blob: 99d8e3aa64da8963aa212542bb7871d3a6c642d7 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/process/launch.h"
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <sched.h>
#include <setjmp.h>
#include <signal.h>
#include <stdlib.h>
#include <sys/resource.h>
#include <sys/syscall.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <iterator>
#include <limits>
#include <set>
#include "base/allocator/type_profiler_control.h"
#include "base/command_line.h"
#include "base/compiler_specific.h"
#include "base/debug/debugger.h"
#include "base/debug/stack_trace.h"
#include "base/files/dir_reader_posix.h"
#include "base/files/file_util.h"
#include "base/files/scoped_file.h"
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "base/posix/eintr_wrapper.h"
#include "base/process/process.h"
#include "base/process/process_metrics.h"
#include "base/strings/stringprintf.h"
#include "base/synchronization/waitable_event.h"
#include "base/third_party/dynamic_annotations/dynamic_annotations.h"
#include "base/third_party/valgrind/valgrind.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread_restrictions.h"
#include "build/build_config.h"
#if defined(OS_LINUX)
#include <sys/prctl.h>
#endif
#if defined(OS_CHROMEOS)
#include <sys/ioctl.h>
#endif
#if defined(OS_FREEBSD)
#include <sys/event.h>
#include <sys/ucontext.h>
#endif
#if defined(OS_MACOSX)
#include <crt_externs.h>
#include <sys/event.h>
#else
extern char** environ;
#endif
namespace base {
#if !defined(OS_NACL_NONSFI)
namespace {
// Get the process's "environment" (i.e. the thing that setenv/getenv
// work with).
char** GetEnvironment() {
#if defined(OS_MACOSX)
return *_NSGetEnviron();
#else
return environ;
#endif
}
// Set the process's "environment" (i.e. the thing that setenv/getenv
// work with).
void SetEnvironment(char** env) {
#if defined(OS_MACOSX)
*_NSGetEnviron() = env;
#else
environ = env;
#endif
}
// Set the calling thread's signal mask to new_sigmask and return
// the previous signal mask.
sigset_t SetSignalMask(const sigset_t& new_sigmask) {
sigset_t old_sigmask;
#if defined(OS_ANDROID)
// POSIX says pthread_sigmask() must be used in multi-threaded processes,
// but Android's pthread_sigmask() was broken until 4.1:
// https://code.google.com/p/android/issues/detail?id=15337
// http://stackoverflow.com/questions/13777109/pthread-sigmask-on-android-not-working
RAW_CHECK(sigprocmask(SIG_SETMASK, &new_sigmask, &old_sigmask) == 0);
#else
RAW_CHECK(pthread_sigmask(SIG_SETMASK, &new_sigmask, &old_sigmask) == 0);
#endif
return old_sigmask;
}
#if !defined(OS_LINUX) || \
(!defined(__i386__) && !defined(__x86_64__) && !defined(__arm__))
void ResetChildSignalHandlersToDefaults() {
// The previous signal handlers are likely to be meaningless in the child's
// context so we reset them to the defaults for now. http://crbug.com/44953
// These signal handlers are set up at least in browser_main_posix.cc:
// BrowserMainPartsPosix::PreEarlyInitialization and stack_trace_posix.cc:
// EnableInProcessStackDumping.
signal(SIGHUP, SIG_DFL);
signal(SIGINT, SIG_DFL);
signal(SIGILL, SIG_DFL);
signal(SIGABRT, SIG_DFL);
signal(SIGFPE, SIG_DFL);
signal(SIGBUS, SIG_DFL);
signal(SIGSEGV, SIG_DFL);
signal(SIGSYS, SIG_DFL);
signal(SIGTERM, SIG_DFL);
}
#else
// TODO(jln): remove the Linux special case once kernels are fixed.
// Internally the kernel makes sigset_t an array of long large enough to have
// one bit per signal.
typedef uint64_t kernel_sigset_t;
// This is what struct sigaction looks like to the kernel at least on X86 and
// ARM. MIPS, for instance, is very different.
struct kernel_sigaction {
void* k_sa_handler; // For this usage it only needs to be a generic pointer.
unsigned long k_sa_flags;
void* k_sa_restorer; // For this usage it only needs to be a generic pointer.
kernel_sigset_t k_sa_mask;
};
// glibc's sigaction() will prevent access to sa_restorer, so we need to roll
// our own.
int sys_rt_sigaction(int sig, const struct kernel_sigaction* act,
struct kernel_sigaction* oact) {
return syscall(SYS_rt_sigaction, sig, act, oact, sizeof(kernel_sigset_t));
}
// This function is intended to be used in between fork() and execve() and will
// reset all signal handlers to the default.
// The motivation for going through all of them is that sa_restorer can leak
// from parents and help defeat ASLR on buggy kernels. We reset it to NULL.
// See crbug.com/177956.
void ResetChildSignalHandlersToDefaults(void) {
for (int signum = 1; ; ++signum) {
struct kernel_sigaction act = {0};
int sigaction_get_ret = sys_rt_sigaction(signum, NULL, &act);
if (sigaction_get_ret && errno == EINVAL) {
#if !defined(NDEBUG)
// Linux supports 32 real-time signals from 33 to 64.
// If the number of signals in the Linux kernel changes, someone should
// look at this code.
const int kNumberOfSignals = 64;
RAW_CHECK(signum == kNumberOfSignals + 1);
#endif // !defined(NDEBUG)
break;
}
// All other failures are fatal.
if (sigaction_get_ret) {
RAW_LOG(FATAL, "sigaction (get) failed.");
}
// The kernel won't allow to re-set SIGKILL or SIGSTOP.
if (signum != SIGSTOP && signum != SIGKILL) {
act.k_sa_handler = reinterpret_cast<void*>(SIG_DFL);
act.k_sa_restorer = NULL;
if (sys_rt_sigaction(signum, &act, NULL)) {
RAW_LOG(FATAL, "sigaction (set) failed.");
}
}
#if !defined(NDEBUG)
// Now ask the kernel again and check that no restorer will leak.
if (sys_rt_sigaction(signum, NULL, &act) || act.k_sa_restorer) {
RAW_LOG(FATAL, "Cound not fix sa_restorer.");
}
#endif // !defined(NDEBUG)
}
}
#endif // !defined(OS_LINUX) ||
// (!defined(__i386__) && !defined(__x86_64__) && !defined(__arm__))
} // anonymous namespace
// Functor for |ScopedDIR| (below).
struct ScopedDIRClose {
inline void operator()(DIR* x) const {
if (x)
closedir(x);
}
};
// Automatically closes |DIR*|s.
typedef scoped_ptr<DIR, ScopedDIRClose> ScopedDIR;
#if defined(OS_LINUX)
static const char kFDDir[] = "/proc/self/fd";
#elif defined(OS_MACOSX)
static const char kFDDir[] = "/dev/fd";
#elif defined(OS_SOLARIS)
static const char kFDDir[] = "/dev/fd";
#elif defined(OS_FREEBSD)
static const char kFDDir[] = "/dev/fd";
#elif defined(OS_OPENBSD)
static const char kFDDir[] = "/dev/fd";
#elif defined(OS_ANDROID)
static const char kFDDir[] = "/proc/self/fd";
#endif
void CloseSuperfluousFds(const base::InjectiveMultimap& saved_mapping) {
// DANGER: no calls to malloc or locks are allowed from now on:
// http://crbug.com/36678
// Get the maximum number of FDs possible.
size_t max_fds = GetMaxFds();
DirReaderPosix fd_dir(kFDDir);
if (!fd_dir.IsValid()) {
// Fallback case: Try every possible fd.
for (size_t i = 0; i < max_fds; ++i) {
const int fd = static_cast<int>(i);
if (fd == STDIN_FILENO || fd == STDOUT_FILENO || fd == STDERR_FILENO)
continue;
// Cannot use STL iterators here, since debug iterators use locks.
size_t j;
for (j = 0; j < saved_mapping.size(); j++) {
if (fd == saved_mapping[j].dest)
break;
}
if (j < saved_mapping.size())
continue;
// Since we're just trying to close anything we can find,
// ignore any error return values of close().
close(fd);
}
return;
}
const int dir_fd = fd_dir.fd();
for ( ; fd_dir.Next(); ) {
// Skip . and .. entries.
if (fd_dir.name()[0] == '.')
continue;
char *endptr;
errno = 0;
const long int fd = strtol(fd_dir.name(), &endptr, 10);
if (fd_dir.name()[0] == 0 || *endptr || fd < 0 || errno)
continue;
if (fd == STDIN_FILENO || fd == STDOUT_FILENO || fd == STDERR_FILENO)
continue;
// Cannot use STL iterators here, since debug iterators use locks.
size_t i;
for (i = 0; i < saved_mapping.size(); i++) {
if (fd == saved_mapping[i].dest)
break;
}
if (i < saved_mapping.size())
continue;
if (fd == dir_fd)
continue;
// When running under Valgrind, Valgrind opens several FDs for its
// own use and will complain if we try to close them. All of
// these FDs are >= |max_fds|, so we can check against that here
// before closing. See https://bugs.kde.org/show_bug.cgi?id=191758
if (fd < static_cast<int>(max_fds)) {
int ret = IGNORE_EINTR(close(fd));
DPCHECK(ret == 0);
}
}
}
Process LaunchProcess(const CommandLine& cmdline,
const LaunchOptions& options) {
return LaunchProcess(cmdline.argv(), options);
}
Process LaunchProcess(const std::vector<std::string>& argv,
const LaunchOptions& options) {
size_t fd_shuffle_size = 0;
if (options.fds_to_remap) {
fd_shuffle_size = options.fds_to_remap->size();
}
InjectiveMultimap fd_shuffle1;
InjectiveMultimap fd_shuffle2;
fd_shuffle1.reserve(fd_shuffle_size);
fd_shuffle2.reserve(fd_shuffle_size);
scoped_ptr<char* []> argv_cstr(new char* [argv.size() + 1]);
for (size_t i = 0; i < argv.size(); i++) {
argv_cstr[i] = const_cast<char*>(argv[i].c_str());
}
argv_cstr[argv.size()] = NULL;
scoped_ptr<char*[]> new_environ;
char* const empty_environ = NULL;
char* const* old_environ = GetEnvironment();
if (options.clear_environ)
old_environ = &empty_environ;
if (!options.environ.empty())
new_environ = AlterEnvironment(old_environ, options.environ);
sigset_t full_sigset;
sigfillset(&full_sigset);
const sigset_t orig_sigmask = SetSignalMask(full_sigset);
const char* current_directory = nullptr;
if (!options.current_directory.empty()) {
current_directory = options.current_directory.value().c_str();
}
pid_t pid;
#if defined(OS_LINUX)
if (options.clone_flags) {
// Signal handling in this function assumes the creation of a new
// process, so we check that a thread is not being created by mistake
// and that signal handling follows the process-creation rules.
RAW_CHECK(
!(options.clone_flags & (CLONE_SIGHAND | CLONE_THREAD | CLONE_VM)));
// We specify a null ptid and ctid.
RAW_CHECK(
!(options.clone_flags &
(CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT_SETTID)));
// Since we use waitpid, we do not support custom termination signals in the
// clone flags.
RAW_CHECK((options.clone_flags & 0xff) == 0);
pid = ForkWithFlags(options.clone_flags | SIGCHLD, nullptr, nullptr);
} else
#endif
{
pid = fork();
}
// Always restore the original signal mask in the parent.
if (pid != 0) {
SetSignalMask(orig_sigmask);
}
if (pid < 0) {
DPLOG(ERROR) << "fork";
return Process();
} else if (pid == 0) {
// Child process
// DANGER: no calls to malloc or locks are allowed from now on:
// http://crbug.com/36678
// DANGER: fork() rule: in the child, if you don't end up doing exec*(),
// you call _exit() instead of exit(). This is because _exit() does not
// call any previously-registered (in the parent) exit handlers, which
// might do things like block waiting for threads that don't even exist
// in the child.
// If a child process uses the readline library, the process block forever.
// In BSD like OSes including OS X it is safe to assign /dev/null as stdin.
// See http://crbug.com/56596.
base::ScopedFD null_fd(HANDLE_EINTR(open("/dev/null", O_RDONLY)));
if (!null_fd.is_valid()) {
RAW_LOG(ERROR, "Failed to open /dev/null");
_exit(127);
}
int new_fd = HANDLE_EINTR(dup2(null_fd.get(), STDIN_FILENO));
if (new_fd != STDIN_FILENO) {
RAW_LOG(ERROR, "Failed to dup /dev/null for stdin");
_exit(127);
}
if (options.new_process_group) {
// Instead of inheriting the process group ID of the parent, the child
// starts off a new process group with pgid equal to its process ID.
if (setpgid(0, 0) < 0) {
RAW_LOG(ERROR, "setpgid failed");
_exit(127);
}
}
// Stop type-profiler.
// The profiler should be stopped between fork and exec since it inserts
// locks at new/delete expressions. See http://crbug.com/36678.
base::type_profiler::Controller::Stop();
if (options.maximize_rlimits) {
// Some resource limits need to be maximal in this child.
for (size_t i = 0; i < options.maximize_rlimits->size(); ++i) {
const int resource = (*options.maximize_rlimits)[i];
struct rlimit limit;
if (getrlimit(resource, &limit) < 0) {
RAW_LOG(WARNING, "getrlimit failed");
} else if (limit.rlim_cur < limit.rlim_max) {
limit.rlim_cur = limit.rlim_max;
if (setrlimit(resource, &limit) < 0) {
RAW_LOG(WARNING, "setrlimit failed");
}
}
}
}
#if defined(OS_MACOSX)
RestoreDefaultExceptionHandler();
if (!options.replacement_bootstrap_name.empty())
ReplaceBootstrapPort(options.replacement_bootstrap_name);
#endif // defined(OS_MACOSX)
ResetChildSignalHandlersToDefaults();
SetSignalMask(orig_sigmask);
#if 0
// When debugging it can be helpful to check that we really aren't making
// any hidden calls to malloc.
void *malloc_thunk =
reinterpret_cast<void*>(reinterpret_cast<intptr_t>(malloc) & ~4095);
mprotect(malloc_thunk, 4096, PROT_READ | PROT_WRITE | PROT_EXEC);
memset(reinterpret_cast<void*>(malloc), 0xff, 8);
#endif // 0
#if defined(OS_CHROMEOS)
if (options.ctrl_terminal_fd >= 0) {
// Set process' controlling terminal.
if (HANDLE_EINTR(setsid()) != -1) {
if (HANDLE_EINTR(
ioctl(options.ctrl_terminal_fd, TIOCSCTTY, NULL)) == -1) {
RAW_LOG(WARNING, "ioctl(TIOCSCTTY), ctrl terminal not set");
}
} else {
RAW_LOG(WARNING, "setsid failed, ctrl terminal not set");
}
}
#endif // defined(OS_CHROMEOS)
if (options.fds_to_remap) {
// Cannot use STL iterators here, since debug iterators use locks.
for (size_t i = 0; i < options.fds_to_remap->size(); ++i) {
const FileHandleMappingVector::value_type& value =
(*options.fds_to_remap)[i];
fd_shuffle1.push_back(InjectionArc(value.first, value.second, false));
fd_shuffle2.push_back(InjectionArc(value.first, value.second, false));
}
}
if (!options.environ.empty() || options.clear_environ)
SetEnvironment(new_environ.get());
// fd_shuffle1 is mutated by this call because it cannot malloc.
if (!ShuffleFileDescriptors(&fd_shuffle1))
_exit(127);
CloseSuperfluousFds(fd_shuffle2);
// Set NO_NEW_PRIVS by default. Since NO_NEW_PRIVS only exists in kernel
// 3.5+, do not check the return value of prctl here.
#if defined(OS_LINUX)
#ifndef PR_SET_NO_NEW_PRIVS
#define PR_SET_NO_NEW_PRIVS 38
#endif
if (!options.allow_new_privs) {
if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) && errno != EINVAL) {
// Only log if the error is not EINVAL (i.e. not supported).
RAW_LOG(FATAL, "prctl(PR_SET_NO_NEW_PRIVS) failed");
}
}
if (options.kill_on_parent_death) {
if (prctl(PR_SET_PDEATHSIG, SIGKILL) != 0) {
RAW_LOG(ERROR, "prctl(PR_SET_PDEATHSIG) failed");
_exit(127);
}
}
#endif
if (current_directory != nullptr) {
RAW_CHECK(chdir(current_directory) == 0);
}
if (options.pre_exec_delegate != nullptr) {
options.pre_exec_delegate->RunAsyncSafe();
}
execvp(argv_cstr[0], argv_cstr.get());
RAW_LOG(ERROR, "LaunchProcess: failed to execvp:");
RAW_LOG(ERROR, argv_cstr[0]);
_exit(127);
} else {
// Parent process
if (options.wait) {
// While this isn't strictly disk IO, waiting for another process to
// finish is the sort of thing ThreadRestrictions is trying to prevent.
base::ThreadRestrictions::AssertIOAllowed();
pid_t ret = HANDLE_EINTR(waitpid(pid, 0, 0));
DPCHECK(ret > 0);
}
}
return Process(pid);
}
void RaiseProcessToHighPriority() {
// On POSIX, we don't actually do anything here. We could try to nice() or
// setpriority() or sched_getscheduler, but these all require extra rights.
}
// Return value used by GetAppOutputInternal to encapsulate the various exit
// scenarios from the function.
enum GetAppOutputInternalResult {
EXECUTE_FAILURE,
EXECUTE_SUCCESS,
GOT_MAX_OUTPUT,
};
// Executes the application specified by |argv| and wait for it to exit. Stores
// the output (stdout) in |output|. If |do_search_path| is set, it searches the
// path for the application; in that case, |envp| must be null, and it will use
// the current environment. If |do_search_path| is false, |argv[0]| should fully
// specify the path of the application, and |envp| will be used as the
// environment. Redirects stderr to /dev/null.
// If we successfully start the application and get all requested output, we
// return GOT_MAX_OUTPUT, or if there is a problem starting or exiting
// the application we return RUN_FAILURE. Otherwise we return EXECUTE_SUCCESS.
// The GOT_MAX_OUTPUT return value exists so a caller that asks for limited
// output can treat this as a success, despite having an exit code of SIG_PIPE
// due to us closing the output pipe.
// In the case of EXECUTE_SUCCESS, the application exit code will be returned
// in |*exit_code|, which should be checked to determine if the application
// ran successfully.
static GetAppOutputInternalResult GetAppOutputInternal(
const std::vector<std::string>& argv,
char* const envp[],
std::string* output,
size_t max_output,
bool do_search_path,
int* exit_code) {
// Doing a blocking wait for another command to finish counts as IO.
base::ThreadRestrictions::AssertIOAllowed();
// exit_code must be supplied so calling function can determine success.
DCHECK(exit_code);
*exit_code = EXIT_FAILURE;
int pipe_fd[2];
pid_t pid;
InjectiveMultimap fd_shuffle1, fd_shuffle2;
scoped_ptr<char*[]> argv_cstr(new char*[argv.size() + 1]);
fd_shuffle1.reserve(3);
fd_shuffle2.reserve(3);
// Either |do_search_path| should be false or |envp| should be null, but not
// both.
DCHECK(!do_search_path ^ !envp);
if (pipe(pipe_fd) < 0)
return EXECUTE_FAILURE;
switch (pid = fork()) {
case -1: // error
close(pipe_fd[0]);
close(pipe_fd[1]);
return EXECUTE_FAILURE;
case 0: // child
{
// DANGER: no calls to malloc or locks are allowed from now on:
// http://crbug.com/36678
#if defined(OS_MACOSX)
RestoreDefaultExceptionHandler();
#endif
// Obscure fork() rule: in the child, if you don't end up doing exec*(),
// you call _exit() instead of exit(). This is because _exit() does not
// call any previously-registered (in the parent) exit handlers, which
// might do things like block waiting for threads that don't even exist
// in the child.
int dev_null = open("/dev/null", O_WRONLY);
if (dev_null < 0)
_exit(127);
// Stop type-profiler.
// The profiler should be stopped between fork and exec since it inserts
// locks at new/delete expressions. See http://crbug.com/36678.
base::type_profiler::Controller::Stop();
fd_shuffle1.push_back(InjectionArc(pipe_fd[1], STDOUT_FILENO, true));
fd_shuffle1.push_back(InjectionArc(dev_null, STDERR_FILENO, true));
fd_shuffle1.push_back(InjectionArc(dev_null, STDIN_FILENO, true));
// Adding another element here? Remeber to increase the argument to
// reserve(), above.
for (size_t i = 0; i < fd_shuffle1.size(); ++i)
fd_shuffle2.push_back(fd_shuffle1[i]);
if (!ShuffleFileDescriptors(&fd_shuffle1))
_exit(127);
CloseSuperfluousFds(fd_shuffle2);
for (size_t i = 0; i < argv.size(); i++)
argv_cstr[i] = const_cast<char*>(argv[i].c_str());
argv_cstr[argv.size()] = NULL;
if (do_search_path)
execvp(argv_cstr[0], argv_cstr.get());
else
execve(argv_cstr[0], argv_cstr.get(), envp);
_exit(127);
}
default: // parent
{
// Close our writing end of pipe now. Otherwise later read would not
// be able to detect end of child's output (in theory we could still
// write to the pipe).
close(pipe_fd[1]);
output->clear();
char buffer[256];
size_t output_buf_left = max_output;
ssize_t bytes_read = 1; // A lie to properly handle |max_output == 0|
// case in the logic below.
while (output_buf_left > 0) {
bytes_read = HANDLE_EINTR(read(pipe_fd[0], buffer,
std::min(output_buf_left, sizeof(buffer))));
if (bytes_read <= 0)
break;
output->append(buffer, bytes_read);
output_buf_left -= static_cast<size_t>(bytes_read);
}
close(pipe_fd[0]);
// Always wait for exit code (even if we know we'll declare
// GOT_MAX_OUTPUT).
Process process(pid);
bool success = process.WaitForExit(exit_code);
// If we stopped because we read as much as we wanted, we return
// GOT_MAX_OUTPUT (because the child may exit due to |SIGPIPE|).
if (!output_buf_left && bytes_read > 0)
return GOT_MAX_OUTPUT;
else if (success)
return EXECUTE_SUCCESS;
return EXECUTE_FAILURE;
}
}
}
bool GetAppOutput(const CommandLine& cl, std::string* output) {
return GetAppOutput(cl.argv(), output);
}
bool GetAppOutput(const std::vector<std::string>& argv, std::string* output) {
// Run |execve()| with the current environment and store "unlimited" data.
int exit_code;
GetAppOutputInternalResult result = GetAppOutputInternal(
argv, NULL, output, std::numeric_limits<std::size_t>::max(), true,
&exit_code);
return result == EXECUTE_SUCCESS && exit_code == EXIT_SUCCESS;
}
// TODO(viettrungluu): Conceivably, we should have a timeout as well, so we
// don't hang if what we're calling hangs.
bool GetAppOutputRestricted(const CommandLine& cl,
std::string* output, size_t max_output) {
// Run |execve()| with the empty environment.
char* const empty_environ = NULL;
int exit_code;
GetAppOutputInternalResult result = GetAppOutputInternal(
cl.argv(), &empty_environ, output, max_output, false, &exit_code);
return result == GOT_MAX_OUTPUT || (result == EXECUTE_SUCCESS &&
exit_code == EXIT_SUCCESS);
}
bool GetAppOutputWithExitCode(const CommandLine& cl,
std::string* output,
int* exit_code) {
// Run |execve()| with the current environment and store "unlimited" data.
GetAppOutputInternalResult result = GetAppOutputInternal(
cl.argv(), NULL, output, std::numeric_limits<std::size_t>::max(), true,
exit_code);
return result == EXECUTE_SUCCESS;
}
#endif // !defined(OS_NACL_NONSFI)
#if defined(OS_LINUX) || defined(OS_NACL_NONSFI)
namespace {
bool IsRunningOnValgrind() {
return RUNNING_ON_VALGRIND;
}
// This function runs on the stack specified on the clone call. It uses longjmp
// to switch back to the original stack so the child can return from sys_clone.
int CloneHelper(void* arg) {
jmp_buf* env_ptr = reinterpret_cast<jmp_buf*>(arg);
longjmp(*env_ptr, 1);
// Should not be reached.
RAW_CHECK(false);
return 1;
}
// This function is noinline to ensure that stack_buf is below the stack pointer
// that is saved when setjmp is called below. This is needed because when
// compiled with FORTIFY_SOURCE, glibc's longjmp checks that the stack is moved
// upwards. See crbug.com/442912 for more details.
#if defined(ADDRESS_SANITIZER)
// Disable AddressSanitizer instrumentation for this function to make sure
// |stack_buf| is allocated on thread stack instead of ASan's fake stack.
// Under ASan longjmp() will attempt to clean up the area between the old and
// new stack pointers and print a warning that may confuse the user.
__attribute__((no_sanitize_address))
#endif
NOINLINE pid_t CloneAndLongjmpInChild(unsigned long flags,
pid_t* ptid,
pid_t* ctid,
jmp_buf* env) {
// We use the libc clone wrapper instead of making the syscall
// directly because making the syscall may fail to update the libc's
// internal pid cache. The libc interface unfortunately requires
// specifying a new stack, so we use setjmp/longjmp to emulate
// fork-like behavior.
char stack_buf[PTHREAD_STACK_MIN];
#if defined(ARCH_CPU_X86_FAMILY) || defined(ARCH_CPU_ARM_FAMILY) || \
defined(ARCH_CPU_MIPS64_FAMILY) || defined(ARCH_CPU_MIPS_FAMILY)
// The stack grows downward.
void* stack = stack_buf + sizeof(stack_buf);
#else
#error "Unsupported architecture"
#endif
return clone(&CloneHelper, stack, flags, env, ptid, nullptr, ctid);
}
} // anonymous namespace
pid_t ForkWithFlags(unsigned long flags, pid_t* ptid, pid_t* ctid) {
const bool clone_tls_used = flags & CLONE_SETTLS;
const bool invalid_ctid =
(flags & (CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID)) && !ctid;
const bool invalid_ptid = (flags & CLONE_PARENT_SETTID) && !ptid;
// We do not support CLONE_VM.
const bool clone_vm_used = flags & CLONE_VM;
if (clone_tls_used || invalid_ctid || invalid_ptid || clone_vm_used) {
RAW_LOG(FATAL, "Invalid usage of ForkWithFlags");
}
// Valgrind's clone implementation does not support specifiying a child_stack
// without CLONE_VM, so we cannot use libc's clone wrapper when running under
// Valgrind. As a result, the libc pid cache may be incorrect under Valgrind.
// See crbug.com/442817 for more details.
if (IsRunningOnValgrind()) {
// See kernel/fork.c in Linux. There is different ordering of sys_clone
// parameters depending on CONFIG_CLONE_BACKWARDS* configuration options.
#if defined(ARCH_CPU_X86_64)
return syscall(__NR_clone, flags, nullptr, ptid, ctid, nullptr);
#elif defined(ARCH_CPU_X86) || defined(ARCH_CPU_ARM_FAMILY) || \
defined(ARCH_CPU_MIPS_FAMILY) || defined(ARCH_CPU_MIPS64_FAMILY)
// CONFIG_CLONE_BACKWARDS defined.
return syscall(__NR_clone, flags, nullptr, ptid, nullptr, ctid);
#else
#error "Unsupported architecture"
#endif
}
jmp_buf env;
if (setjmp(env) == 0) {
return CloneAndLongjmpInChild(flags, ptid, ctid, &env);
}
return 0;
}
#endif // defined(OS_LINUX) || defined(OS_NACL_NONSFI)
} // namespace base