| /* |
| * Copyright (C) 2005, 2006, 2007, 2008, 2011, 2012 Apple Inc. All rights reserved. |
| * Copyright (C) 2011, Benjamin Poulain <ikipou@gmail.com> |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Library General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Library General Public License for more details. |
| * |
| * You should have received a copy of the GNU Library General Public License |
| * along with this library; see the file COPYING.LIB. If not, write to |
| * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, |
| * Boston, MA 02110-1301, USA. |
| * |
| */ |
| |
| #ifndef SKY_ENGINE_WTF_LINKEDHASHSET_H_ |
| #define SKY_ENGINE_WTF_LINKEDHASHSET_H_ |
| |
| #include "sky/engine/wtf/DefaultAllocator.h" |
| #include "sky/engine/wtf/HashSet.h" |
| #include "sky/engine/wtf/OwnPtr.h" |
| #include "sky/engine/wtf/PassOwnPtr.h" |
| |
| namespace WTF { |
| |
| // LinkedHashSet: Just like HashSet, this class provides a Set |
| // interface - a collection of unique objects with O(1) insertion, |
| // removal and test for containership. However, it also has an |
| // order - iterating it will always give back values in the order |
| // in which they are added. |
| |
| // Unlike ListHashSet, but like most WTF collections, iteration is NOT safe |
| // against mutation of the LinkedHashSet. |
| |
| template<typename Value, typename HashFunctions, typename HashTraits, typename Allocator> class LinkedHashSet; |
| |
| template<typename LinkedHashSet> class LinkedHashSetIterator; |
| template<typename LinkedHashSet> class LinkedHashSetConstIterator; |
| template<typename LinkedHashSet> class LinkedHashSetReverseIterator; |
| template<typename LinkedHashSet> class LinkedHashSetConstReverseIterator; |
| |
| template<typename Value, typename HashFunctions, typename Allocator> struct LinkedHashSetTranslator; |
| template<typename Value, typename Allocator> struct LinkedHashSetExtractor; |
| template<typename Value, typename ValueTraits, typename Allocator> struct LinkedHashSetTraits; |
| |
| class LinkedHashSetNodeBase { |
| public: |
| LinkedHashSetNodeBase() : m_prev(this), m_next(this) { } |
| |
| void unlink() |
| { |
| if (!m_next) |
| return; |
| ASSERT(m_prev); |
| ASSERT(m_next->m_prev == this); |
| ASSERT(m_prev->m_next == this); |
| m_next->m_prev = m_prev; |
| m_prev->m_next = m_next; |
| } |
| |
| ~LinkedHashSetNodeBase() |
| { |
| unlink(); |
| } |
| |
| void insertBefore(LinkedHashSetNodeBase& other) |
| { |
| other.m_next = this; |
| other.m_prev = m_prev; |
| m_prev->m_next = &other; |
| m_prev = &other; |
| ASSERT(other.m_next); |
| ASSERT(other.m_prev); |
| ASSERT(m_next); |
| ASSERT(m_prev); |
| } |
| |
| void insertAfter(LinkedHashSetNodeBase& other) |
| { |
| other.m_prev = this; |
| other.m_next = m_next; |
| m_next->m_prev = &other; |
| m_next = &other; |
| ASSERT(other.m_next); |
| ASSERT(other.m_prev); |
| ASSERT(m_next); |
| ASSERT(m_prev); |
| } |
| |
| LinkedHashSetNodeBase(LinkedHashSetNodeBase* prev, LinkedHashSetNodeBase* next) |
| : m_prev(prev) |
| , m_next(next) |
| { |
| ASSERT((prev && next) || (!prev && !next)); |
| } |
| |
| LinkedHashSetNodeBase* m_prev; |
| LinkedHashSetNodeBase* m_next; |
| |
| protected: |
| // If we take a copy of a node we can't copy the next and prev pointers, |
| // since they point to something that does not point at us. This is used |
| // inside the shouldExpand() "if" in HashTable::add. |
| LinkedHashSetNodeBase(const LinkedHashSetNodeBase& other) |
| : m_prev(0) |
| , m_next(0) { } |
| |
| private: |
| // Should not be used. |
| LinkedHashSetNodeBase& operator=(const LinkedHashSetNodeBase& other); |
| }; |
| |
| template<typename ValueArg, typename Allocator> |
| class LinkedHashSetNode : public LinkedHashSetNodeBase { |
| public: |
| LinkedHashSetNode(const ValueArg& value, LinkedHashSetNodeBase* prev, LinkedHashSetNodeBase* next) |
| : LinkedHashSetNodeBase(prev, next) |
| , m_value(value) |
| { |
| } |
| |
| ValueArg m_value; |
| |
| private: |
| // Not used. |
| LinkedHashSetNode(const LinkedHashSetNode&); |
| }; |
| |
| template< |
| typename ValueArg, |
| typename HashFunctions = typename DefaultHash<ValueArg>::Hash, |
| typename TraitsArg = HashTraits<ValueArg>, |
| typename Allocator = DefaultAllocator> |
| class LinkedHashSet { |
| WTF_USE_ALLOCATOR(LinkedHashSet, Allocator); |
| private: |
| typedef ValueArg Value; |
| typedef TraitsArg Traits; |
| typedef LinkedHashSetNode<Value, Allocator> Node; |
| typedef LinkedHashSetNodeBase NodeBase; |
| typedef LinkedHashSetTranslator<Value, HashFunctions, Allocator> NodeHashFunctions; |
| typedef LinkedHashSetTraits<Value, Traits, Allocator> NodeHashTraits; |
| |
| typedef HashTable<Node, Node, IdentityExtractor, |
| NodeHashFunctions, NodeHashTraits, NodeHashTraits, Allocator> ImplType; |
| |
| public: |
| typedef LinkedHashSetIterator<LinkedHashSet> iterator; |
| friend class LinkedHashSetIterator<LinkedHashSet>; |
| typedef LinkedHashSetConstIterator<LinkedHashSet> const_iterator; |
| friend class LinkedHashSetConstIterator<LinkedHashSet>; |
| |
| typedef LinkedHashSetReverseIterator<LinkedHashSet> reverse_iterator; |
| friend class LinkedHashSetReverseIterator<LinkedHashSet>; |
| typedef LinkedHashSetConstReverseIterator<LinkedHashSet> const_reverse_iterator; |
| friend class LinkedHashSetConstReverseIterator<LinkedHashSet>; |
| |
| struct AddResult { |
| AddResult(const typename ImplType::AddResult& hashTableAddResult) |
| : storedValue(&hashTableAddResult.storedValue->m_value) |
| , isNewEntry(hashTableAddResult.isNewEntry) |
| { |
| } |
| |
| Value* storedValue; |
| bool isNewEntry; |
| }; |
| |
| typedef typename HashTraits<Value>::PeekInType ValuePeekInType; |
| |
| LinkedHashSet(); |
| LinkedHashSet(const LinkedHashSet&); |
| LinkedHashSet& operator=(const LinkedHashSet&); |
| |
| // Needs finalization. The anchor needs to unlink itself from the chain. |
| ~LinkedHashSet(); |
| |
| static void finalize(void* pointer) { reinterpret_cast<LinkedHashSet*>(pointer)->~LinkedHashSet(); } |
| |
| void swap(LinkedHashSet&); |
| |
| unsigned size() const { return m_impl.size(); } |
| unsigned capacity() const { return m_impl.capacity(); } |
| bool isEmpty() const { return m_impl.isEmpty(); } |
| |
| iterator begin() { return makeIterator(firstNode()); } |
| iterator end() { return makeIterator(anchor()); } |
| const_iterator begin() const { return makeConstIterator(firstNode()); } |
| const_iterator end() const { return makeConstIterator(anchor()); } |
| |
| reverse_iterator rbegin() { return makeReverseIterator(lastNode()); } |
| reverse_iterator rend() { return makeReverseIterator(anchor()); } |
| const_reverse_iterator rbegin() const { return makeConstReverseIterator(lastNode()); } |
| const_reverse_iterator rend() const { return makeConstReverseIterator(anchor()); } |
| |
| Value& first(); |
| const Value& first() const; |
| void removeFirst(); |
| |
| Value& last(); |
| const Value& last() const; |
| void removeLast(); |
| |
| iterator find(ValuePeekInType); |
| const_iterator find(ValuePeekInType) const; |
| bool contains(ValuePeekInType) const; |
| |
| // An alternate version of find() that finds the object by hashing and comparing |
| // with some other type, to avoid the cost of type conversion. |
| // The HashTranslator interface is defined in HashSet. |
| template<typename HashTranslator, typename T> iterator find(const T&); |
| template<typename HashTranslator, typename T> const_iterator find(const T&) const; |
| template<typename HashTranslator, typename T> bool contains(const T&) const; |
| |
| // The return value of add is a pair of a pointer to the stored value, |
| // and a bool that is true if an new entry was added. |
| AddResult add(ValuePeekInType); |
| |
| // Same as add() except that the return value is an |
| // iterator. Useful in cases where it's needed to have the |
| // same return value as find() and where it's not possible to |
| // use a pointer to the storedValue. |
| iterator addReturnIterator(ValuePeekInType); |
| |
| // Add the value to the end of the collection. If the value was already in |
| // the list, it is moved to the end. |
| AddResult appendOrMoveToLast(ValuePeekInType); |
| |
| // Add the value to the beginning of the collection. If the value was already in |
| // the list, it is moved to the beginning. |
| AddResult prependOrMoveToFirst(ValuePeekInType); |
| |
| AddResult insertBefore(ValuePeekInType beforeValue, ValuePeekInType newValue); |
| AddResult insertBefore(iterator it, ValuePeekInType newValue) { return m_impl.template add<NodeHashFunctions>(newValue, it.node()); } |
| |
| void remove(ValuePeekInType); |
| void remove(iterator); |
| void clear() { m_impl.clear(); } |
| template<typename Collection> |
| void removeAll(const Collection& other) { WTF::removeAll(*this, other); } |
| |
| int64_t modifications() const { return m_impl.modifications(); } |
| void checkModifications(int64_t mods) const { m_impl.checkModifications(mods); } |
| |
| private: |
| Node* anchor() { return reinterpret_cast<Node*>(&m_anchor); } |
| const Node* anchor() const { return reinterpret_cast<const Node*>(&m_anchor); } |
| Node* firstNode() { return reinterpret_cast<Node*>(m_anchor.m_next); } |
| const Node* firstNode() const { return reinterpret_cast<const Node*>(m_anchor.m_next); } |
| Node* lastNode() { return reinterpret_cast<Node*>(m_anchor.m_prev); } |
| const Node* lastNode() const { return reinterpret_cast<const Node*>(m_anchor.m_prev); } |
| |
| iterator makeIterator(const Node* position) { return iterator(position, this); } |
| const_iterator makeConstIterator(const Node* position) const { return const_iterator(position, this); } |
| reverse_iterator makeReverseIterator(const Node* position) { return reverse_iterator(position, this); } |
| const_reverse_iterator makeConstReverseIterator(const Node* position) const { return const_reverse_iterator(position, this); } |
| |
| ImplType m_impl; |
| NodeBase m_anchor; |
| }; |
| |
| template<typename Value, typename HashFunctions, typename Allocator> |
| struct LinkedHashSetTranslator { |
| typedef LinkedHashSetNode<Value, Allocator> Node; |
| typedef LinkedHashSetNodeBase NodeBase; |
| typedef typename HashTraits<Value>::PeekInType ValuePeekInType; |
| static unsigned hash(const Node& node) { return HashFunctions::hash(node.m_value); } |
| static unsigned hash(const ValuePeekInType& key) { return HashFunctions::hash(key); } |
| static bool equal(const Node& a, const ValuePeekInType& b) { return HashFunctions::equal(a.m_value, b); } |
| static bool equal(const Node& a, const Node& b) { return HashFunctions::equal(a.m_value, b.m_value); } |
| static void translate(Node& location, ValuePeekInType key, NodeBase* anchor) |
| { |
| anchor->insertBefore(location); |
| location.m_value = key; |
| } |
| |
| // Empty (or deleted) slots have the m_next pointer set to null, but we |
| // don't do anything to the other fields, which may contain junk. |
| // Therefore you can't compare a newly constructed empty value with a |
| // slot and get the right answer. |
| static const bool safeToCompareToEmptyOrDeleted = false; |
| }; |
| |
| template<typename Value, typename Allocator> |
| struct LinkedHashSetExtractor { |
| static const Value& extract(const LinkedHashSetNode<Value, Allocator>& node) { return node.m_value; } |
| }; |
| |
| template<typename Value, typename ValueTraitsArg, typename Allocator> |
| struct LinkedHashSetTraits : public SimpleClassHashTraits<LinkedHashSetNode<Value, Allocator> > { |
| typedef LinkedHashSetNode<Value, Allocator> Node; |
| typedef ValueTraitsArg ValueTraits; |
| |
| // The slot is empty when the m_next field is zero so it's safe to zero |
| // the backing. |
| static const bool emptyValueIsZero = true; |
| |
| static const bool hasIsEmptyValueFunction = true; |
| static bool isEmptyValue(const Node& node) { return !node.m_next; } |
| |
| static const int deletedValue = -1; |
| |
| static void constructDeletedValue(Node& slot, bool) { slot.m_next = reinterpret_cast<Node*>(deletedValue); } |
| static bool isDeletedValue(const Node& slot) { return slot.m_next == reinterpret_cast<Node*>(deletedValue); } |
| |
| // We always need to call destructors, that's how we get linked and |
| // unlinked from the chain. |
| static const bool needsDestruction = true; |
| |
| // Whether we need to trace and do weak processing depends on the traits of |
| // the type inside the node. |
| template<typename U = void> |
| struct NeedsTracingLazily { |
| static const bool value = ValueTraits::template NeedsTracingLazily<>::value; |
| }; |
| static const WeakHandlingFlag weakHandlingFlag = ValueTraits::weakHandlingFlag; |
| }; |
| |
| template<typename LinkedHashSetType> |
| class LinkedHashSetIterator { |
| private: |
| typedef typename LinkedHashSetType::Node Node; |
| typedef typename LinkedHashSetType::Traits Traits; |
| |
| typedef typename LinkedHashSetType::Value& ReferenceType; |
| typedef typename LinkedHashSetType::Value* PointerType; |
| |
| typedef LinkedHashSetConstIterator<LinkedHashSetType> const_iterator; |
| |
| Node* node() { return const_cast<Node*>(m_iterator.node()); } |
| |
| protected: |
| LinkedHashSetIterator(const Node* position, LinkedHashSetType* m_container) |
| : m_iterator(position , m_container) |
| { |
| } |
| |
| public: |
| // Default copy, assignment and destructor are OK. |
| |
| PointerType get() const { return const_cast<PointerType>(m_iterator.get()); } |
| ReferenceType operator*() const { return *get(); } |
| PointerType operator->() const { return get(); } |
| |
| LinkedHashSetIterator& operator++() { ++m_iterator; return *this; } |
| LinkedHashSetIterator& operator--() { --m_iterator; return *this; } |
| |
| // Postfix ++ and -- intentionally omitted. |
| |
| // Comparison. |
| bool operator==(const LinkedHashSetIterator& other) const { return m_iterator == other.m_iterator; } |
| bool operator!=(const LinkedHashSetIterator& other) const { return m_iterator != other.m_iterator; } |
| |
| operator const_iterator() const { return m_iterator; } |
| |
| protected: |
| const_iterator m_iterator; |
| template<typename T, typename U, typename V, typename W> friend class LinkedHashSet; |
| }; |
| |
| template<typename LinkedHashSetType> |
| class LinkedHashSetConstIterator { |
| private: |
| typedef typename LinkedHashSetType::Node Node; |
| typedef typename LinkedHashSetType::Traits Traits; |
| |
| typedef const typename LinkedHashSetType::Value& ReferenceType; |
| typedef const typename LinkedHashSetType::Value* PointerType; |
| |
| const Node* node() const { return static_cast<const Node*>(m_position); } |
| |
| protected: |
| LinkedHashSetConstIterator(const LinkedHashSetNodeBase* position, const LinkedHashSetType* container) |
| : m_position(position) |
| #if ENABLE(ASSERT) |
| , m_container(container) |
| , m_containerModifications(container->modifications()) |
| #endif |
| { |
| } |
| |
| public: |
| PointerType get() const |
| { |
| checkModifications(); |
| return &static_cast<const Node*>(m_position)->m_value; |
| } |
| ReferenceType operator*() const { return *get(); } |
| PointerType operator->() const { return get(); } |
| |
| LinkedHashSetConstIterator& operator++() |
| { |
| ASSERT(m_position); |
| checkModifications(); |
| m_position = m_position->m_next; |
| return *this; |
| } |
| |
| LinkedHashSetConstIterator& operator--() |
| { |
| ASSERT(m_position); |
| checkModifications(); |
| m_position = m_position->m_prev; |
| return *this; |
| } |
| |
| // Postfix ++ and -- intentionally omitted. |
| |
| // Comparison. |
| bool operator==(const LinkedHashSetConstIterator& other) const |
| { |
| return m_position == other.m_position; |
| } |
| bool operator!=(const LinkedHashSetConstIterator& other) const |
| { |
| return m_position != other.m_position; |
| } |
| |
| private: |
| const LinkedHashSetNodeBase* m_position; |
| #if ENABLE(ASSERT) |
| void checkModifications() const { m_container->checkModifications(m_containerModifications); } |
| const LinkedHashSetType* m_container; |
| int64_t m_containerModifications; |
| #else |
| void checkModifications() const { } |
| #endif |
| template<typename T, typename U, typename V, typename W> friend class LinkedHashSet; |
| friend class LinkedHashSetIterator<LinkedHashSetType>; |
| }; |
| |
| template<typename LinkedHashSetType> |
| class LinkedHashSetReverseIterator : public LinkedHashSetIterator<LinkedHashSetType> { |
| typedef LinkedHashSetIterator<LinkedHashSetType> Superclass; |
| typedef LinkedHashSetConstReverseIterator<LinkedHashSetType> const_reverse_iterator; |
| typedef typename LinkedHashSetType::Node Node; |
| |
| protected: |
| LinkedHashSetReverseIterator(const Node* position, LinkedHashSetType* container) |
| : Superclass(position, container) { } |
| |
| public: |
| LinkedHashSetReverseIterator& operator++() { Superclass::operator--(); return *this; } |
| LinkedHashSetReverseIterator& operator--() { Superclass::operator++(); return *this; } |
| |
| // Postfix ++ and -- intentionally omitted. |
| |
| operator const_reverse_iterator() const { return *reinterpret_cast<const_reverse_iterator*>(this); } |
| |
| template<typename T, typename U, typename V, typename W> friend class LinkedHashSet; |
| }; |
| |
| template<typename LinkedHashSetType> |
| class LinkedHashSetConstReverseIterator : public LinkedHashSetConstIterator<LinkedHashSetType> { |
| typedef LinkedHashSetConstIterator<LinkedHashSetType> Superclass; |
| typedef typename LinkedHashSetType::Node Node; |
| |
| public: |
| LinkedHashSetConstReverseIterator(const Node* position, const LinkedHashSetType* container) |
| : Superclass(position, container) { } |
| |
| LinkedHashSetConstReverseIterator& operator++() { Superclass::operator--(); return *this; } |
| LinkedHashSetConstReverseIterator& operator--() { Superclass::operator++(); return *this; } |
| |
| // Postfix ++ and -- intentionally omitted. |
| |
| template<typename T, typename U, typename V, typename W> friend class LinkedHashSet; |
| }; |
| |
| template<typename T, typename U, typename V, typename W> |
| inline LinkedHashSet<T, U, V, W>::LinkedHashSet() { } |
| |
| template<typename T, typename U, typename V, typename W> |
| inline LinkedHashSet<T, U, V, W>::LinkedHashSet(const LinkedHashSet& other) |
| : m_anchor() |
| { |
| const_iterator end = other.end(); |
| for (const_iterator it = other.begin(); it != end; ++it) |
| add(*it); |
| } |
| |
| template<typename T, typename U, typename V, typename W> |
| inline LinkedHashSet<T, U, V, W>& LinkedHashSet<T, U, V, W>::operator=(const LinkedHashSet& other) |
| { |
| LinkedHashSet tmp(other); |
| swap(tmp); |
| return *this; |
| } |
| |
| template<typename T, typename U, typename V, typename W> |
| inline void LinkedHashSet<T, U, V, W>::swap(LinkedHashSet& other) |
| { |
| m_impl.swap(other.m_impl); |
| swapAnchor(m_anchor, other.m_anchor); |
| } |
| |
| template<typename T, typename U, typename V, typename Allocator> |
| inline LinkedHashSet<T, U, V, Allocator>::~LinkedHashSet() |
| { |
| // The destructor of m_anchor will implicitly be called here, which will |
| // unlink the anchor from the collection. |
| } |
| |
| template<typename T, typename U, typename V, typename W> |
| inline T& LinkedHashSet<T, U, V, W>::first() |
| { |
| ASSERT(!isEmpty()); |
| return firstNode()->m_value; |
| } |
| |
| template<typename T, typename U, typename V, typename W> |
| inline const T& LinkedHashSet<T, U, V, W>::first() const |
| { |
| ASSERT(!isEmpty()); |
| return firstNode()->m_value; |
| } |
| |
| template<typename T, typename U, typename V, typename W> |
| inline void LinkedHashSet<T, U, V, W>::removeFirst() |
| { |
| ASSERT(!isEmpty()); |
| m_impl.remove(static_cast<Node*>(m_anchor.m_next)); |
| } |
| |
| template<typename T, typename U, typename V, typename W> |
| inline T& LinkedHashSet<T, U, V, W>::last() |
| { |
| ASSERT(!isEmpty()); |
| return lastNode()->m_value; |
| } |
| |
| template<typename T, typename U, typename V, typename W> |
| inline const T& LinkedHashSet<T, U, V, W>::last() const |
| { |
| ASSERT(!isEmpty()); |
| return lastNode()->m_value; |
| } |
| |
| template<typename T, typename U, typename V, typename W> |
| inline void LinkedHashSet<T, U, V, W>::removeLast() |
| { |
| ASSERT(!isEmpty()); |
| m_impl.remove(static_cast<Node*>(m_anchor.m_prev)); |
| } |
| |
| template<typename T, typename U, typename V, typename W> |
| inline typename LinkedHashSet<T, U, V, W>::iterator LinkedHashSet<T, U, V, W>::find(ValuePeekInType value) |
| { |
| LinkedHashSet::Node* node = m_impl.template lookup<LinkedHashSet::NodeHashFunctions, ValuePeekInType>(value); |
| if (!node) |
| return end(); |
| return makeIterator(node); |
| } |
| |
| template<typename T, typename U, typename V, typename W> |
| inline typename LinkedHashSet<T, U, V, W>::const_iterator LinkedHashSet<T, U, V, W>::find(ValuePeekInType value) const |
| { |
| const LinkedHashSet::Node* node = m_impl.template lookup<LinkedHashSet::NodeHashFunctions, ValuePeekInType>(value); |
| if (!node) |
| return end(); |
| return makeConstIterator(node); |
| } |
| |
| template<typename Translator> |
| struct LinkedHashSetTranslatorAdapter { |
| template<typename T> static unsigned hash(const T& key) { return Translator::hash(key); } |
| template<typename T, typename U> static bool equal(const T& a, const U& b) { return Translator::equal(a.m_value, b); } |
| }; |
| |
| template<typename Value, typename U, typename V, typename W> |
| template<typename HashTranslator, typename T> |
| inline typename LinkedHashSet<Value, U, V, W>::iterator LinkedHashSet<Value, U, V, W>::find(const T& value) |
| { |
| typedef LinkedHashSetTranslatorAdapter<HashTranslator> TranslatedFunctions; |
| const LinkedHashSet::Node* node = m_impl.template lookup<TranslatedFunctions, const T&>(value); |
| if (!node) |
| return end(); |
| return makeIterator(node); |
| } |
| |
| template<typename Value, typename U, typename V, typename W> |
| template<typename HashTranslator, typename T> |
| inline typename LinkedHashSet<Value, U, V, W>::const_iterator LinkedHashSet<Value, U, V, W>::find(const T& value) const |
| { |
| typedef LinkedHashSetTranslatorAdapter<HashTranslator> TranslatedFunctions; |
| const LinkedHashSet::Node* node = m_impl.template lookup<TranslatedFunctions, const T&>(value); |
| if (!node) |
| return end(); |
| return makeConstIterator(node); |
| } |
| |
| template<typename Value, typename U, typename V, typename W> |
| template<typename HashTranslator, typename T> |
| inline bool LinkedHashSet<Value, U, V, W>::contains(const T& value) const |
| { |
| return m_impl.template contains<LinkedHashSetTranslatorAdapter<HashTranslator> >(value); |
| } |
| |
| template<typename T, typename U, typename V, typename W> |
| inline bool LinkedHashSet<T, U, V, W>::contains(ValuePeekInType value) const |
| { |
| return m_impl.template contains<NodeHashFunctions>(value); |
| } |
| |
| template<typename Value, typename HashFunctions, typename Traits, typename Allocator> |
| typename LinkedHashSet<Value, HashFunctions, Traits, Allocator>::AddResult LinkedHashSet<Value, HashFunctions, Traits, Allocator>::add(ValuePeekInType value) |
| { |
| return m_impl.template add<NodeHashFunctions>(value, &m_anchor); |
| } |
| |
| template<typename T, typename U, typename V, typename W> |
| typename LinkedHashSet<T, U, V, W>::iterator LinkedHashSet<T, U, V, W>::addReturnIterator(ValuePeekInType value) |
| { |
| typename ImplType::AddResult result = m_impl.template add<NodeHashFunctions>(value, &m_anchor); |
| return makeIterator(result.storedValue); |
| } |
| |
| template<typename T, typename U, typename V, typename W> |
| typename LinkedHashSet<T, U, V, W>::AddResult LinkedHashSet<T, U, V, W>::appendOrMoveToLast(ValuePeekInType value) |
| { |
| typename ImplType::AddResult result = m_impl.template add<NodeHashFunctions>(value, &m_anchor); |
| Node* node = result.storedValue; |
| if (!result.isNewEntry) { |
| node->unlink(); |
| m_anchor.insertBefore(*node); |
| } |
| return result; |
| } |
| |
| template<typename T, typename U, typename V, typename W> |
| typename LinkedHashSet<T, U, V, W>::AddResult LinkedHashSet<T, U, V, W>::prependOrMoveToFirst(ValuePeekInType value) |
| { |
| typename ImplType::AddResult result = m_impl.template add<NodeHashFunctions>(value, m_anchor.m_next); |
| Node* node = result.storedValue; |
| if (!result.isNewEntry) { |
| node->unlink(); |
| m_anchor.insertAfter(*node); |
| } |
| return result; |
| } |
| |
| template<typename T, typename U, typename V, typename W> |
| typename LinkedHashSet<T, U, V, W>::AddResult LinkedHashSet<T, U, V, W>::insertBefore(ValuePeekInType beforeValue, ValuePeekInType newValue) |
| { |
| return insertBefore(find(beforeValue), newValue); |
| } |
| |
| template<typename T, typename U, typename V, typename W> |
| inline void LinkedHashSet<T, U, V, W>::remove(iterator it) |
| { |
| if (it == end()) |
| return; |
| m_impl.remove(it.node()); |
| } |
| |
| template<typename T, typename U, typename V, typename W> |
| inline void LinkedHashSet<T, U, V, W>::remove(ValuePeekInType value) |
| { |
| remove(find(value)); |
| } |
| |
| inline void swapAnchor(LinkedHashSetNodeBase& a, LinkedHashSetNodeBase& b) |
| { |
| ASSERT(a.m_prev && a.m_next && b.m_prev && b.m_next); |
| swap(a.m_prev, b.m_prev); |
| swap(a.m_next, b.m_next); |
| if (b.m_next == &a) { |
| ASSERT(b.m_prev == &a); |
| b.m_next = &b; |
| b.m_prev = &b; |
| } else { |
| b.m_next->m_prev = &b; |
| b.m_prev->m_next = &b; |
| } |
| if (a.m_next == &b) { |
| ASSERT(a.m_prev == &b); |
| a.m_next = &a; |
| a.m_prev = &a; |
| } else { |
| a.m_next->m_prev = &a; |
| a.m_prev->m_next = &a; |
| } |
| } |
| |
| inline void swap(LinkedHashSetNodeBase& a, LinkedHashSetNodeBase& b) |
| { |
| ASSERT(a.m_next != &a && b.m_next != &b); |
| swap(a.m_prev, b.m_prev); |
| swap(a.m_next, b.m_next); |
| if (b.m_next) { |
| b.m_next->m_prev = &b; |
| b.m_prev->m_next = &b; |
| } |
| if (a.m_next) { |
| a.m_next->m_prev = &a; |
| a.m_prev->m_next = &a; |
| } |
| } |
| |
| template<typename T, typename Allocator> |
| inline void swap(LinkedHashSetNode<T, Allocator>& a, LinkedHashSetNode<T, Allocator>& b) |
| { |
| typedef LinkedHashSetNodeBase Base; |
| Allocator::enterNoAllocationScope(); |
| swap(static_cast<Base&>(a), static_cast<Base&>(b)); |
| swap(a.m_value, b.m_value); |
| Allocator::leaveNoAllocationScope(); |
| } |
| |
| // Warning: After and while calling this you have a collection with deleted |
| // pointers. Consider using a smart pointer like OwnPtr and calling clear() |
| // instead. |
| template<typename ValueType, typename T, typename U> |
| void deleteAllValues(const LinkedHashSet<ValueType, T, U>& set) |
| { |
| typedef typename LinkedHashSet<ValueType, T, U>::const_iterator iterator; |
| iterator end = set.end(); |
| for (iterator it = set.begin(); it != end; ++it) |
| delete *it; |
| } |
| |
| } |
| |
| using WTF::LinkedHashSet; |
| |
| #endif // SKY_ENGINE_WTF_LINKEDHASHSET_H_ |