)^
///
/// ^If the flags parameter is non-zero, then the BLOB is opened for read
/// and write access. ^If the flags parameter is zero, the BLOB is opened for
/// read-only access.
///
/// ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is stored
/// in *ppBlob. Otherwise an [error code] is returned and, unless the error
/// code is SQLITE_MISUSE, *ppBlob is set to NULL.)^ ^This means that, provided
/// the API is not misused, it is always safe to call [sqlite3_blob_close()]
/// on *ppBlob after this function it returns.
///
/// This function fails with SQLITE_ERROR if any of the following are true:
/// <ul>
/// <li> ^(Database zDb does not exist)^,
/// <li> ^(Table zTable does not exist within database zDb)^,
/// <li> ^(Table zTable is a WITHOUT ROWID table)^,
/// <li> ^(Column zColumn does not exist)^,
/// <li> ^(Row iRow is not present in the table)^,
/// <li> ^(The specified column of row iRow contains a value that is not
/// a TEXT or BLOB value)^,
/// <li> ^(Column zColumn is part of an index, PRIMARY KEY or UNIQUE
/// constraint and the blob is being opened for read/write access)^,
/// <li> ^([foreign key constraints | Foreign key constraints] are enabled,
/// column zColumn is part of a [child key] definition and the blob is
/// being opened for read/write access)^.
/// </ul>
///
/// ^Unless it returns SQLITE_MISUSE, this function sets the
/// [database connection] error code and message accessible via
/// [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions.
///
/// A BLOB referenced by sqlite3_blob_open() may be read using the
/// [sqlite3_blob_read()] interface and modified by using
/// [sqlite3_blob_write()]. The [BLOB handle] can be moved to a
/// different row of the same table using the [sqlite3_blob_reopen()]
/// interface. However, the column, table, or database of a [BLOB handle]
/// cannot be changed after the [BLOB handle] is opened.
///
/// ^(If the row that a BLOB handle points to is modified by an
/// [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
/// then the BLOB handle is marked as "expired".
/// This is true if any column of the row is changed, even a column
/// other than the one the BLOB handle is open on.)^
/// ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
/// an expired BLOB handle fail with a return code of [SQLITE_ABORT].
/// ^(Changes written into a BLOB prior to the BLOB expiring are not
/// rolled back by the expiration of the BLOB. Such changes will eventually
/// commit if the transaction continues to completion.)^
///
/// ^Use the [sqlite3_blob_bytes()] interface to determine the size of
/// the opened blob. ^The size of a blob may not be changed by this
/// interface. Use the [UPDATE] SQL command to change the size of a
/// blob.
///
/// ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
/// and the built-in [zeroblob] SQL function may be used to create a
/// zero-filled blob to read or write using the incremental-blob interface.
///
/// To avoid a resource leak, every open [BLOB handle] should eventually
/// be released by a call to [sqlite3_blob_close()].
///
/// See also: [sqlite3_blob_close()],
/// [sqlite3_blob_reopen()], [sqlite3_blob_read()],
/// [sqlite3_blob_bytes()], [sqlite3_blob_write()].
int sqlite3_blob_open(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> zDb,
ffi.Pointer<ffi.Int8> zTable,
ffi.Pointer<ffi.Int8> zColumn,
int iRow,
int flags,
ffi.Pointer<ffi.Pointer<sqlite3_blob>> ppBlob,
) {
_sqlite3_blob_open ??=
_dylib.lookupFunction<_c_sqlite3_blob_open, _dart_sqlite3_blob_open>(
'sqlite3_blob_open');
return _sqlite3_blob_open(
arg0,
zDb,
zTable,
zColumn,
iRow,
flags,
ppBlob,
);
}
_dart_sqlite3_blob_open _sqlite3_blob_open;
/// CAPI3REF: Move a BLOB Handle to a New Row
/// METHOD: sqlite3_blob
///
/// ^This function is used to move an existing [BLOB handle] so that it points
/// to a different row of the same database table. ^The new row is identified
/// by the rowid value passed as the second argument. Only the row can be
/// changed. ^The database, table and column on which the blob handle is open
/// remain the same. Moving an existing [BLOB handle] to a new row is
/// faster than closing the existing handle and opening a new one.
///
/// ^(The new row must meet the same criteria as for [sqlite3_blob_open()] -
/// it must exist and there must be either a blob or text value stored in
/// the nominated column.)^ ^If the new row is not present in the table, or if
/// it does not contain a blob or text value, or if another error occurs, an
/// SQLite error code is returned and the blob handle is considered aborted.
/// ^All subsequent calls to [sqlite3_blob_read()], [sqlite3_blob_write()] or
/// [sqlite3_blob_reopen()] on an aborted blob handle immediately return
/// SQLITE_ABORT. ^Calling [sqlite3_blob_bytes()] on an aborted blob handle
/// always returns zero.
///
/// ^This function sets the database handle error code and message.
int sqlite3_blob_reopen(
ffi.Pointer<sqlite3_blob> arg0,
int arg1,
) {
_sqlite3_blob_reopen ??= _dylib.lookupFunction<_c_sqlite3_blob_reopen,
_dart_sqlite3_blob_reopen>('sqlite3_blob_reopen');
return _sqlite3_blob_reopen(
arg0,
arg1,
);
}
_dart_sqlite3_blob_reopen _sqlite3_blob_reopen;
/// CAPI3REF: Close A BLOB Handle
/// DESTRUCTOR: sqlite3_blob
///
/// ^This function closes an open [BLOB handle]. ^(The BLOB handle is closed
/// unconditionally. Even if this routine returns an error code, the
/// handle is still closed.)^
///
/// ^If the blob handle being closed was opened for read-write access, and if
/// the database is in auto-commit mode and there are no other open read-write
/// blob handles or active write statements, the current transaction is
/// committed. ^If an error occurs while committing the transaction, an error
/// code is returned and the transaction rolled back.
///
/// Calling this function with an argument that is not a NULL pointer or an
/// open blob handle results in undefined behaviour. ^Calling this routine
/// with a null pointer (such as would be returned by a failed call to
/// [sqlite3_blob_open()]) is a harmless no-op. ^Otherwise, if this function
/// is passed a valid open blob handle, the values returned by the
/// sqlite3_errcode() and sqlite3_errmsg() functions are set before returning.
int sqlite3_blob_close(
ffi.Pointer<sqlite3_blob> arg0,
) {
_sqlite3_blob_close ??=
_dylib.lookupFunction<_c_sqlite3_blob_close, _dart_sqlite3_blob_close>(
'sqlite3_blob_close');
return _sqlite3_blob_close(
arg0,
);
}
_dart_sqlite3_blob_close _sqlite3_blob_close;
/// CAPI3REF: Return The Size Of An Open BLOB
/// METHOD: sqlite3_blob
///
/// ^Returns the size in bytes of the BLOB accessible via the
/// successfully opened [BLOB handle] in its only argument. ^The
/// incremental blob I/O routines can only read or overwriting existing
/// blob content; they cannot change the size of a blob.
///
/// This routine only works on a [BLOB handle] which has been created
/// by a prior successful call to [sqlite3_blob_open()] and which has not
/// been closed by [sqlite3_blob_close()]. Passing any other pointer in
/// to this routine results in undefined and probably undesirable behavior.
int sqlite3_blob_bytes(
ffi.Pointer<sqlite3_blob> arg0,
) {
_sqlite3_blob_bytes ??=
_dylib.lookupFunction<_c_sqlite3_blob_bytes, _dart_sqlite3_blob_bytes>(
'sqlite3_blob_bytes');
return _sqlite3_blob_bytes(
arg0,
);
}
_dart_sqlite3_blob_bytes _sqlite3_blob_bytes;
/// CAPI3REF: Read Data From A BLOB Incrementally
/// METHOD: sqlite3_blob
///
/// ^(This function is used to read data from an open [BLOB handle] into a
/// caller-supplied buffer. N bytes of data are copied into buffer Z
/// from the open BLOB, starting at offset iOffset.)^
///
/// ^If offset iOffset is less than N bytes from the end of the BLOB,
/// [SQLITE_ERROR] is returned and no data is read. ^If N or iOffset is
/// less than zero, [SQLITE_ERROR] is returned and no data is read.
/// ^The size of the blob (and hence the maximum value of N+iOffset)
/// can be determined using the [sqlite3_blob_bytes()] interface.
///
/// ^An attempt to read from an expired [BLOB handle] fails with an
/// error code of [SQLITE_ABORT].
///
/// ^(On success, sqlite3_blob_read() returns SQLITE_OK.
/// Otherwise, an [error code] or an [extended error code] is returned.)^
///
/// This routine only works on a [BLOB handle] which has been created
/// by a prior successful call to [sqlite3_blob_open()] and which has not
/// been closed by [sqlite3_blob_close()]. Passing any other pointer in
/// to this routine results in undefined and probably undesirable behavior.
///
/// See also: [sqlite3_blob_write()].
int sqlite3_blob_read(
ffi.Pointer<sqlite3_blob> arg0,
ffi.Pointer<ffi.Void> Z,
int N,
int iOffset,
) {
_sqlite3_blob_read ??=
_dylib.lookupFunction<_c_sqlite3_blob_read, _dart_sqlite3_blob_read>(
'sqlite3_blob_read');
return _sqlite3_blob_read(
arg0,
Z,
N,
iOffset,
);
}
_dart_sqlite3_blob_read _sqlite3_blob_read;
/// CAPI3REF: Write Data Into A BLOB Incrementally
/// METHOD: sqlite3_blob
///
/// ^(This function is used to write data into an open [BLOB handle] from a
/// caller-supplied buffer. N bytes of data are copied from the buffer Z
/// into the open BLOB, starting at offset iOffset.)^
///
/// ^(On success, sqlite3_blob_write() returns SQLITE_OK.
/// Otherwise, an [error code] or an [extended error code] is returned.)^
/// ^Unless SQLITE_MISUSE is returned, this function sets the
/// [database connection] error code and message accessible via
/// [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions.
///
/// ^If the [BLOB handle] passed as the first argument was not opened for
/// writing (the flags parameter to [sqlite3_blob_open()] was zero),
/// this function returns [SQLITE_READONLY].
///
/// This function may only modify the contents of the BLOB; it is
/// not possible to increase the size of a BLOB using this API.
/// ^If offset iOffset is less than N bytes from the end of the BLOB,
/// [SQLITE_ERROR] is returned and no data is written. The size of the
/// BLOB (and hence the maximum value of N+iOffset) can be determined
/// using the [sqlite3_blob_bytes()] interface. ^If N or iOffset are less
/// than zero [SQLITE_ERROR] is returned and no data is written.
///
/// ^An attempt to write to an expired [BLOB handle] fails with an
/// error code of [SQLITE_ABORT]. ^Writes to the BLOB that occurred
/// before the [BLOB handle] expired are not rolled back by the
/// expiration of the handle, though of course those changes might
/// have been overwritten by the statement that expired the BLOB handle
/// or by other independent statements.
///
/// This routine only works on a [BLOB handle] which has been created
/// by a prior successful call to [sqlite3_blob_open()] and which has not
/// been closed by [sqlite3_blob_close()]. Passing any other pointer in
/// to this routine results in undefined and probably undesirable behavior.
///
/// See also: [sqlite3_blob_read()].
int sqlite3_blob_write(
ffi.Pointer<sqlite3_blob> arg0,
ffi.Pointer<ffi.Void> z,
int n,
int iOffset,
) {
_sqlite3_blob_write ??=
_dylib.lookupFunction<_c_sqlite3_blob_write, _dart_sqlite3_blob_write>(
'sqlite3_blob_write');
return _sqlite3_blob_write(
arg0,
z,
n,
iOffset,
);
}
_dart_sqlite3_blob_write _sqlite3_blob_write;
/// CAPI3REF: Virtual File System Objects
///
/// A virtual filesystem (VFS) is an [sqlite3_vfs] object
/// that SQLite uses to interact
/// with the underlying operating system. Most SQLite builds come with a
/// single default VFS that is appropriate for the host computer.
/// New VFSes can be registered and existing VFSes can be unregistered.
/// The following interfaces are provided.
///
/// ^The sqlite3_vfs_find() interface returns a pointer to a VFS given its name.
/// ^Names are case sensitive.
/// ^Names are zero-terminated UTF-8 strings.
/// ^If there is no match, a NULL pointer is returned.
/// ^If zVfsName is NULL then the default VFS is returned.
///
/// ^New VFSes are registered with sqlite3_vfs_register().
/// ^Each new VFS becomes the default VFS if the makeDflt flag is set.
/// ^The same VFS can be registered multiple times without injury.
/// ^To make an existing VFS into the default VFS, register it again
/// with the makeDflt flag set. If two different VFSes with the
/// same name are registered, the behavior is undefined. If a
/// VFS is registered with a name that is NULL or an empty string,
/// then the behavior is undefined.
///
/// ^Unregister a VFS with the sqlite3_vfs_unregister() interface.
/// ^(If the default VFS is unregistered, another VFS is chosen as
/// the default. The choice for the new VFS is arbitrary.)^
ffi.Pointer<sqlite3_vfs> sqlite3_vfs_find(
ffi.Pointer<ffi.Int8> zVfsName,
) {
_sqlite3_vfs_find ??=
_dylib.lookupFunction<_c_sqlite3_vfs_find, _dart_sqlite3_vfs_find>(
'sqlite3_vfs_find');
return _sqlite3_vfs_find(
zVfsName,
);
}
_dart_sqlite3_vfs_find _sqlite3_vfs_find;
int sqlite3_vfs_register(
ffi.Pointer<sqlite3_vfs> arg0,
int makeDflt,
) {
_sqlite3_vfs_register ??= _dylib.lookupFunction<_c_sqlite3_vfs_register,
_dart_sqlite3_vfs_register>('sqlite3_vfs_register');
return _sqlite3_vfs_register(
arg0,
makeDflt,
);
}
_dart_sqlite3_vfs_register _sqlite3_vfs_register;
int sqlite3_vfs_unregister(
ffi.Pointer<sqlite3_vfs> arg0,
) {
_sqlite3_vfs_unregister ??= _dylib.lookupFunction<_c_sqlite3_vfs_unregister,
_dart_sqlite3_vfs_unregister>('sqlite3_vfs_unregister');
return _sqlite3_vfs_unregister(
arg0,
);
}
_dart_sqlite3_vfs_unregister _sqlite3_vfs_unregister;
/// CAPI3REF: Mutexes
///
/// The SQLite core uses these routines for thread
/// synchronization. Though they are intended for internal
/// use by SQLite, code that links against SQLite is
/// permitted to use any of these routines.
///
/// The SQLite source code contains multiple implementations
/// of these mutex routines. An appropriate implementation
/// is selected automatically at compile-time. The following
/// implementations are available in the SQLite core:
///
/// <ul>
/// <li> SQLITE_MUTEX_PTHREADS
/// <li> SQLITE_MUTEX_W32
/// <li> SQLITE_MUTEX_NOOP
/// </ul>
///
/// The SQLITE_MUTEX_NOOP implementation is a set of routines
/// that does no real locking and is appropriate for use in
/// a single-threaded application. The SQLITE_MUTEX_PTHREADS and
/// SQLITE_MUTEX_W32 implementations are appropriate for use on Unix
/// and Windows.
///
/// If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
/// macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
/// implementation is included with the library. In this case the
/// application must supply a custom mutex implementation using the
/// [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
/// before calling sqlite3_initialize() or any other public sqlite3_
/// function that calls sqlite3_initialize().
///
/// ^The sqlite3_mutex_alloc() routine allocates a new
/// mutex and returns a pointer to it. ^The sqlite3_mutex_alloc()
/// routine returns NULL if it is unable to allocate the requested
/// mutex. The argument to sqlite3_mutex_alloc() must one of these
/// integer constants:
///
/// <ul>
/// <li> SQLITE_MUTEX_FAST
/// <li> SQLITE_MUTEX_RECURSIVE
/// <li> SQLITE_MUTEX_STATIC_MASTER
/// <li> SQLITE_MUTEX_STATIC_MEM
/// <li> SQLITE_MUTEX_STATIC_OPEN
/// <li> SQLITE_MUTEX_STATIC_PRNG
/// <li> SQLITE_MUTEX_STATIC_LRU
/// <li> SQLITE_MUTEX_STATIC_PMEM
/// <li> SQLITE_MUTEX_STATIC_APP1
/// <li> SQLITE_MUTEX_STATIC_APP2
/// <li> SQLITE_MUTEX_STATIC_APP3
/// <li> SQLITE_MUTEX_STATIC_VFS1
/// <li> SQLITE_MUTEX_STATIC_VFS2
/// <li> SQLITE_MUTEX_STATIC_VFS3
/// </ul>
///
/// ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE)
/// cause sqlite3_mutex_alloc() to create
/// a new mutex. ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
/// is used but not necessarily so when SQLITE_MUTEX_FAST is used.
/// The mutex implementation does not need to make a distinction
/// between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
/// not want to. SQLite will only request a recursive mutex in
/// cases where it really needs one. If a faster non-recursive mutex
/// implementation is available on the host platform, the mutex subsystem
/// might return such a mutex in response to SQLITE_MUTEX_FAST.
///
/// ^The other allowed parameters to sqlite3_mutex_alloc() (anything other
/// than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return
/// a pointer to a static preexisting mutex. ^Nine static mutexes are
/// used by the current version of SQLite. Future versions of SQLite
/// may add additional static mutexes. Static mutexes are for internal
/// use by SQLite only. Applications that use SQLite mutexes should
/// use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
/// SQLITE_MUTEX_RECURSIVE.
///
/// ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
/// or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
/// returns a different mutex on every call. ^For the static
/// mutex types, the same mutex is returned on every call that has
/// the same type number.
///
/// ^The sqlite3_mutex_free() routine deallocates a previously
/// allocated dynamic mutex. Attempting to deallocate a static
/// mutex results in undefined behavior.
///
/// ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
/// to enter a mutex. ^If another thread is already within the mutex,
/// sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
/// SQLITE_BUSY. ^The sqlite3_mutex_try() interface returns [SQLITE_OK]
/// upon successful entry. ^(Mutexes created using
/// SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
/// In such cases, the
/// mutex must be exited an equal number of times before another thread
/// can enter.)^ If the same thread tries to enter any mutex other
/// than an SQLITE_MUTEX_RECURSIVE more than once, the behavior is undefined.
///
/// ^(Some systems (for example, Windows 95) do not support the operation
/// implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try()
/// will always return SQLITE_BUSY. The SQLite core only ever uses
/// sqlite3_mutex_try() as an optimization so this is acceptable
/// behavior.)^
///
/// ^The sqlite3_mutex_leave() routine exits a mutex that was
/// previously entered by the same thread. The behavior
/// is undefined if the mutex is not currently entered by the
/// calling thread or is not currently allocated.
///
/// ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
/// sqlite3_mutex_leave() is a NULL pointer, then all three routines
/// behave as no-ops.
///
/// See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
ffi.Pointer<sqlite3_mutex> sqlite3_mutex_alloc(
int arg0,
) {
_sqlite3_mutex_alloc ??= _dylib.lookupFunction<_c_sqlite3_mutex_alloc,
_dart_sqlite3_mutex_alloc>('sqlite3_mutex_alloc');
return _sqlite3_mutex_alloc(
arg0,
);
}
_dart_sqlite3_mutex_alloc _sqlite3_mutex_alloc;
void sqlite3_mutex_free(
ffi.Pointer<sqlite3_mutex> arg0,
) {
_sqlite3_mutex_free ??=
_dylib.lookupFunction<_c_sqlite3_mutex_free, _dart_sqlite3_mutex_free>(
'sqlite3_mutex_free');
return _sqlite3_mutex_free(
arg0,
);
}
_dart_sqlite3_mutex_free _sqlite3_mutex_free;
void sqlite3_mutex_enter(
ffi.Pointer<sqlite3_mutex> arg0,
) {
_sqlite3_mutex_enter ??= _dylib.lookupFunction<_c_sqlite3_mutex_enter,
_dart_sqlite3_mutex_enter>('sqlite3_mutex_enter');
return _sqlite3_mutex_enter(
arg0,
);
}
_dart_sqlite3_mutex_enter _sqlite3_mutex_enter;
int sqlite3_mutex_try(
ffi.Pointer<sqlite3_mutex> arg0,
) {
_sqlite3_mutex_try ??=
_dylib.lookupFunction<_c_sqlite3_mutex_try, _dart_sqlite3_mutex_try>(
'sqlite3_mutex_try');
return _sqlite3_mutex_try(
arg0,
);
}
_dart_sqlite3_mutex_try _sqlite3_mutex_try;
void sqlite3_mutex_leave(
ffi.Pointer<sqlite3_mutex> arg0,
) {
_sqlite3_mutex_leave ??= _dylib.lookupFunction<_c_sqlite3_mutex_leave,
_dart_sqlite3_mutex_leave>('sqlite3_mutex_leave');
return _sqlite3_mutex_leave(
arg0,
);
}
_dart_sqlite3_mutex_leave _sqlite3_mutex_leave;
int sqlite3_mutex_held(
ffi.Pointer<sqlite3_mutex> arg0,
) {
_sqlite3_mutex_held ??=
_dylib.lookupFunction<_c_sqlite3_mutex_held, _dart_sqlite3_mutex_held>(
'sqlite3_mutex_held');
return _sqlite3_mutex_held(
arg0,
);
}
_dart_sqlite3_mutex_held _sqlite3_mutex_held;
int sqlite3_mutex_notheld(
ffi.Pointer<sqlite3_mutex> arg0,
) {
_sqlite3_mutex_notheld ??= _dylib.lookupFunction<_c_sqlite3_mutex_notheld,
_dart_sqlite3_mutex_notheld>('sqlite3_mutex_notheld');
return _sqlite3_mutex_notheld(
arg0,
);
}
_dart_sqlite3_mutex_notheld _sqlite3_mutex_notheld;
/// CAPI3REF: Retrieve the mutex for a database connection
/// METHOD: sqlite3
///
/// ^This interface returns a pointer the [sqlite3_mutex] object that
/// serializes access to the [database connection] given in the argument
/// when the [threading mode] is Serialized.
/// ^If the [threading mode] is Single-thread or Multi-thread then this
/// routine returns a NULL pointer.
ffi.Pointer<sqlite3_mutex> sqlite3_db_mutex(
ffi.Pointer<sqlite3> arg0,
) {
_sqlite3_db_mutex ??=
_dylib.lookupFunction<_c_sqlite3_db_mutex, _dart_sqlite3_db_mutex>(
'sqlite3_db_mutex');
return _sqlite3_db_mutex(
arg0,
);
}
_dart_sqlite3_db_mutex _sqlite3_db_mutex;
/// CAPI3REF: Low-Level Control Of Database Files
/// METHOD: sqlite3
/// KEYWORDS: {file control}
///
/// ^The [sqlite3_file_control()] interface makes a direct call to the
/// xFileControl method for the [sqlite3_io_methods] object associated
/// with a particular database identified by the second argument. ^The
/// name of the database is "main" for the main database or "temp" for the
/// TEMP database, or the name that appears after the AS keyword for
/// databases that are added using the [ATTACH] SQL command.
/// ^A NULL pointer can be used in place of "main" to refer to the
/// main database file.
/// ^The third and fourth parameters to this routine
/// are passed directly through to the second and third parameters of
/// the xFileControl method. ^The return value of the xFileControl
/// method becomes the return value of this routine.
///
/// A few opcodes for [sqlite3_file_control()] are handled directly
/// by the SQLite core and never invoke the
/// sqlite3_io_methods.xFileControl method.
/// ^The [SQLITE_FCNTL_FILE_POINTER] value for the op parameter causes
/// a pointer to the underlying [sqlite3_file] object to be written into
/// the space pointed to by the 4th parameter. The
/// [SQLITE_FCNTL_JOURNAL_POINTER] works similarly except that it returns
/// the [sqlite3_file] object associated with the journal file instead of
/// the main database. The [SQLITE_FCNTL_VFS_POINTER] opcode returns
/// a pointer to the underlying [sqlite3_vfs] object for the file.
/// The [SQLITE_FCNTL_DATA_VERSION] returns the data version counter
/// from the pager.
///
/// ^If the second parameter (zDbName) does not match the name of any
/// open database file, then SQLITE_ERROR is returned. ^This error
/// code is not remembered and will not be recalled by [sqlite3_errcode()]
/// or [sqlite3_errmsg()]. The underlying xFileControl method might
/// also return SQLITE_ERROR. There is no way to distinguish between
/// an incorrect zDbName and an SQLITE_ERROR return from the underlying
/// xFileControl method.
///
/// See also: [file control opcodes]
int sqlite3_file_control(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> zDbName,
int op,
ffi.Pointer<ffi.Void> arg3,
) {
_sqlite3_file_control ??= _dylib.lookupFunction<_c_sqlite3_file_control,
_dart_sqlite3_file_control>('sqlite3_file_control');
return _sqlite3_file_control(
arg0,
zDbName,
op,
arg3,
);
}
_dart_sqlite3_file_control _sqlite3_file_control;
/// CAPI3REF: Testing Interface
///
/// ^The sqlite3_test_control() interface is used to read out internal
/// state of SQLite and to inject faults into SQLite for testing
/// purposes. ^The first parameter is an operation code that determines
/// the number, meaning, and operation of all subsequent parameters.
///
/// This interface is not for use by applications. It exists solely
/// for verifying the correct operation of the SQLite library. Depending
/// on how the SQLite library is compiled, this interface might not exist.
///
/// The details of the operation codes, their meanings, the parameters
/// they take, and what they do are all subject to change without notice.
/// Unlike most of the SQLite API, this function is not guaranteed to
/// operate consistently from one release to the next.
int sqlite3_test_control(
int op,
) {
_sqlite3_test_control ??= _dylib.lookupFunction<_c_sqlite3_test_control,
_dart_sqlite3_test_control>('sqlite3_test_control');
return _sqlite3_test_control(
op,
);
}
_dart_sqlite3_test_control _sqlite3_test_control;
/// CAPI3REF: SQL Keyword Checking
///
/// These routines provide access to the set of SQL language keywords
/// recognized by SQLite. Applications can uses these routines to determine
/// whether or not a specific identifier needs to be escaped (for example,
/// by enclosing in double-quotes) so as not to confuse the parser.
///
/// The sqlite3_keyword_count() interface returns the number of distinct
/// keywords understood by SQLite.
///
/// The sqlite3_keyword_name(N,Z,L) interface finds the N-th keyword and
/// makes *Z point to that keyword expressed as UTF8 and writes the number
/// of bytes in the keyword into *L. The string that *Z points to is not
/// zero-terminated. The sqlite3_keyword_name(N,Z,L) routine returns
/// SQLITE_OK if N is within bounds and SQLITE_ERROR if not. If either Z
/// or L are NULL or invalid pointers then calls to
/// sqlite3_keyword_name(N,Z,L) result in undefined behavior.
///
/// The sqlite3_keyword_check(Z,L) interface checks to see whether or not
/// the L-byte UTF8 identifier that Z points to is a keyword, returning non-zero
/// if it is and zero if not.
///
/// The parser used by SQLite is forgiving. It is often possible to use
/// a keyword as an identifier as long as such use does not result in a
/// parsing ambiguity. For example, the statement
/// "CREATE TABLE BEGIN(REPLACE,PRAGMA,END);" is accepted by SQLite, and
/// creates a new table named "BEGIN" with three columns named
/// "REPLACE", "PRAGMA", and "END". Nevertheless, best practice is to avoid
/// using keywords as identifiers. Common techniques used to avoid keyword
/// name collisions include:
/// <ul>
/// <li> Put all identifier names inside double-quotes. This is the official
/// SQL way to escape identifier names.
/// <li> Put identifier names inside &#91;...&#93;. This is not standard SQL,
/// but it is what SQL Server does and so lots of programmers use this
/// technique.
/// <li> Begin every identifier with the letter "Z" as no SQL keywords start
/// with "Z".
/// <li> Include a digit somewhere in every identifier name.
/// </ul>
///
/// Note that the number of keywords understood by SQLite can depend on
/// compile-time options. For example, "VACUUM" is not a keyword if
/// SQLite is compiled with the [-DSQLITE_OMIT_VACUUM] option. Also,
/// new keywords may be added to future releases of SQLite.
int sqlite3_keyword_count() {
_sqlite3_keyword_count ??= _dylib.lookupFunction<_c_sqlite3_keyword_count,
_dart_sqlite3_keyword_count>('sqlite3_keyword_count');
return _sqlite3_keyword_count();
}
_dart_sqlite3_keyword_count _sqlite3_keyword_count;
int sqlite3_keyword_name(
int arg0,
ffi.Pointer<ffi.Pointer<ffi.Int8>> arg1,
ffi.Pointer<ffi.Int32> arg2,
) {
_sqlite3_keyword_name ??= _dylib.lookupFunction<_c_sqlite3_keyword_name,
_dart_sqlite3_keyword_name>('sqlite3_keyword_name');
return _sqlite3_keyword_name(
arg0,
arg1,
arg2,
);
}
_dart_sqlite3_keyword_name _sqlite3_keyword_name;
int sqlite3_keyword_check(
ffi.Pointer<ffi.Int8> arg0,
int arg1,
) {
_sqlite3_keyword_check ??= _dylib.lookupFunction<_c_sqlite3_keyword_check,
_dart_sqlite3_keyword_check>('sqlite3_keyword_check');
return _sqlite3_keyword_check(
arg0,
arg1,
);
}
_dart_sqlite3_keyword_check _sqlite3_keyword_check;
/// CAPI3REF: Create A New Dynamic String Object
/// CONSTRUCTOR: sqlite3_str
///
/// ^The [sqlite3_str_new(D)] interface allocates and initializes
/// a new [sqlite3_str] object. To avoid memory leaks, the object returned by
/// [sqlite3_str_new()] must be freed by a subsequent call to
/// [sqlite3_str_finish(X)].
///
/// ^The [sqlite3_str_new(D)] interface always returns a pointer to a
/// valid [sqlite3_str] object, though in the event of an out-of-memory
/// error the returned object might be a special singleton that will
/// silently reject new text, always return SQLITE_NOMEM from
/// [sqlite3_str_errcode()], always return 0 for
/// [sqlite3_str_length()], and always return NULL from
/// [sqlite3_str_finish(X)]. It is always safe to use the value
/// returned by [sqlite3_str_new(D)] as the sqlite3_str parameter
/// to any of the other [sqlite3_str] methods.
///
/// The D parameter to [sqlite3_str_new(D)] may be NULL. If the
/// D parameter in [sqlite3_str_new(D)] is not NULL, then the maximum
/// length of the string contained in the [sqlite3_str] object will be
/// the value set for [sqlite3_limit](D,[SQLITE_LIMIT_LENGTH]) instead
/// of [SQLITE_MAX_LENGTH].
ffi.Pointer<sqlite3_str> sqlite3_str_new(
ffi.Pointer<sqlite3> arg0,
) {
_sqlite3_str_new ??=
_dylib.lookupFunction<_c_sqlite3_str_new, _dart_sqlite3_str_new>(
'sqlite3_str_new');
return _sqlite3_str_new(
arg0,
);
}
_dart_sqlite3_str_new _sqlite3_str_new;
/// CAPI3REF: Finalize A Dynamic String
/// DESTRUCTOR: sqlite3_str
///
/// ^The [sqlite3_str_finish(X)] interface destroys the sqlite3_str object X
/// and returns a pointer to a memory buffer obtained from [sqlite3_malloc64()]
/// that contains the constructed string. The calling application should
/// pass the returned value to [sqlite3_free()] to avoid a memory leak.
/// ^The [sqlite3_str_finish(X)] interface may return a NULL pointer if any
/// errors were encountered during construction of the string. ^The
/// [sqlite3_str_finish(X)] interface will also return a NULL pointer if the
/// string in [sqlite3_str] object X is zero bytes long.
ffi.Pointer<ffi.Int8> sqlite3_str_finish(
ffi.Pointer<sqlite3_str> arg0,
) {
_sqlite3_str_finish ??=
_dylib.lookupFunction<_c_sqlite3_str_finish, _dart_sqlite3_str_finish>(
'sqlite3_str_finish');
return _sqlite3_str_finish(
arg0,
);
}
_dart_sqlite3_str_finish _sqlite3_str_finish;
/// CAPI3REF: Add Content To A Dynamic String
/// METHOD: sqlite3_str
///
/// These interfaces add content to an sqlite3_str object previously obtained
/// from [sqlite3_str_new()].
///
/// ^The [sqlite3_str_appendf(X,F,...)] and
/// [sqlite3_str_vappendf(X,F,V)] interfaces uses the [built-in printf]
/// functionality of SQLite to append formatted text onto the end of
/// [sqlite3_str] object X.
///
/// ^The [sqlite3_str_append(X,S,N)] method appends exactly N bytes from string S
/// onto the end of the [sqlite3_str] object X. N must be non-negative.
/// S must contain at least N non-zero bytes of content. To append a
/// zero-terminated string in its entirety, use the [sqlite3_str_appendall()]
/// method instead.
///
/// ^The [sqlite3_str_appendall(X,S)] method appends the complete content of
/// zero-terminated string S onto the end of [sqlite3_str] object X.
///
/// ^The [sqlite3_str_appendchar(X,N,C)] method appends N copies of the
/// single-byte character C onto the end of [sqlite3_str] object X.
/// ^This method can be used, for example, to add whitespace indentation.
///
/// ^The [sqlite3_str_reset(X)] method resets the string under construction
/// inside [sqlite3_str] object X back to zero bytes in length.
///
/// These methods do not return a result code. ^If an error occurs, that fact
/// is recorded in the [sqlite3_str] object and can be recovered by a
/// subsequent call to [sqlite3_str_errcode(X)].
void sqlite3_str_appendf(
ffi.Pointer<sqlite3_str> arg0,
ffi.Pointer<ffi.Int8> zFormat,
) {
_sqlite3_str_appendf ??= _dylib.lookupFunction<_c_sqlite3_str_appendf,
_dart_sqlite3_str_appendf>('sqlite3_str_appendf');
return _sqlite3_str_appendf(
arg0,
zFormat,
);
}
_dart_sqlite3_str_appendf _sqlite3_str_appendf;
void sqlite3_str_append(
ffi.Pointer<sqlite3_str> arg0,
ffi.Pointer<ffi.Int8> zIn,
int N,
) {
_sqlite3_str_append ??=
_dylib.lookupFunction<_c_sqlite3_str_append, _dart_sqlite3_str_append>(
'sqlite3_str_append');
return _sqlite3_str_append(
arg0,
zIn,
N,
);
}
_dart_sqlite3_str_append _sqlite3_str_append;
void sqlite3_str_appendall(
ffi.Pointer<sqlite3_str> arg0,
ffi.Pointer<ffi.Int8> zIn,
) {
_sqlite3_str_appendall ??= _dylib.lookupFunction<_c_sqlite3_str_appendall,
_dart_sqlite3_str_appendall>('sqlite3_str_appendall');
return _sqlite3_str_appendall(
arg0,
zIn,
);
}
_dart_sqlite3_str_appendall _sqlite3_str_appendall;
void sqlite3_str_appendchar(
ffi.Pointer<sqlite3_str> arg0,
int N,
int C,
) {
_sqlite3_str_appendchar ??= _dylib.lookupFunction<_c_sqlite3_str_appendchar,
_dart_sqlite3_str_appendchar>('sqlite3_str_appendchar');
return _sqlite3_str_appendchar(
arg0,
N,
C,
);
}
_dart_sqlite3_str_appendchar _sqlite3_str_appendchar;
void sqlite3_str_reset(
ffi.Pointer<sqlite3_str> arg0,
) {
_sqlite3_str_reset ??=
_dylib.lookupFunction<_c_sqlite3_str_reset, _dart_sqlite3_str_reset>(
'sqlite3_str_reset');
return _sqlite3_str_reset(
arg0,
);
}
_dart_sqlite3_str_reset _sqlite3_str_reset;
/// CAPI3REF: Status Of A Dynamic String
/// METHOD: sqlite3_str
///
/// These interfaces return the current status of an [sqlite3_str] object.
///
/// ^If any prior errors have occurred while constructing the dynamic string
/// in sqlite3_str X, then the [sqlite3_str_errcode(X)] method will return
/// an appropriate error code. ^The [sqlite3_str_errcode(X)] method returns
/// [SQLITE_NOMEM] following any out-of-memory error, or
/// [SQLITE_TOOBIG] if the size of the dynamic string exceeds
/// [SQLITE_MAX_LENGTH], or [SQLITE_OK] if there have been no errors.
///
/// ^The [sqlite3_str_length(X)] method returns the current length, in bytes,
/// of the dynamic string under construction in [sqlite3_str] object X.
/// ^The length returned by [sqlite3_str_length(X)] does not include the
/// zero-termination byte.
///
/// ^The [sqlite3_str_value(X)] method returns a pointer to the current
/// content of the dynamic string under construction in X. The value
/// returned by [sqlite3_str_value(X)] is managed by the sqlite3_str object X
/// and might be freed or altered by any subsequent method on the same
/// [sqlite3_str] object. Applications must not used the pointer returned
/// [sqlite3_str_value(X)] after any subsequent method call on the same
/// object. ^Applications may change the content of the string returned
/// by [sqlite3_str_value(X)] as long as they do not write into any bytes
/// outside the range of 0 to [sqlite3_str_length(X)] and do not read or
/// write any byte after any subsequent sqlite3_str method call.
int sqlite3_str_errcode(
ffi.Pointer<sqlite3_str> arg0,
) {
_sqlite3_str_errcode ??= _dylib.lookupFunction<_c_sqlite3_str_errcode,
_dart_sqlite3_str_errcode>('sqlite3_str_errcode');
return _sqlite3_str_errcode(
arg0,
);
}
_dart_sqlite3_str_errcode _sqlite3_str_errcode;
int sqlite3_str_length(
ffi.Pointer<sqlite3_str> arg0,
) {
_sqlite3_str_length ??=
_dylib.lookupFunction<_c_sqlite3_str_length, _dart_sqlite3_str_length>(
'sqlite3_str_length');
return _sqlite3_str_length(
arg0,
);
}
_dart_sqlite3_str_length _sqlite3_str_length;
ffi.Pointer<ffi.Int8> sqlite3_str_value(
ffi.Pointer<sqlite3_str> arg0,
) {
_sqlite3_str_value ??=
_dylib.lookupFunction<_c_sqlite3_str_value, _dart_sqlite3_str_value>(
'sqlite3_str_value');
return _sqlite3_str_value(
arg0,
);
}
_dart_sqlite3_str_value _sqlite3_str_value;
/// CAPI3REF: SQLite Runtime Status
///
/// ^These interfaces are used to retrieve runtime status information
/// about the performance of SQLite, and optionally to reset various
/// highwater marks. ^The first argument is an integer code for
/// the specific parameter to measure. ^(Recognized integer codes
/// are of the form [status parameters | SQLITE_STATUS_...].)^
/// ^The current value of the parameter is returned into *pCurrent.
/// ^The highest recorded value is returned in *pHighwater. ^If the
/// resetFlag is true, then the highest record value is reset after
/// *pHighwater is written. ^(Some parameters do not record the highest
/// value. For those parameters
/// nothing is written into *pHighwater and the resetFlag is ignored.)^
/// ^(Other parameters record only the highwater mark and not the current
/// value. For these latter parameters nothing is written into *pCurrent.)^
///
/// ^The sqlite3_status() and sqlite3_status64() routines return
/// SQLITE_OK on success and a non-zero [error code] on failure.
///
/// If either the current value or the highwater mark is too large to
/// be represented by a 32-bit integer, then the values returned by
/// sqlite3_status() are undefined.
///
/// See also: [sqlite3_db_status()]
int sqlite3_status(
int op,
ffi.Pointer<ffi.Int32> pCurrent,
ffi.Pointer<ffi.Int32> pHighwater,
int resetFlag,
) {
_sqlite3_status ??=
_dylib.lookupFunction<_c_sqlite3_status, _dart_sqlite3_status>(
'sqlite3_status');
return _sqlite3_status(
op,
pCurrent,
pHighwater,
resetFlag,
);
}
_dart_sqlite3_status _sqlite3_status;
int sqlite3_status64(
int op,
ffi.Pointer<ffi.Int64> pCurrent,
ffi.Pointer<ffi.Int64> pHighwater,
int resetFlag,
) {
_sqlite3_status64 ??=
_dylib.lookupFunction<_c_sqlite3_status64, _dart_sqlite3_status64>(
'sqlite3_status64');
return _sqlite3_status64(
op,
pCurrent,
pHighwater,
resetFlag,
);
}
_dart_sqlite3_status64 _sqlite3_status64;
/// CAPI3REF: Database Connection Status
/// METHOD: sqlite3
///
/// ^This interface is used to retrieve runtime status information
/// about a single [database connection]. ^The first argument is the
/// database connection object to be interrogated. ^The second argument
/// is an integer constant, taken from the set of
/// [SQLITE_DBSTATUS options], that
/// determines the parameter to interrogate. The set of
/// [SQLITE_DBSTATUS options] is likely
/// to grow in future releases of SQLite.
///
/// ^The current value of the requested parameter is written into *pCur
/// and the highest instantaneous value is written into *pHiwtr. ^If
/// the resetFlg is true, then the highest instantaneous value is
/// reset back down to the current value.
///
/// ^The sqlite3_db_status() routine returns SQLITE_OK on success and a
/// non-zero [error code] on failure.
///
/// See also: [sqlite3_status()] and [sqlite3_stmt_status()].
int sqlite3_db_status(
ffi.Pointer<sqlite3> arg0,
int op,
ffi.Pointer<ffi.Int32> pCur,
ffi.Pointer<ffi.Int32> pHiwtr,
int resetFlg,
) {
_sqlite3_db_status ??=
_dylib.lookupFunction<_c_sqlite3_db_status, _dart_sqlite3_db_status>(
'sqlite3_db_status');
return _sqlite3_db_status(
arg0,
op,
pCur,
pHiwtr,
resetFlg,
);
}
_dart_sqlite3_db_status _sqlite3_db_status;
/// CAPI3REF: Prepared Statement Status
/// METHOD: sqlite3_stmt
///
/// ^(Each prepared statement maintains various
/// [SQLITE_STMTSTATUS counters] that measure the number
/// of times it has performed specific operations.)^ These counters can
/// be used to monitor the performance characteristics of the prepared
/// statements. For example, if the number of table steps greatly exceeds
/// the number of table searches or result rows, that would tend to indicate
/// that the prepared statement is using a full table scan rather than
/// an index.
///
/// ^(This interface is used to retrieve and reset counter values from
/// a [prepared statement]. The first argument is the prepared statement
/// object to be interrogated. The second argument
/// is an integer code for a specific [SQLITE_STMTSTATUS counter]
/// to be interrogated.)^
/// ^The current value of the requested counter is returned.
/// ^If the resetFlg is true, then the counter is reset to zero after this
/// interface call returns.
///
/// See also: [sqlite3_status()] and [sqlite3_db_status()].
int sqlite3_stmt_status(
ffi.Pointer<sqlite3_stmt> arg0,
int op,
int resetFlg,
) {
_sqlite3_stmt_status ??= _dylib.lookupFunction<_c_sqlite3_stmt_status,
_dart_sqlite3_stmt_status>('sqlite3_stmt_status');
return _sqlite3_stmt_status(
arg0,
op,
resetFlg,
);
}
_dart_sqlite3_stmt_status _sqlite3_stmt_status;
/// CAPI3REF: Online Backup API.
///
/// The backup API copies the content of one database into another.
/// It is useful either for creating backups of databases or
/// for copying in-memory databases to or from persistent files.
///
/// See Also: [Using the SQLite Online Backup API]
///
/// ^SQLite holds a write transaction open on the destination database file
/// for the duration of the backup operation.
/// ^The source database is read-locked only while it is being read;
/// it is not locked continuously for the entire backup operation.
/// ^Thus, the backup may be performed on a live source database without
/// preventing other database connections from
/// reading or writing to the source database while the backup is underway.
///
/// ^(To perform a backup operation:
/// <ol>
/// <li><b>sqlite3_backup_init()</b> is called once to initialize the
/// backup,
/// <li><b>sqlite3_backup_step()</b> is called one or more times to transfer
/// the data between the two databases, and finally
/// <li><b>sqlite3_backup_finish()</b> is called to release all resources
/// associated with the backup operation.
/// </ol>)^
/// There should be exactly one call to sqlite3_backup_finish() for each
/// successful call to sqlite3_backup_init().
///
/// [[sqlite3_backup_init()]] <b>sqlite3_backup_init()</b>
///
/// ^The D and N arguments to sqlite3_backup_init(D,N,S,M) are the
/// [database connection] associated with the destination database
/// and the database name, respectively.
/// ^The database name is "main" for the main database, "temp" for the
/// temporary database, or the name specified after the AS keyword in
/// an [ATTACH] statement for an attached database.
/// ^The S and M arguments passed to
/// sqlite3_backup_init(D,N,S,M) identify the [database connection]
/// and database name of the source database, respectively.
/// ^The source and destination [database connections] (parameters S and D)
/// must be different or else sqlite3_backup_init(D,N,S,M) will fail with
/// an error.
///
/// ^A call to sqlite3_backup_init() will fail, returning NULL, if
/// there is already a read or read-write transaction open on the
/// destination database.
///
/// ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is
/// returned and an error code and error message are stored in the
/// destination [database connection] D.
/// ^The error code and message for the failed call to sqlite3_backup_init()
/// can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or
/// [sqlite3_errmsg16()] functions.
/// ^A successful call to sqlite3_backup_init() returns a pointer to an
/// [sqlite3_backup] object.
/// ^The [sqlite3_backup] object may be used with the sqlite3_backup_step() and
/// sqlite3_backup_finish() functions to perform the specified backup
/// operation.
///
/// [[sqlite3_backup_step()]] <b>sqlite3_backup_step()</b>
///
/// ^Function sqlite3_backup_step(B,N) will copy up to N pages between
/// the source and destination databases specified by [sqlite3_backup] object B.
/// ^If N is negative, all remaining source pages are copied.
/// ^If sqlite3_backup_step(B,N) successfully copies N pages and there
/// are still more pages to be copied, then the function returns [SQLITE_OK].
/// ^If sqlite3_backup_step(B,N) successfully finishes copying all pages
/// from source to destination, then it returns [SQLITE_DONE].
/// ^If an error occurs while running sqlite3_backup_step(B,N),
/// then an [error code] is returned. ^As well as [SQLITE_OK] and
/// [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY],
/// [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an
/// [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code.
///
/// ^(The sqlite3_backup_step() might return [SQLITE_READONLY] if
/// <ol>
/// <li> the destination database was opened read-only, or
/// <li> the destination database is using write-ahead-log journaling
/// and the destination and source page sizes differ, or
/// <li> the destination database is an in-memory database and the
/// destination and source page sizes differ.
/// </ol>)^
///
/// ^If sqlite3_backup_step() cannot obtain a required file-system lock, then
/// the [sqlite3_busy_handler | busy-handler function]
/// is invoked (if one is specified). ^If the
/// busy-handler returns non-zero before the lock is available, then
/// [SQLITE_BUSY] is returned to the caller. ^In this case the call to
/// sqlite3_backup_step() can be retried later. ^If the source
/// [database connection]
/// is being used to write to the source database when sqlite3_backup_step()
/// is called, then [SQLITE_LOCKED] is returned immediately. ^Again, in this
/// case the call to sqlite3_backup_step() can be retried later on. ^(If
/// [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or
/// [SQLITE_READONLY] is returned, then
/// there is no point in retrying the call to sqlite3_backup_step(). These
/// errors are considered fatal.)^ The application must accept
/// that the backup operation has failed and pass the backup operation handle
/// to the sqlite3_backup_finish() to release associated resources.
///
/// ^The first call to sqlite3_backup_step() obtains an exclusive lock
/// on the destination file. ^The exclusive lock is not released until either
/// sqlite3_backup_finish() is called or the backup operation is complete
/// and sqlite3_backup_step() returns [SQLITE_DONE]. ^Every call to
/// sqlite3_backup_step() obtains a [shared lock] on the source database that
/// lasts for the duration of the sqlite3_backup_step() call.
/// ^Because the source database is not locked between calls to
/// sqlite3_backup_step(), the source database may be modified mid-way
/// through the backup process. ^If the source database is modified by an
/// external process or via a database connection other than the one being
/// used by the backup operation, then the backup will be automatically
/// restarted by the next call to sqlite3_backup_step(). ^If the source
/// database is modified by the using the same database connection as is used
/// by the backup operation, then the backup database is automatically
/// updated at the same time.
///
/// [[sqlite3_backup_finish()]] <b>sqlite3_backup_finish()</b>
///
/// When sqlite3_backup_step() has returned [SQLITE_DONE], or when the
/// application wishes to abandon the backup operation, the application
/// should destroy the [sqlite3_backup] by passing it to sqlite3_backup_finish().
/// ^The sqlite3_backup_finish() interfaces releases all
/// resources associated with the [sqlite3_backup] object.
/// ^If sqlite3_backup_step() has not yet returned [SQLITE_DONE], then any
/// active write-transaction on the destination database is rolled back.
/// The [sqlite3_backup] object is invalid
/// and may not be used following a call to sqlite3_backup_finish().
///
/// ^The value returned by sqlite3_backup_finish is [SQLITE_OK] if no
/// sqlite3_backup_step() errors occurred, regardless or whether or not
/// sqlite3_backup_step() completed.
/// ^If an out-of-memory condition or IO error occurred during any prior
/// sqlite3_backup_step() call on the same [sqlite3_backup] object, then
/// sqlite3_backup_finish() returns the corresponding [error code].
///
/// ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step()
/// is not a permanent error and does not affect the return value of
/// sqlite3_backup_finish().
///
/// [[sqlite3_backup_remaining()]] [[sqlite3_backup_pagecount()]]
/// <b>sqlite3_backup_remaining() and sqlite3_backup_pagecount()</b>
///
/// ^The sqlite3_backup_remaining() routine returns the number of pages still
/// to be backed up at the conclusion of the most recent sqlite3_backup_step().
/// ^The sqlite3_backup_pagecount() routine returns the total number of pages
/// in the source database at the conclusion of the most recent
/// sqlite3_backup_step().
/// ^(The values returned by these functions are only updated by
/// sqlite3_backup_step(). If the source database is modified in a way that
/// changes the size of the source database or the number of pages remaining,
/// those changes are not reflected in the output of sqlite3_backup_pagecount()
/// and sqlite3_backup_remaining() until after the next
/// sqlite3_backup_step().)^
///
/// <b>Concurrent Usage of Database Handles</b>
///
/// ^The source [database connection] may be used by the application for other
/// purposes while a backup operation is underway or being initialized.
/// ^If SQLite is compiled and configured to support threadsafe database
/// connections, then the source database connection may be used concurrently
/// from within other threads.
///
/// However, the application must guarantee that the destination
/// [database connection] is not passed to any other API (by any thread) after
/// sqlite3_backup_init() is called and before the corresponding call to
/// sqlite3_backup_finish(). SQLite does not currently check to see
/// if the application incorrectly accesses the destination [database connection]
/// and so no error code is reported, but the operations may malfunction
/// nevertheless. Use of the destination database connection while a
/// backup is in progress might also also cause a mutex deadlock.
///
/// If running in [shared cache mode], the application must
/// guarantee that the shared cache used by the destination database
/// is not accessed while the backup is running. In practice this means
/// that the application must guarantee that the disk file being
/// backed up to is not accessed by any connection within the process,
/// not just the specific connection that was passed to sqlite3_backup_init().
///
/// The [sqlite3_backup] object itself is partially threadsafe. Multiple
/// threads may safely make multiple concurrent calls to sqlite3_backup_step().
/// However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount()
/// APIs are not strictly speaking threadsafe. If they are invoked at the
/// same time as another thread is invoking sqlite3_backup_step() it is
/// possible that they return invalid values.
ffi.Pointer<sqlite3_backup> sqlite3_backup_init(
ffi.Pointer<sqlite3> pDest,
ffi.Pointer<ffi.Int8> zDestName,
ffi.Pointer<sqlite3> pSource,
ffi.Pointer<ffi.Int8> zSourceName,
) {
_sqlite3_backup_init ??= _dylib.lookupFunction<_c_sqlite3_backup_init,
_dart_sqlite3_backup_init>('sqlite3_backup_init');
return _sqlite3_backup_init(
pDest,
zDestName,
pSource,
zSourceName,
);
}
_dart_sqlite3_backup_init _sqlite3_backup_init;
int sqlite3_backup_step(
ffi.Pointer<sqlite3_backup> p,
int nPage,
) {
_sqlite3_backup_step ??= _dylib.lookupFunction<_c_sqlite3_backup_step,
_dart_sqlite3_backup_step>('sqlite3_backup_step');
return _sqlite3_backup_step(
p,
nPage,
);
}
_dart_sqlite3_backup_step _sqlite3_backup_step;
int sqlite3_backup_finish(
ffi.Pointer<sqlite3_backup> p,
) {
_sqlite3_backup_finish ??= _dylib.lookupFunction<_c_sqlite3_backup_finish,
_dart_sqlite3_backup_finish>('sqlite3_backup_finish');
return _sqlite3_backup_finish(
p,
);
}
_dart_sqlite3_backup_finish _sqlite3_backup_finish;
int sqlite3_backup_remaining(
ffi.Pointer<sqlite3_backup> p,
) {
_sqlite3_backup_remaining ??= _dylib.lookupFunction<
_c_sqlite3_backup_remaining,
_dart_sqlite3_backup_remaining>('sqlite3_backup_remaining');
return _sqlite3_backup_remaining(
p,
);
}
_dart_sqlite3_backup_remaining _sqlite3_backup_remaining;
int sqlite3_backup_pagecount(
ffi.Pointer<sqlite3_backup> p,
) {
_sqlite3_backup_pagecount ??= _dylib.lookupFunction<
_c_sqlite3_backup_pagecount,
_dart_sqlite3_backup_pagecount>('sqlite3_backup_pagecount');
return _sqlite3_backup_pagecount(
p,
);
}
_dart_sqlite3_backup_pagecount _sqlite3_backup_pagecount;
/// CAPI3REF: Unlock Notification
/// METHOD: sqlite3
///
/// ^When running in shared-cache mode, a database operation may fail with
/// an [SQLITE_LOCKED] error if the required locks on the shared-cache or
/// individual tables within the shared-cache cannot be obtained. See
/// [SQLite Shared-Cache Mode] for a description of shared-cache locking.
/// ^This API may be used to register a callback that SQLite will invoke
/// when the connection currently holding the required lock relinquishes it.
/// ^This API is only available if the library was compiled with the
/// [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined.
///
/// See Also: [Using the SQLite Unlock Notification Feature].
///
/// ^Shared-cache locks are released when a database connection concludes
/// its current transaction, either by committing it or rolling it back.
///
/// ^When a connection (known as the blocked connection) fails to obtain a
/// shared-cache lock and SQLITE_LOCKED is returned to the caller, the
/// identity of the database connection (the blocking connection) that
/// has locked the required resource is stored internally. ^After an
/// application receives an SQLITE_LOCKED error, it may call the
/// sqlite3_unlock_notify() method with the blocked connection handle as
/// the first argument to register for a callback that will be invoked
/// when the blocking connections current transaction is concluded. ^The
/// callback is invoked from within the [sqlite3_step] or [sqlite3_close]
/// call that concludes the blocking connection's transaction.
///
/// ^(If sqlite3_unlock_notify() is called in a multi-threaded application,
/// there is a chance that the blocking connection will have already
/// concluded its transaction by the time sqlite3_unlock_notify() is invoked.
/// If this happens, then the specified callback is invoked immediately,
/// from within the call to sqlite3_unlock_notify().)^
///
/// ^If the blocked connection is attempting to obtain a write-lock on a
/// shared-cache table, and more than one other connection currently holds
/// a read-lock on the same table, then SQLite arbitrarily selects one of
/// the other connections to use as the blocking connection.
///
/// ^(There may be at most one unlock-notify callback registered by a
/// blocked connection. If sqlite3_unlock_notify() is called when the
/// blocked connection already has a registered unlock-notify callback,
/// then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is
/// called with a NULL pointer as its second argument, then any existing
/// unlock-notify callback is canceled. ^The blocked connections
/// unlock-notify callback may also be canceled by closing the blocked
/// connection using [sqlite3_close()].
///
/// The unlock-notify callback is not reentrant. If an application invokes
/// any sqlite3_xxx API functions from within an unlock-notify callback, a
/// crash or deadlock may be the result.
///
/// ^Unless deadlock is detected (see below), sqlite3_unlock_notify() always
/// returns SQLITE_OK.
///
/// <b>Callback Invocation Details</b>
///
/// When an unlock-notify callback is registered, the application provides a
/// single void* pointer that is passed to the callback when it is invoked.
/// However, the signature of the callback function allows SQLite to pass
/// it an array of void* context pointers. The first argument passed to
/// an unlock-notify callback is a pointer to an array of void* pointers,
/// and the second is the number of entries in the array.
///
/// When a blocking connection's transaction is concluded, there may be
/// more than one blocked connection that has registered for an unlock-notify
/// callback. ^If two or more such blocked connections have specified the
/// same callback function, then instead of invoking the callback function
/// multiple times, it is invoked once with the set of void* context pointers
/// specified by the blocked connections bundled together into an array.
/// This gives the application an opportunity to prioritize any actions
/// related to the set of unblocked database connections.
///
/// <b>Deadlock Detection</b>
///
/// Assuming that after registering for an unlock-notify callback a
/// database waits for the callback to be issued before taking any further
/// action (a reasonable assumption), then using this API may cause the
/// application to deadlock. For example, if connection X is waiting for
/// connection Y's transaction to be concluded, and similarly connection
/// Y is waiting on connection X's transaction, then neither connection
/// will proceed and the system may remain deadlocked indefinitely.
///
/// To avoid this scenario, the sqlite3_unlock_notify() performs deadlock
/// detection. ^If a given call to sqlite3_unlock_notify() would put the
/// system in a deadlocked state, then SQLITE_LOCKED is returned and no
/// unlock-notify callback is registered. The system is said to be in
/// a deadlocked state if connection A has registered for an unlock-notify
/// callback on the conclusion of connection B's transaction, and connection
/// B has itself registered for an unlock-notify callback when connection
/// A's transaction is concluded. ^Indirect deadlock is also detected, so
/// the system is also considered to be deadlocked if connection B has
/// registered for an unlock-notify callback on the conclusion of connection
/// C's transaction, where connection C is waiting on connection A. ^Any
/// number of levels of indirection are allowed.
///
/// <b>The "DROP TABLE" Exception</b>
///
/// When a call to [sqlite3_step()] returns SQLITE_LOCKED, it is almost
/// always appropriate to call sqlite3_unlock_notify(). There is however,
/// one exception. When executing a "DROP TABLE" or "DROP INDEX" statement,
/// SQLite checks if there are any currently executing SELECT statements
/// that belong to the same connection. If there are, SQLITE_LOCKED is
/// returned. In this case there is no "blocking connection", so invoking
/// sqlite3_unlock_notify() results in the unlock-notify callback being
/// invoked immediately. If the application then re-attempts the "DROP TABLE"
/// or "DROP INDEX" query, an infinite loop might be the result.
///
/// One way around this problem is to check the extended error code returned
/// by an sqlite3_step() call. ^(If there is a blocking connection, then the
/// extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in
/// the special "DROP TABLE/INDEX" case, the extended error code is just
/// SQLITE_LOCKED.)^
int sqlite3_unlock_notify(
ffi.Pointer<sqlite3> pBlocked,
ffi.Pointer<ffi.NativeFunction<_typedefC_69>> xNotify,
ffi.Pointer<ffi.Void> pNotifyArg,
) {
_sqlite3_unlock_notify ??= _dylib.lookupFunction<_c_sqlite3_unlock_notify,
_dart_sqlite3_unlock_notify>('sqlite3_unlock_notify');
return _sqlite3_unlock_notify(
pBlocked,
xNotify,
pNotifyArg,
);
}
_dart_sqlite3_unlock_notify _sqlite3_unlock_notify;
/// CAPI3REF: String Comparison
///
/// ^The [sqlite3_stricmp()] and [sqlite3_strnicmp()] APIs allow applications
/// and extensions to compare the contents of two buffers containing UTF-8
/// strings in a case-independent fashion, using the same definition of "case
/// independence" that SQLite uses internally when comparing identifiers.
int sqlite3_stricmp(
ffi.Pointer<ffi.Int8> arg0,
ffi.Pointer<ffi.Int8> arg1,
) {
_sqlite3_stricmp ??=
_dylib.lookupFunction<_c_sqlite3_stricmp, _dart_sqlite3_stricmp>(
'sqlite3_stricmp');
return _sqlite3_stricmp(
arg0,
arg1,
);
}
_dart_sqlite3_stricmp _sqlite3_stricmp;
int sqlite3_strnicmp(
ffi.Pointer<ffi.Int8> arg0,
ffi.Pointer<ffi.Int8> arg1,
int arg2,
) {
_sqlite3_strnicmp ??=
_dylib.lookupFunction<_c_sqlite3_strnicmp, _dart_sqlite3_strnicmp>(
'sqlite3_strnicmp');
return _sqlite3_strnicmp(
arg0,
arg1,
arg2,
);
}
_dart_sqlite3_strnicmp _sqlite3_strnicmp;
/// CAPI3REF: String Globbing
///
/// ^The [sqlite3_strglob(P,X)] interface returns zero if and only if
/// string X matches the [GLOB] pattern P.
/// ^The definition of [GLOB] pattern matching used in
/// [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the
/// SQL dialect understood by SQLite. ^The [sqlite3_strglob(P,X)] function
/// is case sensitive.
///
/// Note that this routine returns zero on a match and non-zero if the strings
/// do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
///
/// See also: [sqlite3_strlike()].
int sqlite3_strglob(
ffi.Pointer<ffi.Int8> zGlob,
ffi.Pointer<ffi.Int8> zStr,
) {
_sqlite3_strglob ??=
_dylib.lookupFunction<_c_sqlite3_strglob, _dart_sqlite3_strglob>(
'sqlite3_strglob');
return _sqlite3_strglob(
zGlob,
zStr,
);
}
_dart_sqlite3_strglob _sqlite3_strglob;
/// CAPI3REF: String LIKE Matching
///
/// ^The [sqlite3_strlike(P,X,E)] interface returns zero if and only if
/// string X matches the [LIKE] pattern P with escape character E.
/// ^The definition of [LIKE] pattern matching used in
/// [sqlite3_strlike(P,X,E)] is the same as for the "X LIKE P ESCAPE E"
/// operator in the SQL dialect understood by SQLite. ^For "X LIKE P" without
/// the ESCAPE clause, set the E parameter of [sqlite3_strlike(P,X,E)] to 0.
/// ^As with the LIKE operator, the [sqlite3_strlike(P,X,E)] function is case
/// insensitive - equivalent upper and lower case ASCII characters match
/// one another.
///
/// ^The [sqlite3_strlike(P,X,E)] function matches Unicode characters, though
/// only ASCII characters are case folded.
///
/// Note that this routine returns zero on a match and non-zero if the strings
/// do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
///
/// See also: [sqlite3_strglob()].
int sqlite3_strlike(
ffi.Pointer<ffi.Int8> zGlob,
ffi.Pointer<ffi.Int8> zStr,
int cEsc,
) {
_sqlite3_strlike ??=
_dylib.lookupFunction<_c_sqlite3_strlike, _dart_sqlite3_strlike>(
'sqlite3_strlike');
return _sqlite3_strlike(
zGlob,
zStr,
cEsc,
);
}
_dart_sqlite3_strlike _sqlite3_strlike;
/// CAPI3REF: Error Logging Interface
///
/// ^The [sqlite3_log()] interface writes a message into the [error log]
/// established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()].
/// ^If logging is enabled, the zFormat string and subsequent arguments are
/// used with [sqlite3_snprintf()] to generate the final output string.
///
/// The sqlite3_log() interface is intended for use by extensions such as
/// virtual tables, collating functions, and SQL functions. While there is
/// nothing to prevent an application from calling sqlite3_log(), doing so
/// is considered bad form.
///
/// The zFormat string must not be NULL.
///
/// To avoid deadlocks and other threading problems, the sqlite3_log() routine
/// will not use dynamically allocated memory. The log message is stored in
/// a fixed-length buffer on the stack. If the log message is longer than
/// a few hundred characters, it will be truncated to the length of the
/// buffer.
void sqlite3_log(
int iErrCode,
ffi.Pointer<ffi.Int8> zFormat,
) {
_sqlite3_log ??=
_dylib.lookupFunction<_c_sqlite3_log, _dart_sqlite3_log>('sqlite3_log');
return _sqlite3_log(
iErrCode,
zFormat,
);
}
_dart_sqlite3_log _sqlite3_log;
/// CAPI3REF: Write-Ahead Log Commit Hook
/// METHOD: sqlite3
///
/// ^The [sqlite3_wal_hook()] function is used to register a callback that
/// is invoked each time data is committed to a database in wal mode.
///
/// ^(The callback is invoked by SQLite after the commit has taken place and
/// the associated write-lock on the database released)^, so the implementation
/// may read, write or [checkpoint] the database as required.
///
/// ^The first parameter passed to the callback function when it is invoked
/// is a copy of the third parameter passed to sqlite3_wal_hook() when
/// registering the callback. ^The second is a copy of the database handle.
/// ^The third parameter is the name of the database that was written to -
/// either "main" or the name of an [ATTACH]-ed database. ^The fourth parameter
/// is the number of pages currently in the write-ahead log file,
/// including those that were just committed.
///
/// The callback function should normally return [SQLITE_OK]. ^If an error
/// code is returned, that error will propagate back up through the
/// SQLite code base to cause the statement that provoked the callback
/// to report an error, though the commit will have still occurred. If the
/// callback returns [SQLITE_ROW] or [SQLITE_DONE], or if it returns a value
/// that does not correspond to any valid SQLite error code, the results
/// are undefined.
///
/// A single database handle may have at most a single write-ahead log callback
/// registered at one time. ^Calling [sqlite3_wal_hook()] replaces any
/// previously registered write-ahead log callback. ^Note that the
/// [sqlite3_wal_autocheckpoint()] interface and the
/// [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will
/// overwrite any prior [sqlite3_wal_hook()] settings.
ffi.Pointer<ffi.Void> sqlite3_wal_hook(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_70>> arg1,
ffi.Pointer<ffi.Void> arg2,
) {
_sqlite3_wal_hook ??=
_dylib.lookupFunction<_c_sqlite3_wal_hook, _dart_sqlite3_wal_hook>(
'sqlite3_wal_hook');
return _sqlite3_wal_hook(
arg0,
arg1,
arg2,
);
}
_dart_sqlite3_wal_hook _sqlite3_wal_hook;
/// CAPI3REF: Configure an auto-checkpoint
/// METHOD: sqlite3
///
/// ^The [sqlite3_wal_autocheckpoint(D,N)] is a wrapper around
/// [sqlite3_wal_hook()] that causes any database on [database connection] D
/// to automatically [checkpoint]
/// after committing a transaction if there are N or
/// more frames in the [write-ahead log] file. ^Passing zero or
/// a negative value as the nFrame parameter disables automatic
/// checkpoints entirely.
///
/// ^The callback registered by this function replaces any existing callback
/// registered using [sqlite3_wal_hook()]. ^Likewise, registering a callback
/// using [sqlite3_wal_hook()] disables the automatic checkpoint mechanism
/// configured by this function.
///
/// ^The [wal_autocheckpoint pragma] can be used to invoke this interface
/// from SQL.
///
/// ^Checkpoints initiated by this mechanism are
/// [sqlite3_wal_checkpoint_v2|PASSIVE].
///
/// ^Every new [database connection] defaults to having the auto-checkpoint
/// enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT]
/// pages. The use of this interface
/// is only necessary if the default setting is found to be suboptimal
/// for a particular application.
int sqlite3_wal_autocheckpoint(
ffi.Pointer<sqlite3> db,
int N,
) {
_sqlite3_wal_autocheckpoint ??= _dylib.lookupFunction<
_c_sqlite3_wal_autocheckpoint,
_dart_sqlite3_wal_autocheckpoint>('sqlite3_wal_autocheckpoint');
return _sqlite3_wal_autocheckpoint(
db,
N,
);
}
_dart_sqlite3_wal_autocheckpoint _sqlite3_wal_autocheckpoint;
/// CAPI3REF: Checkpoint a database
/// METHOD: sqlite3
///
/// ^(The sqlite3_wal_checkpoint(D,X) is equivalent to
/// [sqlite3_wal_checkpoint_v2](D,X,[SQLITE_CHECKPOINT_PASSIVE],0,0).)^
///
/// In brief, sqlite3_wal_checkpoint(D,X) causes the content in the
/// [write-ahead log] for database X on [database connection] D to be
/// transferred into the database file and for the write-ahead log to
/// be reset. See the [checkpointing] documentation for addition
/// information.
///
/// This interface used to be the only way to cause a checkpoint to
/// occur. But then the newer and more powerful [sqlite3_wal_checkpoint_v2()]
/// interface was added. This interface is retained for backwards
/// compatibility and as a convenience for applications that need to manually
/// start a callback but which do not need the full power (and corresponding
/// complication) of [sqlite3_wal_checkpoint_v2()].
int sqlite3_wal_checkpoint(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zDb,
) {
_sqlite3_wal_checkpoint ??= _dylib.lookupFunction<_c_sqlite3_wal_checkpoint,
_dart_sqlite3_wal_checkpoint>('sqlite3_wal_checkpoint');
return _sqlite3_wal_checkpoint(
db,
zDb,
);
}
_dart_sqlite3_wal_checkpoint _sqlite3_wal_checkpoint;
/// CAPI3REF: Checkpoint a database
/// METHOD: sqlite3
///
/// ^(The sqlite3_wal_checkpoint_v2(D,X,M,L,C) interface runs a checkpoint
/// operation on database X of [database connection] D in mode M. Status
/// information is written back into integers pointed to by L and C.)^
/// ^(The M parameter must be a valid [checkpoint mode]:)^
///
/// <dl>
/// <dt>SQLITE_CHECKPOINT_PASSIVE<dd>
/// ^Checkpoint as many frames as possible without waiting for any database
/// readers or writers to finish, then sync the database file if all frames
/// in the log were checkpointed. ^The [busy-handler callback]
/// is never invoked in the SQLITE_CHECKPOINT_PASSIVE mode.
/// ^On the other hand, passive mode might leave the checkpoint unfinished
/// if there are concurrent readers or writers.
///
/// <dt>SQLITE_CHECKPOINT_FULL<dd>
/// ^This mode blocks (it invokes the
/// [sqlite3_busy_handler|busy-handler callback]) until there is no
/// database writer and all readers are reading from the most recent database
/// snapshot. ^It then checkpoints all frames in the log file and syncs the
/// database file. ^This mode blocks new database writers while it is pending,
/// but new database readers are allowed to continue unimpeded.
///
/// <dt>SQLITE_CHECKPOINT_RESTART<dd>
/// ^This mode works the same way as SQLITE_CHECKPOINT_FULL with the addition
/// that after checkpointing the log file it blocks (calls the
/// [busy-handler callback])
/// until all readers are reading from the database file only. ^This ensures
/// that the next writer will restart the log file from the beginning.
/// ^Like SQLITE_CHECKPOINT_FULL, this mode blocks new
/// database writer attempts while it is pending, but does not impede readers.
///
/// <dt>SQLITE_CHECKPOINT_TRUNCATE<dd>
/// ^This mode works the same way as SQLITE_CHECKPOINT_RESTART with the
/// addition that it also truncates the log file to zero bytes just prior
/// to a successful return.
/// </dl>
///
/// ^If pnLog is not NULL, then *pnLog is set to the total number of frames in
/// the log file or to -1 if the checkpoint could not run because
/// of an error or because the database is not in [WAL mode]. ^If pnCkpt is not
/// NULL,then *pnCkpt is set to the total number of checkpointed frames in the
/// log file (including any that were already checkpointed before the function
/// was called) or to -1 if the checkpoint could not run due to an error or
/// because the database is not in WAL mode. ^Note that upon successful
/// completion of an SQLITE_CHECKPOINT_TRUNCATE, the log file will have been
/// truncated to zero bytes and so both *pnLog and *pnCkpt will be set to zero.
///
/// ^All calls obtain an exclusive "checkpoint" lock on the database file. ^If
/// any other process is running a checkpoint operation at the same time, the
/// lock cannot be obtained and SQLITE_BUSY is returned. ^Even if there is a
/// busy-handler configured, it will not be invoked in this case.
///
/// ^The SQLITE_CHECKPOINT_FULL, RESTART and TRUNCATE modes also obtain the
/// exclusive "writer" lock on the database file. ^If the writer lock cannot be
/// obtained immediately, and a busy-handler is configured, it is invoked and
/// the writer lock retried until either the busy-handler returns 0 or the lock
/// is successfully obtained. ^The busy-handler is also invoked while waiting for
/// database readers as described above. ^If the busy-handler returns 0 before
/// the writer lock is obtained or while waiting for database readers, the
/// checkpoint operation proceeds from that point in the same way as
/// SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible
/// without blocking any further. ^SQLITE_BUSY is returned in this case.
///
/// ^If parameter zDb is NULL or points to a zero length string, then the
/// specified operation is attempted on all WAL databases [attached] to
/// [database connection] db. In this case the
/// values written to output parameters *pnLog and *pnCkpt are undefined. ^If
/// an SQLITE_BUSY error is encountered when processing one or more of the
/// attached WAL databases, the operation is still attempted on any remaining
/// attached databases and SQLITE_BUSY is returned at the end. ^If any other
/// error occurs while processing an attached database, processing is abandoned
/// and the error code is returned to the caller immediately. ^If no error
/// (SQLITE_BUSY or otherwise) is encountered while processing the attached
/// databases, SQLITE_OK is returned.
///
/// ^If database zDb is the name of an attached database that is not in WAL
/// mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. ^If
/// zDb is not NULL (or a zero length string) and is not the name of any
/// attached database, SQLITE_ERROR is returned to the caller.
///
/// ^Unless it returns SQLITE_MISUSE,
/// the sqlite3_wal_checkpoint_v2() interface
/// sets the error information that is queried by
/// [sqlite3_errcode()] and [sqlite3_errmsg()].
///
/// ^The [PRAGMA wal_checkpoint] command can be used to invoke this interface
/// from SQL.
int sqlite3_wal_checkpoint_v2(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zDb,
int eMode,
ffi.Pointer<ffi.Int32> pnLog,
ffi.Pointer<ffi.Int32> pnCkpt,
) {
_sqlite3_wal_checkpoint_v2 ??= _dylib.lookupFunction<
_c_sqlite3_wal_checkpoint_v2,
_dart_sqlite3_wal_checkpoint_v2>('sqlite3_wal_checkpoint_v2');
return _sqlite3_wal_checkpoint_v2(
db,
zDb,
eMode,
pnLog,
pnCkpt,
);
}
_dart_sqlite3_wal_checkpoint_v2 _sqlite3_wal_checkpoint_v2;
/// CAPI3REF: Virtual Table Interface Configuration
///
/// This function may be called by either the [xConnect] or [xCreate] method
/// of a [virtual table] implementation to configure
/// various facets of the virtual table interface.
///
/// If this interface is invoked outside the context of an xConnect or
/// xCreate virtual table method then the behavior is undefined.
///
/// In the call sqlite3_vtab_config(D,C,...) the D parameter is the
/// [database connection] in which the virtual table is being created and
/// which is passed in as the first argument to the [xConnect] or [xCreate]
/// method that is invoking sqlite3_vtab_config(). The C parameter is one
/// of the [virtual table configuration options]. The presence and meaning
/// of parameters after C depend on which [virtual table configuration option]
/// is used.
int sqlite3_vtab_config(
ffi.Pointer<sqlite3> arg0,
int op,
) {
_sqlite3_vtab_config ??= _dylib.lookupFunction<_c_sqlite3_vtab_config,
_dart_sqlite3_vtab_config>('sqlite3_vtab_config');
return _sqlite3_vtab_config(
arg0,
op,
);
}
_dart_sqlite3_vtab_config _sqlite3_vtab_config;
/// CAPI3REF: Determine The Virtual Table Conflict Policy
///
/// This function may only be called from within a call to the [xUpdate] method
/// of a [virtual table] implementation for an INSERT or UPDATE operation. ^The
/// value returned is one of [SQLITE_ROLLBACK], [SQLITE_IGNORE], [SQLITE_FAIL],
/// [SQLITE_ABORT], or [SQLITE_REPLACE], according to the [ON CONFLICT] mode
/// of the SQL statement that triggered the call to the [xUpdate] method of the
/// [virtual table].
int sqlite3_vtab_on_conflict(
ffi.Pointer<sqlite3> arg0,
) {
_sqlite3_vtab_on_conflict ??= _dylib.lookupFunction<
_c_sqlite3_vtab_on_conflict,
_dart_sqlite3_vtab_on_conflict>('sqlite3_vtab_on_conflict');
return _sqlite3_vtab_on_conflict(
arg0,
);
}
_dart_sqlite3_vtab_on_conflict _sqlite3_vtab_on_conflict;
/// CAPI3REF: Determine If Virtual Table Column Access Is For UPDATE
///
/// If the sqlite3_vtab_nochange(X) routine is called within the [xColumn]
/// method of a [virtual table], then it returns true if and only if the
/// column is being fetched as part of an UPDATE operation during which the
/// column value will not change. Applications might use this to substitute
/// a return value that is less expensive to compute and that the corresponding
/// [xUpdate] method understands as a "no-change" value.
///
/// If the [xColumn] method calls sqlite3_vtab_nochange() and finds that
/// the column is not changed by the UPDATE statement, then the xColumn
/// method can optionally return without setting a result, without calling
/// any of the [sqlite3_result_int|sqlite3_result_xxxxx() interfaces].
/// In that case, [sqlite3_value_nochange(X)] will return true for the
/// same column in the [xUpdate] method.
int sqlite3_vtab_nochange(
ffi.Pointer<sqlite3_context> arg0,
) {
_sqlite3_vtab_nochange ??= _dylib.lookupFunction<_c_sqlite3_vtab_nochange,
_dart_sqlite3_vtab_nochange>('sqlite3_vtab_nochange');
return _sqlite3_vtab_nochange(
arg0,
);
}
_dart_sqlite3_vtab_nochange _sqlite3_vtab_nochange;
/// CAPI3REF: Determine The Collation For a Virtual Table Constraint
///
/// This function may only be called from within a call to the [xBestIndex]
/// method of a [virtual table].
///
/// The first argument must be the sqlite3_index_info object that is the
/// first parameter to the xBestIndex() method. The second argument must be
/// an index into the aConstraint[] array belonging to the sqlite3_index_info
/// structure passed to xBestIndex. This function returns a pointer to a buffer
/// containing the name of the collation sequence for the corresponding
/// constraint.
ffi.Pointer<ffi.Int8> sqlite3_vtab_collation(
ffi.Pointer<sqlite3_index_info> arg0,
int arg1,
) {
_sqlite3_vtab_collation ??= _dylib.lookupFunction<_c_sqlite3_vtab_collation,
_dart_sqlite3_vtab_collation>('sqlite3_vtab_collation');
return _sqlite3_vtab_collation(
arg0,
arg1,
);
}
_dart_sqlite3_vtab_collation _sqlite3_vtab_collation;
/// CAPI3REF: Prepared Statement Scan Status
/// METHOD: sqlite3_stmt
///
/// This interface returns information about the predicted and measured
/// performance for pStmt. Advanced applications can use this
/// interface to compare the predicted and the measured performance and
/// issue warnings and/or rerun [ANALYZE] if discrepancies are found.
///
/// Since this interface is expected to be rarely used, it is only
/// available if SQLite is compiled using the [SQLITE_ENABLE_STMT_SCANSTATUS]
/// compile-time option.
///
/// The "iScanStatusOp" parameter determines which status information to return.
/// The "iScanStatusOp" must be one of the [scanstatus options] or the behavior
/// of this interface is undefined.
/// ^The requested measurement is written into a variable pointed to by
/// the "pOut" parameter.
/// Parameter "idx" identifies the specific loop to retrieve statistics for.
/// Loops are numbered starting from zero. ^If idx is out of range - less than
/// zero or greater than or equal to the total number of loops used to implement
/// the statement - a non-zero value is returned and the variable that pOut
/// points to is unchanged.
///
/// ^Statistics might not be available for all loops in all statements. ^In cases
/// where there exist loops with no available statistics, this function behaves
/// as if the loop did not exist - it returns non-zero and leave the variable
/// that pOut points to unchanged.
///
/// See also: [sqlite3_stmt_scanstatus_reset()]
int sqlite3_stmt_scanstatus(
ffi.Pointer<sqlite3_stmt> pStmt,
int idx,
int iScanStatusOp,
ffi.Pointer<ffi.Void> pOut,
) {
_sqlite3_stmt_scanstatus ??= _dylib.lookupFunction<
_c_sqlite3_stmt_scanstatus,
_dart_sqlite3_stmt_scanstatus>('sqlite3_stmt_scanstatus');
return _sqlite3_stmt_scanstatus(
pStmt,
idx,
iScanStatusOp,
pOut,
);
}
_dart_sqlite3_stmt_scanstatus _sqlite3_stmt_scanstatus;
/// CAPI3REF: Zero Scan-Status Counters
/// METHOD: sqlite3_stmt
///
/// ^Zero all [sqlite3_stmt_scanstatus()] related event counters.
///
/// This API is only available if the library is built with pre-processor
/// symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
void sqlite3_stmt_scanstatus_reset(
ffi.Pointer<sqlite3_stmt> arg0,
) {
_sqlite3_stmt_scanstatus_reset ??= _dylib.lookupFunction<
_c_sqlite3_stmt_scanstatus_reset,
_dart_sqlite3_stmt_scanstatus_reset>('sqlite3_stmt_scanstatus_reset');
return _sqlite3_stmt_scanstatus_reset(
arg0,
);
}
_dart_sqlite3_stmt_scanstatus_reset _sqlite3_stmt_scanstatus_reset;
/// CAPI3REF: Flush caches to disk mid-transaction
///
/// ^If a write-transaction is open on [database connection] D when the
/// [sqlite3_db_cacheflush(D)] interface invoked, any dirty
/// pages in the pager-cache that are not currently in use are written out
/// to disk. A dirty page may be in use if a database cursor created by an
/// active SQL statement is reading from it, or if it is page 1 of a database
/// file (page 1 is always "in use"). ^The [sqlite3_db_cacheflush(D)]
/// interface flushes caches for all schemas - "main", "temp", and
/// any [attached] databases.
///
/// ^If this function needs to obtain extra database locks before dirty pages
/// can be flushed to disk, it does so. ^If those locks cannot be obtained
/// immediately and there is a busy-handler callback configured, it is invoked
/// in the usual manner. ^If the required lock still cannot be obtained, then
/// the database is skipped and an attempt made to flush any dirty pages
/// belonging to the next (if any) database. ^If any databases are skipped
/// because locks cannot be obtained, but no other error occurs, this
/// function returns SQLITE_BUSY.
///
/// ^If any other error occurs while flushing dirty pages to disk (for
/// example an IO error or out-of-memory condition), then processing is
/// abandoned and an SQLite [error code] is returned to the caller immediately.
///
/// ^Otherwise, if no error occurs, [sqlite3_db_cacheflush()] returns SQLITE_OK.
///
/// ^This function does not set the database handle error code or message
/// returned by the [sqlite3_errcode()] and [sqlite3_errmsg()] functions.
int sqlite3_db_cacheflush(
ffi.Pointer<sqlite3> arg0,
) {
_sqlite3_db_cacheflush ??= _dylib.lookupFunction<_c_sqlite3_db_cacheflush,
_dart_sqlite3_db_cacheflush>('sqlite3_db_cacheflush');
return _sqlite3_db_cacheflush(
arg0,
);
}
_dart_sqlite3_db_cacheflush _sqlite3_db_cacheflush;
/// CAPI3REF: Low-level system error code
///
/// ^Attempt to return the underlying operating system error code or error
/// number that caused the most recent I/O error or failure to open a file.
/// The return value is OS-dependent. For example, on unix systems, after
/// [sqlite3_open_v2()] returns [SQLITE_CANTOPEN], this interface could be
/// called to get back the underlying "errno" that caused the problem, such
/// as ENOSPC, EAUTH, EISDIR, and so forth.
int sqlite3_system_errno(
ffi.Pointer<sqlite3> arg0,
) {
_sqlite3_system_errno ??= _dylib.lookupFunction<_c_sqlite3_system_errno,
_dart_sqlite3_system_errno>('sqlite3_system_errno');
return _sqlite3_system_errno(
arg0,
);
}
_dart_sqlite3_system_errno _sqlite3_system_errno;
/// CAPI3REF: Record A Database Snapshot
/// CONSTRUCTOR: sqlite3_snapshot
///
/// ^The [sqlite3_snapshot_get(D,S,P)] interface attempts to make a
/// new [sqlite3_snapshot] object that records the current state of
/// schema S in database connection D. ^On success, the
/// [sqlite3_snapshot_get(D,S,P)] interface writes a pointer to the newly
/// created [sqlite3_snapshot] object into *P and returns SQLITE_OK.
/// If there is not already a read-transaction open on schema S when
/// this function is called, one is opened automatically.
///
/// The following must be true for this function to succeed. If any of
/// the following statements are false when sqlite3_snapshot_get() is
/// called, SQLITE_ERROR is returned. The final value of *P is undefined
/// in this case.
///
/// <ul>
/// <li> The database handle must not be in [autocommit mode].
///
/// <li> Schema S of [database connection] D must be a [WAL mode] database.
///
/// <li> There must not be a write transaction open on schema S of database
/// connection D.
///
/// <li> One or more transactions must have been written to the current wal
/// file since it was created on disk (by any connection). This means
/// that a snapshot cannot be taken on a wal mode database with no wal
/// file immediately after it is first opened. At least one transaction
/// must be written to it first.
/// </ul>
///
/// This function may also return SQLITE_NOMEM. If it is called with the
/// database handle in autocommit mode but fails for some other reason,
/// whether or not a read transaction is opened on schema S is undefined.
///
/// The [sqlite3_snapshot] object returned from a successful call to
/// [sqlite3_snapshot_get()] must be freed using [sqlite3_snapshot_free()]
/// to avoid a memory leak.
///
/// The [sqlite3_snapshot_get()] interface is only available when the
/// [SQLITE_ENABLE_SNAPSHOT] compile-time option is used.
int sqlite3_snapshot_get(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSchema,
ffi.Pointer<ffi.Pointer<sqlite3_snapshot>> ppSnapshot,
) {
_sqlite3_snapshot_get ??= _dylib.lookupFunction<_c_sqlite3_snapshot_get,
_dart_sqlite3_snapshot_get>('sqlite3_snapshot_get');
return _sqlite3_snapshot_get(
db,
zSchema,
ppSnapshot,
);
}
_dart_sqlite3_snapshot_get _sqlite3_snapshot_get;
/// CAPI3REF: Start a read transaction on an historical snapshot
/// METHOD: sqlite3_snapshot
///
/// ^The [sqlite3_snapshot_open(D,S,P)] interface either starts a new read
/// transaction or upgrades an existing one for schema S of
/// [database connection] D such that the read transaction refers to
/// historical [snapshot] P, rather than the most recent change to the
/// database. ^The [sqlite3_snapshot_open()] interface returns SQLITE_OK
/// on success or an appropriate [error code] if it fails.
///
/// ^In order to succeed, the database connection must not be in
/// [autocommit mode] when [sqlite3_snapshot_open(D,S,P)] is called. If there
/// is already a read transaction open on schema S, then the database handle
/// must have no active statements (SELECT statements that have been passed
/// to sqlite3_step() but not sqlite3_reset() or sqlite3_finalize()).
/// SQLITE_ERROR is returned if either of these conditions is violated, or
/// if schema S does not exist, or if the snapshot object is invalid.
///
/// ^A call to sqlite3_snapshot_open() will fail to open if the specified
/// snapshot has been overwritten by a [checkpoint]. In this case
/// SQLITE_ERROR_SNAPSHOT is returned.
///
/// If there is already a read transaction open when this function is
/// invoked, then the same read transaction remains open (on the same
/// database snapshot) if SQLITE_ERROR, SQLITE_BUSY or SQLITE_ERROR_SNAPSHOT
/// is returned. If another error code - for example SQLITE_PROTOCOL or an
/// SQLITE_IOERR error code - is returned, then the final state of the
/// read transaction is undefined. If SQLITE_OK is returned, then the
/// read transaction is now open on database snapshot P.
///
/// ^(A call to [sqlite3_snapshot_open(D,S,P)] will fail if the
/// database connection D does not know that the database file for
/// schema S is in [WAL mode]. A database connection might not know
/// that the database file is in [WAL mode] if there has been no prior
/// I/O on that database connection, or if the database entered [WAL mode]
/// after the most recent I/O on the database connection.)^
/// (Hint: Run "[PRAGMA application_id]" against a newly opened
/// database connection in order to make it ready to use snapshots.)
///
/// The [sqlite3_snapshot_open()] interface is only available when the
/// [SQLITE_ENABLE_SNAPSHOT] compile-time option is used.
int sqlite3_snapshot_open(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSchema,
ffi.Pointer<sqlite3_snapshot> pSnapshot,
) {
_sqlite3_snapshot_open ??= _dylib.lookupFunction<_c_sqlite3_snapshot_open,
_dart_sqlite3_snapshot_open>('sqlite3_snapshot_open');
return _sqlite3_snapshot_open(
db,
zSchema,
pSnapshot,
);
}
_dart_sqlite3_snapshot_open _sqlite3_snapshot_open;
/// CAPI3REF: Destroy a snapshot
/// DESTRUCTOR: sqlite3_snapshot
///
/// ^The [sqlite3_snapshot_free(P)] interface destroys [sqlite3_snapshot] P.
/// The application must eventually free every [sqlite3_snapshot] object
/// using this routine to avoid a memory leak.
///
/// The [sqlite3_snapshot_free()] interface is only available when the
/// [SQLITE_ENABLE_SNAPSHOT] compile-time option is used.
void sqlite3_snapshot_free(
ffi.Pointer<sqlite3_snapshot> arg0,
) {
_sqlite3_snapshot_free ??= _dylib.lookupFunction<_c_sqlite3_snapshot_free,
_dart_sqlite3_snapshot_free>('sqlite3_snapshot_free');
return _sqlite3_snapshot_free(
arg0,
);
}
_dart_sqlite3_snapshot_free _sqlite3_snapshot_free;
/// CAPI3REF: Compare the ages of two snapshot handles.
/// METHOD: sqlite3_snapshot
///
/// The sqlite3_snapshot_cmp(P1, P2) interface is used to compare the ages
/// of two valid snapshot handles.
///
/// If the two snapshot handles are not associated with the same database
/// file, the result of the comparison is undefined.
///
/// Additionally, the result of the comparison is only valid if both of the
/// snapshot handles were obtained by calling sqlite3_snapshot_get() since the
/// last time the wal file was deleted. The wal file is deleted when the
/// database is changed back to rollback mode or when the number of database
/// clients drops to zero. If either snapshot handle was obtained before the
/// wal file was last deleted, the value returned by this function
/// is undefined.
///
/// Otherwise, this API returns a negative value if P1 refers to an older
/// snapshot than P2, zero if the two handles refer to the same database
/// snapshot, and a positive value if P1 is a newer snapshot than P2.
///
/// This interface is only available if SQLite is compiled with the
/// [SQLITE_ENABLE_SNAPSHOT] option.
int sqlite3_snapshot_cmp(
ffi.Pointer<sqlite3_snapshot> p1,
ffi.Pointer<sqlite3_snapshot> p2,
) {
_sqlite3_snapshot_cmp ??= _dylib.lookupFunction<_c_sqlite3_snapshot_cmp,
_dart_sqlite3_snapshot_cmp>('sqlite3_snapshot_cmp');
return _sqlite3_snapshot_cmp(
p1,
p2,
);
}
_dart_sqlite3_snapshot_cmp _sqlite3_snapshot_cmp;
/// CAPI3REF: Recover snapshots from a wal file
/// METHOD: sqlite3_snapshot
///
/// If a [WAL file] remains on disk after all database connections close
/// (either through the use of the [SQLITE_FCNTL_PERSIST_WAL] [file control]
/// or because the last process to have the database opened exited without
/// calling [sqlite3_close()]) and a new connection is subsequently opened
/// on that database and [WAL file], the [sqlite3_snapshot_open()] interface
/// will only be able to open the last transaction added to the WAL file
/// even though the WAL file contains other valid transactions.
///
/// This function attempts to scan the WAL file associated with database zDb
/// of database handle db and make all valid snapshots available to
/// sqlite3_snapshot_open(). It is an error if there is already a read
/// transaction open on the database, or if the database is not a WAL mode
/// database.
///
/// SQLITE_OK is returned if successful, or an SQLite error code otherwise.
///
/// This interface is only available if SQLite is compiled with the
/// [SQLITE_ENABLE_SNAPSHOT] option.
int sqlite3_snapshot_recover(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zDb,
) {
_sqlite3_snapshot_recover ??= _dylib.lookupFunction<
_c_sqlite3_snapshot_recover,
_dart_sqlite3_snapshot_recover>('sqlite3_snapshot_recover');
return _sqlite3_snapshot_recover(
db,
zDb,
);
}
_dart_sqlite3_snapshot_recover _sqlite3_snapshot_recover;
/// CAPI3REF: Serialize a database
///
/// The sqlite3_serialize(D,S,P,F) interface returns a pointer to memory
/// that is a serialization of the S database on [database connection] D.
/// If P is not a NULL pointer, then the size of the database in bytes
/// is written into *P.
///
/// For an ordinary on-disk database file, the serialization is just a
/// copy of the disk file. For an in-memory database or a "TEMP" database,
/// the serialization is the same sequence of bytes which would be written
/// to disk if that database where backed up to disk.
///
/// The usual case is that sqlite3_serialize() copies the serialization of
/// the database into memory obtained from [sqlite3_malloc64()] and returns
/// a pointer to that memory. The caller is responsible for freeing the
/// returned value to avoid a memory leak. However, if the F argument
/// contains the SQLITE_SERIALIZE_NOCOPY bit, then no memory allocations
/// are made, and the sqlite3_serialize() function will return a pointer
/// to the contiguous memory representation of the database that SQLite
/// is currently using for that database, or NULL if the no such contiguous
/// memory representation of the database exists. A contiguous memory
/// representation of the database will usually only exist if there has
/// been a prior call to [sqlite3_deserialize(D,S,...)] with the same
/// values of D and S.
/// The size of the database is written into *P even if the
/// SQLITE_SERIALIZE_NOCOPY bit is set but no contiguous copy
/// of the database exists.
///
/// A call to sqlite3_serialize(D,S,P,F) might return NULL even if the
/// SQLITE_SERIALIZE_NOCOPY bit is omitted from argument F if a memory
/// allocation error occurs.
///
/// This interface is only available if SQLite is compiled with the
/// [SQLITE_ENABLE_DESERIALIZE] option.
ffi.Pointer<ffi.Uint8> sqlite3_serialize(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSchema,
ffi.Pointer<ffi.Int64> piSize,
int mFlags,
) {
_sqlite3_serialize ??=
_dylib.lookupFunction<_c_sqlite3_serialize, _dart_sqlite3_serialize>(
'sqlite3_serialize');
return _sqlite3_serialize(
db,
zSchema,
piSize,
mFlags,
);
}
_dart_sqlite3_serialize _sqlite3_serialize;
/// CAPI3REF: Deserialize a database
///
/// The sqlite3_deserialize(D,S,P,N,M,F) interface causes the
/// [database connection] D to disconnect from database S and then
/// reopen S as an in-memory database based on the serialization contained
/// in P. The serialized database P is N bytes in size. M is the size of
/// the buffer P, which might be larger than N. If M is larger than N, and
/// the SQLITE_DESERIALIZE_READONLY bit is not set in F, then SQLite is
/// permitted to add content to the in-memory database as long as the total
/// size does not exceed M bytes.
///
/// If the SQLITE_DESERIALIZE_FREEONCLOSE bit is set in F, then SQLite will
/// invoke sqlite3_free() on the serialization buffer when the database
/// connection closes. If the SQLITE_DESERIALIZE_RESIZEABLE bit is set, then
/// SQLite will try to increase the buffer size using sqlite3_realloc64()
/// if writes on the database cause it to grow larger than M bytes.
///
/// The sqlite3_deserialize() interface will fail with SQLITE_BUSY if the
/// database is currently in a read transaction or is involved in a backup
/// operation.
///
/// If sqlite3_deserialize(D,S,P,N,M,F) fails for any reason and if the
/// SQLITE_DESERIALIZE_FREEONCLOSE bit is set in argument F, then
/// [sqlite3_free()] is invoked on argument P prior to returning.
///
/// This interface is only available if SQLite is compiled with the
/// [SQLITE_ENABLE_DESERIALIZE] option.
int sqlite3_deserialize(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSchema,
ffi.Pointer<ffi.Uint8> pData,
int szDb,
int szBuf,
int mFlags,
) {
_sqlite3_deserialize ??= _dylib.lookupFunction<_c_sqlite3_deserialize,
_dart_sqlite3_deserialize>('sqlite3_deserialize');
return _sqlite3_deserialize(
db,
zSchema,
pData,
szDb,
szBuf,
mFlags,
);
}
_dart_sqlite3_deserialize _sqlite3_deserialize;
/// Register a geometry callback named zGeom that can be used as part of an
/// R-Tree geometry query as follows:
///
/// SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
int sqlite3_rtree_geometry_callback(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zGeom,
ffi.Pointer<ffi.NativeFunction<_typedefC_71>> xGeom,
ffi.Pointer<ffi.Void> pContext,
) {
_sqlite3_rtree_geometry_callback ??= _dylib.lookupFunction<
_c_sqlite3_rtree_geometry_callback,
_dart_sqlite3_rtree_geometry_callback>(
'sqlite3_rtree_geometry_callback');
return _sqlite3_rtree_geometry_callback(
db,
zGeom,
xGeom,
pContext,
);
}
_dart_sqlite3_rtree_geometry_callback _sqlite3_rtree_geometry_callback;
/// Register a 2nd-generation geometry callback named zScore that can be
/// used as part of an R-Tree geometry query as follows:
///
/// SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zQueryFunc(... params ...)
int sqlite3_rtree_query_callback(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zQueryFunc,
ffi.Pointer<ffi.NativeFunction<_typedefC_72>> xQueryFunc,
ffi.Pointer<ffi.Void> pContext,
ffi.Pointer<ffi.NativeFunction<_typedefC_73>> xDestructor,
) {
_sqlite3_rtree_query_callback ??= _dylib.lookupFunction<
_c_sqlite3_rtree_query_callback,
_dart_sqlite3_rtree_query_callback>('sqlite3_rtree_query_callback');
return _sqlite3_rtree_query_callback(
db,
zQueryFunc,
xQueryFunc,
pContext,
xDestructor,
);
}
_dart_sqlite3_rtree_query_callback _sqlite3_rtree_query_callback;
}
class sqlite3 extends ffi.Struct {}
class sqlite3_file extends ffi.Struct {}
class sqlite3_io_methods extends ffi.Struct {
@ffi.Int32()
int iVersion;
ffi.Pointer<ffi.NativeFunction<_typedefC_2>> xClose;
ffi.Pointer<ffi.NativeFunction<_typedefC_3>> xRead;
ffi.Pointer<ffi.NativeFunction<_typedefC_4>> xWrite;
ffi.Pointer<ffi.NativeFunction<_typedefC_5>> xTruncate;
ffi.Pointer<ffi.NativeFunction<_typedefC_6>> xSync;
ffi.Pointer<ffi.NativeFunction<_typedefC_7>> xFileSize;
ffi.Pointer<ffi.NativeFunction<_typedefC_8>> xLock;
ffi.Pointer<ffi.NativeFunction<_typedefC_9>> xUnlock;
ffi.Pointer<ffi.NativeFunction<_typedefC_10>> xCheckReservedLock;
ffi.Pointer<ffi.NativeFunction<_typedefC_11>> xFileControl;
ffi.Pointer<ffi.NativeFunction<_typedefC_12>> xSectorSize;
ffi.Pointer<ffi.NativeFunction<_typedefC_13>> xDeviceCharacteristics;
/// Methods above are valid for version 1
ffi.Pointer<ffi.NativeFunction<_typedefC_14>> xShmMap;
ffi.Pointer<ffi.NativeFunction<_typedefC_15>> xShmLock;
ffi.Pointer<ffi.NativeFunction<_typedefC_16>> xShmBarrier;
ffi.Pointer<ffi.NativeFunction<_typedefC_17>> xShmUnmap;
/// Methods above are valid for version 2
ffi.Pointer<ffi.NativeFunction<_typedefC_18>> xFetch;
ffi.Pointer<ffi.NativeFunction<_typedefC_19>> xUnfetch;
}
class sqlite3_mutex extends ffi.Struct {}
class sqlite3_api_routines extends ffi.Struct {}
class sqlite3_vfs extends ffi.Struct {}
class sqlite3_mem_methods extends ffi.Struct {}
class sqlite3_stmt extends ffi.Struct {}
class sqlite3_value extends ffi.Struct {}
class sqlite3_context extends ffi.Struct {}
/// CAPI3REF: Virtual Table Instance Object
/// KEYWORDS: sqlite3_vtab
///
/// Every [virtual table module] implementation uses a subclass
/// of this object to describe a particular instance
/// of the [virtual table]. Each subclass will
/// be tailored to the specific needs of the module implementation.
/// The purpose of this superclass is to define certain fields that are
/// common to all module implementations.
///
/// ^Virtual tables methods can set an error message by assigning a
/// string obtained from [sqlite3_mprintf()] to zErrMsg. The method should
/// take care that any prior string is freed by a call to [sqlite3_free()]
/// prior to assigning a new string to zErrMsg. ^After the error message
/// is delivered up to the client application, the string will be automatically
/// freed by sqlite3_free() and the zErrMsg field will be zeroed.
class sqlite3_vtab extends ffi.Struct {}
/// CAPI3REF: Virtual Table Indexing Information
/// KEYWORDS: sqlite3_index_info
///
/// The sqlite3_index_info structure and its substructures is used as part
/// of the [virtual table] interface to
/// pass information into and receive the reply from the [xBestIndex]
/// method of a [virtual table module]. The fields under **Inputs** are the
/// inputs to xBestIndex and are read-only. xBestIndex inserts its
/// results into the **Outputs** fields.
///
/// ^(The aConstraint[] array records WHERE clause constraints of the form:
///
/// <blockquote>column OP expr</blockquote>
///
/// where OP is =, &lt;, &lt;=, &gt;, or &gt;=.)^ ^(The particular operator is
/// stored in aConstraint[].op using one of the
/// [SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_ values].)^
/// ^(The index of the column is stored in
/// aConstraint[].iColumn.)^ ^(aConstraint[].usable is TRUE if the
/// expr on the right-hand side can be evaluated (and thus the constraint
/// is usable) and false if it cannot.)^
///
/// ^The optimizer automatically inverts terms of the form "expr OP column"
/// and makes other simplifications to the WHERE clause in an attempt to
/// get as many WHERE clause terms into the form shown above as possible.
/// ^The aConstraint[] array only reports WHERE clause terms that are
/// relevant to the particular virtual table being queried.
///
/// ^Information about the ORDER BY clause is stored in aOrderBy[].
/// ^Each term of aOrderBy records a column of the ORDER BY clause.
///
/// The colUsed field indicates which columns of the virtual table may be
/// required by the current scan. Virtual table columns are numbered from
/// zero in the order in which they appear within the CREATE TABLE statement
/// passed to sqlite3_declare_vtab(). For the first 63 columns (columns 0-62),
/// the corresponding bit is set within the colUsed mask if the column may be
/// required by SQLite. If the table has at least 64 columns and any column
/// to the right of the first 63 is required, then bit 63 of colUsed is also
/// set. In other words, column iCol may be required if the expression
/// (colUsed & ((sqlite3_uint64)1 << (iCol>=63 ? 63 : iCol))) evaluates to
/// non-zero.
///
/// The [xBestIndex] method must fill aConstraintUsage[] with information
/// about what parameters to pass to xFilter. ^If argvIndex>0 then
/// the right-hand side of the corresponding aConstraint[] is evaluated
/// and becomes the argvIndex-th entry in argv. ^(If aConstraintUsage[].omit
/// is true, then the constraint is assumed to be fully handled by the
/// virtual table and might not be checked again by the byte code.)^ ^(The
/// aConstraintUsage[].omit flag is an optimization hint. When the omit flag
/// is left in its default setting of false, the constraint will always be
/// checked separately in byte code. If the omit flag is change to true, then
/// the constraint may or may not be checked in byte code. In other words,
/// when the omit flag is true there is no guarantee that the constraint will
/// not be checked again using byte code.)^
///
/// ^The idxNum and idxPtr values are recorded and passed into the
/// [xFilter] method.
/// ^[sqlite3_free()] is used to free idxPtr if and only if
/// needToFreeIdxPtr is true.
///
/// ^The orderByConsumed means that output from [xFilter]/[xNext] will occur in
/// the correct order to satisfy the ORDER BY clause so that no separate
/// sorting step is required.
///
/// ^The estimatedCost value is an estimate of the cost of a particular
/// strategy. A cost of N indicates that the cost of the strategy is similar
/// to a linear scan of an SQLite table with N rows. A cost of log(N)
/// indicates that the expense of the operation is similar to that of a
/// binary search on a unique indexed field of an SQLite table with N rows.
///
/// ^The estimatedRows value is an estimate of the number of rows that
/// will be returned by the strategy.
///
/// The xBestIndex method may optionally populate the idxFlags field with a
/// mask of SQLITE_INDEX_SCAN_* flags. Currently there is only one such flag -
/// SQLITE_INDEX_SCAN_UNIQUE. If the xBestIndex method sets this flag, SQLite
/// assumes that the strategy may visit at most one row.
///
/// Additionally, if xBestIndex sets the SQLITE_INDEX_SCAN_UNIQUE flag, then
/// SQLite also assumes that if a call to the xUpdate() method is made as
/// part of the same statement to delete or update a virtual table row and the
/// implementation returns SQLITE_CONSTRAINT, then there is no need to rollback
/// any database changes. In other words, if the xUpdate() returns
/// SQLITE_CONSTRAINT, the database contents must be exactly as they were
/// before xUpdate was called. By contrast, if SQLITE_INDEX_SCAN_UNIQUE is not
/// set and xUpdate returns SQLITE_CONSTRAINT, any database changes made by
/// the xUpdate method are automatically rolled back by SQLite.
///
/// IMPORTANT: The estimatedRows field was added to the sqlite3_index_info
/// structure for SQLite [version 3.8.2] ([dateof:3.8.2]).
/// If a virtual table extension is
/// used with an SQLite version earlier than 3.8.2, the results of attempting
/// to read or write the estimatedRows field are undefined (but are likely
/// to include crashing the application). The estimatedRows field should
/// therefore only be used if [sqlite3_libversion_number()] returns a
/// value greater than or equal to 3008002. Similarly, the idxFlags field
/// was added for [version 3.9.0] ([dateof:3.9.0]).
/// It may therefore only be used if
/// sqlite3_libversion_number() returns a value greater than or equal to
/// 3009000.
class sqlite3_index_info extends ffi.Struct {}
/// CAPI3REF: Virtual Table Cursor Object
/// KEYWORDS: sqlite3_vtab_cursor {virtual table cursor}
///
/// Every [virtual table module] implementation uses a subclass of the
/// following structure to describe cursors that point into the
/// [virtual table] and are used
/// to loop through the virtual table. Cursors are created using the
/// [sqlite3_module.xOpen | xOpen] method of the module and are destroyed
/// by the [sqlite3_module.xClose | xClose] method. Cursors are used
/// by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods
/// of the module. Each module implementation will define
/// the content of a cursor structure to suit its own needs.
///
/// This superclass exists in order to define fields of the cursor that
/// are common to all implementations.
class sqlite3_vtab_cursor extends ffi.Struct {}
/// CAPI3REF: Virtual Table Object
/// KEYWORDS: sqlite3_module {virtual table module}
///
/// This structure, sometimes called a "virtual table module",
/// defines the implementation of a [virtual table].
/// This structure consists mostly of methods for the module.
///
/// ^A virtual table module is created by filling in a persistent
/// instance of this structure and passing a pointer to that instance
/// to [sqlite3_create_module()] or [sqlite3_create_module_v2()].
/// ^The registration remains valid until it is replaced by a different
/// module or until the [database connection] closes. The content
/// of this structure must not change while it is registered with
/// any database connection.
class sqlite3_module extends ffi.Struct {}
class sqlite3_blob extends ffi.Struct {}
class sqlite3_mutex_methods extends ffi.Struct {}
class sqlite3_str extends ffi.Struct {}
class sqlite3_pcache extends ffi.Struct {}
class sqlite3_pcache_page extends ffi.Struct {}
class sqlite3_pcache_methods2 extends ffi.Struct {}
class sqlite3_pcache_methods extends ffi.Struct {}
class sqlite3_backup extends ffi.Struct {}
/// CAPI3REF: Database Snapshot
/// KEYWORDS: {snapshot} {sqlite3_snapshot}
///
/// An instance of the snapshot object records the state of a [WAL mode]
/// database for some specific point in history.
///
/// In [WAL mode], multiple [database connections] that are open on the
/// same database file can each be reading a different historical version
/// of the database file. When a [database connection] begins a read
/// transaction, that connection sees an unchanging copy of the database
/// as it existed for the point in time when the transaction first started.
/// Subsequent changes to the database from other connections are not seen
/// by the reader until a new read transaction is started.
///
/// The sqlite3_snapshot object records state information about an historical
/// version of the database file so that it is possible to later open a new read
/// transaction that sees that historical version of the database rather than
/// the most recent version.
class sqlite3_snapshot extends ffi.Struct {
@ffi.Uint8()
int _unique_hidden_item_0;
@ffi.Uint8()
int _unique_hidden_item_1;
@ffi.Uint8()
int _unique_hidden_item_2;
@ffi.Uint8()
int _unique_hidden_item_3;
@ffi.Uint8()
int _unique_hidden_item_4;
@ffi.Uint8()
int _unique_hidden_item_5;
@ffi.Uint8()
int _unique_hidden_item_6;
@ffi.Uint8()
int _unique_hidden_item_7;
@ffi.Uint8()
int _unique_hidden_item_8;
@ffi.Uint8()
int _unique_hidden_item_9;
@ffi.Uint8()
int _unique_hidden_item_10;
@ffi.Uint8()
int _unique_hidden_item_11;
@ffi.Uint8()
int _unique_hidden_item_12;
@ffi.Uint8()
int _unique_hidden_item_13;
@ffi.Uint8()
int _unique_hidden_item_14;
@ffi.Uint8()
int _unique_hidden_item_15;
@ffi.Uint8()
int _unique_hidden_item_16;
@ffi.Uint8()
int _unique_hidden_item_17;
@ffi.Uint8()
int _unique_hidden_item_18;
@ffi.Uint8()
int _unique_hidden_item_19;
@ffi.Uint8()
int _unique_hidden_item_20;
@ffi.Uint8()
int _unique_hidden_item_21;
@ffi.Uint8()
int _unique_hidden_item_22;
@ffi.Uint8()
int _unique_hidden_item_23;
@ffi.Uint8()
int _unique_hidden_item_24;
@ffi.Uint8()
int _unique_hidden_item_25;
@ffi.Uint8()
int _unique_hidden_item_26;
@ffi.Uint8()
int _unique_hidden_item_27;
@ffi.Uint8()
int _unique_hidden_item_28;
@ffi.Uint8()
int _unique_hidden_item_29;
@ffi.Uint8()
int _unique_hidden_item_30;
@ffi.Uint8()
int _unique_hidden_item_31;
@ffi.Uint8()
int _unique_hidden_item_32;
@ffi.Uint8()
int _unique_hidden_item_33;
@ffi.Uint8()
int _unique_hidden_item_34;
@ffi.Uint8()
int _unique_hidden_item_35;
@ffi.Uint8()
int _unique_hidden_item_36;
@ffi.Uint8()
int _unique_hidden_item_37;
@ffi.Uint8()
int _unique_hidden_item_38;
@ffi.Uint8()
int _unique_hidden_item_39;
@ffi.Uint8()
int _unique_hidden_item_40;
@ffi.Uint8()
int _unique_hidden_item_41;
@ffi.Uint8()
int _unique_hidden_item_42;
@ffi.Uint8()
int _unique_hidden_item_43;
@ffi.Uint8()
int _unique_hidden_item_44;
@ffi.Uint8()
int _unique_hidden_item_45;
@ffi.Uint8()
int _unique_hidden_item_46;
@ffi.Uint8()
int _unique_hidden_item_47;
/// Helper for array `hidden`.
ArrayHelper_sqlite3_snapshot_hidden_level0 get hidden =>
ArrayHelper_sqlite3_snapshot_hidden_level0(this, [48], 0, 0);
}
/// Helper for array `hidden` in struct `sqlite3_snapshot`.
class ArrayHelper_sqlite3_snapshot_hidden_level0 {
final sqlite3_snapshot _struct;
final List<int> dimensions;
final int level;
final int _absoluteIndex;
int get length => dimensions[level];
ArrayHelper_sqlite3_snapshot_hidden_level0(
this._struct, this.dimensions, this.level, this._absoluteIndex);
void _checkBounds(int index) {
if (index >= length || index < 0) {
throw RangeError(
'Dimension $level: index not in range 0..${length} exclusive.');
}
}
int operator [](int index) {
_checkBounds(index);
switch (_absoluteIndex + index) {
case 0:
return _struct._unique_hidden_item_0;
case 1:
return _struct._unique_hidden_item_1;
case 2:
return _struct._unique_hidden_item_2;
case 3:
return _struct._unique_hidden_item_3;
case 4:
return _struct._unique_hidden_item_4;
case 5:
return _struct._unique_hidden_item_5;
case 6:
return _struct._unique_hidden_item_6;
case 7:
return _struct._unique_hidden_item_7;
case 8:
return _struct._unique_hidden_item_8;
case 9:
return _struct._unique_hidden_item_9;
case 10:
return _struct._unique_hidden_item_10;
case 11:
return _struct._unique_hidden_item_11;
case 12:
return _struct._unique_hidden_item_12;
case 13:
return _struct._unique_hidden_item_13;
case 14:
return _struct._unique_hidden_item_14;
case 15:
return _struct._unique_hidden_item_15;
case 16:
return _struct._unique_hidden_item_16;
case 17:
return _struct._unique_hidden_item_17;
case 18:
return _struct._unique_hidden_item_18;
case 19:
return _struct._unique_hidden_item_19;
case 20:
return _struct._unique_hidden_item_20;
case 21:
return _struct._unique_hidden_item_21;
case 22:
return _struct._unique_hidden_item_22;
case 23:
return _struct._unique_hidden_item_23;
case 24:
return _struct._unique_hidden_item_24;
case 25:
return _struct._unique_hidden_item_25;
case 26:
return _struct._unique_hidden_item_26;
case 27:
return _struct._unique_hidden_item_27;
case 28:
return _struct._unique_hidden_item_28;
case 29:
return _struct._unique_hidden_item_29;
case 30:
return _struct._unique_hidden_item_30;
case 31:
return _struct._unique_hidden_item_31;
case 32:
return _struct._unique_hidden_item_32;
case 33:
return _struct._unique_hidden_item_33;
case 34:
return _struct._unique_hidden_item_34;
case 35:
return _struct._unique_hidden_item_35;
case 36:
return _struct._unique_hidden_item_36;
case 37:
return _struct._unique_hidden_item_37;
case 38:
return _struct._unique_hidden_item_38;
case 39:
return _struct._unique_hidden_item_39;
case 40:
return _struct._unique_hidden_item_40;
case 41:
return _struct._unique_hidden_item_41;
case 42:
return _struct._unique_hidden_item_42;
case 43:
return _struct._unique_hidden_item_43;
case 44:
return _struct._unique_hidden_item_44;
case 45:
return _struct._unique_hidden_item_45;
case 46:
return _struct._unique_hidden_item_46;
case 47:
return _struct._unique_hidden_item_47;
default:
throw Exception('Invalid Array Helper generated.');
}
}
void operator []=(int index, int value) {
_checkBounds(index);
switch (_absoluteIndex + index) {
case 0:
_struct._unique_hidden_item_0 = value;
break;
case 1:
_struct._unique_hidden_item_1 = value;
break;
case 2:
_struct._unique_hidden_item_2 = value;
break;
case 3:
_struct._unique_hidden_item_3 = value;
break;
case 4:
_struct._unique_hidden_item_4 = value;
break;
case 5:
_struct._unique_hidden_item_5 = value;
break;
case 6:
_struct._unique_hidden_item_6 = value;
break;
case 7:
_struct._unique_hidden_item_7 = value;
break;
case 8:
_struct._unique_hidden_item_8 = value;
break;
case 9:
_struct._unique_hidden_item_9 = value;
break;
case 10:
_struct._unique_hidden_item_10 = value;
break;
case 11:
_struct._unique_hidden_item_11 = value;
break;
case 12:
_struct._unique_hidden_item_12 = value;
break;
case 13:
_struct._unique_hidden_item_13 = value;
break;
case 14:
_struct._unique_hidden_item_14 = value;
break;
case 15:
_struct._unique_hidden_item_15 = value;
break;
case 16:
_struct._unique_hidden_item_16 = value;
break;
case 17:
_struct._unique_hidden_item_17 = value;
break;
case 18:
_struct._unique_hidden_item_18 = value;
break;
case 19:
_struct._unique_hidden_item_19 = value;
break;
case 20:
_struct._unique_hidden_item_20 = value;
break;
case 21:
_struct._unique_hidden_item_21 = value;
break;
case 22:
_struct._unique_hidden_item_22 = value;
break;
case 23:
_struct._unique_hidden_item_23 = value;
break;
case 24:
_struct._unique_hidden_item_24 = value;
break;
case 25:
_struct._unique_hidden_item_25 = value;
break;
case 26:
_struct._unique_hidden_item_26 = value;
break;
case 27:
_struct._unique_hidden_item_27 = value;
break;
case 28:
_struct._unique_hidden_item_28 = value;
break;
case 29:
_struct._unique_hidden_item_29 = value;
break;
case 30:
_struct._unique_hidden_item_30 = value;
break;
case 31:
_struct._unique_hidden_item_31 = value;
break;
case 32:
_struct._unique_hidden_item_32 = value;
break;
case 33:
_struct._unique_hidden_item_33 = value;
break;
case 34:
_struct._unique_hidden_item_34 = value;
break;
case 35:
_struct._unique_hidden_item_35 = value;
break;
case 36:
_struct._unique_hidden_item_36 = value;
break;
case 37:
_struct._unique_hidden_item_37 = value;
break;
case 38:
_struct._unique_hidden_item_38 = value;
break;
case 39:
_struct._unique_hidden_item_39 = value;
break;
case 40:
_struct._unique_hidden_item_40 = value;
break;
case 41:
_struct._unique_hidden_item_41 = value;
break;
case 42:
_struct._unique_hidden_item_42 = value;
break;
case 43:
_struct._unique_hidden_item_43 = value;
break;
case 44:
_struct._unique_hidden_item_44 = value;
break;
case 45:
_struct._unique_hidden_item_45 = value;
break;
case 46:
_struct._unique_hidden_item_46 = value;
break;
case 47:
_struct._unique_hidden_item_47 = value;
break;
default:
throw Exception('Invalid Array Helper generated.');
}
}
}
/// A pointer to a structure of the following type is passed as the first
/// argument to callbacks registered using rtree_geometry_callback().
class sqlite3_rtree_geometry extends ffi.Struct {}
/// A pointer to a structure of the following type is passed as the
/// argument to scored geometry callback registered using
/// sqlite3_rtree_query_callback().
///
/// Note that the first 5 fields of this structure are identical to
/// sqlite3_rtree_geometry. This structure is a subclass of
/// sqlite3_rtree_geometry.
class sqlite3_rtree_query_info extends ffi.Struct {}
/// EXTENSION API FUNCTIONS
///
/// xUserData(pFts):
/// Return a copy of the context pointer the extension function was
/// registered with.
///
/// xColumnTotalSize(pFts, iCol, pnToken):
/// If parameter iCol is less than zero, set output variable *pnToken
/// to the total number of tokens in the FTS5 table. Or, if iCol is
/// non-negative but less than the number of columns in the table, return
/// the total number of tokens in column iCol, considering all rows in
/// the FTS5 table.
///
/// If parameter iCol is greater than or equal to the number of columns
/// in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
/// an OOM condition or IO error), an appropriate SQLite error code is
/// returned.
///
/// xColumnCount(pFts):
/// Return the number of columns in the table.
///
/// xColumnSize(pFts, iCol, pnToken):
/// If parameter iCol is less than zero, set output variable *pnToken
/// to the total number of tokens in the current row. Or, if iCol is
/// non-negative but less than the number of columns in the table, set
/// *pnToken to the number of tokens in column iCol of the current row.
///
/// If parameter iCol is greater than or equal to the number of columns
/// in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
/// an OOM condition or IO error), an appropriate SQLite error code is
/// returned.
///
/// This function may be quite inefficient if used with an FTS5 table
/// created with the "columnsize=0" option.
///
/// xColumnText:
/// This function attempts to retrieve the text of column iCol of the
/// current document. If successful, (*pz) is set to point to a buffer
/// containing the text in utf-8 encoding, (*pn) is set to the size in bytes
/// (not characters) of the buffer and SQLITE_OK is returned. Otherwise,
/// if an error occurs, an SQLite error code is returned and the final values
/// of (*pz) and (*pn) are undefined.
///
/// xPhraseCount:
/// Returns the number of phrases in the current query expression.
///
/// xPhraseSize:
/// Returns the number of tokens in phrase iPhrase of the query. Phrases
/// are numbered starting from zero.
///
/// xInstCount:
/// Set *pnInst to the total number of occurrences of all phrases within
/// the query within the current row. Return SQLITE_OK if successful, or
/// an error code (i.e. SQLITE_NOMEM) if an error occurs.
///
/// This API can be quite slow if used with an FTS5 table created with the
/// "detail=none" or "detail=column" option. If the FTS5 table is created
/// with either "detail=none" or "detail=column" and "content=" option
/// (i.e. if it is a contentless table), then this API always returns 0.
///
/// xInst:
/// Query for the details of phrase match iIdx within the current row.
/// Phrase matches are numbered starting from zero, so the iIdx argument
/// should be greater than or equal to zero and smaller than the value
/// output by xInstCount().
///
/// Usually, output parameter *piPhrase is set to the phrase number, *piCol
/// to the column in which it occurs and *piOff the token offset of the
/// first token of the phrase. Returns SQLITE_OK if successful, or an error
/// code (i.e. SQLITE_NOMEM) if an error occurs.
///
/// This API can be quite slow if used with an FTS5 table created with the
/// "detail=none" or "detail=column" option.
///
/// xRowid:
/// Returns the rowid of the current row.
///
/// xTokenize:
/// Tokenize text using the tokenizer belonging to the FTS5 table.
///
/// xQueryPhrase(pFts5, iPhrase, pUserData, xCallback):
/// This API function is used to query the FTS table for phrase iPhrase
/// of the current query. Specifically, a query equivalent to:
///
/// ... FROM ftstable WHERE ftstable MATCH $p ORDER BY rowid
///
/// with $p set to a phrase equivalent to the phrase iPhrase of the
/// current query is executed. Any column filter that applies to
/// phrase iPhrase of the current query is included in $p. For each
/// row visited, the callback function passed as the fourth argument
/// is invoked. The context and API objects passed to the callback
/// function may be used to access the properties of each matched row.
/// Invoking Api.xUserData() returns a copy of the pointer passed as
/// the third argument to pUserData.
///
/// If the callback function returns any value other than SQLITE_OK, the
/// query is abandoned and the xQueryPhrase function returns immediately.
/// If the returned value is SQLITE_DONE, xQueryPhrase returns SQLITE_OK.
/// Otherwise, the error code is propagated upwards.
///
/// If the query runs to completion without incident, SQLITE_OK is returned.
/// Or, if some error occurs before the query completes or is aborted by
/// the callback, an SQLite error code is returned.
///
///
/// xSetAuxdata(pFts5, pAux, xDelete)
///
/// Save the pointer passed as the second argument as the extension function's
/// "auxiliary data". The pointer may then be retrieved by the current or any
/// future invocation of the same fts5 extension function made as part of
/// the same MATCH query using the xGetAuxdata() API.
///
/// Each extension function is allocated a single auxiliary data slot for
/// each FTS query (MATCH expression). If the extension function is invoked
/// more than once for a single FTS query, then all invocations share a
/// single auxiliary data context.
///
/// If there is already an auxiliary data pointer when this function is
/// invoked, then it is replaced by the new pointer. If an xDelete callback
/// was specified along with the original pointer, it is invoked at this
/// point.
///
/// The xDelete callback, if one is specified, is also invoked on the
/// auxiliary data pointer after the FTS5 query has finished.
///
/// If an error (e.g. an OOM condition) occurs within this function,
/// the auxiliary data is set to NULL and an error code returned. If the
/// xDelete parameter was not NULL, it is invoked on the auxiliary data
/// pointer before returning.
///
///
/// xGetAuxdata(pFts5, bClear)
///
/// Returns the current auxiliary data pointer for the fts5 extension
/// function. See the xSetAuxdata() method for details.
///
/// If the bClear argument is non-zero, then the auxiliary data is cleared
/// (set to NULL) before this function returns. In this case the xDelete,
/// if any, is not invoked.
///
///
/// xRowCount(pFts5, pnRow)
///
/// This function is used to retrieve the total number of rows in the table.
/// In other words, the same value that would be returned by:
///
/// SELECT count(*) FROM ftstable;
///
/// xPhraseFirst()
/// This function is used, along with type Fts5PhraseIter and the xPhraseNext
/// method, to iterate through all instances of a single query phrase within
/// the current row. This is the same information as is accessible via the
/// xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient
/// to use, this API may be faster under some circumstances. To iterate
/// through instances of phrase iPhrase, use the following code:
///
/// Fts5PhraseIter iter;
/// int iCol, iOff;
/// for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff);
/// iCol>=0;
/// pApi->xPhraseNext(pFts, &iter, &iCol, &iOff)
/// ){
/// // An instance of phrase iPhrase at offset iOff of column iCol
/// }
///
/// The Fts5PhraseIter structure is defined above. Applications should not
/// modify this structure directly - it should only be used as shown above
/// with the xPhraseFirst() and xPhraseNext() API methods (and by
/// xPhraseFirstColumn() and xPhraseNextColumn() as illustrated below).
///
/// This API can be quite slow if used with an FTS5 table created with the
/// "detail=none" or "detail=column" option. If the FTS5 table is created
/// with either "detail=none" or "detail=column" and "content=" option
/// (i.e. if it is a contentless table), then this API always iterates
/// through an empty set (all calls to xPhraseFirst() set iCol to -1).
///
/// xPhraseNext()
/// See xPhraseFirst above.
///
/// xPhraseFirstColumn()
/// This function and xPhraseNextColumn() are similar to the xPhraseFirst()
/// and xPhraseNext() APIs described above. The difference is that instead
/// of iterating through all instances of a phrase in the current row, these
/// APIs are used to iterate through the set of columns in the current row
/// that contain one or more instances of a specified phrase. For example:
///
/// Fts5PhraseIter iter;
/// int iCol;
/// for(pApi->xPhraseFirstColumn(pFts, iPhrase, &iter, &iCol);
/// iCol>=0;
/// pApi->xPhraseNextColumn(pFts, &iter, &iCol)
/// ){
/// // Column iCol contains at least one instance of phrase iPhrase
/// }
///
/// This API can be quite slow if used with an FTS5 table created with the
/// "detail=none" option. If the FTS5 table is created with either
/// "detail=none" "content=" option (i.e. if it is a contentless table),
/// then this API always iterates through an empty set (all calls to
/// xPhraseFirstColumn() set iCol to -1).
///
/// The information accessed using this API and its companion
/// xPhraseFirstColumn() may also be obtained using xPhraseFirst/xPhraseNext
/// (or xInst/xInstCount). The chief advantage of this API is that it is
/// significantly more efficient than those alternatives when used with
/// "detail=column" tables.
///
/// xPhraseNextColumn()
/// See xPhraseFirstColumn above.
class Fts5ExtensionApi extends ffi.Struct {}
class Fts5Context extends ffi.Struct {}
class Fts5PhraseIter extends ffi.Struct {}
class Fts5Tokenizer extends ffi.Struct {}
class fts5_tokenizer extends ffi.Struct {}
class fts5_api extends ffi.Struct {}
const String SQLITE_VERSION = '3.32.3';
const int SQLITE_VERSION_NUMBER = 3032003;
const String SQLITE_SOURCE_ID =
'2020-06-18 14:00:33 7ebdfa80be8e8e73324b8d66b3460222eb74c7e9dfd655b48d6ca7e1933cc8fd';
const int SQLITE_OK = 0;
const int SQLITE_ERROR = 1;
const int SQLITE_INTERNAL = 2;
const int SQLITE_PERM = 3;
const int SQLITE_ABORT = 4;
const int SQLITE_BUSY = 5;
const int SQLITE_LOCKED = 6;
const int SQLITE_NOMEM = 7;
const int SQLITE_READONLY = 8;
const int SQLITE_INTERRUPT = 9;
const int SQLITE_IOERR = 10;
const int SQLITE_CORRUPT = 11;
const int SQLITE_NOTFOUND = 12;
const int SQLITE_FULL = 13;
const int SQLITE_CANTOPEN = 14;
const int SQLITE_PROTOCOL = 15;
const int SQLITE_EMPTY = 16;
const int SQLITE_SCHEMA = 17;
const int SQLITE_TOOBIG = 18;
const int SQLITE_CONSTRAINT = 19;
const int SQLITE_MISMATCH = 20;
const int SQLITE_MISUSE = 21;
const int SQLITE_NOLFS = 22;
const int SQLITE_AUTH = 23;
const int SQLITE_FORMAT = 24;
const int SQLITE_RANGE = 25;
const int SQLITE_NOTADB = 26;
const int SQLITE_NOTICE = 27;
const int SQLITE_WARNING = 28;
const int SQLITE_ROW = 100;
const int SQLITE_DONE = 101;
const int SQLITE_ERROR_MISSING_COLLSEQ = 257;
const int SQLITE_ERROR_RETRY = 513;
const int SQLITE_ERROR_SNAPSHOT = 769;
const int SQLITE_IOERR_READ = 266;
const int SQLITE_IOERR_SHORT_READ = 522;
const int SQLITE_IOERR_WRITE = 778;
const int SQLITE_IOERR_FSYNC = 1034;
const int SQLITE_IOERR_DIR_FSYNC = 1290;
const int SQLITE_IOERR_TRUNCATE = 1546;
const int SQLITE_IOERR_FSTAT = 1802;
const int SQLITE_IOERR_UNLOCK = 2058;
const int SQLITE_IOERR_RDLOCK = 2314;
const int SQLITE_IOERR_DELETE = 2570;
const int SQLITE_IOERR_BLOCKED = 2826;
const int SQLITE_IOERR_NOMEM = 3082;
const int SQLITE_IOERR_ACCESS = 3338;
const int SQLITE_IOERR_CHECKRESERVEDLOCK = 3594;
const int SQLITE_IOERR_LOCK = 3850;
const int SQLITE_IOERR_CLOSE = 4106;
const int SQLITE_IOERR_DIR_CLOSE = 4362;
const int SQLITE_IOERR_SHMOPEN = 4618;
const int SQLITE_IOERR_SHMSIZE = 4874;
const int SQLITE_IOERR_SHMLOCK = 5130;
const int SQLITE_IOERR_SHMMAP = 5386;
const int SQLITE_IOERR_SEEK = 5642;
const int SQLITE_IOERR_DELETE_NOENT = 5898;
const int SQLITE_IOERR_MMAP = 6154;
const int SQLITE_IOERR_GETTEMPPATH = 6410;
const int SQLITE_IOERR_CONVPATH = 6666;
const int SQLITE_IOERR_VNODE = 6922;
const int SQLITE_IOERR_AUTH = 7178;
const int SQLITE_IOERR_BEGIN_ATOMIC = 7434;
const int SQLITE_IOERR_COMMIT_ATOMIC = 7690;
const int SQLITE_IOERR_ROLLBACK_ATOMIC = 7946;
const int SQLITE_IOERR_DATA = 8202;
const int SQLITE_LOCKED_SHAREDCACHE = 262;
const int SQLITE_LOCKED_VTAB = 518;
const int SQLITE_BUSY_RECOVERY = 261;
const int SQLITE_BUSY_SNAPSHOT = 517;
const int SQLITE_BUSY_TIMEOUT = 773;
const int SQLITE_CANTOPEN_NOTEMPDIR = 270;
const int SQLITE_CANTOPEN_ISDIR = 526;
const int SQLITE_CANTOPEN_FULLPATH = 782;
const int SQLITE_CANTOPEN_CONVPATH = 1038;
const int SQLITE_CANTOPEN_DIRTYWAL = 1294;
const int SQLITE_CANTOPEN_SYMLINK = 1550;
const int SQLITE_CORRUPT_VTAB = 267;
const int SQLITE_CORRUPT_SEQUENCE = 523;
const int SQLITE_CORRUPT_INDEX = 779;
const int SQLITE_READONLY_RECOVERY = 264;
const int SQLITE_READONLY_CANTLOCK = 520;
const int SQLITE_READONLY_ROLLBACK = 776;
const int SQLITE_READONLY_DBMOVED = 1032;
const int SQLITE_READONLY_CANTINIT = 1288;
const int SQLITE_READONLY_DIRECTORY = 1544;
const int SQLITE_ABORT_ROLLBACK = 516;
const int SQLITE_CONSTRAINT_CHECK = 275;
const int SQLITE_CONSTRAINT_COMMITHOOK = 531;
const int SQLITE_CONSTRAINT_FOREIGNKEY = 787;
const int SQLITE_CONSTRAINT_FUNCTION = 1043;
const int SQLITE_CONSTRAINT_NOTNULL = 1299;
const int SQLITE_CONSTRAINT_PRIMARYKEY = 1555;
const int SQLITE_CONSTRAINT_TRIGGER = 1811;
const int SQLITE_CONSTRAINT_UNIQUE = 2067;
const int SQLITE_CONSTRAINT_VTAB = 2323;
const int SQLITE_CONSTRAINT_ROWID = 2579;
const int SQLITE_CONSTRAINT_PINNED = 2835;
const int SQLITE_NOTICE_RECOVER_WAL = 283;
const int SQLITE_NOTICE_RECOVER_ROLLBACK = 539;
const int SQLITE_WARNING_AUTOINDEX = 284;
const int SQLITE_AUTH_USER = 279;
const int SQLITE_OK_LOAD_PERMANENTLY = 256;
const int SQLITE_OK_SYMLINK = 512;
const int SQLITE_OPEN_READONLY = 1;
const int SQLITE_OPEN_READWRITE = 2;
const int SQLITE_OPEN_CREATE = 4;
const int SQLITE_OPEN_DELETEONCLOSE = 8;
const int SQLITE_OPEN_EXCLUSIVE = 16;
const int SQLITE_OPEN_AUTOPROXY = 32;
const int SQLITE_OPEN_URI = 64;
const int SQLITE_OPEN_MEMORY = 128;
const int SQLITE_OPEN_MAIN_DB = 256;
const int SQLITE_OPEN_TEMP_DB = 512;
const int SQLITE_OPEN_TRANSIENT_DB = 1024;
const int SQLITE_OPEN_MAIN_JOURNAL = 2048;
const int SQLITE_OPEN_TEMP_JOURNAL = 4096;
const int SQLITE_OPEN_SUBJOURNAL = 8192;
const int SQLITE_OPEN_MASTER_JOURNAL = 16384;
const int SQLITE_OPEN_NOMUTEX = 32768;
const int SQLITE_OPEN_FULLMUTEX = 65536;
const int SQLITE_OPEN_SHAREDCACHE = 131072;
const int SQLITE_OPEN_PRIVATECACHE = 262144;
const int SQLITE_OPEN_WAL = 524288;
const int SQLITE_OPEN_NOFOLLOW = 16777216;
const int SQLITE_IOCAP_ATOMIC = 1;
const int SQLITE_IOCAP_ATOMIC512 = 2;
const int SQLITE_IOCAP_ATOMIC1K = 4;
const int SQLITE_IOCAP_ATOMIC2K = 8;
const int SQLITE_IOCAP_ATOMIC4K = 16;
const int SQLITE_IOCAP_ATOMIC8K = 32;
const int SQLITE_IOCAP_ATOMIC16K = 64;
const int SQLITE_IOCAP_ATOMIC32K = 128;
const int SQLITE_IOCAP_ATOMIC64K = 256;
const int SQLITE_IOCAP_SAFE_APPEND = 512;
const int SQLITE_IOCAP_SEQUENTIAL = 1024;
const int SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN = 2048;
const int SQLITE_IOCAP_POWERSAFE_OVERWRITE = 4096;
const int SQLITE_IOCAP_IMMUTABLE = 8192;
const int SQLITE_IOCAP_BATCH_ATOMIC = 16384;
const int SQLITE_LOCK_NONE = 0;
const int SQLITE_LOCK_SHARED = 1;
const int SQLITE_LOCK_RESERVED = 2;
const int SQLITE_LOCK_PENDING = 3;
const int SQLITE_LOCK_EXCLUSIVE = 4;
const int SQLITE_SYNC_NORMAL = 2;
const int SQLITE_SYNC_FULL = 3;
const int SQLITE_SYNC_DATAONLY = 16;
const int SQLITE_FCNTL_LOCKSTATE = 1;
const int SQLITE_FCNTL_GET_LOCKPROXYFILE = 2;
const int SQLITE_FCNTL_SET_LOCKPROXYFILE = 3;
const int SQLITE_FCNTL_LAST_ERRNO = 4;
const int SQLITE_FCNTL_SIZE_HINT = 5;
const int SQLITE_FCNTL_CHUNK_SIZE = 6;
const int SQLITE_FCNTL_FILE_POINTER = 7;
const int SQLITE_FCNTL_SYNC_OMITTED = 8;
const int SQLITE_FCNTL_WIN32_AV_RETRY = 9;
const int SQLITE_FCNTL_PERSIST_WAL = 10;
const int SQLITE_FCNTL_OVERWRITE = 11;
const int SQLITE_FCNTL_VFSNAME = 12;
const int SQLITE_FCNTL_POWERSAFE_OVERWRITE = 13;
const int SQLITE_FCNTL_PRAGMA = 14;
const int SQLITE_FCNTL_BUSYHANDLER = 15;
const int SQLITE_FCNTL_TEMPFILENAME = 16;
const int SQLITE_FCNTL_MMAP_SIZE = 18;
const int SQLITE_FCNTL_TRACE = 19;
const int SQLITE_FCNTL_HAS_MOVED = 20;
const int SQLITE_FCNTL_SYNC = 21;
const int SQLITE_FCNTL_COMMIT_PHASETWO = 22;
const int SQLITE_FCNTL_WIN32_SET_HANDLE = 23;
const int SQLITE_FCNTL_WAL_BLOCK = 24;
const int SQLITE_FCNTL_ZIPVFS = 25;
const int SQLITE_FCNTL_RBU = 26;
const int SQLITE_FCNTL_VFS_POINTER = 27;
const int SQLITE_FCNTL_JOURNAL_POINTER = 28;
const int SQLITE_FCNTL_WIN32_GET_HANDLE = 29;
const int SQLITE_FCNTL_PDB = 30;
const int SQLITE_FCNTL_BEGIN_ATOMIC_WRITE = 31;
const int SQLITE_FCNTL_COMMIT_ATOMIC_WRITE = 32;
const int SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE = 33;
const int SQLITE_FCNTL_LOCK_TIMEOUT = 34;
const int SQLITE_FCNTL_DATA_VERSION = 35;
const int SQLITE_FCNTL_SIZE_LIMIT = 36;
const int SQLITE_FCNTL_CKPT_DONE = 37;
const int SQLITE_FCNTL_RESERVE_BYTES = 38;
const int SQLITE_FCNTL_CKPT_START = 39;
const int SQLITE_GET_LOCKPROXYFILE = 2;
const int SQLITE_SET_LOCKPROXYFILE = 3;
const int SQLITE_LAST_ERRNO = 4;
const int SQLITE_ACCESS_EXISTS = 0;
const int SQLITE_ACCESS_READWRITE = 1;
const int SQLITE_ACCESS_READ = 2;
const int SQLITE_SHM_UNLOCK = 1;
const int SQLITE_SHM_LOCK = 2;
const int SQLITE_SHM_SHARED = 4;
const int SQLITE_SHM_EXCLUSIVE = 8;
const int SQLITE_SHM_NLOCK = 8;
const int SQLITE_CONFIG_SINGLETHREAD = 1;
const int SQLITE_CONFIG_MULTITHREAD = 2;
const int SQLITE_CONFIG_SERIALIZED = 3;
const int SQLITE_CONFIG_MALLOC = 4;
const int SQLITE_CONFIG_GETMALLOC = 5;
const int SQLITE_CONFIG_SCRATCH = 6;
const int SQLITE_CONFIG_PAGECACHE = 7;
const int SQLITE_CONFIG_HEAP = 8;
const int SQLITE_CONFIG_MEMSTATUS = 9;
const int SQLITE_CONFIG_MUTEX = 10;
const int SQLITE_CONFIG_GETMUTEX = 11;
const int SQLITE_CONFIG_LOOKASIDE = 13;
const int SQLITE_CONFIG_PCACHE = 14;
const int SQLITE_CONFIG_GETPCACHE = 15;
const int SQLITE_CONFIG_LOG = 16;
const int SQLITE_CONFIG_URI = 17;
const int SQLITE_CONFIG_PCACHE2 = 18;
const int SQLITE_CONFIG_GETPCACHE2 = 19;
const int SQLITE_CONFIG_COVERING_INDEX_SCAN = 20;
const int SQLITE_CONFIG_SQLLOG = 21;
const int SQLITE_CONFIG_MMAP_SIZE = 22;
const int SQLITE_CONFIG_WIN32_HEAPSIZE = 23;
const int SQLITE_CONFIG_PCACHE_HDRSZ = 24;
const int SQLITE_CONFIG_PMASZ = 25;
const int SQLITE_CONFIG_STMTJRNL_SPILL = 26;
const int SQLITE_CONFIG_SMALL_MALLOC = 27;
const int SQLITE_CONFIG_SORTERREF_SIZE = 28;
const int SQLITE_CONFIG_MEMDB_MAXSIZE = 29;
const int SQLITE_DBCONFIG_MAINDBNAME = 1000;
const int SQLITE_DBCONFIG_LOOKASIDE = 1001;
const int SQLITE_DBCONFIG_ENABLE_FKEY = 1002;
const int SQLITE_DBCONFIG_ENABLE_TRIGGER = 1003;
const int SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER = 1004;
const int SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION = 1005;
const int SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE = 1006;
const int SQLITE_DBCONFIG_ENABLE_QPSG = 1007;
const int SQLITE_DBCONFIG_TRIGGER_EQP = 1008;
const int SQLITE_DBCONFIG_RESET_DATABASE = 1009;
const int SQLITE_DBCONFIG_DEFENSIVE = 1010;
const int SQLITE_DBCONFIG_WRITABLE_SCHEMA = 1011;
const int SQLITE_DBCONFIG_LEGACY_ALTER_TABLE = 1012;
const int SQLITE_DBCONFIG_DQS_DML = 1013;
const int SQLITE_DBCONFIG_DQS_DDL = 1014;
const int SQLITE_DBCONFIG_ENABLE_VIEW = 1015;
const int SQLITE_DBCONFIG_LEGACY_FILE_FORMAT = 1016;
const int SQLITE_DBCONFIG_TRUSTED_SCHEMA = 1017;
const int SQLITE_DBCONFIG_MAX = 1017;
const int SQLITE_DENY = 1;
const int SQLITE_IGNORE = 2;
const int SQLITE_CREATE_INDEX = 1;
const int SQLITE_CREATE_TABLE = 2;
const int SQLITE_CREATE_TEMP_INDEX = 3;
const int SQLITE_CREATE_TEMP_TABLE = 4;
const int SQLITE_CREATE_TEMP_TRIGGER = 5;
const int SQLITE_CREATE_TEMP_VIEW = 6;
const int SQLITE_CREATE_TRIGGER = 7;
const int SQLITE_CREATE_VIEW = 8;
const int SQLITE_DELETE = 9;
const int SQLITE_DROP_INDEX = 10;
const int SQLITE_DROP_TABLE = 11;
const int SQLITE_DROP_TEMP_INDEX = 12;
const int SQLITE_DROP_TEMP_TABLE = 13;
const int SQLITE_DROP_TEMP_TRIGGER = 14;
const int SQLITE_DROP_TEMP_VIEW = 15;
const int SQLITE_DROP_TRIGGER = 16;
const int SQLITE_DROP_VIEW = 17;
const int SQLITE_INSERT = 18;
const int SQLITE_PRAGMA = 19;
const int SQLITE_READ = 20;
const int SQLITE_SELECT = 21;
const int SQLITE_TRANSACTION = 22;
const int SQLITE_UPDATE = 23;
const int SQLITE_ATTACH = 24;
const int SQLITE_DETACH = 25;
const int SQLITE_ALTER_TABLE = 26;
const int SQLITE_REINDEX = 27;
const int SQLITE_ANALYZE = 28;
const int SQLITE_CREATE_VTABLE = 29;
const int SQLITE_DROP_VTABLE = 30;
const int SQLITE_FUNCTION = 31;
const int SQLITE_SAVEPOINT = 32;
const int SQLITE_COPY = 0;
const int SQLITE_RECURSIVE = 33;
const int SQLITE_TRACE_STMT = 1;
const int SQLITE_TRACE_PROFILE = 2;
const int SQLITE_TRACE_ROW = 4;
const int SQLITE_TRACE_CLOSE = 8;
const int SQLITE_LIMIT_LENGTH = 0;
const int SQLITE_LIMIT_SQL_LENGTH = 1;
const int SQLITE_LIMIT_COLUMN = 2;
const int SQLITE_LIMIT_EXPR_DEPTH = 3;
const int SQLITE_LIMIT_COMPOUND_SELECT = 4;
const int SQLITE_LIMIT_VDBE_OP = 5;
const int SQLITE_LIMIT_FUNCTION_ARG = 6;
const int SQLITE_LIMIT_ATTACHED = 7;
const int SQLITE_LIMIT_LIKE_PATTERN_LENGTH = 8;
const int SQLITE_LIMIT_VARIABLE_NUMBER = 9;
const int SQLITE_LIMIT_TRIGGER_DEPTH = 10;
const int SQLITE_LIMIT_WORKER_THREADS = 11;
const int SQLITE_PREPARE_PERSISTENT = 1;
const int SQLITE_PREPARE_NORMALIZE = 2;
const int SQLITE_PREPARE_NO_VTAB = 4;
const int SQLITE_INTEGER = 1;
const int SQLITE_FLOAT = 2;
const int SQLITE_BLOB = 4;
const int SQLITE_NULL = 5;
const int SQLITE_TEXT = 3;
const int SQLITE3_TEXT = 3;
const int SQLITE_UTF8 = 1;
const int SQLITE_UTF16LE = 2;
const int SQLITE_UTF16BE = 3;
const int SQLITE_UTF16 = 4;
const int SQLITE_ANY = 5;
const int SQLITE_UTF16_ALIGNED = 8;
const int SQLITE_DETERMINISTIC = 2048;
const int SQLITE_DIRECTONLY = 524288;
const int SQLITE_SUBTYPE = 1048576;
const int SQLITE_INNOCUOUS = 2097152;
const int SQLITE_WIN32_DATA_DIRECTORY_TYPE = 1;
const int SQLITE_WIN32_TEMP_DIRECTORY_TYPE = 2;
const int SQLITE_INDEX_SCAN_UNIQUE = 1;
const int SQLITE_INDEX_CONSTRAINT_EQ = 2;
const int SQLITE_INDEX_CONSTRAINT_GT = 4;
const int SQLITE_INDEX_CONSTRAINT_LE = 8;
const int SQLITE_INDEX_CONSTRAINT_LT = 16;
const int SQLITE_INDEX_CONSTRAINT_GE = 32;
const int SQLITE_INDEX_CONSTRAINT_MATCH = 64;
const int SQLITE_INDEX_CONSTRAINT_LIKE = 65;
const int SQLITE_INDEX_CONSTRAINT_GLOB = 66;
const int SQLITE_INDEX_CONSTRAINT_REGEXP = 67;
const int SQLITE_INDEX_CONSTRAINT_NE = 68;
const int SQLITE_INDEX_CONSTRAINT_ISNOT = 69;
const int SQLITE_INDEX_CONSTRAINT_ISNOTNULL = 70;
const int SQLITE_INDEX_CONSTRAINT_ISNULL = 71;
const int SQLITE_INDEX_CONSTRAINT_IS = 72;
const int SQLITE_INDEX_CONSTRAINT_FUNCTION = 150;
const int SQLITE_MUTEX_FAST = 0;
const int SQLITE_MUTEX_RECURSIVE = 1;
const int SQLITE_MUTEX_STATIC_MASTER = 2;
const int SQLITE_MUTEX_STATIC_MEM = 3;
const int SQLITE_MUTEX_STATIC_MEM2 = 4;
const int SQLITE_MUTEX_STATIC_OPEN = 4;
const int SQLITE_MUTEX_STATIC_PRNG = 5;
const int SQLITE_MUTEX_STATIC_LRU = 6;
const int SQLITE_MUTEX_STATIC_LRU2 = 7;
const int SQLITE_MUTEX_STATIC_PMEM = 7;
const int SQLITE_MUTEX_STATIC_APP1 = 8;
const int SQLITE_MUTEX_STATIC_APP2 = 9;
const int SQLITE_MUTEX_STATIC_APP3 = 10;
const int SQLITE_MUTEX_STATIC_VFS1 = 11;
const int SQLITE_MUTEX_STATIC_VFS2 = 12;
const int SQLITE_MUTEX_STATIC_VFS3 = 13;
const int SQLITE_TESTCTRL_FIRST = 5;
const int SQLITE_TESTCTRL_PRNG_SAVE = 5;
const int SQLITE_TESTCTRL_PRNG_RESTORE = 6;
const int SQLITE_TESTCTRL_PRNG_RESET = 7;
const int SQLITE_TESTCTRL_BITVEC_TEST = 8;
const int SQLITE_TESTCTRL_FAULT_INSTALL = 9;
const int SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS = 10;
const int SQLITE_TESTCTRL_PENDING_BYTE = 11;
const int SQLITE_TESTCTRL_ASSERT = 12;
const int SQLITE_TESTCTRL_ALWAYS = 13;
const int SQLITE_TESTCTRL_RESERVE = 14;
const int SQLITE_TESTCTRL_OPTIMIZATIONS = 15;
const int SQLITE_TESTCTRL_ISKEYWORD = 16;
const int SQLITE_TESTCTRL_SCRATCHMALLOC = 17;
const int SQLITE_TESTCTRL_INTERNAL_FUNCTIONS = 17;
const int SQLITE_TESTCTRL_LOCALTIME_FAULT = 18;
const int SQLITE_TESTCTRL_EXPLAIN_STMT = 19;
const int SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD = 19;
const int SQLITE_TESTCTRL_NEVER_CORRUPT = 20;
const int SQLITE_TESTCTRL_VDBE_COVERAGE = 21;
const int SQLITE_TESTCTRL_BYTEORDER = 22;
const int SQLITE_TESTCTRL_ISINIT = 23;
const int SQLITE_TESTCTRL_SORTER_MMAP = 24;
const int SQLITE_TESTCTRL_IMPOSTER = 25;
const int SQLITE_TESTCTRL_PARSER_COVERAGE = 26;
const int SQLITE_TESTCTRL_RESULT_INTREAL = 27;
const int SQLITE_TESTCTRL_PRNG_SEED = 28;
const int SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS = 29;
const int SQLITE_TESTCTRL_LAST = 29;
const int SQLITE_STATUS_MEMORY_USED = 0;
const int SQLITE_STATUS_PAGECACHE_USED = 1;
const int SQLITE_STATUS_PAGECACHE_OVERFLOW = 2;
const int SQLITE_STATUS_SCRATCH_USED = 3;
const int SQLITE_STATUS_SCRATCH_OVERFLOW = 4;
const int SQLITE_STATUS_MALLOC_SIZE = 5;
const int SQLITE_STATUS_PARSER_STACK = 6;
const int SQLITE_STATUS_PAGECACHE_SIZE = 7;
const int SQLITE_STATUS_SCRATCH_SIZE = 8;
const int SQLITE_STATUS_MALLOC_COUNT = 9;
const int SQLITE_DBSTATUS_LOOKASIDE_USED = 0;
const int SQLITE_DBSTATUS_CACHE_USED = 1;
const int SQLITE_DBSTATUS_SCHEMA_USED = 2;
const int SQLITE_DBSTATUS_STMT_USED = 3;
const int SQLITE_DBSTATUS_LOOKASIDE_HIT = 4;
const int SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE = 5;
const int SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL = 6;
const int SQLITE_DBSTATUS_CACHE_HIT = 7;
const int SQLITE_DBSTATUS_CACHE_MISS = 8;
const int SQLITE_DBSTATUS_CACHE_WRITE = 9;
const int SQLITE_DBSTATUS_DEFERRED_FKS = 10;
const int SQLITE_DBSTATUS_CACHE_USED_SHARED = 11;
const int SQLITE_DBSTATUS_CACHE_SPILL = 12;
const int SQLITE_DBSTATUS_MAX = 12;
const int SQLITE_STMTSTATUS_FULLSCAN_STEP = 1;
const int SQLITE_STMTSTATUS_SORT = 2;
const int SQLITE_STMTSTATUS_AUTOINDEX = 3;
const int SQLITE_STMTSTATUS_VM_STEP = 4;
const int SQLITE_STMTSTATUS_REPREPARE = 5;
const int SQLITE_STMTSTATUS_RUN = 6;
const int SQLITE_STMTSTATUS_MEMUSED = 99;
const int SQLITE_CHECKPOINT_PASSIVE = 0;
const int SQLITE_CHECKPOINT_FULL = 1;
const int SQLITE_CHECKPOINT_RESTART = 2;
const int SQLITE_CHECKPOINT_TRUNCATE = 3;
const int SQLITE_VTAB_CONSTRAINT_SUPPORT = 1;
const int SQLITE_VTAB_INNOCUOUS = 2;
const int SQLITE_VTAB_DIRECTONLY = 3;
const int SQLITE_ROLLBACK = 1;
const int SQLITE_FAIL = 3;
const int SQLITE_REPLACE = 5;
const int SQLITE_SCANSTAT_NLOOP = 0;
const int SQLITE_SCANSTAT_NVISIT = 1;
const int SQLITE_SCANSTAT_EST = 2;
const int SQLITE_SCANSTAT_NAME = 3;
const int SQLITE_SCANSTAT_EXPLAIN = 4;
const int SQLITE_SCANSTAT_SELECTID = 5;
const int SQLITE_SERIALIZE_NOCOPY = 1;
const int SQLITE_DESERIALIZE_FREEONCLOSE = 1;
const int SQLITE_DESERIALIZE_RESIZEABLE = 2;
const int SQLITE_DESERIALIZE_READONLY = 4;
const int NOT_WITHIN = 0;
const int PARTLY_WITHIN = 1;
const int FULLY_WITHIN = 2;
const int FTS5_TOKENIZE_QUERY = 1;
const int FTS5_TOKENIZE_PREFIX = 2;
const int FTS5_TOKENIZE_DOCUMENT = 4;
const int FTS5_TOKENIZE_AUX = 8;
const int FTS5_TOKEN_COLOCATED = 1;
typedef _c_sqlite3_libversion = ffi.Pointer<ffi.Int8> Function();
typedef _dart_sqlite3_libversion = ffi.Pointer<ffi.Int8> Function();
typedef _c_sqlite3_sourceid = ffi.Pointer<ffi.Int8> Function();
typedef _dart_sqlite3_sourceid = ffi.Pointer<ffi.Int8> Function();
typedef _c_sqlite3_libversion_number = ffi.Int32 Function();
typedef _dart_sqlite3_libversion_number = int Function();
typedef _c_sqlite3_compileoption_used = ffi.Int32 Function(
ffi.Pointer<ffi.Int8> zOptName,
);
typedef _dart_sqlite3_compileoption_used = int Function(
ffi.Pointer<ffi.Int8> zOptName,
);
typedef _c_sqlite3_compileoption_get = ffi.Pointer<ffi.Int8> Function(
ffi.Int32 N,
);
typedef _dart_sqlite3_compileoption_get = ffi.Pointer<ffi.Int8> Function(
int N,
);
typedef _c_sqlite3_threadsafe = ffi.Int32 Function();
typedef _dart_sqlite3_threadsafe = int Function();
typedef _c_sqlite3_close = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _dart_sqlite3_close = int Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _c_sqlite3_close_v2 = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _dart_sqlite3_close_v2 = int Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _typedefC_1 = ffi.Int32 Function(
ffi.Pointer<ffi.Void>,
ffi.Int32,
ffi.Pointer<ffi.Pointer<ffi.Int8>>,
ffi.Pointer<ffi.Pointer<ffi.Int8>>,
);
typedef _c_sqlite3_exec = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> sql,
ffi.Pointer<ffi.NativeFunction<_typedefC_1>> callback,
ffi.Pointer<ffi.Void> arg3,
ffi.Pointer<ffi.Pointer<ffi.Int8>> errmsg,
);
typedef _dart_sqlite3_exec = int Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> sql,
ffi.Pointer<ffi.NativeFunction<_typedefC_1>> callback,
ffi.Pointer<ffi.Void> arg3,
ffi.Pointer<ffi.Pointer<ffi.Int8>> errmsg,
);
typedef _c_sqlite3_initialize = ffi.Int32 Function();
typedef _dart_sqlite3_initialize = int Function();
typedef _c_sqlite3_shutdown = ffi.Int32 Function();
typedef _dart_sqlite3_shutdown = int Function();
typedef _c_sqlite3_os_init = ffi.Int32 Function();
typedef _dart_sqlite3_os_init = int Function();
typedef _c_sqlite3_os_end = ffi.Int32 Function();
typedef _dart_sqlite3_os_end = int Function();
typedef _c_sqlite3_config = ffi.Int32 Function(
ffi.Int32 arg0,
);
typedef _dart_sqlite3_config = int Function(
int arg0,
);
typedef _c_sqlite3_db_config = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
ffi.Int32 op,
);
typedef _dart_sqlite3_db_config = int Function(
ffi.Pointer<sqlite3> arg0,
int op,
);
typedef _c_sqlite3_extended_result_codes = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
ffi.Int32 onoff,
);
typedef _dart_sqlite3_extended_result_codes = int Function(
ffi.Pointer<sqlite3> arg0,
int onoff,
);
typedef _c_sqlite3_last_insert_rowid = ffi.Int64 Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _dart_sqlite3_last_insert_rowid = int Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _c_sqlite3_set_last_insert_rowid = ffi.Void Function(
ffi.Pointer<sqlite3> arg0,
ffi.Int64 arg1,
);
typedef _dart_sqlite3_set_last_insert_rowid = void Function(
ffi.Pointer<sqlite3> arg0,
int arg1,
);
typedef _c_sqlite3_changes = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _dart_sqlite3_changes = int Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _c_sqlite3_total_changes = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _dart_sqlite3_total_changes = int Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _c_sqlite3_interrupt = ffi.Void Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _dart_sqlite3_interrupt = void Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _c_sqlite3_complete = ffi.Int32 Function(
ffi.Pointer<ffi.Int8> sql,
);
typedef _dart_sqlite3_complete = int Function(
ffi.Pointer<ffi.Int8> sql,
);
typedef _c_sqlite3_complete16 = ffi.Int32 Function(
ffi.Pointer<ffi.Void> sql,
);
typedef _dart_sqlite3_complete16 = int Function(
ffi.Pointer<ffi.Void> sql,
);
typedef _typedefC_20 = ffi.Int32 Function(
ffi.Pointer<ffi.Void>,
ffi.Int32,
);
typedef _c_sqlite3_busy_handler = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_20>> arg1,
ffi.Pointer<ffi.Void> arg2,
);
typedef _dart_sqlite3_busy_handler = int Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_20>> arg1,
ffi.Pointer<ffi.Void> arg2,
);
typedef _c_sqlite3_busy_timeout = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
ffi.Int32 ms,
);
typedef _dart_sqlite3_busy_timeout = int Function(
ffi.Pointer<sqlite3> arg0,
int ms,
);
typedef _c_sqlite3_get_table = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSql,
ffi.Pointer<ffi.Pointer<ffi.Pointer<ffi.Int8>>> pazResult,
ffi.Pointer<ffi.Int32> pnRow,
ffi.Pointer<ffi.Int32> pnColumn,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzErrmsg,
);
typedef _dart_sqlite3_get_table = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSql,
ffi.Pointer<ffi.Pointer<ffi.Pointer<ffi.Int8>>> pazResult,
ffi.Pointer<ffi.Int32> pnRow,
ffi.Pointer<ffi.Int32> pnColumn,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzErrmsg,
);
typedef _c_sqlite3_free_table = ffi.Void Function(
ffi.Pointer<ffi.Pointer<ffi.Int8>> result,
);
typedef _dart_sqlite3_free_table = void Function(
ffi.Pointer<ffi.Pointer<ffi.Int8>> result,
);
typedef _c_sqlite3_mprintf = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<ffi.Int8> arg0,
);
typedef _dart_sqlite3_mprintf = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<ffi.Int8> arg0,
);
typedef _c_sqlite3_snprintf = ffi.Pointer<ffi.Int8> Function(
ffi.Int32 arg0,
ffi.Pointer<ffi.Int8> arg1,
ffi.Pointer<ffi.Int8> arg2,
);
typedef _dart_sqlite3_snprintf = ffi.Pointer<ffi.Int8> Function(
int arg0,
ffi.Pointer<ffi.Int8> arg1,
ffi.Pointer<ffi.Int8> arg2,
);
typedef _c_sqlite3_malloc = ffi.Pointer<ffi.Void> Function(
ffi.Int32 arg0,
);
typedef _dart_sqlite3_malloc = ffi.Pointer<ffi.Void> Function(
int arg0,
);
typedef _c_sqlite3_malloc64 = ffi.Pointer<ffi.Void> Function(
ffi.Uint64 arg0,
);
typedef _dart_sqlite3_malloc64 = ffi.Pointer<ffi.Void> Function(
int arg0,
);
typedef _c_sqlite3_realloc = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<ffi.Void> arg0,
ffi.Int32 arg1,
);
typedef _dart_sqlite3_realloc = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<ffi.Void> arg0,
int arg1,
);
typedef _c_sqlite3_realloc64 = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<ffi.Void> arg0,
ffi.Uint64 arg1,
);
typedef _dart_sqlite3_realloc64 = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<ffi.Void> arg0,
int arg1,
);
typedef _c_sqlite3_free = ffi.Void Function(
ffi.Pointer<ffi.Void> arg0,
);
typedef _dart_sqlite3_free = void Function(
ffi.Pointer<ffi.Void> arg0,
);
typedef _c_sqlite3_msize = ffi.Uint64 Function(
ffi.Pointer<ffi.Void> arg0,
);
typedef _dart_sqlite3_msize = int Function(
ffi.Pointer<ffi.Void> arg0,
);
typedef _c_sqlite3_memory_used = ffi.Int64 Function();
typedef _dart_sqlite3_memory_used = int Function();
typedef _c_sqlite3_memory_highwater = ffi.Int64 Function(
ffi.Int32 resetFlag,
);
typedef _dart_sqlite3_memory_highwater = int Function(
int resetFlag,
);
typedef _c_sqlite3_randomness = ffi.Void Function(
ffi.Int32 N,
ffi.Pointer<ffi.Void> P,
);
typedef _dart_sqlite3_randomness = void Function(
int N,
ffi.Pointer<ffi.Void> P,
);
typedef _typedefC_21 = ffi.Int32 Function(
ffi.Pointer<ffi.Void>,
ffi.Int32,
ffi.Pointer<ffi.Int8>,
ffi.Pointer<ffi.Int8>,
ffi.Pointer<ffi.Int8>,
ffi.Pointer<ffi.Int8>,
);
typedef _c_sqlite3_set_authorizer = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_21>> xAuth,
ffi.Pointer<ffi.Void> pUserData,
);
typedef _dart_sqlite3_set_authorizer = int Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_21>> xAuth,
ffi.Pointer<ffi.Void> pUserData,
);
typedef _typedefC_22 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
ffi.Pointer<ffi.Int8>,
);
typedef _c_sqlite3_trace = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_22>> xTrace,
ffi.Pointer<ffi.Void> arg2,
);
typedef _dart_sqlite3_trace = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_22>> xTrace,
ffi.Pointer<ffi.Void> arg2,
);
typedef _typedefC_23 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
ffi.Pointer<ffi.Int8>,
ffi.Uint64,
);
typedef _c_sqlite3_profile = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_23>> xProfile,
ffi.Pointer<ffi.Void> arg2,
);
typedef _dart_sqlite3_profile = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_23>> xProfile,
ffi.Pointer<ffi.Void> arg2,
);
typedef _typedefC_24 = ffi.Int32 Function(
ffi.Uint32,
ffi.Pointer<ffi.Void>,
ffi.Pointer<ffi.Void>,
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_trace_v2 = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
ffi.Uint32 uMask,
ffi.Pointer<ffi.NativeFunction<_typedefC_24>> xCallback,
ffi.Pointer<ffi.Void> pCtx,
);
typedef _dart_sqlite3_trace_v2 = int Function(
ffi.Pointer<sqlite3> arg0,
int uMask,
ffi.Pointer<ffi.NativeFunction<_typedefC_24>> xCallback,
ffi.Pointer<ffi.Void> pCtx,
);
typedef _typedefC_25 = ffi.Int32 Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_progress_handler = ffi.Void Function(
ffi.Pointer<sqlite3> arg0,
ffi.Int32 arg1,
ffi.Pointer<ffi.NativeFunction<_typedefC_25>> arg2,
ffi.Pointer<ffi.Void> arg3,
);
typedef _dart_sqlite3_progress_handler = void Function(
ffi.Pointer<sqlite3> arg0,
int arg1,
ffi.Pointer<ffi.NativeFunction<_typedefC_25>> arg2,
ffi.Pointer<ffi.Void> arg3,
);
typedef _c_sqlite3_open = ffi.Int32 Function(
ffi.Pointer<ffi.Int8> filename,
ffi.Pointer<ffi.Pointer<sqlite3>> ppDb,
);
typedef _dart_sqlite3_open = int Function(
ffi.Pointer<ffi.Int8> filename,
ffi.Pointer<ffi.Pointer<sqlite3>> ppDb,
);
typedef _c_sqlite3_open16 = ffi.Int32 Function(
ffi.Pointer<ffi.Void> filename,
ffi.Pointer<ffi.Pointer<sqlite3>> ppDb,
);
typedef _dart_sqlite3_open16 = int Function(
ffi.Pointer<ffi.Void> filename,
ffi.Pointer<ffi.Pointer<sqlite3>> ppDb,
);
typedef _c_sqlite3_open_v2 = ffi.Int32 Function(
ffi.Pointer<ffi.Int8> filename,
ffi.Pointer<ffi.Pointer<sqlite3>> ppDb,
ffi.Int32 flags,
ffi.Pointer<ffi.Int8> zVfs,
);
typedef _dart_sqlite3_open_v2 = int Function(
ffi.Pointer<ffi.Int8> filename,
ffi.Pointer<ffi.Pointer<sqlite3>> ppDb,
int flags,
ffi.Pointer<ffi.Int8> zVfs,
);
typedef _c_sqlite3_uri_parameter = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<ffi.Int8> zFilename,
ffi.Pointer<ffi.Int8> zParam,
);
typedef _dart_sqlite3_uri_parameter = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<ffi.Int8> zFilename,
ffi.Pointer<ffi.Int8> zParam,
);
typedef _c_sqlite3_uri_boolean = ffi.Int32 Function(
ffi.Pointer<ffi.Int8> zFile,
ffi.Pointer<ffi.Int8> zParam,
ffi.Int32 bDefault,
);
typedef _dart_sqlite3_uri_boolean = int Function(
ffi.Pointer<ffi.Int8> zFile,
ffi.Pointer<ffi.Int8> zParam,
int bDefault,
);
typedef _c_sqlite3_uri_int64 = ffi.Int64 Function(
ffi.Pointer<ffi.Int8> arg0,
ffi.Pointer<ffi.Int8> arg1,
ffi.Int64 arg2,
);
typedef _dart_sqlite3_uri_int64 = int Function(
ffi.Pointer<ffi.Int8> arg0,
ffi.Pointer<ffi.Int8> arg1,
int arg2,
);
typedef _c_sqlite3_uri_key = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<ffi.Int8> zFilename,
ffi.Int32 N,
);
typedef _dart_sqlite3_uri_key = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<ffi.Int8> zFilename,
int N,
);
typedef _c_sqlite3_filename_database = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<ffi.Int8> arg0,
);
typedef _dart_sqlite3_filename_database = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<ffi.Int8> arg0,
);
typedef _c_sqlite3_filename_journal = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<ffi.Int8> arg0,
);
typedef _dart_sqlite3_filename_journal = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<ffi.Int8> arg0,
);
typedef _c_sqlite3_filename_wal = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<ffi.Int8> arg0,
);
typedef _dart_sqlite3_filename_wal = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<ffi.Int8> arg0,
);
typedef _c_sqlite3_database_file_object = ffi.Pointer<sqlite3_file> Function(
ffi.Pointer<ffi.Int8> arg0,
);
typedef _dart_sqlite3_database_file_object = ffi.Pointer<sqlite3_file> Function(
ffi.Pointer<ffi.Int8> arg0,
);
typedef _c_sqlite3_create_filename = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<ffi.Int8> zDatabase,
ffi.Pointer<ffi.Int8> zJournal,
ffi.Pointer<ffi.Int8> zWal,
ffi.Int32 nParam,
ffi.Pointer<ffi.Pointer<ffi.Int8>> azParam,
);
typedef _dart_sqlite3_create_filename = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<ffi.Int8> zDatabase,
ffi.Pointer<ffi.Int8> zJournal,
ffi.Pointer<ffi.Int8> zWal,
int nParam,
ffi.Pointer<ffi.Pointer<ffi.Int8>> azParam,
);
typedef _c_sqlite3_free_filename = ffi.Void Function(
ffi.Pointer<ffi.Int8> arg0,
);
typedef _dart_sqlite3_free_filename = void Function(
ffi.Pointer<ffi.Int8> arg0,
);
typedef _c_sqlite3_errcode = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
);
typedef _dart_sqlite3_errcode = int Function(
ffi.Pointer<sqlite3> db,
);
typedef _c_sqlite3_extended_errcode = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
);
typedef _dart_sqlite3_extended_errcode = int Function(
ffi.Pointer<sqlite3> db,
);
typedef _c_sqlite3_errmsg = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _dart_sqlite3_errmsg = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _c_sqlite3_errmsg16 = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _dart_sqlite3_errmsg16 = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _c_sqlite3_errstr = ffi.Pointer<ffi.Int8> Function(
ffi.Int32 arg0,
);
typedef _dart_sqlite3_errstr = ffi.Pointer<ffi.Int8> Function(
int arg0,
);
typedef _c_sqlite3_limit = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
ffi.Int32 id,
ffi.Int32 newVal,
);
typedef _dart_sqlite3_limit = int Function(
ffi.Pointer<sqlite3> arg0,
int id,
int newVal,
);
typedef _c_sqlite3_prepare = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSql,
ffi.Int32 nByte,
ffi.Pointer<ffi.Pointer<sqlite3_stmt>> ppStmt,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzTail,
);
typedef _dart_sqlite3_prepare = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSql,
int nByte,
ffi.Pointer<ffi.Pointer<sqlite3_stmt>> ppStmt,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzTail,
);
typedef _c_sqlite3_prepare_v2 = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSql,
ffi.Int32 nByte,
ffi.Pointer<ffi.Pointer<sqlite3_stmt>> ppStmt,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzTail,
);
typedef _dart_sqlite3_prepare_v2 = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSql,
int nByte,
ffi.Pointer<ffi.Pointer<sqlite3_stmt>> ppStmt,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzTail,
);
typedef _c_sqlite3_prepare_v3 = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSql,
ffi.Int32 nByte,
ffi.Uint32 prepFlags,
ffi.Pointer<ffi.Pointer<sqlite3_stmt>> ppStmt,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzTail,
);
typedef _dart_sqlite3_prepare_v3 = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSql,
int nByte,
int prepFlags,
ffi.Pointer<ffi.Pointer<sqlite3_stmt>> ppStmt,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzTail,
);
typedef _c_sqlite3_prepare16 = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Void> zSql,
ffi.Int32 nByte,
ffi.Pointer<ffi.Pointer<sqlite3_stmt>> ppStmt,
ffi.Pointer<ffi.Pointer<ffi.Void>> pzTail,
);
typedef _dart_sqlite3_prepare16 = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Void> zSql,
int nByte,
ffi.Pointer<ffi.Pointer<sqlite3_stmt>> ppStmt,
ffi.Pointer<ffi.Pointer<ffi.Void>> pzTail,
);
typedef _c_sqlite3_prepare16_v2 = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Void> zSql,
ffi.Int32 nByte,
ffi.Pointer<ffi.Pointer<sqlite3_stmt>> ppStmt,
ffi.Pointer<ffi.Pointer<ffi.Void>> pzTail,
);
typedef _dart_sqlite3_prepare16_v2 = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Void> zSql,
int nByte,
ffi.Pointer<ffi.Pointer<sqlite3_stmt>> ppStmt,
ffi.Pointer<ffi.Pointer<ffi.Void>> pzTail,
);
typedef _c_sqlite3_prepare16_v3 = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Void> zSql,
ffi.Int32 nByte,
ffi.Uint32 prepFlags,
ffi.Pointer<ffi.Pointer<sqlite3_stmt>> ppStmt,
ffi.Pointer<ffi.Pointer<ffi.Void>> pzTail,
);
typedef _dart_sqlite3_prepare16_v3 = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Void> zSql,
int nByte,
int prepFlags,
ffi.Pointer<ffi.Pointer<sqlite3_stmt>> ppStmt,
ffi.Pointer<ffi.Pointer<ffi.Void>> pzTail,
);
typedef _c_sqlite3_sql = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_stmt> pStmt,
);
typedef _dart_sqlite3_sql = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_stmt> pStmt,
);
typedef _c_sqlite3_expanded_sql = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_stmt> pStmt,
);
typedef _dart_sqlite3_expanded_sql = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_stmt> pStmt,
);
typedef _c_sqlite3_normalized_sql = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_stmt> pStmt,
);
typedef _dart_sqlite3_normalized_sql = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_stmt> pStmt,
);
typedef _c_sqlite3_stmt_readonly = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> pStmt,
);
typedef _dart_sqlite3_stmt_readonly = int Function(
ffi.Pointer<sqlite3_stmt> pStmt,
);
typedef _c_sqlite3_stmt_isexplain = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> pStmt,
);
typedef _dart_sqlite3_stmt_isexplain = int Function(
ffi.Pointer<sqlite3_stmt> pStmt,
);
typedef _c_sqlite3_stmt_busy = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
);
typedef _dart_sqlite3_stmt_busy = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
);
typedef _typedefC_26 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_bind_blob = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
ffi.Pointer<ffi.Void> arg2,
ffi.Int32 n,
ffi.Pointer<ffi.NativeFunction<_typedefC_26>> arg4,
);
typedef _dart_sqlite3_bind_blob = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
ffi.Pointer<ffi.Void> arg2,
int n,
ffi.Pointer<ffi.NativeFunction<_typedefC_26>> arg4,
);
typedef _typedefC_27 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_bind_blob64 = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
ffi.Pointer<ffi.Void> arg2,
ffi.Uint64 arg3,
ffi.Pointer<ffi.NativeFunction<_typedefC_27>> arg4,
);
typedef _dart_sqlite3_bind_blob64 = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
ffi.Pointer<ffi.Void> arg2,
int arg3,
ffi.Pointer<ffi.NativeFunction<_typedefC_27>> arg4,
);
typedef _c_sqlite3_bind_double = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
ffi.Double arg2,
);
typedef _dart_sqlite3_bind_double = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
double arg2,
);
typedef _c_sqlite3_bind_int = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
ffi.Int32 arg2,
);
typedef _dart_sqlite3_bind_int = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
int arg2,
);
typedef _c_sqlite3_bind_int64 = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
ffi.Int64 arg2,
);
typedef _dart_sqlite3_bind_int64 = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
int arg2,
);
typedef _c_sqlite3_bind_null = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
);
typedef _dart_sqlite3_bind_null = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
);
typedef _typedefC_28 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_bind_text = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
ffi.Pointer<ffi.Int8> arg2,
ffi.Int32 arg3,
ffi.Pointer<ffi.NativeFunction<_typedefC_28>> arg4,
);
typedef _dart_sqlite3_bind_text = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
ffi.Pointer<ffi.Int8> arg2,
int arg3,
ffi.Pointer<ffi.NativeFunction<_typedefC_28>> arg4,
);
typedef _typedefC_29 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_bind_text16 = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
ffi.Pointer<ffi.Void> arg2,
ffi.Int32 arg3,
ffi.Pointer<ffi.NativeFunction<_typedefC_29>> arg4,
);
typedef _dart_sqlite3_bind_text16 = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
ffi.Pointer<ffi.Void> arg2,
int arg3,
ffi.Pointer<ffi.NativeFunction<_typedefC_29>> arg4,
);
typedef _typedefC_30 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_bind_text64 = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
ffi.Pointer<ffi.Int8> arg2,
ffi.Uint64 arg3,
ffi.Pointer<ffi.NativeFunction<_typedefC_30>> arg4,
ffi.Uint8 encoding,
);
typedef _dart_sqlite3_bind_text64 = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
ffi.Pointer<ffi.Int8> arg2,
int arg3,
ffi.Pointer<ffi.NativeFunction<_typedefC_30>> arg4,
int encoding,
);
typedef _c_sqlite3_bind_value = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
ffi.Pointer<sqlite3_value> arg2,
);
typedef _dart_sqlite3_bind_value = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
ffi.Pointer<sqlite3_value> arg2,
);
typedef _typedefC_31 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_bind_pointer = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
ffi.Pointer<ffi.Void> arg2,
ffi.Pointer<ffi.Int8> arg3,
ffi.Pointer<ffi.NativeFunction<_typedefC_31>> arg4,
);
typedef _dart_sqlite3_bind_pointer = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
ffi.Pointer<ffi.Void> arg2,
ffi.Pointer<ffi.Int8> arg3,
ffi.Pointer<ffi.NativeFunction<_typedefC_31>> arg4,
);
typedef _c_sqlite3_bind_zeroblob = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
ffi.Int32 n,
);
typedef _dart_sqlite3_bind_zeroblob = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
int n,
);
typedef _c_sqlite3_bind_zeroblob64 = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
ffi.Uint64 arg2,
);
typedef _dart_sqlite3_bind_zeroblob64 = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
int arg2,
);
typedef _c_sqlite3_bind_parameter_count = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
);
typedef _dart_sqlite3_bind_parameter_count = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
);
typedef _c_sqlite3_bind_parameter_name = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
);
typedef _dart_sqlite3_bind_parameter_name = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
);
typedef _c_sqlite3_bind_parameter_index = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Pointer<ffi.Int8> zName,
);
typedef _dart_sqlite3_bind_parameter_index = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Pointer<ffi.Int8> zName,
);
typedef _c_sqlite3_clear_bindings = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
);
typedef _dart_sqlite3_clear_bindings = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
);
typedef _c_sqlite3_column_count = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> pStmt,
);
typedef _dart_sqlite3_column_count = int Function(
ffi.Pointer<sqlite3_stmt> pStmt,
);
typedef _c_sqlite3_column_name = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 N,
);
typedef _dart_sqlite3_column_name = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_stmt> arg0,
int N,
);
typedef _c_sqlite3_column_name16 = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 N,
);
typedef _dart_sqlite3_column_name16 = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_stmt> arg0,
int N,
);
typedef _c_sqlite3_column_database_name = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
);
typedef _dart_sqlite3_column_database_name = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
);
typedef _c_sqlite3_column_database_name16 = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
);
typedef _dart_sqlite3_column_database_name16 = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
);
typedef _c_sqlite3_column_table_name = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
);
typedef _dart_sqlite3_column_table_name = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
);
typedef _c_sqlite3_column_table_name16 = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
);
typedef _dart_sqlite3_column_table_name16 = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
);
typedef _c_sqlite3_column_origin_name = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
);
typedef _dart_sqlite3_column_origin_name = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
);
typedef _c_sqlite3_column_origin_name16 = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
);
typedef _dart_sqlite3_column_origin_name16 = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
);
typedef _c_sqlite3_column_decltype = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
);
typedef _dart_sqlite3_column_decltype = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
);
typedef _c_sqlite3_column_decltype16 = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 arg1,
);
typedef _dart_sqlite3_column_decltype16 = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_stmt> arg0,
int arg1,
);
typedef _c_sqlite3_step = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
);
typedef _dart_sqlite3_step = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
);
typedef _c_sqlite3_data_count = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> pStmt,
);
typedef _dart_sqlite3_data_count = int Function(
ffi.Pointer<sqlite3_stmt> pStmt,
);
typedef _c_sqlite3_column_blob = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 iCol,
);
typedef _dart_sqlite3_column_blob = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_stmt> arg0,
int iCol,
);
typedef _c_sqlite3_column_double = ffi.Double Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 iCol,
);
typedef _dart_sqlite3_column_double = double Function(
ffi.Pointer<sqlite3_stmt> arg0,
int iCol,
);
typedef _c_sqlite3_column_int = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 iCol,
);
typedef _dart_sqlite3_column_int = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
int iCol,
);
typedef _c_sqlite3_column_int64 = ffi.Int64 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 iCol,
);
typedef _dart_sqlite3_column_int64 = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
int iCol,
);
typedef _c_sqlite3_column_text = ffi.Pointer<ffi.Uint8> Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 iCol,
);
typedef _dart_sqlite3_column_text = ffi.Pointer<ffi.Uint8> Function(
ffi.Pointer<sqlite3_stmt> arg0,
int iCol,
);
typedef _c_sqlite3_column_text16 = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 iCol,
);
typedef _dart_sqlite3_column_text16 = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_stmt> arg0,
int iCol,
);
typedef _c_sqlite3_column_value = ffi.Pointer<sqlite3_value> Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 iCol,
);
typedef _dart_sqlite3_column_value = ffi.Pointer<sqlite3_value> Function(
ffi.Pointer<sqlite3_stmt> arg0,
int iCol,
);
typedef _c_sqlite3_column_bytes = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 iCol,
);
typedef _dart_sqlite3_column_bytes = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
int iCol,
);
typedef _c_sqlite3_column_bytes16 = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 iCol,
);
typedef _dart_sqlite3_column_bytes16 = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
int iCol,
);
typedef _c_sqlite3_column_type = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 iCol,
);
typedef _dart_sqlite3_column_type = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
int iCol,
);
typedef _c_sqlite3_finalize = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> pStmt,
);
typedef _dart_sqlite3_finalize = int Function(
ffi.Pointer<sqlite3_stmt> pStmt,
);
typedef _c_sqlite3_reset = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> pStmt,
);
typedef _dart_sqlite3_reset = int Function(
ffi.Pointer<sqlite3_stmt> pStmt,
);
typedef _typedefC_32 = ffi.Void Function(
ffi.Pointer<sqlite3_context>,
ffi.Int32,
ffi.Pointer<ffi.Pointer<sqlite3_value>>,
);
typedef _typedefC_33 = ffi.Void Function(
ffi.Pointer<sqlite3_context>,
ffi.Int32,
ffi.Pointer<ffi.Pointer<sqlite3_value>>,
);
typedef _typedefC_34 = ffi.Void Function(
ffi.Pointer<sqlite3_context>,
);
typedef _c_sqlite3_create_function = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zFunctionName,
ffi.Int32 nArg,
ffi.Int32 eTextRep,
ffi.Pointer<ffi.Void> pApp,
ffi.Pointer<ffi.NativeFunction<_typedefC_32>> xFunc,
ffi.Pointer<ffi.NativeFunction<_typedefC_33>> xStep,
ffi.Pointer<ffi.NativeFunction<_typedefC_34>> xFinal,
);
typedef _dart_sqlite3_create_function = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zFunctionName,
int nArg,
int eTextRep,
ffi.Pointer<ffi.Void> pApp,
ffi.Pointer<ffi.NativeFunction<_typedefC_32>> xFunc,
ffi.Pointer<ffi.NativeFunction<_typedefC_33>> xStep,
ffi.Pointer<ffi.NativeFunction<_typedefC_34>> xFinal,
);
typedef _typedefC_35 = ffi.Void Function(
ffi.Pointer<sqlite3_context>,
ffi.Int32,
ffi.Pointer<ffi.Pointer<sqlite3_value>>,
);
typedef _typedefC_36 = ffi.Void Function(
ffi.Pointer<sqlite3_context>,
ffi.Int32,
ffi.Pointer<ffi.Pointer<sqlite3_value>>,
);
typedef _typedefC_37 = ffi.Void Function(
ffi.Pointer<sqlite3_context>,
);
typedef _c_sqlite3_create_function16 = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Void> zFunctionName,
ffi.Int32 nArg,
ffi.Int32 eTextRep,
ffi.Pointer<ffi.Void> pApp,
ffi.Pointer<ffi.NativeFunction<_typedefC_35>> xFunc,
ffi.Pointer<ffi.NativeFunction<_typedefC_36>> xStep,
ffi.Pointer<ffi.NativeFunction<_typedefC_37>> xFinal,
);
typedef _dart_sqlite3_create_function16 = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Void> zFunctionName,
int nArg,
int eTextRep,
ffi.Pointer<ffi.Void> pApp,
ffi.Pointer<ffi.NativeFunction<_typedefC_35>> xFunc,
ffi.Pointer<ffi.NativeFunction<_typedefC_36>> xStep,
ffi.Pointer<ffi.NativeFunction<_typedefC_37>> xFinal,
);
typedef _typedefC_38 = ffi.Void Function(
ffi.Pointer<sqlite3_context>,
ffi.Int32,
ffi.Pointer<ffi.Pointer<sqlite3_value>>,
);
typedef _typedefC_39 = ffi.Void Function(
ffi.Pointer<sqlite3_context>,
ffi.Int32,
ffi.Pointer<ffi.Pointer<sqlite3_value>>,
);
typedef _typedefC_40 = ffi.Void Function(
ffi.Pointer<sqlite3_context>,
);
typedef _typedefC_41 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_create_function_v2 = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zFunctionName,
ffi.Int32 nArg,
ffi.Int32 eTextRep,
ffi.Pointer<ffi.Void> pApp,
ffi.Pointer<ffi.NativeFunction<_typedefC_38>> xFunc,
ffi.Pointer<ffi.NativeFunction<_typedefC_39>> xStep,
ffi.Pointer<ffi.NativeFunction<_typedefC_40>> xFinal,
ffi.Pointer<ffi.NativeFunction<_typedefC_41>> xDestroy,
);
typedef _dart_sqlite3_create_function_v2 = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zFunctionName,
int nArg,
int eTextRep,
ffi.Pointer<ffi.Void> pApp,
ffi.Pointer<ffi.NativeFunction<_typedefC_38>> xFunc,
ffi.Pointer<ffi.NativeFunction<_typedefC_39>> xStep,
ffi.Pointer<ffi.NativeFunction<_typedefC_40>> xFinal,
ffi.Pointer<ffi.NativeFunction<_typedefC_41>> xDestroy,
);
typedef _typedefC_42 = ffi.Void Function(
ffi.Pointer<sqlite3_context>,
ffi.Int32,
ffi.Pointer<ffi.Pointer<sqlite3_value>>,
);
typedef _typedefC_43 = ffi.Void Function(
ffi.Pointer<sqlite3_context>,
);
typedef _typedefC_44 = ffi.Void Function(
ffi.Pointer<sqlite3_context>,
);
typedef _typedefC_45 = ffi.Void Function(
ffi.Pointer<sqlite3_context>,
ffi.Int32,
ffi.Pointer<ffi.Pointer<sqlite3_value>>,
);
typedef _typedefC_46 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_create_window_function = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zFunctionName,
ffi.Int32 nArg,
ffi.Int32 eTextRep,
ffi.Pointer<ffi.Void> pApp,
ffi.Pointer<ffi.NativeFunction<_typedefC_42>> xStep,
ffi.Pointer<ffi.NativeFunction<_typedefC_43>> xFinal,
ffi.Pointer<ffi.NativeFunction<_typedefC_44>> xValue,
ffi.Pointer<ffi.NativeFunction<_typedefC_45>> xInverse,
ffi.Pointer<ffi.NativeFunction<_typedefC_46>> xDestroy,
);
typedef _dart_sqlite3_create_window_function = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zFunctionName,
int nArg,
int eTextRep,
ffi.Pointer<ffi.Void> pApp,
ffi.Pointer<ffi.NativeFunction<_typedefC_42>> xStep,
ffi.Pointer<ffi.NativeFunction<_typedefC_43>> xFinal,
ffi.Pointer<ffi.NativeFunction<_typedefC_44>> xValue,
ffi.Pointer<ffi.NativeFunction<_typedefC_45>> xInverse,
ffi.Pointer<ffi.NativeFunction<_typedefC_46>> xDestroy,
);
typedef _c_sqlite3_aggregate_count = ffi.Int32 Function(
ffi.Pointer<sqlite3_context> arg0,
);
typedef _dart_sqlite3_aggregate_count = int Function(
ffi.Pointer<sqlite3_context> arg0,
);
typedef _c_sqlite3_expired = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
);
typedef _dart_sqlite3_expired = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
);
typedef _c_sqlite3_transfer_bindings = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Pointer<sqlite3_stmt> arg1,
);
typedef _dart_sqlite3_transfer_bindings = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Pointer<sqlite3_stmt> arg1,
);
typedef _c_sqlite3_global_recover = ffi.Int32 Function();
typedef _dart_sqlite3_global_recover = int Function();
typedef _c_sqlite3_thread_cleanup = ffi.Void Function();
typedef _dart_sqlite3_thread_cleanup = void Function();
typedef _typedefC_47 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
ffi.Int64,
ffi.Int32,
);
typedef _c_sqlite3_memory_alarm = ffi.Int32 Function(
ffi.Pointer<ffi.NativeFunction<_typedefC_47>> arg0,
ffi.Pointer<ffi.Void> arg1,
ffi.Int64 arg2,
);
typedef _dart_sqlite3_memory_alarm = int Function(
ffi.Pointer<ffi.NativeFunction<_typedefC_47>> arg0,
ffi.Pointer<ffi.Void> arg1,
int arg2,
);
typedef _c_sqlite3_value_blob = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _dart_sqlite3_value_blob = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _c_sqlite3_value_double = ffi.Double Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _dart_sqlite3_value_double = double Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _c_sqlite3_value_int = ffi.Int32 Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _dart_sqlite3_value_int = int Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _c_sqlite3_value_int64 = ffi.Int64 Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _dart_sqlite3_value_int64 = int Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _c_sqlite3_value_pointer = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_value> arg0,
ffi.Pointer<ffi.Int8> arg1,
);
typedef _dart_sqlite3_value_pointer = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_value> arg0,
ffi.Pointer<ffi.Int8> arg1,
);
typedef _c_sqlite3_value_text = ffi.Pointer<ffi.Uint8> Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _dart_sqlite3_value_text = ffi.Pointer<ffi.Uint8> Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _c_sqlite3_value_text16 = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _dart_sqlite3_value_text16 = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _c_sqlite3_value_text16le = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _dart_sqlite3_value_text16le = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _c_sqlite3_value_text16be = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _dart_sqlite3_value_text16be = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _c_sqlite3_value_bytes = ffi.Int32 Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _dart_sqlite3_value_bytes = int Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _c_sqlite3_value_bytes16 = ffi.Int32 Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _dart_sqlite3_value_bytes16 = int Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _c_sqlite3_value_type = ffi.Int32 Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _dart_sqlite3_value_type = int Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _c_sqlite3_value_numeric_type = ffi.Int32 Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _dart_sqlite3_value_numeric_type = int Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _c_sqlite3_value_nochange = ffi.Int32 Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _dart_sqlite3_value_nochange = int Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _c_sqlite3_value_frombind = ffi.Int32 Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _dart_sqlite3_value_frombind = int Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _c_sqlite3_value_subtype = ffi.Uint32 Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _dart_sqlite3_value_subtype = int Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _c_sqlite3_value_dup = ffi.Pointer<sqlite3_value> Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _dart_sqlite3_value_dup = ffi.Pointer<sqlite3_value> Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _c_sqlite3_value_free = ffi.Void Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _dart_sqlite3_value_free = void Function(
ffi.Pointer<sqlite3_value> arg0,
);
typedef _c_sqlite3_aggregate_context = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Int32 nBytes,
);
typedef _dart_sqlite3_aggregate_context = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_context> arg0,
int nBytes,
);
typedef _c_sqlite3_user_data = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_context> arg0,
);
typedef _dart_sqlite3_user_data = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_context> arg0,
);
typedef _c_sqlite3_context_db_handle = ffi.Pointer<sqlite3> Function(
ffi.Pointer<sqlite3_context> arg0,
);
typedef _dart_sqlite3_context_db_handle = ffi.Pointer<sqlite3> Function(
ffi.Pointer<sqlite3_context> arg0,
);
typedef _c_sqlite3_get_auxdata = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Int32 N,
);
typedef _dart_sqlite3_get_auxdata = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3_context> arg0,
int N,
);
typedef _typedefC_48 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_set_auxdata = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Int32 N,
ffi.Pointer<ffi.Void> arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_48>> arg3,
);
typedef _dart_sqlite3_set_auxdata = void Function(
ffi.Pointer<sqlite3_context> arg0,
int N,
ffi.Pointer<ffi.Void> arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_48>> arg3,
);
typedef _typedefC_49 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_result_blob = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
ffi.Int32 arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_49>> arg3,
);
typedef _dart_sqlite3_result_blob = void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
int arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_49>> arg3,
);
typedef _typedefC_50 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_result_blob64 = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
ffi.Uint64 arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_50>> arg3,
);
typedef _dart_sqlite3_result_blob64 = void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
int arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_50>> arg3,
);
typedef _c_sqlite3_result_double = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Double arg1,
);
typedef _dart_sqlite3_result_double = void Function(
ffi.Pointer<sqlite3_context> arg0,
double arg1,
);
typedef _c_sqlite3_result_error = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Int8> arg1,
ffi.Int32 arg2,
);
typedef _dart_sqlite3_result_error = void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Int8> arg1,
int arg2,
);
typedef _c_sqlite3_result_error16 = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
ffi.Int32 arg2,
);
typedef _dart_sqlite3_result_error16 = void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
int arg2,
);
typedef _c_sqlite3_result_error_toobig = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
);
typedef _dart_sqlite3_result_error_toobig = void Function(
ffi.Pointer<sqlite3_context> arg0,
);
typedef _c_sqlite3_result_error_nomem = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
);
typedef _dart_sqlite3_result_error_nomem = void Function(
ffi.Pointer<sqlite3_context> arg0,
);
typedef _c_sqlite3_result_error_code = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Int32 arg1,
);
typedef _dart_sqlite3_result_error_code = void Function(
ffi.Pointer<sqlite3_context> arg0,
int arg1,
);
typedef _c_sqlite3_result_int = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Int32 arg1,
);
typedef _dart_sqlite3_result_int = void Function(
ffi.Pointer<sqlite3_context> arg0,
int arg1,
);
typedef _c_sqlite3_result_int64 = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Int64 arg1,
);
typedef _dart_sqlite3_result_int64 = void Function(
ffi.Pointer<sqlite3_context> arg0,
int arg1,
);
typedef _c_sqlite3_result_null = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
);
typedef _dart_sqlite3_result_null = void Function(
ffi.Pointer<sqlite3_context> arg0,
);
typedef _typedefC_51 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_result_text = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Int8> arg1,
ffi.Int32 arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_51>> arg3,
);
typedef _dart_sqlite3_result_text = void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Int8> arg1,
int arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_51>> arg3,
);
typedef _typedefC_52 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_result_text64 = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Int8> arg1,
ffi.Uint64 arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_52>> arg3,
ffi.Uint8 encoding,
);
typedef _dart_sqlite3_result_text64 = void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Int8> arg1,
int arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_52>> arg3,
int encoding,
);
typedef _typedefC_53 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_result_text16 = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
ffi.Int32 arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_53>> arg3,
);
typedef _dart_sqlite3_result_text16 = void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
int arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_53>> arg3,
);
typedef _typedefC_54 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_result_text16le = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
ffi.Int32 arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_54>> arg3,
);
typedef _dart_sqlite3_result_text16le = void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
int arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_54>> arg3,
);
typedef _typedefC_55 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_result_text16be = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
ffi.Int32 arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_55>> arg3,
);
typedef _dart_sqlite3_result_text16be = void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
int arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_55>> arg3,
);
typedef _c_sqlite3_result_value = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<sqlite3_value> arg1,
);
typedef _dart_sqlite3_result_value = void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<sqlite3_value> arg1,
);
typedef _typedefC_56 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_result_pointer = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
ffi.Pointer<ffi.Int8> arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_56>> arg3,
);
typedef _dart_sqlite3_result_pointer = void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Pointer<ffi.Void> arg1,
ffi.Pointer<ffi.Int8> arg2,
ffi.Pointer<ffi.NativeFunction<_typedefC_56>> arg3,
);
typedef _c_sqlite3_result_zeroblob = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Int32 n,
);
typedef _dart_sqlite3_result_zeroblob = void Function(
ffi.Pointer<sqlite3_context> arg0,
int n,
);
typedef _c_sqlite3_result_zeroblob64 = ffi.Int32 Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Uint64 n,
);
typedef _dart_sqlite3_result_zeroblob64 = int Function(
ffi.Pointer<sqlite3_context> arg0,
int n,
);
typedef _c_sqlite3_result_subtype = ffi.Void Function(
ffi.Pointer<sqlite3_context> arg0,
ffi.Uint32 arg1,
);
typedef _dart_sqlite3_result_subtype = void Function(
ffi.Pointer<sqlite3_context> arg0,
int arg1,
);
typedef _typedefC_57 = ffi.Int32 Function(
ffi.Pointer<ffi.Void>,
ffi.Int32,
ffi.Pointer<ffi.Void>,
ffi.Int32,
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_create_collation = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> zName,
ffi.Int32 eTextRep,
ffi.Pointer<ffi.Void> pArg,
ffi.Pointer<ffi.NativeFunction<_typedefC_57>> xCompare,
);
typedef _dart_sqlite3_create_collation = int Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> zName,
int eTextRep,
ffi.Pointer<ffi.Void> pArg,
ffi.Pointer<ffi.NativeFunction<_typedefC_57>> xCompare,
);
typedef _typedefC_58 = ffi.Int32 Function(
ffi.Pointer<ffi.Void>,
ffi.Int32,
ffi.Pointer<ffi.Void>,
ffi.Int32,
ffi.Pointer<ffi.Void>,
);
typedef _typedefC_59 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_create_collation_v2 = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> zName,
ffi.Int32 eTextRep,
ffi.Pointer<ffi.Void> pArg,
ffi.Pointer<ffi.NativeFunction<_typedefC_58>> xCompare,
ffi.Pointer<ffi.NativeFunction<_typedefC_59>> xDestroy,
);
typedef _dart_sqlite3_create_collation_v2 = int Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> zName,
int eTextRep,
ffi.Pointer<ffi.Void> pArg,
ffi.Pointer<ffi.NativeFunction<_typedefC_58>> xCompare,
ffi.Pointer<ffi.NativeFunction<_typedefC_59>> xDestroy,
);
typedef _typedefC_60 = ffi.Int32 Function(
ffi.Pointer<ffi.Void>,
ffi.Int32,
ffi.Pointer<ffi.Void>,
ffi.Int32,
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_create_collation16 = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Void> zName,
ffi.Int32 eTextRep,
ffi.Pointer<ffi.Void> pArg,
ffi.Pointer<ffi.NativeFunction<_typedefC_60>> xCompare,
);
typedef _dart_sqlite3_create_collation16 = int Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Void> zName,
int eTextRep,
ffi.Pointer<ffi.Void> pArg,
ffi.Pointer<ffi.NativeFunction<_typedefC_60>> xCompare,
);
typedef _typedefC_61 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
ffi.Pointer<sqlite3>,
ffi.Int32,
ffi.Pointer<ffi.Int8>,
);
typedef _c_sqlite3_collation_needed = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Void> arg1,
ffi.Pointer<ffi.NativeFunction<_typedefC_61>> arg2,
);
typedef _dart_sqlite3_collation_needed = int Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Void> arg1,
ffi.Pointer<ffi.NativeFunction<_typedefC_61>> arg2,
);
typedef _typedefC_62 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
ffi.Pointer<sqlite3>,
ffi.Int32,
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_collation_needed16 = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Void> arg1,
ffi.Pointer<ffi.NativeFunction<_typedefC_62>> arg2,
);
typedef _dart_sqlite3_collation_needed16 = int Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Void> arg1,
ffi.Pointer<ffi.NativeFunction<_typedefC_62>> arg2,
);
typedef _c_sqlite3_sleep = ffi.Int32 Function(
ffi.Int32 arg0,
);
typedef _dart_sqlite3_sleep = int Function(
int arg0,
);
typedef _c_sqlite3_win32_set_directory = ffi.Int32 Function(
ffi.Uint64 type,
ffi.Pointer<ffi.Void> zValue,
);
typedef _dart_sqlite3_win32_set_directory = int Function(
int type,
ffi.Pointer<ffi.Void> zValue,
);
typedef _c_sqlite3_win32_set_directory8 = ffi.Int32 Function(
ffi.Uint64 type,
ffi.Pointer<ffi.Int8> zValue,
);
typedef _dart_sqlite3_win32_set_directory8 = int Function(
int type,
ffi.Pointer<ffi.Int8> zValue,
);
typedef _c_sqlite3_win32_set_directory16 = ffi.Int32 Function(
ffi.Uint64 type,
ffi.Pointer<ffi.Void> zValue,
);
typedef _dart_sqlite3_win32_set_directory16 = int Function(
int type,
ffi.Pointer<ffi.Void> zValue,
);
typedef _c_sqlite3_get_autocommit = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _dart_sqlite3_get_autocommit = int Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _c_sqlite3_db_handle = ffi.Pointer<sqlite3> Function(
ffi.Pointer<sqlite3_stmt> arg0,
);
typedef _dart_sqlite3_db_handle = ffi.Pointer<sqlite3> Function(
ffi.Pointer<sqlite3_stmt> arg0,
);
typedef _c_sqlite3_db_filename = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zDbName,
);
typedef _dart_sqlite3_db_filename = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zDbName,
);
typedef _c_sqlite3_db_readonly = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zDbName,
);
typedef _dart_sqlite3_db_readonly = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zDbName,
);
typedef _c_sqlite3_next_stmt = ffi.Pointer<sqlite3_stmt> Function(
ffi.Pointer<sqlite3> pDb,
ffi.Pointer<sqlite3_stmt> pStmt,
);
typedef _dart_sqlite3_next_stmt = ffi.Pointer<sqlite3_stmt> Function(
ffi.Pointer<sqlite3> pDb,
ffi.Pointer<sqlite3_stmt> pStmt,
);
typedef _typedefC_63 = ffi.Int32 Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_commit_hook = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_63>> arg1,
ffi.Pointer<ffi.Void> arg2,
);
typedef _dart_sqlite3_commit_hook = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_63>> arg1,
ffi.Pointer<ffi.Void> arg2,
);
typedef _typedefC_64 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_rollback_hook = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_64>> arg1,
ffi.Pointer<ffi.Void> arg2,
);
typedef _dart_sqlite3_rollback_hook = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_64>> arg1,
ffi.Pointer<ffi.Void> arg2,
);
typedef _typedefC_65 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
ffi.Int32,
ffi.Pointer<ffi.Int8>,
ffi.Pointer<ffi.Int8>,
ffi.Int64,
);
typedef _c_sqlite3_update_hook = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_65>> arg1,
ffi.Pointer<ffi.Void> arg2,
);
typedef _dart_sqlite3_update_hook = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_65>> arg1,
ffi.Pointer<ffi.Void> arg2,
);
typedef _c_sqlite3_enable_shared_cache = ffi.Int32 Function(
ffi.Int32 arg0,
);
typedef _dart_sqlite3_enable_shared_cache = int Function(
int arg0,
);
typedef _c_sqlite3_release_memory = ffi.Int32 Function(
ffi.Int32 arg0,
);
typedef _dart_sqlite3_release_memory = int Function(
int arg0,
);
typedef _c_sqlite3_db_release_memory = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _dart_sqlite3_db_release_memory = int Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _c_sqlite3_soft_heap_limit64 = ffi.Int64 Function(
ffi.Int64 N,
);
typedef _dart_sqlite3_soft_heap_limit64 = int Function(
int N,
);
typedef _c_sqlite3_hard_heap_limit64 = ffi.Int64 Function(
ffi.Int64 N,
);
typedef _dart_sqlite3_hard_heap_limit64 = int Function(
int N,
);
typedef _c_sqlite3_soft_heap_limit = ffi.Void Function(
ffi.Int32 N,
);
typedef _dart_sqlite3_soft_heap_limit = void Function(
int N,
);
typedef _c_sqlite3_table_column_metadata = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zDbName,
ffi.Pointer<ffi.Int8> zTableName,
ffi.Pointer<ffi.Int8> zColumnName,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzDataType,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzCollSeq,
ffi.Pointer<ffi.Int32> pNotNull,
ffi.Pointer<ffi.Int32> pPrimaryKey,
ffi.Pointer<ffi.Int32> pAutoinc,
);
typedef _dart_sqlite3_table_column_metadata = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zDbName,
ffi.Pointer<ffi.Int8> zTableName,
ffi.Pointer<ffi.Int8> zColumnName,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzDataType,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzCollSeq,
ffi.Pointer<ffi.Int32> pNotNull,
ffi.Pointer<ffi.Int32> pPrimaryKey,
ffi.Pointer<ffi.Int32> pAutoinc,
);
typedef _c_sqlite3_load_extension = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zFile,
ffi.Pointer<ffi.Int8> zProc,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzErrMsg,
);
typedef _dart_sqlite3_load_extension = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zFile,
ffi.Pointer<ffi.Int8> zProc,
ffi.Pointer<ffi.Pointer<ffi.Int8>> pzErrMsg,
);
typedef _c_sqlite3_enable_load_extension = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Int32 onoff,
);
typedef _dart_sqlite3_enable_load_extension = int Function(
ffi.Pointer<sqlite3> db,
int onoff,
);
typedef _typedefC_66 = ffi.Void Function();
typedef _c_sqlite3_auto_extension = ffi.Int32 Function(
ffi.Pointer<ffi.NativeFunction<_typedefC_66>> xEntryPoint,
);
typedef _dart_sqlite3_auto_extension = int Function(
ffi.Pointer<ffi.NativeFunction<_typedefC_66>> xEntryPoint,
);
typedef _typedefC_67 = ffi.Void Function();
typedef _c_sqlite3_cancel_auto_extension = ffi.Int32 Function(
ffi.Pointer<ffi.NativeFunction<_typedefC_67>> xEntryPoint,
);
typedef _dart_sqlite3_cancel_auto_extension = int Function(
ffi.Pointer<ffi.NativeFunction<_typedefC_67>> xEntryPoint,
);
typedef _c_sqlite3_reset_auto_extension = ffi.Void Function();
typedef _dart_sqlite3_reset_auto_extension = void Function();
typedef _c_sqlite3_create_module = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zName,
ffi.Pointer<sqlite3_module> p,
ffi.Pointer<ffi.Void> pClientData,
);
typedef _dart_sqlite3_create_module = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zName,
ffi.Pointer<sqlite3_module> p,
ffi.Pointer<ffi.Void> pClientData,
);
typedef _typedefC_68 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_create_module_v2 = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zName,
ffi.Pointer<sqlite3_module> p,
ffi.Pointer<ffi.Void> pClientData,
ffi.Pointer<ffi.NativeFunction<_typedefC_68>> xDestroy,
);
typedef _dart_sqlite3_create_module_v2 = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zName,
ffi.Pointer<sqlite3_module> p,
ffi.Pointer<ffi.Void> pClientData,
ffi.Pointer<ffi.NativeFunction<_typedefC_68>> xDestroy,
);
typedef _c_sqlite3_drop_modules = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Pointer<ffi.Int8>> azKeep,
);
typedef _dart_sqlite3_drop_modules = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Pointer<ffi.Int8>> azKeep,
);
typedef _c_sqlite3_declare_vtab = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> zSQL,
);
typedef _dart_sqlite3_declare_vtab = int Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> zSQL,
);
typedef _c_sqlite3_overload_function = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> zFuncName,
ffi.Int32 nArg,
);
typedef _dart_sqlite3_overload_function = int Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> zFuncName,
int nArg,
);
typedef _c_sqlite3_blob_open = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> zDb,
ffi.Pointer<ffi.Int8> zTable,
ffi.Pointer<ffi.Int8> zColumn,
ffi.Int64 iRow,
ffi.Int32 flags,
ffi.Pointer<ffi.Pointer<sqlite3_blob>> ppBlob,
);
typedef _dart_sqlite3_blob_open = int Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> zDb,
ffi.Pointer<ffi.Int8> zTable,
ffi.Pointer<ffi.Int8> zColumn,
int iRow,
int flags,
ffi.Pointer<ffi.Pointer<sqlite3_blob>> ppBlob,
);
typedef _c_sqlite3_blob_reopen = ffi.Int32 Function(
ffi.Pointer<sqlite3_blob> arg0,
ffi.Int64 arg1,
);
typedef _dart_sqlite3_blob_reopen = int Function(
ffi.Pointer<sqlite3_blob> arg0,
int arg1,
);
typedef _c_sqlite3_blob_close = ffi.Int32 Function(
ffi.Pointer<sqlite3_blob> arg0,
);
typedef _dart_sqlite3_blob_close = int Function(
ffi.Pointer<sqlite3_blob> arg0,
);
typedef _c_sqlite3_blob_bytes = ffi.Int32 Function(
ffi.Pointer<sqlite3_blob> arg0,
);
typedef _dart_sqlite3_blob_bytes = int Function(
ffi.Pointer<sqlite3_blob> arg0,
);
typedef _c_sqlite3_blob_read = ffi.Int32 Function(
ffi.Pointer<sqlite3_blob> arg0,
ffi.Pointer<ffi.Void> Z,
ffi.Int32 N,
ffi.Int32 iOffset,
);
typedef _dart_sqlite3_blob_read = int Function(
ffi.Pointer<sqlite3_blob> arg0,
ffi.Pointer<ffi.Void> Z,
int N,
int iOffset,
);
typedef _c_sqlite3_blob_write = ffi.Int32 Function(
ffi.Pointer<sqlite3_blob> arg0,
ffi.Pointer<ffi.Void> z,
ffi.Int32 n,
ffi.Int32 iOffset,
);
typedef _dart_sqlite3_blob_write = int Function(
ffi.Pointer<sqlite3_blob> arg0,
ffi.Pointer<ffi.Void> z,
int n,
int iOffset,
);
typedef _c_sqlite3_vfs_find = ffi.Pointer<sqlite3_vfs> Function(
ffi.Pointer<ffi.Int8> zVfsName,
);
typedef _dart_sqlite3_vfs_find = ffi.Pointer<sqlite3_vfs> Function(
ffi.Pointer<ffi.Int8> zVfsName,
);
typedef _c_sqlite3_vfs_register = ffi.Int32 Function(
ffi.Pointer<sqlite3_vfs> arg0,
ffi.Int32 makeDflt,
);
typedef _dart_sqlite3_vfs_register = int Function(
ffi.Pointer<sqlite3_vfs> arg0,
int makeDflt,
);
typedef _c_sqlite3_vfs_unregister = ffi.Int32 Function(
ffi.Pointer<sqlite3_vfs> arg0,
);
typedef _dart_sqlite3_vfs_unregister = int Function(
ffi.Pointer<sqlite3_vfs> arg0,
);
typedef _c_sqlite3_mutex_alloc = ffi.Pointer<sqlite3_mutex> Function(
ffi.Int32 arg0,
);
typedef _dart_sqlite3_mutex_alloc = ffi.Pointer<sqlite3_mutex> Function(
int arg0,
);
typedef _c_sqlite3_mutex_free = ffi.Void Function(
ffi.Pointer<sqlite3_mutex> arg0,
);
typedef _dart_sqlite3_mutex_free = void Function(
ffi.Pointer<sqlite3_mutex> arg0,
);
typedef _c_sqlite3_mutex_enter = ffi.Void Function(
ffi.Pointer<sqlite3_mutex> arg0,
);
typedef _dart_sqlite3_mutex_enter = void Function(
ffi.Pointer<sqlite3_mutex> arg0,
);
typedef _c_sqlite3_mutex_try = ffi.Int32 Function(
ffi.Pointer<sqlite3_mutex> arg0,
);
typedef _dart_sqlite3_mutex_try = int Function(
ffi.Pointer<sqlite3_mutex> arg0,
);
typedef _c_sqlite3_mutex_leave = ffi.Void Function(
ffi.Pointer<sqlite3_mutex> arg0,
);
typedef _dart_sqlite3_mutex_leave = void Function(
ffi.Pointer<sqlite3_mutex> arg0,
);
typedef _c_sqlite3_mutex_held = ffi.Int32 Function(
ffi.Pointer<sqlite3_mutex> arg0,
);
typedef _dart_sqlite3_mutex_held = int Function(
ffi.Pointer<sqlite3_mutex> arg0,
);
typedef _c_sqlite3_mutex_notheld = ffi.Int32 Function(
ffi.Pointer<sqlite3_mutex> arg0,
);
typedef _dart_sqlite3_mutex_notheld = int Function(
ffi.Pointer<sqlite3_mutex> arg0,
);
typedef _c_sqlite3_db_mutex = ffi.Pointer<sqlite3_mutex> Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _dart_sqlite3_db_mutex = ffi.Pointer<sqlite3_mutex> Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _c_sqlite3_file_control = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> zDbName,
ffi.Int32 op,
ffi.Pointer<ffi.Void> arg3,
);
typedef _dart_sqlite3_file_control = int Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.Int8> zDbName,
int op,
ffi.Pointer<ffi.Void> arg3,
);
typedef _c_sqlite3_test_control = ffi.Int32 Function(
ffi.Int32 op,
);
typedef _dart_sqlite3_test_control = int Function(
int op,
);
typedef _c_sqlite3_keyword_count = ffi.Int32 Function();
typedef _dart_sqlite3_keyword_count = int Function();
typedef _c_sqlite3_keyword_name = ffi.Int32 Function(
ffi.Int32 arg0,
ffi.Pointer<ffi.Pointer<ffi.Int8>> arg1,
ffi.Pointer<ffi.Int32> arg2,
);
typedef _dart_sqlite3_keyword_name = int Function(
int arg0,
ffi.Pointer<ffi.Pointer<ffi.Int8>> arg1,
ffi.Pointer<ffi.Int32> arg2,
);
typedef _c_sqlite3_keyword_check = ffi.Int32 Function(
ffi.Pointer<ffi.Int8> arg0,
ffi.Int32 arg1,
);
typedef _dart_sqlite3_keyword_check = int Function(
ffi.Pointer<ffi.Int8> arg0,
int arg1,
);
typedef _c_sqlite3_str_new = ffi.Pointer<sqlite3_str> Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _dart_sqlite3_str_new = ffi.Pointer<sqlite3_str> Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _c_sqlite3_str_finish = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_str> arg0,
);
typedef _dart_sqlite3_str_finish = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_str> arg0,
);
typedef _c_sqlite3_str_appendf = ffi.Void Function(
ffi.Pointer<sqlite3_str> arg0,
ffi.Pointer<ffi.Int8> zFormat,
);
typedef _dart_sqlite3_str_appendf = void Function(
ffi.Pointer<sqlite3_str> arg0,
ffi.Pointer<ffi.Int8> zFormat,
);
typedef _c_sqlite3_str_append = ffi.Void Function(
ffi.Pointer<sqlite3_str> arg0,
ffi.Pointer<ffi.Int8> zIn,
ffi.Int32 N,
);
typedef _dart_sqlite3_str_append = void Function(
ffi.Pointer<sqlite3_str> arg0,
ffi.Pointer<ffi.Int8> zIn,
int N,
);
typedef _c_sqlite3_str_appendall = ffi.Void Function(
ffi.Pointer<sqlite3_str> arg0,
ffi.Pointer<ffi.Int8> zIn,
);
typedef _dart_sqlite3_str_appendall = void Function(
ffi.Pointer<sqlite3_str> arg0,
ffi.Pointer<ffi.Int8> zIn,
);
typedef _c_sqlite3_str_appendchar = ffi.Void Function(
ffi.Pointer<sqlite3_str> arg0,
ffi.Int32 N,
ffi.Int8 C,
);
typedef _dart_sqlite3_str_appendchar = void Function(
ffi.Pointer<sqlite3_str> arg0,
int N,
int C,
);
typedef _c_sqlite3_str_reset = ffi.Void Function(
ffi.Pointer<sqlite3_str> arg0,
);
typedef _dart_sqlite3_str_reset = void Function(
ffi.Pointer<sqlite3_str> arg0,
);
typedef _c_sqlite3_str_errcode = ffi.Int32 Function(
ffi.Pointer<sqlite3_str> arg0,
);
typedef _dart_sqlite3_str_errcode = int Function(
ffi.Pointer<sqlite3_str> arg0,
);
typedef _c_sqlite3_str_length = ffi.Int32 Function(
ffi.Pointer<sqlite3_str> arg0,
);
typedef _dart_sqlite3_str_length = int Function(
ffi.Pointer<sqlite3_str> arg0,
);
typedef _c_sqlite3_str_value = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_str> arg0,
);
typedef _dart_sqlite3_str_value = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_str> arg0,
);
typedef _c_sqlite3_status = ffi.Int32 Function(
ffi.Int32 op,
ffi.Pointer<ffi.Int32> pCurrent,
ffi.Pointer<ffi.Int32> pHighwater,
ffi.Int32 resetFlag,
);
typedef _dart_sqlite3_status = int Function(
int op,
ffi.Pointer<ffi.Int32> pCurrent,
ffi.Pointer<ffi.Int32> pHighwater,
int resetFlag,
);
typedef _c_sqlite3_status64 = ffi.Int32 Function(
ffi.Int32 op,
ffi.Pointer<ffi.Int64> pCurrent,
ffi.Pointer<ffi.Int64> pHighwater,
ffi.Int32 resetFlag,
);
typedef _dart_sqlite3_status64 = int Function(
int op,
ffi.Pointer<ffi.Int64> pCurrent,
ffi.Pointer<ffi.Int64> pHighwater,
int resetFlag,
);
typedef _c_sqlite3_db_status = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
ffi.Int32 op,
ffi.Pointer<ffi.Int32> pCur,
ffi.Pointer<ffi.Int32> pHiwtr,
ffi.Int32 resetFlg,
);
typedef _dart_sqlite3_db_status = int Function(
ffi.Pointer<sqlite3> arg0,
int op,
ffi.Pointer<ffi.Int32> pCur,
ffi.Pointer<ffi.Int32> pHiwtr,
int resetFlg,
);
typedef _c_sqlite3_stmt_status = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> arg0,
ffi.Int32 op,
ffi.Int32 resetFlg,
);
typedef _dart_sqlite3_stmt_status = int Function(
ffi.Pointer<sqlite3_stmt> arg0,
int op,
int resetFlg,
);
typedef _c_sqlite3_backup_init = ffi.Pointer<sqlite3_backup> Function(
ffi.Pointer<sqlite3> pDest,
ffi.Pointer<ffi.Int8> zDestName,
ffi.Pointer<sqlite3> pSource,
ffi.Pointer<ffi.Int8> zSourceName,
);
typedef _dart_sqlite3_backup_init = ffi.Pointer<sqlite3_backup> Function(
ffi.Pointer<sqlite3> pDest,
ffi.Pointer<ffi.Int8> zDestName,
ffi.Pointer<sqlite3> pSource,
ffi.Pointer<ffi.Int8> zSourceName,
);
typedef _c_sqlite3_backup_step = ffi.Int32 Function(
ffi.Pointer<sqlite3_backup> p,
ffi.Int32 nPage,
);
typedef _dart_sqlite3_backup_step = int Function(
ffi.Pointer<sqlite3_backup> p,
int nPage,
);
typedef _c_sqlite3_backup_finish = ffi.Int32 Function(
ffi.Pointer<sqlite3_backup> p,
);
typedef _dart_sqlite3_backup_finish = int Function(
ffi.Pointer<sqlite3_backup> p,
);
typedef _c_sqlite3_backup_remaining = ffi.Int32 Function(
ffi.Pointer<sqlite3_backup> p,
);
typedef _dart_sqlite3_backup_remaining = int Function(
ffi.Pointer<sqlite3_backup> p,
);
typedef _c_sqlite3_backup_pagecount = ffi.Int32 Function(
ffi.Pointer<sqlite3_backup> p,
);
typedef _dart_sqlite3_backup_pagecount = int Function(
ffi.Pointer<sqlite3_backup> p,
);
typedef _typedefC_69 = ffi.Void Function(
ffi.Pointer<ffi.Pointer<ffi.Void>>,
ffi.Int32,
);
typedef _c_sqlite3_unlock_notify = ffi.Int32 Function(
ffi.Pointer<sqlite3> pBlocked,
ffi.Pointer<ffi.NativeFunction<_typedefC_69>> xNotify,
ffi.Pointer<ffi.Void> pNotifyArg,
);
typedef _dart_sqlite3_unlock_notify = int Function(
ffi.Pointer<sqlite3> pBlocked,
ffi.Pointer<ffi.NativeFunction<_typedefC_69>> xNotify,
ffi.Pointer<ffi.Void> pNotifyArg,
);
typedef _c_sqlite3_stricmp = ffi.Int32 Function(
ffi.Pointer<ffi.Int8> arg0,
ffi.Pointer<ffi.Int8> arg1,
);
typedef _dart_sqlite3_stricmp = int Function(
ffi.Pointer<ffi.Int8> arg0,
ffi.Pointer<ffi.Int8> arg1,
);
typedef _c_sqlite3_strnicmp = ffi.Int32 Function(
ffi.Pointer<ffi.Int8> arg0,
ffi.Pointer<ffi.Int8> arg1,
ffi.Int32 arg2,
);
typedef _dart_sqlite3_strnicmp = int Function(
ffi.Pointer<ffi.Int8> arg0,
ffi.Pointer<ffi.Int8> arg1,
int arg2,
);
typedef _c_sqlite3_strglob = ffi.Int32 Function(
ffi.Pointer<ffi.Int8> zGlob,
ffi.Pointer<ffi.Int8> zStr,
);
typedef _dart_sqlite3_strglob = int Function(
ffi.Pointer<ffi.Int8> zGlob,
ffi.Pointer<ffi.Int8> zStr,
);
typedef _c_sqlite3_strlike = ffi.Int32 Function(
ffi.Pointer<ffi.Int8> zGlob,
ffi.Pointer<ffi.Int8> zStr,
ffi.Uint32 cEsc,
);
typedef _dart_sqlite3_strlike = int Function(
ffi.Pointer<ffi.Int8> zGlob,
ffi.Pointer<ffi.Int8> zStr,
int cEsc,
);
typedef _c_sqlite3_log = ffi.Void Function(
ffi.Int32 iErrCode,
ffi.Pointer<ffi.Int8> zFormat,
);
typedef _dart_sqlite3_log = void Function(
int iErrCode,
ffi.Pointer<ffi.Int8> zFormat,
);
typedef _typedefC_70 = ffi.Int32 Function(
ffi.Pointer<ffi.Void>,
ffi.Pointer<sqlite3>,
ffi.Pointer<ffi.Int8>,
ffi.Int32,
);
typedef _c_sqlite3_wal_hook = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_70>> arg1,
ffi.Pointer<ffi.Void> arg2,
);
typedef _dart_sqlite3_wal_hook = ffi.Pointer<ffi.Void> Function(
ffi.Pointer<sqlite3> arg0,
ffi.Pointer<ffi.NativeFunction<_typedefC_70>> arg1,
ffi.Pointer<ffi.Void> arg2,
);
typedef _c_sqlite3_wal_autocheckpoint = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Int32 N,
);
typedef _dart_sqlite3_wal_autocheckpoint = int Function(
ffi.Pointer<sqlite3> db,
int N,
);
typedef _c_sqlite3_wal_checkpoint = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zDb,
);
typedef _dart_sqlite3_wal_checkpoint = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zDb,
);
typedef _c_sqlite3_wal_checkpoint_v2 = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zDb,
ffi.Int32 eMode,
ffi.Pointer<ffi.Int32> pnLog,
ffi.Pointer<ffi.Int32> pnCkpt,
);
typedef _dart_sqlite3_wal_checkpoint_v2 = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zDb,
int eMode,
ffi.Pointer<ffi.Int32> pnLog,
ffi.Pointer<ffi.Int32> pnCkpt,
);
typedef _c_sqlite3_vtab_config = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
ffi.Int32 op,
);
typedef _dart_sqlite3_vtab_config = int Function(
ffi.Pointer<sqlite3> arg0,
int op,
);
typedef _c_sqlite3_vtab_on_conflict = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _dart_sqlite3_vtab_on_conflict = int Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _c_sqlite3_vtab_nochange = ffi.Int32 Function(
ffi.Pointer<sqlite3_context> arg0,
);
typedef _dart_sqlite3_vtab_nochange = int Function(
ffi.Pointer<sqlite3_context> arg0,
);
typedef _c_sqlite3_vtab_collation = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_index_info> arg0,
ffi.Int32 arg1,
);
typedef _dart_sqlite3_vtab_collation = ffi.Pointer<ffi.Int8> Function(
ffi.Pointer<sqlite3_index_info> arg0,
int arg1,
);
typedef _c_sqlite3_stmt_scanstatus = ffi.Int32 Function(
ffi.Pointer<sqlite3_stmt> pStmt,
ffi.Int32 idx,
ffi.Int32 iScanStatusOp,
ffi.Pointer<ffi.Void> pOut,
);
typedef _dart_sqlite3_stmt_scanstatus = int Function(
ffi.Pointer<sqlite3_stmt> pStmt,
int idx,
int iScanStatusOp,
ffi.Pointer<ffi.Void> pOut,
);
typedef _c_sqlite3_stmt_scanstatus_reset = ffi.Void Function(
ffi.Pointer<sqlite3_stmt> arg0,
);
typedef _dart_sqlite3_stmt_scanstatus_reset = void Function(
ffi.Pointer<sqlite3_stmt> arg0,
);
typedef _c_sqlite3_db_cacheflush = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _dart_sqlite3_db_cacheflush = int Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _c_sqlite3_system_errno = ffi.Int32 Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _dart_sqlite3_system_errno = int Function(
ffi.Pointer<sqlite3> arg0,
);
typedef _c_sqlite3_snapshot_get = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSchema,
ffi.Pointer<ffi.Pointer<sqlite3_snapshot>> ppSnapshot,
);
typedef _dart_sqlite3_snapshot_get = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSchema,
ffi.Pointer<ffi.Pointer<sqlite3_snapshot>> ppSnapshot,
);
typedef _c_sqlite3_snapshot_open = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSchema,
ffi.Pointer<sqlite3_snapshot> pSnapshot,
);
typedef _dart_sqlite3_snapshot_open = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSchema,
ffi.Pointer<sqlite3_snapshot> pSnapshot,
);
typedef _c_sqlite3_snapshot_free = ffi.Void Function(
ffi.Pointer<sqlite3_snapshot> arg0,
);
typedef _dart_sqlite3_snapshot_free = void Function(
ffi.Pointer<sqlite3_snapshot> arg0,
);
typedef _c_sqlite3_snapshot_cmp = ffi.Int32 Function(
ffi.Pointer<sqlite3_snapshot> p1,
ffi.Pointer<sqlite3_snapshot> p2,
);
typedef _dart_sqlite3_snapshot_cmp = int Function(
ffi.Pointer<sqlite3_snapshot> p1,
ffi.Pointer<sqlite3_snapshot> p2,
);
typedef _c_sqlite3_snapshot_recover = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zDb,
);
typedef _dart_sqlite3_snapshot_recover = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zDb,
);
typedef _c_sqlite3_serialize = ffi.Pointer<ffi.Uint8> Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSchema,
ffi.Pointer<ffi.Int64> piSize,
ffi.Uint32 mFlags,
);
typedef _dart_sqlite3_serialize = ffi.Pointer<ffi.Uint8> Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSchema,
ffi.Pointer<ffi.Int64> piSize,
int mFlags,
);
typedef _c_sqlite3_deserialize = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSchema,
ffi.Pointer<ffi.Uint8> pData,
ffi.Int64 szDb,
ffi.Int64 szBuf,
ffi.Uint32 mFlags,
);
typedef _dart_sqlite3_deserialize = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zSchema,
ffi.Pointer<ffi.Uint8> pData,
int szDb,
int szBuf,
int mFlags,
);
typedef _typedefC_71 = ffi.Int32 Function(
ffi.Pointer<sqlite3_rtree_geometry>,
ffi.Int32,
ffi.Pointer<ffi.Double>,
ffi.Pointer<ffi.Int32>,
);
typedef _c_sqlite3_rtree_geometry_callback = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zGeom,
ffi.Pointer<ffi.NativeFunction<_typedefC_71>> xGeom,
ffi.Pointer<ffi.Void> pContext,
);
typedef _dart_sqlite3_rtree_geometry_callback = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zGeom,
ffi.Pointer<ffi.NativeFunction<_typedefC_71>> xGeom,
ffi.Pointer<ffi.Void> pContext,
);
typedef _typedefC_72 = ffi.Int32 Function(
ffi.Pointer<sqlite3_rtree_query_info>,
);
typedef _typedefC_73 = ffi.Void Function(
ffi.Pointer<ffi.Void>,
);
typedef _c_sqlite3_rtree_query_callback = ffi.Int32 Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zQueryFunc,
ffi.Pointer<ffi.NativeFunction<_typedefC_72>> xQueryFunc,
ffi.Pointer<ffi.Void> pContext,
ffi.Pointer<ffi.NativeFunction<_typedefC_73>> xDestructor,
);
typedef _dart_sqlite3_rtree_query_callback = int Function(
ffi.Pointer<sqlite3> db,
ffi.Pointer<ffi.Int8> zQueryFunc,
ffi.Pointer<ffi.NativeFunction<_typedefC_72>> xQueryFunc,
ffi.Pointer<ffi.Void> pContext,
ffi.Pointer<ffi.NativeFunction<_typedefC_73>> xDestructor,
);
typedef _typedefC_2 = ffi.Int32 Function(
ffi.Pointer<sqlite3_file>,
);
typedef _typedefC_3 = ffi.Int32 Function(
ffi.Pointer<sqlite3_file>,
ffi.Pointer<ffi.Void>,
ffi.Int32,
ffi.Int64,
);
typedef _typedefC_4 = ffi.Int32 Function(
ffi.Pointer<sqlite3_file>,
ffi.Pointer<ffi.Void>,
ffi.Int32,
ffi.Int64,
);
typedef _typedefC_5 = ffi.Int32 Function(
ffi.Pointer<sqlite3_file>,
ffi.Int64,
);
typedef _typedefC_6 = ffi.Int32 Function(
ffi.Pointer<sqlite3_file>,
ffi.Int32,
);
typedef _typedefC_7 = ffi.Int32 Function(
ffi.Pointer<sqlite3_file>,
ffi.Pointer<ffi.Int64>,
);
typedef _typedefC_8 = ffi.Int32 Function(
ffi.Pointer<sqlite3_file>,
ffi.Int32,
);
typedef _typedefC_9 = ffi.Int32 Function(
ffi.Pointer<sqlite3_file>,
ffi.Int32,
);
typedef _typedefC_10 = ffi.Int32 Function(
ffi.Pointer<sqlite3_file>,
ffi.Pointer<ffi.Int32>,
);
typedef _typedefC_11 = ffi.Int32 Function(
ffi.Pointer<sqlite3_file>,
ffi.Int32,
ffi.Pointer<ffi.Void>,
);
typedef _typedefC_12 = ffi.Int32 Function(
ffi.Pointer<sqlite3_file>,
);
typedef _typedefC_13 = ffi.Int32 Function(
ffi.Pointer<sqlite3_file>,
);
typedef _typedefC_14 = ffi.Int32 Function(
ffi.Pointer<sqlite3_file>,
ffi.Int32,
ffi.Int32,
ffi.Int32,
ffi.Pointer<ffi.Pointer<ffi.Void>>,
);
typedef _typedefC_15 = ffi.Int32 Function(
ffi.Pointer<sqlite3_file>,
ffi.Int32,
ffi.Int32,
ffi.Int32,
);
typedef _typedefC_16 = ffi.Void Function(
ffi.Pointer<sqlite3_file>,
);
typedef _typedefC_17 = ffi.Int32 Function(
ffi.Pointer<sqlite3_file>,
ffi.Int32,
);
typedef _typedefC_18 = ffi.Int32 Function(
ffi.Pointer<sqlite3_file>,
ffi.Int64,
ffi.Int32,
ffi.Pointer<ffi.Pointer<ffi.Void>>,
);
typedef _typedefC_19 = ffi.Int32 Function(
ffi.Pointer<sqlite3_file>,
ffi.Int64,
ffi.Pointer<ffi.Void>,
);