blob: 35174c4c13f774fe612c0438a8b3d61bab471adc [file] [log] [blame]
// Copyright 2014 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
import 'dart:collection';
import 'dart:math' as math;
import 'package:flutter/foundation.dart';
import 'box.dart';
import 'object.dart';
import 'table_border.dart';
/// Parent data used by [RenderTable] for its children.
class TableCellParentData extends BoxParentData {
/// Where this cell should be placed vertically.
TableCellVerticalAlignment? verticalAlignment;
/// The column that the child was in the last time it was laid out.
int? x;
/// The row that the child was in the last time it was laid out.
int? y;
@override
String toString() => '${super.toString()}; ${verticalAlignment == null ? "default vertical alignment" : "$verticalAlignment"}';
}
/// Base class to describe how wide a column in a [RenderTable] should be.
///
/// To size a column to a specific number of pixels, use a [FixedColumnWidth].
/// This is the cheapest way to size a column.
///
/// Other algorithms that are relatively cheap include [FlexColumnWidth], which
/// distributes the space equally among the flexible columns,
/// [FractionColumnWidth], which sizes a column based on the size of the
/// table's container.
@immutable
abstract class TableColumnWidth {
/// Abstract const constructor. This constructor enables subclasses to provide
/// const constructors so that they can be used in const expressions.
const TableColumnWidth();
/// The smallest width that the column can have.
///
/// The `cells` argument is an iterable that provides all the cells
/// in the table for this column. Walking the cells is by definition
/// O(N), so algorithms that do that should be considered expensive.
///
/// The `containerWidth` argument is the `maxWidth` of the incoming
/// constraints for the table, and might be infinite.
double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth);
/// The ideal width that the column should have. This must be equal
/// to or greater than the [minIntrinsicWidth]. The column might be
/// bigger than this width, e.g. if the column is flexible or if the
/// table's width ends up being forced to be bigger than the sum of
/// all the maxIntrinsicWidth values.
///
/// The `cells` argument is an iterable that provides all the cells
/// in the table for this column. Walking the cells is by definition
/// O(N), so algorithms that do that should be considered expensive.
///
/// The `containerWidth` argument is the `maxWidth` of the incoming
/// constraints for the table, and might be infinite.
double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth);
/// The flex factor to apply to the cell if there is any room left
/// over when laying out the table. The remaining space is
/// distributed to any columns with flex in proportion to their flex
/// value (higher values get more space).
///
/// The `cells` argument is an iterable that provides all the cells
/// in the table for this column. Walking the cells is by definition
/// O(N), so algorithms that do that should be considered expensive.
double? flex(Iterable<RenderBox> cells) => null;
@override
String toString() => objectRuntimeType(this, 'TableColumnWidth');
}
/// Sizes the column according to the intrinsic dimensions of all the
/// cells in that column.
///
/// This is a very expensive way to size a column.
///
/// A flex value can be provided. If specified (and non-null), the
/// column will participate in the distribution of remaining space
/// once all the non-flexible columns have been sized.
class IntrinsicColumnWidth extends TableColumnWidth {
/// Creates a column width based on intrinsic sizing.
///
/// This sizing algorithm is very expensive.
///
/// The `flex` argument specifies the flex factor to apply to the column if
/// there is any room left over when laying out the table. If `flex` is
/// null (the default), the table will not distribute any extra space to the
/// column.
const IntrinsicColumnWidth({ double? flex }) : _flex = flex;
@override
double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
double result = 0.0;
for (final RenderBox cell in cells)
result = math.max(result, cell.getMinIntrinsicWidth(double.infinity));
return result;
}
@override
double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
double result = 0.0;
for (final RenderBox cell in cells)
result = math.max(result, cell.getMaxIntrinsicWidth(double.infinity));
return result;
}
final double? _flex;
@override
double? flex(Iterable<RenderBox> cells) => _flex;
@override
String toString() => '${objectRuntimeType(this, 'IntrinsicColumnWidth')}(flex: ${_flex?.toStringAsFixed(1)})';
}
/// Sizes the column to a specific number of pixels.
///
/// This is the cheapest way to size a column.
class FixedColumnWidth extends TableColumnWidth {
/// Creates a column width based on a fixed number of logical pixels.
///
/// The [value] argument must not be null.
const FixedColumnWidth(this.value) : assert(value != null);
/// The width the column should occupy in logical pixels.
final double value;
@override
double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
return value;
}
@override
double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
return value;
}
@override
String toString() => '${objectRuntimeType(this, 'FixedColumnWidth')}(${debugFormatDouble(value)})';
}
/// Sizes the column to a fraction of the table's constraints' maxWidth.
///
/// This is a cheap way to size a column.
class FractionColumnWidth extends TableColumnWidth {
/// Creates a column width based on a fraction of the table's constraints'
/// maxWidth.
///
/// The [value] argument must not be null.
const FractionColumnWidth(this.value) : assert(value != null);
/// The fraction of the table's constraints' maxWidth that this column should
/// occupy.
final double value;
@override
double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
if (!containerWidth.isFinite)
return 0.0;
return value * containerWidth;
}
@override
double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
if (!containerWidth.isFinite)
return 0.0;
return value * containerWidth;
}
@override
String toString() => '${objectRuntimeType(this, 'FractionColumnWidth')}($value)';
}
/// Sizes the column by taking a part of the remaining space once all
/// the other columns have been laid out.
///
/// For example, if two columns have a [FlexColumnWidth], then half the
/// space will go to one and half the space will go to the other.
///
/// This is a cheap way to size a column.
class FlexColumnWidth extends TableColumnWidth {
/// Creates a column width based on a fraction of the remaining space once all
/// the other columns have been laid out.
///
/// The [value] argument must not be null.
const FlexColumnWidth([this.value = 1.0]) : assert(value != null);
/// The reaction of the of the remaining space once all the other columns have
/// been laid out that this column should occupy.
final double value;
@override
double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
return 0.0;
}
@override
double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
return 0.0;
}
@override
double flex(Iterable<RenderBox> cells) {
return value;
}
@override
String toString() => '${objectRuntimeType(this, 'FlexColumnWidth')}(${debugFormatDouble(value)})';
}
/// Sizes the column such that it is the size that is the maximum of
/// two column width specifications.
///
/// For example, to have a column be 10% of the container width or
/// 100px, whichever is bigger, you could use:
///
/// const MaxColumnWidth(const FixedColumnWidth(100.0), FractionColumnWidth(0.1))
///
/// Both specifications are evaluated, so if either specification is
/// expensive, so is this.
class MaxColumnWidth extends TableColumnWidth {
/// Creates a column width that is the maximum of two other column widths.
const MaxColumnWidth(this.a, this.b);
/// A lower bound for the width of this column.
final TableColumnWidth a;
/// Another lower bound for the width of this column.
final TableColumnWidth b;
@override
double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
return math.max(
a.minIntrinsicWidth(cells, containerWidth),
b.minIntrinsicWidth(cells, containerWidth),
);
}
@override
double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
return math.max(
a.maxIntrinsicWidth(cells, containerWidth),
b.maxIntrinsicWidth(cells, containerWidth),
);
}
@override
double? flex(Iterable<RenderBox> cells) {
final double? aFlex = a.flex(cells);
if (aFlex == null)
return b.flex(cells);
final double? bFlex = b.flex(cells);
if (bFlex == null)
return null;
return math.max(aFlex, bFlex);
}
@override
String toString() => '${objectRuntimeType(this, 'MaxColumnWidth')}($a, $b)';
}
/// Sizes the column such that it is the size that is the minimum of
/// two column width specifications.
///
/// For example, to have a column be 10% of the container width but
/// never bigger than 100px, you could use:
///
/// const MinColumnWidth(const FixedColumnWidth(100.0), FractionColumnWidth(0.1))
///
/// Both specifications are evaluated, so if either specification is
/// expensive, so is this.
class MinColumnWidth extends TableColumnWidth {
/// Creates a column width that is the minimum of two other column widths.
const MinColumnWidth(this.a, this.b);
/// An upper bound for the width of this column.
final TableColumnWidth a;
/// Another upper bound for the width of this column.
final TableColumnWidth b;
@override
double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
return math.min(
a.minIntrinsicWidth(cells, containerWidth),
b.minIntrinsicWidth(cells, containerWidth),
);
}
@override
double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
return math.min(
a.maxIntrinsicWidth(cells, containerWidth),
b.maxIntrinsicWidth(cells, containerWidth),
);
}
@override
double? flex(Iterable<RenderBox> cells) {
final double? aFlex = a.flex(cells);
if (aFlex == null)
return b.flex(cells);
final double? bFlex = b.flex(cells);
if (bFlex == null)
return null;
return math.min(aFlex, bFlex);
}
@override
String toString() => '${objectRuntimeType(this, 'MinColumnWidth')}($a, $b)';
}
/// Vertical alignment options for cells in [RenderTable] objects.
///
/// This is specified using [TableCellParentData] objects on the
/// [RenderObject.parentData] of the children of the [RenderTable].
enum TableCellVerticalAlignment {
/// Cells with this alignment are placed with their top at the top of the row.
top,
/// Cells with this alignment are vertically centered in the row.
middle,
/// Cells with this alignment are placed with their bottom at the bottom of the row.
bottom,
/// Cells with this alignment are aligned such that they all share the same
/// baseline. Cells with no baseline are top-aligned instead. The baseline
/// used is specified by [RenderTable.textBaseline]. It is not valid to use
/// the baseline value if [RenderTable.textBaseline] is not specified.
///
/// This vertical alignment is relatively expensive because it causes the table
/// to compute the baseline for each cell in the row.
baseline,
/// Cells with this alignment are sized to be as tall as the row, then made to fit the row.
/// If all the cells have this alignment, then the row will have zero height.
fill
}
/// A table where the columns and rows are sized to fit the contents of the cells.
class RenderTable extends RenderBox {
/// Creates a table render object.
///
/// * `columns` must either be null or non-negative. If `columns` is null,
/// the number of columns will be inferred from length of the first sublist
/// of `children`.
/// * `rows` must either be null or non-negative. If `rows` is null, the
/// number of rows will be inferred from the `children`. If `rows` is not
/// null, then `children` must be null.
/// * `children` must either be null or contain lists of all the same length.
/// if `children` is not null, then `rows` must be null.
/// * [columnWidths] may be null, in which case it defaults to an empty map.
/// * [defaultColumnWidth] must not be null.
/// * [configuration] must not be null (but has a default value).
RenderTable({
int? columns,
int? rows,
Map<int, TableColumnWidth>? columnWidths,
TableColumnWidth defaultColumnWidth = const FlexColumnWidth(1.0),
required TextDirection textDirection,
TableBorder? border,
List<Decoration?>? rowDecorations,
ImageConfiguration configuration = ImageConfiguration.empty,
TableCellVerticalAlignment defaultVerticalAlignment = TableCellVerticalAlignment.top,
TextBaseline? textBaseline,
List<List<RenderBox>>? children,
}) : assert(columns == null || columns >= 0),
assert(rows == null || rows >= 0),
assert(rows == null || children == null),
assert(defaultColumnWidth != null),
assert(textDirection != null),
assert(configuration != null),
_textDirection = textDirection,
_columns = columns ?? (children != null && children.isNotEmpty ? children.first.length : 0),
_rows = rows ?? 0,
_columnWidths = columnWidths ?? HashMap<int, TableColumnWidth>(),
_defaultColumnWidth = defaultColumnWidth,
_border = border,
_textBaseline = textBaseline,
_defaultVerticalAlignment = defaultVerticalAlignment,
_configuration = configuration {
_children = <RenderBox?>[]..length = _columns * _rows;
this.rowDecorations = rowDecorations; // must use setter to initialize box painters array
children?.forEach(addRow);
}
// Children are stored in row-major order.
// _children.length must be rows * columns
List<RenderBox?> _children = const <RenderBox?>[];
/// The number of vertical alignment lines in this table.
///
/// Changing the number of columns will remove any children that no longer fit
/// in the table.
///
/// Changing the number of columns is an expensive operation because the table
/// needs to rearrange its internal representation.
int get columns => _columns;
int _columns;
set columns(int value) {
assert(value != null);
assert(value >= 0);
if (value == columns)
return;
final int oldColumns = columns;
final List<RenderBox?> oldChildren = _children;
_columns = value;
_children = List<RenderBox?>.filled(columns * rows, null, growable: false);
final int columnsToCopy = math.min(columns, oldColumns);
for (int y = 0; y < rows; y += 1) {
for (int x = 0; x < columnsToCopy; x += 1)
_children[x + y * columns] = oldChildren[x + y * oldColumns];
}
if (oldColumns > columns) {
for (int y = 0; y < rows; y += 1) {
for (int x = columns; x < oldColumns; x += 1) {
final int xy = x + y * oldColumns;
if (oldChildren[xy] != null)
dropChild(oldChildren[xy]!);
}
}
}
markNeedsLayout();
}
/// The number of horizontal alignment lines in this table.
///
/// Changing the number of rows will remove any children that no longer fit
/// in the table.
int get rows => _rows;
int _rows;
set rows(int value) {
assert(value != null);
assert(value >= 0);
if (value == rows)
return;
if (_rows > value) {
for (int xy = columns * value; xy < _children.length; xy += 1) {
if (_children[xy] != null)
dropChild(_children[xy]!);
}
}
_rows = value;
_children.length = columns * rows;
markNeedsLayout();
}
/// How the horizontal extents of the columns of this table should be determined.
///
/// If the [Map] has a null entry for a given column, the table uses the
/// [defaultColumnWidth] instead.
///
/// The layout performance of the table depends critically on which column
/// sizing algorithms are used here. In particular, [IntrinsicColumnWidth] is
/// quite expensive because it needs to measure each cell in the column to
/// determine the intrinsic size of the column.
///
/// This property can never return null. If it is set to null, and the existing
/// map is not empty, then the value is replaced by an empty map. (If it is set
/// to null while the current value is an empty map, the value is not changed.)
Map<int, TableColumnWidth>? get columnWidths => Map<int, TableColumnWidth>.unmodifiable(_columnWidths);
Map<int, TableColumnWidth> _columnWidths;
set columnWidths(Map<int, TableColumnWidth>? value) {
if (_columnWidths == value)
return;
if (_columnWidths.isEmpty && value == null)
return;
_columnWidths = value ?? HashMap<int, TableColumnWidth>();
markNeedsLayout();
}
/// Determines how the width of column with the given index is determined.
void setColumnWidth(int column, TableColumnWidth value) {
if (_columnWidths[column] == value)
return;
_columnWidths[column] = value;
markNeedsLayout();
}
/// How to determine with widths of columns that don't have an explicit sizing algorithm.
///
/// Specifically, the [defaultColumnWidth] is used for column `i` if
/// `columnWidths[i]` is null.
TableColumnWidth get defaultColumnWidth => _defaultColumnWidth;
TableColumnWidth _defaultColumnWidth;
set defaultColumnWidth(TableColumnWidth value) {
assert(value != null);
if (defaultColumnWidth == value)
return;
_defaultColumnWidth = value;
markNeedsLayout();
}
/// The direction in which the columns are ordered.
TextDirection get textDirection => _textDirection;
TextDirection _textDirection;
set textDirection(TextDirection value) {
assert(value != null);
if (_textDirection == value)
return;
_textDirection = value;
markNeedsLayout();
}
/// The style to use when painting the boundary and interior divisions of the table.
TableBorder? get border => _border;
TableBorder? _border;
set border(TableBorder? value) {
if (border == value)
return;
_border = value;
markNeedsPaint();
}
/// The decorations to use for each row of the table.
///
/// Row decorations fill the horizontal and vertical extent of each row in
/// the table, unlike decorations for individual cells, which might not fill
/// either.
List<Decoration> get rowDecorations => List<Decoration>.unmodifiable(_rowDecorations ?? const <Decoration>[]);
// _rowDecorations and _rowDecorationPainters need to be in sync. They have to
// either both be null or have same length.
List<Decoration?>? _rowDecorations;
List<BoxPainter?>? _rowDecorationPainters;
set rowDecorations(List<Decoration?>? value) {
if (_rowDecorations == value)
return;
_rowDecorations = value;
if (_rowDecorationPainters != null) {
for (final BoxPainter? painter in _rowDecorationPainters!)
painter?.dispose();
}
_rowDecorationPainters = _rowDecorations != null ? List<BoxPainter?>.filled(_rowDecorations!.length, null, growable: false) : null;
}
/// The settings to pass to the [rowDecorations] when painting, so that they
/// can resolve images appropriately. See [ImageProvider.resolve] and
/// [BoxPainter.paint].
ImageConfiguration get configuration => _configuration;
ImageConfiguration _configuration;
set configuration(ImageConfiguration value) {
assert(value != null);
if (value == _configuration)
return;
_configuration = value;
markNeedsPaint();
}
/// How cells that do not explicitly specify a vertical alignment are aligned vertically.
TableCellVerticalAlignment get defaultVerticalAlignment => _defaultVerticalAlignment;
TableCellVerticalAlignment _defaultVerticalAlignment;
set defaultVerticalAlignment(TableCellVerticalAlignment value) {
assert(value != null);
if (_defaultVerticalAlignment == value)
return;
_defaultVerticalAlignment = value;
markNeedsLayout();
}
/// The text baseline to use when aligning rows using [TableCellVerticalAlignment.baseline].
TextBaseline? get textBaseline => _textBaseline;
TextBaseline? _textBaseline;
set textBaseline(TextBaseline? value) {
if (_textBaseline == value)
return;
_textBaseline = value;
markNeedsLayout();
}
@override
void setupParentData(RenderObject child) {
if (child.parentData is! TableCellParentData)
child.parentData = TableCellParentData();
}
/// Replaces the children of this table with the given cells.
///
/// The cells are divided into the specified number of columns before
/// replacing the existing children.
///
/// If the new cells contain any existing children of the table, those
/// children are simply moved to their new location in the table rather than
/// removed from the table and re-added.
void setFlatChildren(int columns, List<RenderBox?> cells) {
if (cells == _children && columns == _columns)
return;
assert(columns >= 0);
// consider the case of a newly empty table
if (columns == 0 || cells.isEmpty) {
assert(cells == null || cells.isEmpty);
_columns = columns;
if (_children.isEmpty) {
assert(_rows == 0);
return;
}
for (final RenderBox? oldChild in _children) {
if (oldChild != null)
dropChild(oldChild);
}
_rows = 0;
_children.clear();
markNeedsLayout();
return;
}
assert(cells != null);
assert(cells.length % columns == 0);
// fill a set with the cells that are moving (it's important not
// to dropChild a child that's remaining with us, because that
// would clear their parentData field)
final Set<RenderBox> lostChildren = HashSet<RenderBox>();
for (int y = 0; y < _rows; y += 1) {
for (int x = 0; x < _columns; x += 1) {
final int xyOld = x + y * _columns;
final int xyNew = x + y * columns;
if (_children[xyOld] != null && (x >= columns || xyNew >= cells.length || _children[xyOld] != cells[xyNew]))
lostChildren.add(_children[xyOld]!);
}
}
// adopt cells that are arriving, and cross cells that are just moving off our list of lostChildren
int y = 0;
while (y * columns < cells.length) {
for (int x = 0; x < columns; x += 1) {
final int xyNew = x + y * columns;
final int xyOld = x + y * _columns;
if (cells[xyNew] != null && (x >= _columns || y >= _rows || _children[xyOld] != cells[xyNew])) {
if (!lostChildren.remove(cells[xyNew]))
adoptChild(cells[xyNew]!);
}
}
y += 1;
}
// drop all the lost children
lostChildren.forEach(dropChild);
// update our internal values
_columns = columns;
_rows = cells.length ~/ columns;
_children = List<RenderBox?>.from(cells);
assert(_children.length == rows * columns);
markNeedsLayout();
}
/// Replaces the children of this table with the given cells.
void setChildren(List<List<RenderBox>>? cells) {
// TODO(ianh): Make this smarter, like setFlatChildren
if (cells == null) {
setFlatChildren(0, const <RenderBox?>[]);
return;
}
for (final RenderBox? oldChild in _children) {
if (oldChild != null)
dropChild(oldChild);
}
_children.clear();
_columns = cells.isNotEmpty ? cells.first.length : 0;
_rows = 0;
cells.forEach(addRow);
assert(_children.length == rows * columns);
}
/// Adds a row to the end of the table.
///
/// The newly added children must not already have parents.
void addRow(List<RenderBox?> cells) {
assert(cells.length == columns);
assert(_children.length == rows * columns);
_rows += 1;
_children.addAll(cells);
for (final RenderBox? cell in cells) {
if (cell != null)
adoptChild(cell);
}
markNeedsLayout();
}
/// Replaces the child at the given position with the given child.
///
/// If the given child is already located at the given position, this function
/// does not modify the table. Otherwise, the given child must not already
/// have a parent.
void setChild(int x, int y, RenderBox? value) {
assert(x != null);
assert(y != null);
assert(x >= 0 && x < columns && y >= 0 && y < rows);
assert(_children.length == rows * columns);
final int xy = x + y * columns;
final RenderBox? oldChild = _children[xy];
if (oldChild == value)
return;
if (oldChild != null)
dropChild(oldChild);
_children[xy] = value;
if (value != null)
adoptChild(value);
}
@override
void attach(PipelineOwner owner) {
super.attach(owner);
for (final RenderBox? child in _children)
child?.attach(owner);
}
@override
void detach() {
super.detach();
if (_rowDecorationPainters != null) {
for (final BoxPainter? painter in _rowDecorationPainters!)
painter?.dispose();
_rowDecorationPainters = List<BoxPainter?>.filled(_rowDecorations!.length, null, growable: false);
}
for (final RenderBox? child in _children)
child?.detach();
}
@override
void visitChildren(RenderObjectVisitor visitor) {
assert(_children.length == rows * columns);
for (final RenderBox? child in _children) {
if (child != null)
visitor(child);
}
}
@override
double computeMinIntrinsicWidth(double height) {
assert(_children.length == rows * columns);
double totalMinWidth = 0.0;
for (int x = 0; x < columns; x += 1) {
final TableColumnWidth columnWidth = _columnWidths[x] ?? defaultColumnWidth;
final Iterable<RenderBox> columnCells = column(x);
totalMinWidth += columnWidth.minIntrinsicWidth(columnCells, double.infinity);
}
return totalMinWidth;
}
@override
double computeMaxIntrinsicWidth(double height) {
assert(_children.length == rows * columns);
double totalMaxWidth = 0.0;
for (int x = 0; x < columns; x += 1) {
final TableColumnWidth columnWidth = _columnWidths[x] ?? defaultColumnWidth;
final Iterable<RenderBox> columnCells = column(x);
totalMaxWidth += columnWidth.maxIntrinsicWidth(columnCells, double.infinity);
}
return totalMaxWidth;
}
@override
double computeMinIntrinsicHeight(double width) {
// winner of the 2016 world's most expensive intrinsic dimension function award
// honorable mention, most likely to improve if taught about memoization award
assert(_children.length == rows * columns);
final List<double> widths = _computeColumnWidths(BoxConstraints.tightForFinite(width: width));
double rowTop = 0.0;
for (int y = 0; y < rows; y += 1) {
double rowHeight = 0.0;
for (int x = 0; x < columns; x += 1) {
final int xy = x + y * columns;
final RenderBox? child = _children[xy];
if (child != null)
rowHeight = math.max(rowHeight, child.getMaxIntrinsicHeight(widths[x]));
}
rowTop += rowHeight;
}
return rowTop;
}
@override
double computeMaxIntrinsicHeight(double width) {
return computeMinIntrinsicHeight(width);
}
double? _baselineDistance;
@override
double? computeDistanceToActualBaseline(TextBaseline baseline) {
// returns the baseline of the first cell that has a baseline in the first row
assert(!debugNeedsLayout);
return _baselineDistance;
}
/// Returns the list of [RenderBox] objects that are in the given
/// column, in row order, starting from the first row.
///
/// This is a lazily-evaluated iterable.
Iterable<RenderBox> column(int x) sync* {
for (int y = 0; y < rows; y += 1) {
final int xy = x + y * columns;
final RenderBox? child = _children[xy];
if (child != null)
yield child;
}
}
/// Returns the list of [RenderBox] objects that are on the given
/// row, in column order, starting with the first column.
///
/// This is a lazily-evaluated iterable.
Iterable<RenderBox> row(int y) sync* {
final int start = y * columns;
final int end = (y + 1) * columns;
for (int xy = start; xy < end; xy += 1) {
final RenderBox? child = _children[xy];
if (child != null)
yield child;
}
}
List<double> _computeColumnWidths(BoxConstraints constraints) {
assert(constraints != null);
assert(_children.length == rows * columns);
// We apply the constraints to the column widths in the order of
// least important to most important:
// 1. apply the ideal widths (maxIntrinsicWidth)
// 2. grow the flex columns so that the table has the maxWidth (if
// finite) or the minWidth (if not)
// 3. if there were no flex columns, then grow the table to the
// minWidth.
// 4. apply the maximum width of the table, shrinking columns as
// necessary, applying minimum column widths as we go
// 1. apply ideal widths, and collect information we'll need later
final List<double> widths = List<double>.filled(columns, 0.0, growable: false);
final List<double> minWidths = List<double>.filled(columns, 0.0, growable: false);
final List<double?> flexes = List<double?>.filled(columns, null, growable: false);
double tableWidth = 0.0; // running tally of the sum of widths[x] for all x
double unflexedTableWidth = 0.0; // sum of the maxIntrinsicWidths of any column that has null flex
double totalFlex = 0.0;
for (int x = 0; x < columns; x += 1) {
final TableColumnWidth columnWidth = _columnWidths[x] ?? defaultColumnWidth;
final Iterable<RenderBox> columnCells = column(x);
// apply ideal width (maxIntrinsicWidth)
final double maxIntrinsicWidth = columnWidth.maxIntrinsicWidth(columnCells, constraints.maxWidth);
assert(maxIntrinsicWidth.isFinite);
assert(maxIntrinsicWidth >= 0.0);
widths[x] = maxIntrinsicWidth;
tableWidth += maxIntrinsicWidth;
// collect min width information while we're at it
final double minIntrinsicWidth = columnWidth.minIntrinsicWidth(columnCells, constraints.maxWidth);
assert(minIntrinsicWidth.isFinite);
assert(minIntrinsicWidth >= 0.0);
minWidths[x] = minIntrinsicWidth;
assert(maxIntrinsicWidth >= minIntrinsicWidth);
// collect flex information while we're at it
final double? flex = columnWidth.flex(columnCells);
if (flex != null) {
assert(flex.isFinite);
assert(flex > 0.0);
flexes[x] = flex;
totalFlex += flex;
} else {
unflexedTableWidth = unflexedTableWidth + maxIntrinsicWidth;
}
}
final double maxWidthConstraint = constraints.maxWidth;
final double minWidthConstraint = constraints.minWidth;
// 2. grow the flex columns so that the table has the maxWidth (if
// finite) or the minWidth (if not)
if (totalFlex > 0.0) {
// this can only grow the table, but it _will_ grow the table at
// least as big as the target width.
final double targetWidth;
if (maxWidthConstraint.isFinite) {
targetWidth = maxWidthConstraint;
} else {
targetWidth = minWidthConstraint;
}
if (tableWidth < targetWidth) {
final double remainingWidth = targetWidth - unflexedTableWidth;
assert(remainingWidth.isFinite);
assert(remainingWidth >= 0.0);
for (int x = 0; x < columns; x += 1) {
if (flexes[x] != null) {
final double flexedWidth = remainingWidth * flexes[x]! / totalFlex;
assert(flexedWidth.isFinite);
assert(flexedWidth >= 0.0);
if (widths[x] < flexedWidth) {
final double delta = flexedWidth - widths[x];
tableWidth += delta;
widths[x] = flexedWidth;
}
}
}
assert(tableWidth + precisionErrorTolerance >= targetWidth);
}
} // step 2 and 3 are mutually exclusive
// 3. if there were no flex columns, then grow the table to the
// minWidth.
else if (tableWidth < minWidthConstraint) {
final double delta = (minWidthConstraint - tableWidth) / columns;
for (int x = 0; x < columns; x += 1)
widths[x] = widths[x] + delta;
tableWidth = minWidthConstraint;
}
// beyond this point, unflexedTableWidth is no longer valid
// 4. apply the maximum width of the table, shrinking columns as
// necessary, applying minimum column widths as we go
if (tableWidth > maxWidthConstraint) {
double deficit = tableWidth - maxWidthConstraint;
// Some columns may have low flex but have all the free space.
// (Consider a case with a 1px wide column of flex 1000.0 and
// a 1000px wide column of flex 1.0; the sizes coming from the
// maxIntrinsicWidths. If the maximum table width is 2px, then
// just applying the flexes to the deficit would result in a
// table with one column at -998px and one column at 990px,
// which is wildly unhelpful.)
// Similarly, some columns may be flexible, but not actually
// be shrinkable due to a large minimum width. (Consider a
// case with two columns, one is flex and one isn't, both have
// 1000px maxIntrinsicWidths, but the flex one has 1000px
// minIntrinsicWidth also. The whole deficit will have to come
// from the non-flex column.)
// So what we do is we repeatedly iterate through the flexible
// columns shrinking them proportionally until we have no
// available columns, then do the same to the non-flexible ones.
int availableColumns = columns;
while (deficit > precisionErrorTolerance && totalFlex > precisionErrorTolerance) {
double newTotalFlex = 0.0;
for (int x = 0; x < columns; x += 1) {
if (flexes[x] != null) {
final double newWidth = widths[x] - deficit * flexes[x]! / totalFlex;
assert(newWidth.isFinite);
if (newWidth <= minWidths[x]) {
// shrank to minimum
deficit -= widths[x] - minWidths[x];
widths[x] = minWidths[x];
flexes[x] = null;
availableColumns -= 1;
} else {
deficit -= widths[x] - newWidth;
widths[x] = newWidth;
newTotalFlex += flexes[x]!;
}
assert(widths[x] >= 0.0);
}
}
totalFlex = newTotalFlex;
}
while (deficit > precisionErrorTolerance && availableColumns > 0) {
// Now we have to take out the remaining space from the
// columns that aren't minimum sized.
// To make this fair, we repeatedly remove equal amounts from
// each column, clamped to the minimum width, until we run out
// of columns that aren't at their minWidth.
final double delta = deficit / availableColumns;
assert(delta != 0);
int newAvailableColumns = 0;
for (int x = 0; x < columns; x += 1) {
final double availableDelta = widths[x] - minWidths[x];
if (availableDelta > 0.0) {
if (availableDelta <= delta) {
// shrank to minimum
deficit -= widths[x] - minWidths[x];
widths[x] = minWidths[x];
} else {
deficit -= delta;
widths[x] = widths[x] - delta;
newAvailableColumns += 1;
}
}
}
availableColumns = newAvailableColumns;
}
}
return widths;
}
// cache the table geometry for painting purposes
final List<double> _rowTops = <double>[];
Iterable<double>? _columnLefts;
/// Returns the position and dimensions of the box that the given
/// row covers, in this render object's coordinate space (so the
/// left coordinate is always 0.0).
///
/// The row being queried must exist.
///
/// This is only valid after layout.
Rect getRowBox(int row) {
assert(row >= 0);
assert(row < rows);
assert(!debugNeedsLayout);
return Rect.fromLTRB(0.0, _rowTops[row], size.width, _rowTops[row + 1]);
}
@override
void performLayout() {
final BoxConstraints constraints = this.constraints;
final int rows = this.rows;
final int columns = this.columns;
assert(_children.length == rows * columns);
if (rows * columns == 0) {
// TODO(ianh): if columns is zero, this should be zero width
// TODO(ianh): if columns is not zero, this should be based on the column width specifications
size = constraints.constrain(const Size(0.0, 0.0));
return;
}
final List<double> widths = _computeColumnWidths(constraints);
final List<double> positions = List<double>.filled(columns, 0.0, growable: false);
final double tableWidth;
switch (textDirection) {
case TextDirection.rtl:
positions[columns - 1] = 0.0;
for (int x = columns - 2; x >= 0; x -= 1)
positions[x] = positions[x+1] + widths[x+1];
_columnLefts = positions.reversed;
tableWidth = positions.first + widths.first;
break;
case TextDirection.ltr:
positions[0] = 0.0;
for (int x = 1; x < columns; x += 1)
positions[x] = positions[x-1] + widths[x-1];
_columnLefts = positions;
tableWidth = positions.last + widths.last;
break;
}
_rowTops.clear();
_baselineDistance = null;
// then, lay out each row
double rowTop = 0.0;
for (int y = 0; y < rows; y += 1) {
_rowTops.add(rowTop);
double rowHeight = 0.0;
bool haveBaseline = false;
double beforeBaselineDistance = 0.0;
double afterBaselineDistance = 0.0;
final List<double> baselines = List<double>.filled(columns, 0.0, growable: false);
for (int x = 0; x < columns; x += 1) {
final int xy = x + y * columns;
final RenderBox? child = _children[xy];
if (child != null) {
final TableCellParentData childParentData = child.parentData! as TableCellParentData;
assert(childParentData != null);
childParentData.x = x;
childParentData.y = y;
switch (childParentData.verticalAlignment ?? defaultVerticalAlignment) {
case TableCellVerticalAlignment.baseline:
assert(textBaseline != null);
child.layout(BoxConstraints.tightFor(width: widths[x]), parentUsesSize: true);
final double? childBaseline = child.getDistanceToBaseline(textBaseline!, onlyReal: true);
if (childBaseline != null) {
beforeBaselineDistance = math.max(beforeBaselineDistance, childBaseline);
afterBaselineDistance = math.max(afterBaselineDistance, child.size.height - childBaseline);
baselines[x] = childBaseline;
haveBaseline = true;
} else {
rowHeight = math.max(rowHeight, child.size.height);
childParentData.offset = Offset(positions[x], rowTop);
}
break;
case TableCellVerticalAlignment.top:
case TableCellVerticalAlignment.middle:
case TableCellVerticalAlignment.bottom:
child.layout(BoxConstraints.tightFor(width: widths[x]), parentUsesSize: true);
rowHeight = math.max(rowHeight, child.size.height);
break;
case TableCellVerticalAlignment.fill:
break;
}
}
}
if (haveBaseline) {
if (y == 0)
_baselineDistance = beforeBaselineDistance;
rowHeight = math.max(rowHeight, beforeBaselineDistance + afterBaselineDistance);
}
for (int x = 0; x < columns; x += 1) {
final int xy = x + y * columns;
final RenderBox? child = _children[xy];
if (child != null) {
final TableCellParentData childParentData = child.parentData! as TableCellParentData;
switch (childParentData.verticalAlignment ?? defaultVerticalAlignment) {
case TableCellVerticalAlignment.baseline:
childParentData.offset = Offset(positions[x], rowTop + beforeBaselineDistance - baselines[x]);
break;
case TableCellVerticalAlignment.top:
childParentData.offset = Offset(positions[x], rowTop);
break;
case TableCellVerticalAlignment.middle:
childParentData.offset = Offset(positions[x], rowTop + (rowHeight - child.size.height) / 2.0);
break;
case TableCellVerticalAlignment.bottom:
childParentData.offset = Offset(positions[x], rowTop + rowHeight - child.size.height);
break;
case TableCellVerticalAlignment.fill:
child.layout(BoxConstraints.tightFor(width: widths[x], height: rowHeight));
childParentData.offset = Offset(positions[x], rowTop);
break;
}
}
}
rowTop += rowHeight;
}
_rowTops.add(rowTop);
size = constraints.constrain(Size(tableWidth, rowTop));
assert(_rowTops.length == rows + 1);
}
@override
bool hitTestChildren(BoxHitTestResult result, { required Offset position }) {
assert(_children.length == rows * columns);
for (int index = _children.length - 1; index >= 0; index -= 1) {
final RenderBox? child = _children[index];
if (child != null) {
final BoxParentData childParentData = child.parentData! as BoxParentData;
final bool isHit = result.addWithPaintOffset(
offset: childParentData.offset,
position: position,
hitTest: (BoxHitTestResult result, Offset? transformed) {
assert(transformed == position - childParentData.offset);
return child.hitTest(result, position: transformed!);
},
);
if (isHit)
return true;
}
}
return false;
}
@override
void paint(PaintingContext context, Offset offset) {
assert(_children.length == rows * columns);
if (rows * columns == 0) {
if (border != null) {
final Rect borderRect = Rect.fromLTWH(offset.dx, offset.dy, size.width, 0.0);
border!.paint(context.canvas, borderRect, rows: const <double>[], columns: const <double>[]);
}
return;
}
assert(_rowTops.length == rows + 1);
if (_rowDecorations != null) {
assert(_rowDecorations!.length == _rowDecorationPainters!.length);
final Canvas canvas = context.canvas;
for (int y = 0; y < rows; y += 1) {
if (_rowDecorations!.length <= y)
break;
if (_rowDecorations![y] != null) {
_rowDecorationPainters![y] ??= _rowDecorations![y]!.createBoxPainter(markNeedsPaint);
_rowDecorationPainters![y]!.paint(
canvas,
Offset(offset.dx, offset.dy + _rowTops[y]),
configuration.copyWith(size: Size(size.width, _rowTops[y+1] - _rowTops[y])),
);
}
}
}
for (int index = 0; index < _children.length; index += 1) {
final RenderBox? child = _children[index];
if (child != null) {
final BoxParentData childParentData = child.parentData! as BoxParentData;
context.paintChild(child, childParentData.offset + offset);
}
}
assert(_rows == _rowTops.length - 1);
assert(_columns == _columnLefts!.length);
if (border != null) {
// The border rect might not fill the entire height of this render object
// if the rows underflow. We always force the columns to fill the width of
// the render object, which means the columns cannot underflow.
final Rect borderRect = Rect.fromLTWH(offset.dx, offset.dy, size.width, _rowTops.last);
final Iterable<double> rows = _rowTops.getRange(1, _rowTops.length - 1);
final Iterable<double> columns = _columnLefts!.skip(1);
border!.paint(context.canvas, borderRect, rows: rows, columns: columns);
}
}
@override
void debugFillProperties(DiagnosticPropertiesBuilder properties) {
super.debugFillProperties(properties);
properties.add(DiagnosticsProperty<TableBorder>('border', border, defaultValue: null));
properties.add(DiagnosticsProperty<Map<int, TableColumnWidth>>('specified column widths', _columnWidths, level: _columnWidths.isEmpty ? DiagnosticLevel.hidden : DiagnosticLevel.info));
properties.add(DiagnosticsProperty<TableColumnWidth>('default column width', defaultColumnWidth));
properties.add(MessageProperty('table size', '$columns\u00D7$rows'));
properties.add(IterableProperty<String>('column offsets', _columnLefts?.map(debugFormatDouble), ifNull: 'unknown'));
properties.add(IterableProperty<String>('row offsets', _rowTops.map(debugFormatDouble), ifNull: 'unknown'));
}
@override
List<DiagnosticsNode> debugDescribeChildren() {
if (_children.isEmpty) {
return <DiagnosticsNode>[DiagnosticsNode.message('table is empty')];
}
final List<DiagnosticsNode> children = <DiagnosticsNode>[];
for (int y = 0; y < rows; y += 1) {
for (int x = 0; x < columns; x += 1) {
final int xy = x + y * columns;
final RenderBox? child = _children[xy];
final String name = 'child ($x, $y)';
if (child != null)
children.add(child.toDiagnosticsNode(name: name));
else
children.add(DiagnosticsProperty<Object>(name, null, ifNull: 'is null', showSeparator: false));
}
}
return children;
}
}