blob: 05c5107bfdba127204bd2bdd49f16f47af5ec5e9 [file] [log] [blame]
// Copyright 2014 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This test is a use case of flutter/flutter#60796
// the test should be run as:
// flutter drive -t test/using_array.dart --driver test_driver/scrolling_test_e2e_test.dart
import 'dart:ui' as ui;
import 'package:flutter/gestures.dart';
import 'package:flutter/material.dart';
import 'package:flutter_test/flutter_test.dart';
import 'package:e2e/e2e.dart';
import 'package:complex_layout/main.dart' as app;
class PointerDataTestBinding extends E2EWidgetsFlutterBinding {
// PointerData injection would usually be considered device input and therefore
// blocked by [TestWidgetsFlutterBinding]. Override this behavior
// to help events go into widget tree.
@override
void dispatchEvent(
PointerEvent event,
HitTestResult hitTestResult, {
TestBindingEventSource source = TestBindingEventSource.device,
}) {
super.dispatchEvent(event, hitTestResult, source: TestBindingEventSource.test);
}
}
/// A union of [ui.PointerDataPacket] and the time it should be sent.
class PointerDataRecord {
PointerDataRecord(this.timeStamp, List<ui.PointerData> data)
: data = ui.PointerDataPacket(data: data);
final ui.PointerDataPacket data;
final Duration timeStamp;
}
/// Generates the [PointerDataRecord] to simulate a drag operation from
/// `center - totalMove/2` to `center + totalMove/2`.
Iterable<PointerDataRecord> dragInputDatas(
final Duration epoch,
final Offset center, {
final Offset totalMove = const Offset(0, -400),
final Duration totalTime = const Duration(milliseconds: 2000),
final double frequency = 90,
}) sync* {
final Offset startLocation = (center - totalMove / 2) * ui.window.devicePixelRatio;
// The issue is about 120Hz input on 90Hz refresh rate device.
// We test 90Hz input on 60Hz device here, which shows similar pattern.
final int moveEventCount = totalTime.inMicroseconds * frequency ~/ const Duration(seconds: 1).inMicroseconds;
final Offset movePerEvent = totalMove / moveEventCount.toDouble() * ui.window.devicePixelRatio;
yield PointerDataRecord(epoch, <ui.PointerData>[
ui.PointerData(
timeStamp: epoch,
change: ui.PointerChange.add,
physicalX: startLocation.dx,
physicalY: startLocation.dy,
),
ui.PointerData(
timeStamp: epoch,
change: ui.PointerChange.down,
physicalX: startLocation.dx,
physicalY: startLocation.dy,
pointerIdentifier: 1,
),
]);
for (int t = 0; t < moveEventCount + 1; t++) {
final Offset position = startLocation + movePerEvent * t.toDouble();
yield PointerDataRecord(
epoch + totalTime * t ~/ moveEventCount,
<ui.PointerData>[ui.PointerData(
timeStamp: epoch + totalTime * t ~/ moveEventCount,
change: ui.PointerChange.move,
physicalX: position.dx,
physicalY: position.dy,
// Scrolling behavior depends on this delta rather
// than the position difference.
physicalDeltaX: movePerEvent.dx,
physicalDeltaY: movePerEvent.dy,
pointerIdentifier: 1,
)],
);
}
final Offset position = startLocation + totalMove;
yield PointerDataRecord(epoch + totalTime, <ui.PointerData>[ui.PointerData(
timeStamp: epoch + totalTime,
change: ui.PointerChange.up,
physicalX: position.dx,
physicalY: position.dy,
pointerIdentifier: 1,
)]);
}
enum TestScenario {
resampleOn90Hz,
resampleOn59Hz,
resampleOff90Hz,
resampleOff59Hz,
}
class ResampleFlagVariant extends TestVariant<TestScenario> {
ResampleFlagVariant(this.binding);
final E2EWidgetsFlutterBinding binding;
@override
final Set<TestScenario> values = Set<TestScenario>.from(TestScenario.values);
TestScenario currentValue;
bool get resample {
switch(currentValue) {
case TestScenario.resampleOn90Hz:
case TestScenario.resampleOn59Hz:
return true;
case TestScenario.resampleOff90Hz:
case TestScenario.resampleOff59Hz:
return false;
}
throw ArgumentError;
}
double get frequency {
switch(currentValue) {
case TestScenario.resampleOn90Hz:
case TestScenario.resampleOff90Hz:
return 90.0;
case TestScenario.resampleOn59Hz:
case TestScenario.resampleOff59Hz:
return 59.0;
}
throw ArgumentError;
}
Map<String, dynamic> result;
@override
String describeValue(TestScenario value) {
switch(value) {
case TestScenario.resampleOn90Hz:
return 'resample on with 90Hz input';
case TestScenario.resampleOn59Hz:
return 'resample on with 59Hz input';
case TestScenario.resampleOff90Hz:
return 'resample off with 90Hz input';
case TestScenario.resampleOff59Hz:
return 'resample off with 59Hz input';
}
throw ArgumentError;
}
@override
Future<bool> setUp(TestScenario value) async {
currentValue = value;
final bool original = binding.resamplingEnabled;
binding.resamplingEnabled = resample;
return original;
}
@override
Future<void> tearDown(TestScenario value, bool memento) async {
binding.resamplingEnabled = memento;
binding.reportData[describeValue(value)] = result;
}
}
Future<void> main() async {
final PointerDataTestBinding binding = PointerDataTestBinding();
assert(WidgetsBinding.instance == binding);
binding.framePolicy = LiveTestWidgetsFlutterBindingFramePolicy.benchmarkLive;
binding.reportData ??= <String, dynamic>{};
final ResampleFlagVariant variant = ResampleFlagVariant(binding);
testWidgets('Smoothness test', (WidgetTester tester) async {
app.main();
await tester.pumpAndSettle();
final Finder scrollerFinder = find.byKey(const ValueKey<String>('complex-scroll'));
final ListView scroller = tester.widget<ListView>(scrollerFinder);
final ScrollController controller = scroller.controller;
final List<int> frameTimestamp = <int>[];
final List<double> scrollOffset = <double>[];
final List<Duration> delays = <Duration>[];
binding.addPersistentFrameCallback((Duration timeStamp) {
if (controller.hasClients) {
// This if is necessary because by the end of the test the widget tree
// is destroyed.
frameTimestamp.add(timeStamp.inMicroseconds);
scrollOffset.add(controller.offset);
}
});
Duration now() => binding.currentSystemFrameTimeStamp;
Future<void> scroll() async {
// Extra 50ms to avoid timeouts.
final Duration startTime = const Duration(milliseconds: 500) + now();
for (final PointerDataRecord record in dragInputDatas(
startTime,
tester.getCenter(scrollerFinder),
frequency: variant.frequency,
)) {
await tester.binding.delayed(record.timeStamp - now());
// This now measures how accurate the above delayed is.
final Duration delay = now() - record.timeStamp;
if (delays.length < frameTimestamp.length) {
while (delays.length < frameTimestamp.length - 1) {
delays.add(Duration.zero);
}
delays.add(delay);
} else if (delays.last < delay) {
delays.last = delay;
}
ui.window.onPointerDataPacket(record.data);
}
}
for (int n = 0; n < 5; n++) {
await scroll();
}
variant.result = scrollSummary(scrollOffset, delays, frameTimestamp);
await tester.pumpAndSettle();
scrollOffset.clear();
delays.clear();
await tester.idle();
}, semanticsEnabled: false, variant: variant);
}
/// Calculates the smoothness measure from `scrollOffset` and `delays` list.
///
/// Smoothness (`abs_jerk`) is measured by the absolute value of the discrete
/// 2nd derivative of the scroll offset.
///
/// It was experimented that jerk (3rd derivative of the position) is a good
/// measure the smoothness.
/// Here we are using 2nd derivative instead because the input is completely
/// linear and the expected acceleration should be strictly zero.
/// Observed acceleration is jumping from positive to negative within
/// adjacent frames, meaning mathematically the discrete 3-rd derivative
/// (`f[3] - 3*f[2] + 3*f[1] - f[0]`) is not a good approximation of jerk
/// (continuous 3-rd derivative), while discrete 2nd
/// derivative (`f[2] - 2*f[1] + f[0]`) on the other hand is a better measure
/// of how the scrolling deviate away from linear, and given the acceleration
/// should average to zero within two frames, it's also a good approximation
/// for jerk in terms of physics.
/// We use abs rather than square because square (2-norm) amplifies the
/// effect of the data point that's relatively large, but in this metric
/// we prefer smaller data point to have similar effect.
/// This is also why we count the number of data that's larger than a
/// threshold (and the result is tested not sensitive to this threshold),
/// which is effectively a 0-norm.
///
/// Frames that are too slow to build (longer than 40ms) or with input delay
/// longer than 16ms (1/60Hz) is filtered out to separate the janky due to slow
/// response.
///
/// The returned map has keys:
/// `average_abs_jerk`: average for the overall smoothness.
/// `janky_count`: number of frames with `abs_jerk` larger than 0.5.
/// `dropped_frame_count`: number of frames that are built longer than 40ms and
/// are not used for smoothness measurement.
/// `frame_timestamp`: the list of the timestamp for each frame, in the time
/// order.
/// `scroll_offset`: the scroll offset for each frame. Its length is the same as
/// `frame_timestamp`.
/// `input_delay`: the list of maximum delay time of the input simulation during
/// a frame. Its length is the same as `frame_timestamp`
Map<String, dynamic> scrollSummary(
List<double> scrollOffset,
List<Duration> delays,
List<int> frameTimestamp,
) {
double jankyCount = 0;
double absJerkAvg = 0;
int lostFrame = 0;
for (int i = 1; i < scrollOffset.length-1; i += 1) {
if (frameTimestamp[i+1] - frameTimestamp[i-1] > 40E3 ||
(i >= delays.length || delays[i] > const Duration(milliseconds: 16))) {
// filter data points from slow frame building or input simulation artifact
lostFrame += 1;
continue;
}
//
final double absJerk = (scrollOffset[i-1] + scrollOffset[i+1] - 2*scrollOffset[i]).abs();
absJerkAvg += absJerk;
if (absJerk > 0.5)
jankyCount += 1;
}
// expect(lostFrame < 0.1 * frameTimestamp.length, true);
absJerkAvg /= frameTimestamp.length - lostFrame;
return <String, dynamic>{
'janky_count': jankyCount,
'average_abs_jerk': absJerkAvg,
'dropped_frame_count': lostFrame,
'frame_timestamp': List<int>.from(frameTimestamp),
'scroll_offset': List<double>.from(scrollOffset),
'input_delay': delays.map<int>((Duration data) => data.inMicroseconds).toList(),
};
}