tree: e197085d75297262010785b12fb0abe1d7fa6c5f [path history] [tgz]
  1. .github/
  2. benchmark/
  3. example/
  4. lib/
  5. reference/
  6. test/
  7. tool/
  8. .gitignore
  9. analysis_options.yaml
  10. CHANGELOG.md
  11. dart_test.yaml
  12. LICENSE
  13. pubspec.yaml
  14. README.md
README.md

tar

Build status

This package provides stream-based readers and writers for tar files.

When working with large tar files, this library consumes considerably less memory than package:archive, although it is slightly slower due to the async overhead.

Reading

To read entries from a tar file, use a TarReader with a Stream emitting bytes (as List<int>):

import 'dart:convert';
import 'dart:io';
import 'package:tar/tar.dart';

Future<void> main() async {
  final reader = TarReader(File('file.tar').openRead());

  while (await reader.moveNext()) {
    final entry = reader.current;
    // Use reader.header to see the header of the current tar entry
    print(entry.header.name);
    // And reader.contents to read the content of the current entry as a stream
    print(await entry.contents.transform(utf8.decoder).first);
  }
  // Note that the reader will automatically close if moveNext() returns false or
  // throws. If you want to close a tar stream before that happens, use
  // reader.cancel();
}

To read .tar.gz files, transform the stream with gzip.decoder before passing it to the TarReader.

To easily go through all entries in a tar file, use TarReader.forEach:

Future<void> main() async {
  final inputStream = File('file.tar').openRead();

  await TarReader.forEach(inputStream, (entry) {
    print(header.name);
    print(await entry.contents.transform(utf8.decoder).first);
  });
}

Warning: Since the reader is backed by a single stream, concurrent calls to read are not allowed! Similarly, if you‘re reading from an entry’s contents, make sure to fully drain the stream before calling read() again.

Writing

When writing archives, package:tar expects a Stream of tar entries to include in the archive. This stream can then be converted into a stream of byte-array chunks forming the encoded tar archive.

To write a tar stream into a StreamSink<List<int>>, such as an IOSink returned by File.openWrite, use tarWritingSink:

import 'dart:convert';
import 'dart:io';
import 'package:tar/tar.dart';

Future<void> main() async {
  final output = File('test.tar').openWrite();
  final tarEntries = Stream<TarEntry>.value(
    TarEntry.data(
      TarHeader(
        name: 'hello.txt',
        mode: int.parse('644', radix: 8),
      ),
      utf8.encode('Hello world'),
    ),
  );

  await tarEntries.pipe(tarWritingSink(output));
}

For more complex stream transformations, tarWriter can be used as a stream transformer converting a stream of tar entries into archive bytes.

Together with the gzip.encoder transformer from dart:io, this can be used to write a .tar.gz file:

import 'dart:io';
import 'package:tar/tar.dart';

Future<void> write(Stream<TarEntry> entries) {
  return entries
      .transform(tarWriter) // convert entries into a .tar stream
      .transform(gzip.encoder) // convert the .tar stream into a .tar.gz stream
      .pipe(File('output.tar.gz').openWrite());
}

A more complex example for writing files can be found in example/archive_self.dart.

Encoding options

By default, tar files are written in the pax format defined by the POSIX.1-2001 specification (--format=posix in GNU tar). When all entries have file names shorter than 100 chars and a size smaller than 8 GB, this is equivalent to the ustar format. This library won't write PAX headers when there is no reason to do so. If you prefer writing GNU-style long filenames instead, you can use the format option:

Future<void> write(Stream<TarEntry> entries) {
  return entries
      .pipe(
        tarWritingSink(
          File('output.tar').openWrite(),
          format: OutputFormat.gnuLongName,
      ));
}

To change the output format on the tarWriter transformer, use tarWriterWith.

Synchronous writing

As the content of tar entries is defined as an asynchronous stream, the tar encoder is asynchronous too. The more specific SynchronousTarEntry class stores tar content as a list of bytes, meaning that it can be written synchronously.

To synchronously write tar files, use tarConverter (or tarConverterWith for options):

List<int> createTarArchive(Iterable<SynchronousTarEntry> entries) {
  late List<int> result;
  final sink = ByteConversionSink.withCallback((data) => result = data);

  final output = tarConverter.startChunkedConversion(sink);
  entries.forEach(output.add);
  output.close();

  return result;
}

Features

  • Supports v7, ustar, pax, gnu and star archives
  • Supports extended pax headers for long file or link names
  • Supports long file and link names generated by GNU-tar
  • Hardened against denial-of-service attacks with invalid tar files

Big thanks to Garett Tok Ern Liang for writing the initial Dart tar reader that this library is based on.