blob: e08d15b21c68a3b745a17aa3cad73058c3af4df4 [file] [log] [blame]
/*
* Copyright (C) 2005, 2006, 2007, 2008, 2011, 2012 Apple Inc. All rights reserved.
* Copyright (C) 2011, Benjamin Poulain <ikipou@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef SKY_ENGINE_WTF_LINKEDHASHSET_H_
#define SKY_ENGINE_WTF_LINKEDHASHSET_H_
#include "sky/engine/wtf/DefaultAllocator.h"
#include "sky/engine/wtf/HashSet.h"
#include "sky/engine/wtf/OwnPtr.h"
#include "sky/engine/wtf/PassOwnPtr.h"
namespace WTF {
// LinkedHashSet: Just like HashSet, this class provides a Set
// interface - a collection of unique objects with O(1) insertion,
// removal and test for containership. However, it also has an
// order - iterating it will always give back values in the order
// in which they are added.
// Unlike ListHashSet, but like most WTF collections, iteration is NOT safe
// against mutation of the LinkedHashSet.
template<typename Value, typename HashFunctions, typename HashTraits, typename Allocator> class LinkedHashSet;
template<typename LinkedHashSet> class LinkedHashSetIterator;
template<typename LinkedHashSet> class LinkedHashSetConstIterator;
template<typename LinkedHashSet> class LinkedHashSetReverseIterator;
template<typename LinkedHashSet> class LinkedHashSetConstReverseIterator;
template<typename Value, typename HashFunctions, typename Allocator> struct LinkedHashSetTranslator;
template<typename Value, typename Allocator> struct LinkedHashSetExtractor;
template<typename Value, typename ValueTraits, typename Allocator> struct LinkedHashSetTraits;
class LinkedHashSetNodeBase {
public:
LinkedHashSetNodeBase() : m_prev(this), m_next(this) { }
void unlink()
{
if (!m_next)
return;
ASSERT(m_prev);
ASSERT(m_next->m_prev == this);
ASSERT(m_prev->m_next == this);
m_next->m_prev = m_prev;
m_prev->m_next = m_next;
}
~LinkedHashSetNodeBase()
{
unlink();
}
void insertBefore(LinkedHashSetNodeBase& other)
{
other.m_next = this;
other.m_prev = m_prev;
m_prev->m_next = &other;
m_prev = &other;
ASSERT(other.m_next);
ASSERT(other.m_prev);
ASSERT(m_next);
ASSERT(m_prev);
}
void insertAfter(LinkedHashSetNodeBase& other)
{
other.m_prev = this;
other.m_next = m_next;
m_next->m_prev = &other;
m_next = &other;
ASSERT(other.m_next);
ASSERT(other.m_prev);
ASSERT(m_next);
ASSERT(m_prev);
}
LinkedHashSetNodeBase(LinkedHashSetNodeBase* prev, LinkedHashSetNodeBase* next)
: m_prev(prev)
, m_next(next)
{
ASSERT((prev && next) || (!prev && !next));
}
LinkedHashSetNodeBase* m_prev;
LinkedHashSetNodeBase* m_next;
protected:
// If we take a copy of a node we can't copy the next and prev pointers,
// since they point to something that does not point at us. This is used
// inside the shouldExpand() "if" in HashTable::add.
LinkedHashSetNodeBase(const LinkedHashSetNodeBase& other)
: m_prev(0)
, m_next(0) { }
private:
// Should not be used.
LinkedHashSetNodeBase& operator=(const LinkedHashSetNodeBase& other);
};
template<typename ValueArg, typename Allocator>
class LinkedHashSetNode : public LinkedHashSetNodeBase {
public:
LinkedHashSetNode(const ValueArg& value, LinkedHashSetNodeBase* prev, LinkedHashSetNodeBase* next)
: LinkedHashSetNodeBase(prev, next)
, m_value(value)
{
}
ValueArg m_value;
private:
// Not used.
LinkedHashSetNode(const LinkedHashSetNode&);
};
template<
typename ValueArg,
typename HashFunctions = typename DefaultHash<ValueArg>::Hash,
typename TraitsArg = HashTraits<ValueArg>,
typename Allocator = DefaultAllocator>
class LinkedHashSet {
WTF_USE_ALLOCATOR(LinkedHashSet, Allocator);
private:
typedef ValueArg Value;
typedef TraitsArg Traits;
typedef LinkedHashSetNode<Value, Allocator> Node;
typedef LinkedHashSetNodeBase NodeBase;
typedef LinkedHashSetTranslator<Value, HashFunctions, Allocator> NodeHashFunctions;
typedef LinkedHashSetTraits<Value, Traits, Allocator> NodeHashTraits;
typedef HashTable<Node, Node, IdentityExtractor,
NodeHashFunctions, NodeHashTraits, NodeHashTraits, Allocator> ImplType;
public:
typedef LinkedHashSetIterator<LinkedHashSet> iterator;
friend class LinkedHashSetIterator<LinkedHashSet>;
typedef LinkedHashSetConstIterator<LinkedHashSet> const_iterator;
friend class LinkedHashSetConstIterator<LinkedHashSet>;
typedef LinkedHashSetReverseIterator<LinkedHashSet> reverse_iterator;
friend class LinkedHashSetReverseIterator<LinkedHashSet>;
typedef LinkedHashSetConstReverseIterator<LinkedHashSet> const_reverse_iterator;
friend class LinkedHashSetConstReverseIterator<LinkedHashSet>;
struct AddResult {
AddResult(const typename ImplType::AddResult& hashTableAddResult)
: storedValue(&hashTableAddResult.storedValue->m_value)
, isNewEntry(hashTableAddResult.isNewEntry)
{
}
Value* storedValue;
bool isNewEntry;
};
typedef typename HashTraits<Value>::PeekInType ValuePeekInType;
LinkedHashSet();
LinkedHashSet(const LinkedHashSet&);
LinkedHashSet& operator=(const LinkedHashSet&);
// Needs finalization. The anchor needs to unlink itself from the chain.
~LinkedHashSet();
static void finalize(void* pointer) { reinterpret_cast<LinkedHashSet*>(pointer)->~LinkedHashSet(); }
void swap(LinkedHashSet&);
unsigned size() const { return m_impl.size(); }
unsigned capacity() const { return m_impl.capacity(); }
bool isEmpty() const { return m_impl.isEmpty(); }
iterator begin() { return makeIterator(firstNode()); }
iterator end() { return makeIterator(anchor()); }
const_iterator begin() const { return makeConstIterator(firstNode()); }
const_iterator end() const { return makeConstIterator(anchor()); }
reverse_iterator rbegin() { return makeReverseIterator(lastNode()); }
reverse_iterator rend() { return makeReverseIterator(anchor()); }
const_reverse_iterator rbegin() const { return makeConstReverseIterator(lastNode()); }
const_reverse_iterator rend() const { return makeConstReverseIterator(anchor()); }
Value& first();
const Value& first() const;
void removeFirst();
Value& last();
const Value& last() const;
void removeLast();
iterator find(ValuePeekInType);
const_iterator find(ValuePeekInType) const;
bool contains(ValuePeekInType) const;
// An alternate version of find() that finds the object by hashing and comparing
// with some other type, to avoid the cost of type conversion.
// The HashTranslator interface is defined in HashSet.
template<typename HashTranslator, typename T> iterator find(const T&);
template<typename HashTranslator, typename T> const_iterator find(const T&) const;
template<typename HashTranslator, typename T> bool contains(const T&) const;
// The return value of add is a pair of a pointer to the stored value,
// and a bool that is true if an new entry was added.
AddResult add(ValuePeekInType);
// Same as add() except that the return value is an
// iterator. Useful in cases where it's needed to have the
// same return value as find() and where it's not possible to
// use a pointer to the storedValue.
iterator addReturnIterator(ValuePeekInType);
// Add the value to the end of the collection. If the value was already in
// the list, it is moved to the end.
AddResult appendOrMoveToLast(ValuePeekInType);
// Add the value to the beginning of the collection. If the value was already in
// the list, it is moved to the beginning.
AddResult prependOrMoveToFirst(ValuePeekInType);
AddResult insertBefore(ValuePeekInType beforeValue, ValuePeekInType newValue);
AddResult insertBefore(iterator it, ValuePeekInType newValue) { return m_impl.template add<NodeHashFunctions>(newValue, it.node()); }
void remove(ValuePeekInType);
void remove(iterator);
void clear() { m_impl.clear(); }
template<typename Collection>
void removeAll(const Collection& other) { WTF::removeAll(*this, other); }
int64_t modifications() const { return m_impl.modifications(); }
void checkModifications(int64_t mods) const { m_impl.checkModifications(mods); }
private:
Node* anchor() { return reinterpret_cast<Node*>(&m_anchor); }
const Node* anchor() const { return reinterpret_cast<const Node*>(&m_anchor); }
Node* firstNode() { return reinterpret_cast<Node*>(m_anchor.m_next); }
const Node* firstNode() const { return reinterpret_cast<const Node*>(m_anchor.m_next); }
Node* lastNode() { return reinterpret_cast<Node*>(m_anchor.m_prev); }
const Node* lastNode() const { return reinterpret_cast<const Node*>(m_anchor.m_prev); }
iterator makeIterator(const Node* position) { return iterator(position, this); }
const_iterator makeConstIterator(const Node* position) const { return const_iterator(position, this); }
reverse_iterator makeReverseIterator(const Node* position) { return reverse_iterator(position, this); }
const_reverse_iterator makeConstReverseIterator(const Node* position) const { return const_reverse_iterator(position, this); }
ImplType m_impl;
NodeBase m_anchor;
};
template<typename Value, typename HashFunctions, typename Allocator>
struct LinkedHashSetTranslator {
typedef LinkedHashSetNode<Value, Allocator> Node;
typedef LinkedHashSetNodeBase NodeBase;
typedef typename HashTraits<Value>::PeekInType ValuePeekInType;
static unsigned hash(const Node& node) { return HashFunctions::hash(node.m_value); }
static unsigned hash(const ValuePeekInType& key) { return HashFunctions::hash(key); }
static bool equal(const Node& a, const ValuePeekInType& b) { return HashFunctions::equal(a.m_value, b); }
static bool equal(const Node& a, const Node& b) { return HashFunctions::equal(a.m_value, b.m_value); }
static void translate(Node& location, ValuePeekInType key, NodeBase* anchor)
{
anchor->insertBefore(location);
location.m_value = key;
}
// Empty (or deleted) slots have the m_next pointer set to null, but we
// don't do anything to the other fields, which may contain junk.
// Therefore you can't compare a newly constructed empty value with a
// slot and get the right answer.
static const bool safeToCompareToEmptyOrDeleted = false;
};
template<typename Value, typename Allocator>
struct LinkedHashSetExtractor {
static const Value& extract(const LinkedHashSetNode<Value, Allocator>& node) { return node.m_value; }
};
template<typename Value, typename ValueTraitsArg, typename Allocator>
struct LinkedHashSetTraits : public SimpleClassHashTraits<LinkedHashSetNode<Value, Allocator> > {
typedef LinkedHashSetNode<Value, Allocator> Node;
typedef ValueTraitsArg ValueTraits;
// The slot is empty when the m_next field is zero so it's safe to zero
// the backing.
static const bool emptyValueIsZero = true;
static const bool hasIsEmptyValueFunction = true;
static bool isEmptyValue(const Node& node) { return !node.m_next; }
static const int deletedValue = -1;
static void constructDeletedValue(Node& slot, bool) { slot.m_next = reinterpret_cast<Node*>(deletedValue); }
static bool isDeletedValue(const Node& slot) { return slot.m_next == reinterpret_cast<Node*>(deletedValue); }
// We always need to call destructors, that's how we get linked and
// unlinked from the chain.
static const bool needsDestruction = true;
// Whether we need to trace and do weak processing depends on the traits of
// the type inside the node.
template<typename U = void>
struct NeedsTracingLazily {
static const bool value = ValueTraits::template NeedsTracingLazily<>::value;
};
static const WeakHandlingFlag weakHandlingFlag = ValueTraits::weakHandlingFlag;
};
template<typename LinkedHashSetType>
class LinkedHashSetIterator {
private:
typedef typename LinkedHashSetType::Node Node;
typedef typename LinkedHashSetType::Traits Traits;
typedef typename LinkedHashSetType::Value& ReferenceType;
typedef typename LinkedHashSetType::Value* PointerType;
typedef LinkedHashSetConstIterator<LinkedHashSetType> const_iterator;
Node* node() { return const_cast<Node*>(m_iterator.node()); }
protected:
LinkedHashSetIterator(const Node* position, LinkedHashSetType* m_container)
: m_iterator(position , m_container)
{
}
public:
// Default copy, assignment and destructor are OK.
PointerType get() const { return const_cast<PointerType>(m_iterator.get()); }
ReferenceType operator*() const { return *get(); }
PointerType operator->() const { return get(); }
LinkedHashSetIterator& operator++() { ++m_iterator; return *this; }
LinkedHashSetIterator& operator--() { --m_iterator; return *this; }
// Postfix ++ and -- intentionally omitted.
// Comparison.
bool operator==(const LinkedHashSetIterator& other) const { return m_iterator == other.m_iterator; }
bool operator!=(const LinkedHashSetIterator& other) const { return m_iterator != other.m_iterator; }
operator const_iterator() const { return m_iterator; }
protected:
const_iterator m_iterator;
template<typename T, typename U, typename V, typename W> friend class LinkedHashSet;
};
template<typename LinkedHashSetType>
class LinkedHashSetConstIterator {
private:
typedef typename LinkedHashSetType::Node Node;
typedef typename LinkedHashSetType::Traits Traits;
typedef const typename LinkedHashSetType::Value& ReferenceType;
typedef const typename LinkedHashSetType::Value* PointerType;
const Node* node() const { return static_cast<const Node*>(m_position); }
protected:
LinkedHashSetConstIterator(const LinkedHashSetNodeBase* position, const LinkedHashSetType* container)
: m_position(position)
#if ENABLE(ASSERT)
, m_container(container)
, m_containerModifications(container->modifications())
#endif
{
}
public:
PointerType get() const
{
checkModifications();
return &static_cast<const Node*>(m_position)->m_value;
}
ReferenceType operator*() const { return *get(); }
PointerType operator->() const { return get(); }
LinkedHashSetConstIterator& operator++()
{
ASSERT(m_position);
checkModifications();
m_position = m_position->m_next;
return *this;
}
LinkedHashSetConstIterator& operator--()
{
ASSERT(m_position);
checkModifications();
m_position = m_position->m_prev;
return *this;
}
// Postfix ++ and -- intentionally omitted.
// Comparison.
bool operator==(const LinkedHashSetConstIterator& other) const
{
return m_position == other.m_position;
}
bool operator!=(const LinkedHashSetConstIterator& other) const
{
return m_position != other.m_position;
}
private:
const LinkedHashSetNodeBase* m_position;
#if ENABLE(ASSERT)
void checkModifications() const { m_container->checkModifications(m_containerModifications); }
const LinkedHashSetType* m_container;
int64_t m_containerModifications;
#else
void checkModifications() const { }
#endif
template<typename T, typename U, typename V, typename W> friend class LinkedHashSet;
friend class LinkedHashSetIterator<LinkedHashSetType>;
};
template<typename LinkedHashSetType>
class LinkedHashSetReverseIterator : public LinkedHashSetIterator<LinkedHashSetType> {
typedef LinkedHashSetIterator<LinkedHashSetType> Superclass;
typedef LinkedHashSetConstReverseIterator<LinkedHashSetType> const_reverse_iterator;
typedef typename LinkedHashSetType::Node Node;
protected:
LinkedHashSetReverseIterator(const Node* position, LinkedHashSetType* container)
: Superclass(position, container) { }
public:
LinkedHashSetReverseIterator& operator++() { Superclass::operator--(); return *this; }
LinkedHashSetReverseIterator& operator--() { Superclass::operator++(); return *this; }
// Postfix ++ and -- intentionally omitted.
operator const_reverse_iterator() const { return *reinterpret_cast<const_reverse_iterator*>(this); }
template<typename T, typename U, typename V, typename W> friend class LinkedHashSet;
};
template<typename LinkedHashSetType>
class LinkedHashSetConstReverseIterator : public LinkedHashSetConstIterator<LinkedHashSetType> {
typedef LinkedHashSetConstIterator<LinkedHashSetType> Superclass;
typedef typename LinkedHashSetType::Node Node;
public:
LinkedHashSetConstReverseIterator(const Node* position, const LinkedHashSetType* container)
: Superclass(position, container) { }
LinkedHashSetConstReverseIterator& operator++() { Superclass::operator--(); return *this; }
LinkedHashSetConstReverseIterator& operator--() { Superclass::operator++(); return *this; }
// Postfix ++ and -- intentionally omitted.
template<typename T, typename U, typename V, typename W> friend class LinkedHashSet;
};
template<typename T, typename U, typename V, typename W>
inline LinkedHashSet<T, U, V, W>::LinkedHashSet() { }
template<typename T, typename U, typename V, typename W>
inline LinkedHashSet<T, U, V, W>::LinkedHashSet(const LinkedHashSet& other)
: m_anchor()
{
const_iterator end = other.end();
for (const_iterator it = other.begin(); it != end; ++it)
add(*it);
}
template<typename T, typename U, typename V, typename W>
inline LinkedHashSet<T, U, V, W>& LinkedHashSet<T, U, V, W>::operator=(const LinkedHashSet& other)
{
LinkedHashSet tmp(other);
swap(tmp);
return *this;
}
template<typename T, typename U, typename V, typename W>
inline void LinkedHashSet<T, U, V, W>::swap(LinkedHashSet& other)
{
m_impl.swap(other.m_impl);
swapAnchor(m_anchor, other.m_anchor);
}
template<typename T, typename U, typename V, typename Allocator>
inline LinkedHashSet<T, U, V, Allocator>::~LinkedHashSet()
{
// The destructor of m_anchor will implicitly be called here, which will
// unlink the anchor from the collection.
}
template<typename T, typename U, typename V, typename W>
inline T& LinkedHashSet<T, U, V, W>::first()
{
ASSERT(!isEmpty());
return firstNode()->m_value;
}
template<typename T, typename U, typename V, typename W>
inline const T& LinkedHashSet<T, U, V, W>::first() const
{
ASSERT(!isEmpty());
return firstNode()->m_value;
}
template<typename T, typename U, typename V, typename W>
inline void LinkedHashSet<T, U, V, W>::removeFirst()
{
ASSERT(!isEmpty());
m_impl.remove(static_cast<Node*>(m_anchor.m_next));
}
template<typename T, typename U, typename V, typename W>
inline T& LinkedHashSet<T, U, V, W>::last()
{
ASSERT(!isEmpty());
return lastNode()->m_value;
}
template<typename T, typename U, typename V, typename W>
inline const T& LinkedHashSet<T, U, V, W>::last() const
{
ASSERT(!isEmpty());
return lastNode()->m_value;
}
template<typename T, typename U, typename V, typename W>
inline void LinkedHashSet<T, U, V, W>::removeLast()
{
ASSERT(!isEmpty());
m_impl.remove(static_cast<Node*>(m_anchor.m_prev));
}
template<typename T, typename U, typename V, typename W>
inline typename LinkedHashSet<T, U, V, W>::iterator LinkedHashSet<T, U, V, W>::find(ValuePeekInType value)
{
LinkedHashSet::Node* node = m_impl.template lookup<LinkedHashSet::NodeHashFunctions, ValuePeekInType>(value);
if (!node)
return end();
return makeIterator(node);
}
template<typename T, typename U, typename V, typename W>
inline typename LinkedHashSet<T, U, V, W>::const_iterator LinkedHashSet<T, U, V, W>::find(ValuePeekInType value) const
{
const LinkedHashSet::Node* node = m_impl.template lookup<LinkedHashSet::NodeHashFunctions, ValuePeekInType>(value);
if (!node)
return end();
return makeConstIterator(node);
}
template<typename Translator>
struct LinkedHashSetTranslatorAdapter {
template<typename T> static unsigned hash(const T& key) { return Translator::hash(key); }
template<typename T, typename U> static bool equal(const T& a, const U& b) { return Translator::equal(a.m_value, b); }
};
template<typename Value, typename U, typename V, typename W>
template<typename HashTranslator, typename T>
inline typename LinkedHashSet<Value, U, V, W>::iterator LinkedHashSet<Value, U, V, W>::find(const T& value)
{
typedef LinkedHashSetTranslatorAdapter<HashTranslator> TranslatedFunctions;
const LinkedHashSet::Node* node = m_impl.template lookup<TranslatedFunctions, const T&>(value);
if (!node)
return end();
return makeIterator(node);
}
template<typename Value, typename U, typename V, typename W>
template<typename HashTranslator, typename T>
inline typename LinkedHashSet<Value, U, V, W>::const_iterator LinkedHashSet<Value, U, V, W>::find(const T& value) const
{
typedef LinkedHashSetTranslatorAdapter<HashTranslator> TranslatedFunctions;
const LinkedHashSet::Node* node = m_impl.template lookup<TranslatedFunctions, const T&>(value);
if (!node)
return end();
return makeConstIterator(node);
}
template<typename Value, typename U, typename V, typename W>
template<typename HashTranslator, typename T>
inline bool LinkedHashSet<Value, U, V, W>::contains(const T& value) const
{
return m_impl.template contains<LinkedHashSetTranslatorAdapter<HashTranslator> >(value);
}
template<typename T, typename U, typename V, typename W>
inline bool LinkedHashSet<T, U, V, W>::contains(ValuePeekInType value) const
{
return m_impl.template contains<NodeHashFunctions>(value);
}
template<typename Value, typename HashFunctions, typename Traits, typename Allocator>
typename LinkedHashSet<Value, HashFunctions, Traits, Allocator>::AddResult LinkedHashSet<Value, HashFunctions, Traits, Allocator>::add(ValuePeekInType value)
{
return m_impl.template add<NodeHashFunctions>(value, &m_anchor);
}
template<typename T, typename U, typename V, typename W>
typename LinkedHashSet<T, U, V, W>::iterator LinkedHashSet<T, U, V, W>::addReturnIterator(ValuePeekInType value)
{
typename ImplType::AddResult result = m_impl.template add<NodeHashFunctions>(value, &m_anchor);
return makeIterator(result.storedValue);
}
template<typename T, typename U, typename V, typename W>
typename LinkedHashSet<T, U, V, W>::AddResult LinkedHashSet<T, U, V, W>::appendOrMoveToLast(ValuePeekInType value)
{
typename ImplType::AddResult result = m_impl.template add<NodeHashFunctions>(value, &m_anchor);
Node* node = result.storedValue;
if (!result.isNewEntry) {
node->unlink();
m_anchor.insertBefore(*node);
}
return result;
}
template<typename T, typename U, typename V, typename W>
typename LinkedHashSet<T, U, V, W>::AddResult LinkedHashSet<T, U, V, W>::prependOrMoveToFirst(ValuePeekInType value)
{
typename ImplType::AddResult result = m_impl.template add<NodeHashFunctions>(value, m_anchor.m_next);
Node* node = result.storedValue;
if (!result.isNewEntry) {
node->unlink();
m_anchor.insertAfter(*node);
}
return result;
}
template<typename T, typename U, typename V, typename W>
typename LinkedHashSet<T, U, V, W>::AddResult LinkedHashSet<T, U, V, W>::insertBefore(ValuePeekInType beforeValue, ValuePeekInType newValue)
{
return insertBefore(find(beforeValue), newValue);
}
template<typename T, typename U, typename V, typename W>
inline void LinkedHashSet<T, U, V, W>::remove(iterator it)
{
if (it == end())
return;
m_impl.remove(it.node());
}
template<typename T, typename U, typename V, typename W>
inline void LinkedHashSet<T, U, V, W>::remove(ValuePeekInType value)
{
remove(find(value));
}
inline void swapAnchor(LinkedHashSetNodeBase& a, LinkedHashSetNodeBase& b)
{
ASSERT(a.m_prev && a.m_next && b.m_prev && b.m_next);
swap(a.m_prev, b.m_prev);
swap(a.m_next, b.m_next);
if (b.m_next == &a) {
ASSERT(b.m_prev == &a);
b.m_next = &b;
b.m_prev = &b;
} else {
b.m_next->m_prev = &b;
b.m_prev->m_next = &b;
}
if (a.m_next == &b) {
ASSERT(a.m_prev == &b);
a.m_next = &a;
a.m_prev = &a;
} else {
a.m_next->m_prev = &a;
a.m_prev->m_next = &a;
}
}
inline void swap(LinkedHashSetNodeBase& a, LinkedHashSetNodeBase& b)
{
ASSERT(a.m_next != &a && b.m_next != &b);
swap(a.m_prev, b.m_prev);
swap(a.m_next, b.m_next);
if (b.m_next) {
b.m_next->m_prev = &b;
b.m_prev->m_next = &b;
}
if (a.m_next) {
a.m_next->m_prev = &a;
a.m_prev->m_next = &a;
}
}
template<typename T, typename Allocator>
inline void swap(LinkedHashSetNode<T, Allocator>& a, LinkedHashSetNode<T, Allocator>& b)
{
typedef LinkedHashSetNodeBase Base;
Allocator::enterNoAllocationScope();
swap(static_cast<Base&>(a), static_cast<Base&>(b));
swap(a.m_value, b.m_value);
Allocator::leaveNoAllocationScope();
}
// Warning: After and while calling this you have a collection with deleted
// pointers. Consider using a smart pointer like OwnPtr and calling clear()
// instead.
template<typename ValueType, typename T, typename U>
void deleteAllValues(const LinkedHashSet<ValueType, T, U>& set)
{
typedef typename LinkedHashSet<ValueType, T, U>::const_iterator iterator;
iterator end = set.end();
for (iterator it = set.begin(); it != end; ++it)
delete *it;
}
}
using WTF::LinkedHashSet;
#endif // SKY_ENGINE_WTF_LINKEDHASHSET_H_