blob: 833c505bf9055516dba039f70641976b74841ed6 [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "mojo/edk/system/remote_producer_data_pipe_impl.h"
#include <string.h>
#include <algorithm>
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "mojo/edk/system/channel.h"
#include "mojo/edk/system/channel_endpoint.h"
#include "mojo/edk/system/configuration.h"
#include "mojo/edk/system/data_pipe.h"
#include "mojo/edk/system/message_in_transit.h"
#include "mojo/edk/system/message_in_transit_queue.h"
#include "mojo/edk/system/remote_consumer_data_pipe_impl.h"
#include "mojo/edk/system/remote_data_pipe_ack.h"
namespace mojo {
namespace system {
namespace {
bool ValidateIncomingMessage(size_t element_num_bytes,
size_t capacity_num_bytes,
size_t current_num_bytes,
const MessageInTransit* message) {
// We should only receive endpoint client messages.
DCHECK_EQ(message->type(), MessageInTransit::Type::ENDPOINT_CLIENT);
// But we should check the subtype; only take data messages.
if (message->subtype() != MessageInTransit::Subtype::ENDPOINT_CLIENT_DATA) {
LOG(WARNING) << "Received message of unexpected subtype: "
<< message->subtype();
return false;
}
const size_t num_bytes = message->num_bytes();
const size_t max_num_bytes = capacity_num_bytes - current_num_bytes;
if (num_bytes > max_num_bytes) {
LOG(WARNING) << "Received too much data: " << num_bytes
<< " bytes (maximum: " << max_num_bytes << " bytes)";
return false;
}
if (num_bytes % element_num_bytes != 0) {
LOG(WARNING) << "Received data not a multiple of element size: "
<< num_bytes << " bytes (element size: " << element_num_bytes
<< " bytes)";
return false;
}
return true;
}
} // namespace
RemoteProducerDataPipeImpl::RemoteProducerDataPipeImpl(
ChannelEndpoint* channel_endpoint)
: channel_endpoint_(channel_endpoint),
start_index_(0),
current_num_bytes_(0) {
// Note: |buffer_| is lazily allocated.
}
RemoteProducerDataPipeImpl::RemoteProducerDataPipeImpl(
ChannelEndpoint* channel_endpoint,
scoped_ptr<char, base::AlignedFreeDeleter> buffer,
size_t start_index,
size_t current_num_bytes)
: channel_endpoint_(channel_endpoint),
buffer_(buffer.Pass()),
start_index_(start_index),
current_num_bytes_(current_num_bytes) {
DCHECK(buffer_ || !current_num_bytes);
}
// static
bool RemoteProducerDataPipeImpl::ProcessMessagesFromIncomingEndpoint(
const MojoCreateDataPipeOptions& validated_options,
MessageInTransitQueue* messages,
scoped_ptr<char, base::AlignedFreeDeleter>* buffer,
size_t* buffer_num_bytes) {
DCHECK(!*buffer); // Not wrong, but unlikely.
const size_t element_num_bytes = validated_options.element_num_bytes;
const size_t capacity_num_bytes = validated_options.capacity_num_bytes;
scoped_ptr<char, base::AlignedFreeDeleter> new_buffer(static_cast<char*>(
base::AlignedAlloc(capacity_num_bytes,
GetConfiguration().data_pipe_buffer_alignment_bytes)));
size_t current_num_bytes = 0;
if (messages) {
while (!messages->IsEmpty()) {
scoped_ptr<MessageInTransit> message(messages->GetMessage());
if (!ValidateIncomingMessage(element_num_bytes, capacity_num_bytes,
current_num_bytes, message.get())) {
messages->Clear();
return false;
}
memcpy(new_buffer.get() + current_num_bytes, message->bytes(),
message->num_bytes());
current_num_bytes += message->num_bytes();
}
}
*buffer = new_buffer.Pass();
*buffer_num_bytes = current_num_bytes;
return true;
}
RemoteProducerDataPipeImpl::~RemoteProducerDataPipeImpl() {
}
void RemoteProducerDataPipeImpl::ProducerClose() {
NOTREACHED();
}
MojoResult RemoteProducerDataPipeImpl::ProducerWriteData(
UserPointer<const void> /*elements*/,
UserPointer<uint32_t> /*num_bytes*/,
uint32_t /*max_num_bytes_to_write*/,
uint32_t /*min_num_bytes_to_write*/) {
NOTREACHED();
return MOJO_RESULT_INTERNAL;
}
MojoResult RemoteProducerDataPipeImpl::ProducerBeginWriteData(
UserPointer<void*> /*buffer*/,
UserPointer<uint32_t> /*buffer_num_bytes*/,
uint32_t /*min_num_bytes_to_write*/) {
NOTREACHED();
return MOJO_RESULT_INTERNAL;
}
MojoResult RemoteProducerDataPipeImpl::ProducerEndWriteData(
uint32_t /*num_bytes_written*/) {
NOTREACHED();
return MOJO_RESULT_INTERNAL;
}
HandleSignalsState RemoteProducerDataPipeImpl::ProducerGetHandleSignalsState()
const {
return HandleSignalsState();
}
void RemoteProducerDataPipeImpl::ProducerStartSerialize(
Channel* /*channel*/,
size_t* /*max_size*/,
size_t* /*max_platform_handles*/) {
NOTREACHED();
}
bool RemoteProducerDataPipeImpl::ProducerEndSerialize(
Channel* /*channel*/,
void* /*destination*/,
size_t* /*actual_size*/,
embedder::PlatformHandleVector* /*platform_handles*/) {
NOTREACHED();
return false;
}
void RemoteProducerDataPipeImpl::ConsumerClose() {
if (producer_open())
Disconnect();
current_num_bytes_ = 0;
}
MojoResult RemoteProducerDataPipeImpl::ConsumerReadData(
UserPointer<void> elements,
UserPointer<uint32_t> num_bytes,
uint32_t max_num_bytes_to_read,
uint32_t min_num_bytes_to_read,
bool peek) {
DCHECK_EQ(max_num_bytes_to_read % element_num_bytes(), 0u);
DCHECK_EQ(min_num_bytes_to_read % element_num_bytes(), 0u);
DCHECK_GT(max_num_bytes_to_read, 0u);
if (min_num_bytes_to_read > current_num_bytes_) {
// Don't return "should wait" since you can't wait for a specified amount of
// data.
return producer_open() ? MOJO_RESULT_OUT_OF_RANGE
: MOJO_RESULT_FAILED_PRECONDITION;
}
size_t num_bytes_to_read =
std::min(static_cast<size_t>(max_num_bytes_to_read), current_num_bytes_);
if (num_bytes_to_read == 0) {
return producer_open() ? MOJO_RESULT_SHOULD_WAIT
: MOJO_RESULT_FAILED_PRECONDITION;
}
// The amount we can read in our first |memcpy()|.
size_t num_bytes_to_read_first =
std::min(num_bytes_to_read, GetMaxNumBytesToRead());
elements.PutArray(buffer_.get() + start_index_, num_bytes_to_read_first);
if (num_bytes_to_read_first < num_bytes_to_read) {
// The "second read index" is zero.
elements.At(num_bytes_to_read_first)
.PutArray(buffer_.get(), num_bytes_to_read - num_bytes_to_read_first);
}
if (!peek)
MarkDataAsConsumed(num_bytes_to_read);
num_bytes.Put(static_cast<uint32_t>(num_bytes_to_read));
return MOJO_RESULT_OK;
}
MojoResult RemoteProducerDataPipeImpl::ConsumerDiscardData(
UserPointer<uint32_t> num_bytes,
uint32_t max_num_bytes_to_discard,
uint32_t min_num_bytes_to_discard) {
DCHECK_EQ(max_num_bytes_to_discard % element_num_bytes(), 0u);
DCHECK_EQ(min_num_bytes_to_discard % element_num_bytes(), 0u);
DCHECK_GT(max_num_bytes_to_discard, 0u);
if (min_num_bytes_to_discard > current_num_bytes_) {
// Don't return "should wait" since you can't wait for a specified amount of
// data.
return producer_open() ? MOJO_RESULT_OUT_OF_RANGE
: MOJO_RESULT_FAILED_PRECONDITION;
}
// Be consistent with other operations; error if no data available.
if (current_num_bytes_ == 0) {
return producer_open() ? MOJO_RESULT_SHOULD_WAIT
: MOJO_RESULT_FAILED_PRECONDITION;
}
size_t num_bytes_to_discard = std::min(
static_cast<size_t>(max_num_bytes_to_discard), current_num_bytes_);
MarkDataAsConsumed(num_bytes_to_discard);
num_bytes.Put(static_cast<uint32_t>(num_bytes_to_discard));
return MOJO_RESULT_OK;
}
MojoResult RemoteProducerDataPipeImpl::ConsumerQueryData(
UserPointer<uint32_t> num_bytes) {
// Note: This cast is safe, since the capacity fits into a |uint32_t|.
num_bytes.Put(static_cast<uint32_t>(current_num_bytes_));
return MOJO_RESULT_OK;
}
MojoResult RemoteProducerDataPipeImpl::ConsumerBeginReadData(
UserPointer<const void*> buffer,
UserPointer<uint32_t> buffer_num_bytes,
uint32_t min_num_bytes_to_read) {
size_t max_num_bytes_to_read = GetMaxNumBytesToRead();
if (min_num_bytes_to_read > max_num_bytes_to_read) {
// Don't return "should wait" since you can't wait for a specified amount of
// data.
return producer_open() ? MOJO_RESULT_OUT_OF_RANGE
: MOJO_RESULT_FAILED_PRECONDITION;
}
// Don't go into a two-phase read if there's no data.
if (max_num_bytes_to_read == 0) {
return producer_open() ? MOJO_RESULT_SHOULD_WAIT
: MOJO_RESULT_FAILED_PRECONDITION;
}
buffer.Put(buffer_.get() + start_index_);
buffer_num_bytes.Put(static_cast<uint32_t>(max_num_bytes_to_read));
set_consumer_two_phase_max_num_bytes_read(
static_cast<uint32_t>(max_num_bytes_to_read));
return MOJO_RESULT_OK;
}
MojoResult RemoteProducerDataPipeImpl::ConsumerEndReadData(
uint32_t num_bytes_read) {
DCHECK_LE(num_bytes_read, consumer_two_phase_max_num_bytes_read());
DCHECK_EQ(num_bytes_read % element_num_bytes(), 0u);
DCHECK_LE(start_index_ + num_bytes_read, capacity_num_bytes());
MarkDataAsConsumed(num_bytes_read);
set_consumer_two_phase_max_num_bytes_read(0);
return MOJO_RESULT_OK;
}
HandleSignalsState RemoteProducerDataPipeImpl::ConsumerGetHandleSignalsState()
const {
HandleSignalsState rv;
if (current_num_bytes_ > 0) {
if (!consumer_in_two_phase_read())
rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_READABLE;
rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_READABLE;
} else if (producer_open()) {
rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_READABLE;
}
if (!producer_open())
rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED;
rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED;
return rv;
}
void RemoteProducerDataPipeImpl::ConsumerStartSerialize(
Channel* channel,
size_t* max_size,
size_t* max_platform_handles) {
*max_size = sizeof(SerializedDataPipeConsumerDispatcher) +
channel->GetSerializedEndpointSize();
*max_platform_handles = 0;
}
bool RemoteProducerDataPipeImpl::ConsumerEndSerialize(
Channel* channel,
void* destination,
size_t* actual_size,
embedder::PlatformHandleVector* platform_handles) {
SerializedDataPipeConsumerDispatcher* s =
static_cast<SerializedDataPipeConsumerDispatcher*>(destination);
s->validated_options = validated_options();
void* destination_for_endpoint = static_cast<char*>(destination) +
sizeof(SerializedDataPipeConsumerDispatcher);
MessageInTransitQueue message_queue;
ConvertDataToMessages(buffer_.get(), &start_index_, &current_num_bytes_,
&message_queue);
if (!producer_open()) {
// Case 1: The producer is closed.
channel->SerializeEndpointWithClosedPeer(destination_for_endpoint,
&message_queue);
*actual_size = sizeof(SerializedDataPipeConsumerDispatcher) +
channel->GetSerializedEndpointSize();
return true;
}
// Case 2: The producer isn't closed. We pass |channel_endpoint| back to the
// |Channel|. There's no reason for us to continue to exist afterwards.
// Note: We don't use |port|.
scoped_refptr<ChannelEndpoint> channel_endpoint;
channel_endpoint.swap(channel_endpoint_);
channel->SerializeEndpointWithRemotePeer(destination_for_endpoint,
&message_queue, channel_endpoint);
owner()->SetProducerClosedNoLock();
*actual_size = sizeof(SerializedDataPipeConsumerDispatcher) +
channel->GetSerializedEndpointSize();
return true;
}
bool RemoteProducerDataPipeImpl::OnReadMessage(unsigned /*port*/,
MessageInTransit* message) {
if (!producer_open()) {
// This will happen only on the rare occasion that the call to
// |OnReadMessage()| is racing with us calling
// |ChannelEndpoint::ReplaceClient()|, in which case we reject the message,
// and the |ChannelEndpoint| can retry (calling the new client's
// |OnReadMessage()|).
DCHECK(!channel_endpoint_);
return false;
}
// Otherwise, we take ownership of the message. (This means that we should
// always return true below.)
scoped_ptr<MessageInTransit> msg(message);
if (!ValidateIncomingMessage(element_num_bytes(), capacity_num_bytes(),
current_num_bytes_, msg.get())) {
Disconnect();
return true;
}
size_t num_bytes = msg->num_bytes();
// The amount we can write in our first copy.
size_t num_bytes_to_copy_first = std::min(num_bytes, GetMaxNumBytesToWrite());
// Do the first (and possibly only) copy.
size_t first_write_index =
(start_index_ + current_num_bytes_) % capacity_num_bytes();
EnsureBuffer();
memcpy(buffer_.get() + first_write_index, msg->bytes(),
num_bytes_to_copy_first);
if (num_bytes_to_copy_first < num_bytes) {
// The "second write index" is zero.
memcpy(buffer_.get(),
static_cast<const char*>(msg->bytes()) + num_bytes_to_copy_first,
num_bytes - num_bytes_to_copy_first);
}
current_num_bytes_ += num_bytes;
DCHECK_LE(current_num_bytes_, capacity_num_bytes());
return true;
}
void RemoteProducerDataPipeImpl::OnDetachFromChannel(unsigned /*port*/) {
if (!producer_open()) {
DCHECK(!channel_endpoint_);
return;
}
Disconnect();
}
void RemoteProducerDataPipeImpl::EnsureBuffer() {
DCHECK(producer_open());
if (buffer_)
return;
buffer_.reset(static_cast<char*>(
base::AlignedAlloc(capacity_num_bytes(),
GetConfiguration().data_pipe_buffer_alignment_bytes)));
}
void RemoteProducerDataPipeImpl::DestroyBuffer() {
#ifndef NDEBUG
// Scribble on the buffer to help detect use-after-frees. (This also helps the
// unit test detect certain bugs without needing ASAN or similar.)
if (buffer_)
memset(buffer_.get(), 0xcd, capacity_num_bytes());
#endif
buffer_.reset();
}
size_t RemoteProducerDataPipeImpl::GetMaxNumBytesToWrite() {
size_t next_index = start_index_ + current_num_bytes_;
if (next_index >= capacity_num_bytes()) {
next_index %= capacity_num_bytes();
DCHECK_GE(start_index_, next_index);
DCHECK_EQ(start_index_ - next_index,
capacity_num_bytes() - current_num_bytes_);
return start_index_ - next_index;
}
return capacity_num_bytes() - next_index;
}
size_t RemoteProducerDataPipeImpl::GetMaxNumBytesToRead() {
if (start_index_ + current_num_bytes_ > capacity_num_bytes())
return capacity_num_bytes() - start_index_;
return current_num_bytes_;
}
void RemoteProducerDataPipeImpl::MarkDataAsConsumed(size_t num_bytes) {
DCHECK_LE(num_bytes, current_num_bytes_);
start_index_ += num_bytes;
start_index_ %= capacity_num_bytes();
current_num_bytes_ -= num_bytes;
if (!producer_open()) {
DCHECK(!channel_endpoint_);
return;
}
RemoteDataPipeAck ack_data = {};
ack_data.num_bytes_consumed = static_cast<uint32_t>(num_bytes);
scoped_ptr<MessageInTransit> message(new MessageInTransit(
MessageInTransit::Type::ENDPOINT_CLIENT,
MessageInTransit::Subtype::ENDPOINT_CLIENT_DATA_PIPE_ACK,
static_cast<uint32_t>(sizeof(ack_data)), &ack_data));
if (!channel_endpoint_->EnqueueMessage(message.Pass()))
Disconnect();
}
void RemoteProducerDataPipeImpl::Disconnect() {
DCHECK(producer_open());
DCHECK(channel_endpoint_);
owner()->SetProducerClosedNoLock();
channel_endpoint_->DetachFromClient();
channel_endpoint_ = nullptr;
// If the consumer is still open and we still have data, we have to keep the
// buffer around. Currently, we won't free it even if it empties later. (We
// could do this -- requiring a check on every read -- but that seems to be
// optimizing for the uncommon case.)
if (!consumer_open() || !current_num_bytes_)
DestroyBuffer();
}
} // namespace system
} // namespace mojo