blob: 90803109ff2e9b7a597023078afc496c5b7a98a9 [file] [log] [blame]
// Copyright 2014 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
import 'dart:math' as math;
import 'package:flutter/foundation.dart';
import 'simulation.dart';
import 'utils.dart';
export 'tolerance.dart' show Tolerance;
/// Structure that describes a spring's constants.
///
/// Used to configure a [SpringSimulation].
class SpringDescription {
/// Creates a spring given the mass, stiffness, and the damping coefficient.
///
/// See [mass], [stiffness], and [damping] for the units of the arguments.
const SpringDescription({
required this.mass,
required this.stiffness,
required this.damping,
});
/// Creates a spring given the mass (m), stiffness (k), and damping ratio (ζ).
/// The damping ratio is especially useful trying to determining the type of
/// spring to create. A ratio of 1.0 creates a critically damped spring, > 1.0
/// creates an overdamped spring and < 1.0 an underdamped one.
///
/// See [mass] and [stiffness] for the units for those arguments. The damping
/// ratio is unitless.
SpringDescription.withDampingRatio({
required this.mass,
required this.stiffness,
double ratio = 1.0,
}) : damping = ratio * 2.0 * math.sqrt(mass * stiffness);
/// The mass of the spring (m). The units are arbitrary, but all springs
/// within a system should use the same mass units.
final double mass;
/// The spring constant (k). The units of stiffness are M/T², where M is the
/// mass unit used for the value of the [mass] property, and T is the time
/// unit used for driving the [SpringSimulation].
final double stiffness;
/// The damping coefficient (c).
///
/// Do not confuse the damping _coefficient_ (c) with the damping _ratio_ (ζ).
/// To create a [SpringDescription] with a damping ratio, use the [
/// SpringDescription.withDampingRatio] constructor.
///
/// The units of the damping coefficient are M/T, where M is the mass unit
/// used for the value of the [mass] property, and T is the time unit used for
/// driving the [SpringSimulation].
final double damping;
@override
String toString() => '${objectRuntimeType(this, 'SpringDescription')}(mass: ${mass.toStringAsFixed(1)}, stiffness: ${stiffness.toStringAsFixed(1)}, damping: ${damping.toStringAsFixed(1)})';
}
/// The kind of spring solution that the [SpringSimulation] is using to simulate the spring.
///
/// See [SpringSimulation.type].
enum SpringType {
/// A spring that does not bounce and returns to its rest position in the
/// shortest possible time.
criticallyDamped,
/// A spring that bounces.
underDamped,
/// A spring that does not bounce but takes longer to return to its rest
/// position than a [criticallyDamped] one.
overDamped,
}
/// A spring simulation.
///
/// Models a particle attached to a spring that follows Hooke's law.
class SpringSimulation extends Simulation {
/// Creates a spring simulation from the provided spring description, start
/// distance, end distance, and initial velocity.
///
/// The units for the start and end distance arguments are arbitrary, but must
/// be consistent with the units used for other lengths in the system.
///
/// The units for the velocity are L/T, where L is the aforementioned
/// arbitrary unit of length, and T is the time unit used for driving the
/// [SpringSimulation].
SpringSimulation(
SpringDescription spring,
double start,
double end,
double velocity, {
super.tolerance,
}) : _endPosition = end,
_solution = _SpringSolution(spring, start - end, velocity);
final double _endPosition;
final _SpringSolution _solution;
/// The kind of spring being simulated, for debugging purposes.
///
/// This is derived from the [SpringDescription] provided to the [
/// SpringSimulation] constructor.
SpringType get type => _solution.type;
@override
double x(double time) => _endPosition + _solution.x(time);
@override
double dx(double time) => _solution.dx(time);
@override
bool isDone(double time) {
return nearZero(_solution.x(time), tolerance.distance) &&
nearZero(_solution.dx(time), tolerance.velocity);
}
@override
String toString() => '${objectRuntimeType(this, 'SpringSimulation')}(end: ${_endPosition.toStringAsFixed(1)}, $type)';
}
/// A [SpringSimulation] where the value of [x] is guaranteed to have exactly the
/// end value when the simulation [isDone].
class ScrollSpringSimulation extends SpringSimulation {
/// Creates a spring simulation from the provided spring description, start
/// distance, end distance, and initial velocity.
///
/// See the [SpringSimulation.new] constructor on the superclass for a
/// discussion of the arguments' units.
ScrollSpringSimulation(
super.spring,
super.start,
super.end,
super.velocity, {
super.tolerance,
});
@override
double x(double time) => isDone(time) ? _endPosition : super.x(time);
}
// SPRING IMPLEMENTATIONS
abstract class _SpringSolution {
factory _SpringSolution(
SpringDescription spring,
double initialPosition,
double initialVelocity,
) {
assert(spring != null);
assert(spring.mass != null);
assert(spring.stiffness != null);
assert(spring.damping != null);
assert(initialPosition != null);
assert(initialVelocity != null);
final double cmk = spring.damping * spring.damping - 4 * spring.mass * spring.stiffness;
if (cmk == 0.0) {
return _CriticalSolution(spring, initialPosition, initialVelocity);
}
if (cmk > 0.0) {
return _OverdampedSolution(spring, initialPosition, initialVelocity);
}
return _UnderdampedSolution(spring, initialPosition, initialVelocity);
}
double x(double time);
double dx(double time);
SpringType get type;
}
class _CriticalSolution implements _SpringSolution {
factory _CriticalSolution(
SpringDescription spring,
double distance,
double velocity,
) {
final double r = -spring.damping / (2.0 * spring.mass);
final double c1 = distance;
final double c2 = velocity / (r * distance);
return _CriticalSolution.withArgs(r, c1, c2);
}
_CriticalSolution.withArgs(double r, double c1, double c2)
: _r = r,
_c1 = c1,
_c2 = c2;
final double _r, _c1, _c2;
@override
double x(double time) {
return (_c1 + _c2 * time) * math.pow(math.e, _r * time);
}
@override
double dx(double time) {
final double power = math.pow(math.e, _r * time) as double;
return _r * (_c1 + _c2 * time) * power + _c2 * power;
}
@override
SpringType get type => SpringType.criticallyDamped;
}
class _OverdampedSolution implements _SpringSolution {
factory _OverdampedSolution(
SpringDescription spring,
double distance,
double velocity,
) {
final double cmk = spring.damping * spring.damping - 4 * spring.mass * spring.stiffness;
final double r1 = (-spring.damping - math.sqrt(cmk)) / (2.0 * spring.mass);
final double r2 = (-spring.damping + math.sqrt(cmk)) / (2.0 * spring.mass);
final double c2 = (velocity - r1 * distance) / (r2 - r1);
final double c1 = distance - c2;
return _OverdampedSolution.withArgs(r1, r2, c1, c2);
}
_OverdampedSolution.withArgs(double r1, double r2, double c1, double c2)
: _r1 = r1,
_r2 = r2,
_c1 = c1,
_c2 = c2;
final double _r1, _r2, _c1, _c2;
@override
double x(double time) {
return _c1 * math.pow(math.e, _r1 * time) +
_c2 * math.pow(math.e, _r2 * time);
}
@override
double dx(double time) {
return _c1 * _r1 * math.pow(math.e, _r1 * time) +
_c2 * _r2 * math.pow(math.e, _r2 * time);
}
@override
SpringType get type => SpringType.overDamped;
}
class _UnderdampedSolution implements _SpringSolution {
factory _UnderdampedSolution(
SpringDescription spring,
double distance,
double velocity,
) {
final double w = math.sqrt(4.0 * spring.mass * spring.stiffness - spring.damping * spring.damping) /
(2.0 * spring.mass);
final double r = -(spring.damping / 2.0 * spring.mass);
final double c1 = distance;
final double c2 = (velocity - r * distance) / w;
return _UnderdampedSolution.withArgs(w, r, c1, c2);
}
_UnderdampedSolution.withArgs(double w, double r, double c1, double c2)
: _w = w,
_r = r,
_c1 = c1,
_c2 = c2;
final double _w, _r, _c1, _c2;
@override
double x(double time) {
return (math.pow(math.e, _r * time) as double) *
(_c1 * math.cos(_w * time) + _c2 * math.sin(_w * time));
}
@override
double dx(double time) {
final double power = math.pow(math.e, _r * time) as double;
final double cosine = math.cos(_w * time);
final double sine = math.sin(_w * time);
return power * (_c2 * _w * cosine - _c1 * _w * sine) +
_r * power * (_c2 * sine + _c1 * cosine);
}
@override
SpringType get type => SpringType.underDamped;
}